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CHAPTER 1

Introduction

Many interesting developments have been made recently in the field of spatial-

temporal point processes, and their estimation and applications. Spatial-temporal

point processes have been useful for applications in many fields, including the

study of earthquakes, wildfires, and other natural disasters, as well as forests

and other ecological data, neurological data, invasive species, epidemics, spatial

debris, and many others. Schoenberg et. al (2002) write a brief encyclopedic de-

scription of the subject. Following that article a scholar is encouraged to examine

Vere-Jones (2009). Additionally Daley and Vere-Jones together answer many good

questions in two volumes entitled An Introduction to the Theory of Point Processes.

Other recent works in these areas create extensions of the general model, applica-

tions to earthquakes, higher-order statistics, or analyze residuals.

The thesis is organized in several respects. All above mentioned categories are

chapters. Various sorts of spatial-temporal point processes, models, and solution

are reviewed under the general model heading. The section on earthquakes traces

longitudinal developments in one area of application. Expectations for behavior in

spatial-temporal distributions are expanded upon in the chapter on higher-order

statistics. Residuals in the spatial-temporal domain conclude the analysis. Within

each chapter the principles from citations are summarized. In my estimation

the chapter headings and summaries query meaningful contributions from each

citation. Here the preference is to transmit consistent notation. The body in each

chapter follows chronological order. Data sets uses are noted when applicable.
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CHAPTER 2

Theoretical results and descriptions of space-time

point processes

A spatial-temporal marked point process N is a random set of points in a (1+n+

d)-dimensional space formed of one temporal coordinate, n spatial coordinates,

and a d-dimensional covariate (mark) associated with each point. The conditional

intensity λ(t, x,m) is the expected rate that points with the mark m will occur

around the location (t, x) of space-time, conditional on the history of the process

prior to time t. If this rate does not depend on the history of the process at all,

that is, on what points have occurred previously, then N is a (possibly inhomo-

geneous) Poisson process, and the numbers of points in disjoint spatial-temporal

regions are independent Poisson random variables. The conditional intensity is

typically estimated by smoothing the observations or fitting a parametric model,

for instance by maximum likelihood.

2.1 Choi and Hall (1999)

Data of earthquakes in the Kanto region of Japan are explored and analyzed. The

authors achieve this using nonparametric methods based on kernel smoothing.

The first estimate is the nonparametric estimation of intensity obtained by

λ̂(x, t) =
1

h1h2

∑
i

K1

(
Xi − x
h1

)
K1

(
Ti − t
h2

)
,
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where K1 is a univariate kernel and h1, h2 are bandwidths. Next the authors

examine the strongest activity by location according to chronological order by

examining

µ̂(y|t) =
1

h2h2
3

∑
i:Ti∈T (t)

K1

(
Ti − t
h2

)
K2

(
Yi − y
h3

)
,

where K2 is a bivariate kernel, h3I2 is a 2 × 2 bandwidth matrix for K2, I2 is

the 2 × 2 identity matrix and y is a 2 × 1 vector. Afterwards a series of graphs

show the relationship between location, time and either peak magnitude, the

expected strength according to a nonparametric estimator or energy. Whereas

peak magnitude and strength are estimated nonparametrically, energy is measured

by E = 101.5(M−M0). Mixed signals are seen concerning the presence of clustering.

2.2 Schoenberg et al. (2002)

This is a review article describing spatial-temporal point processes, some of which

is summarized below. A spatial-temporal point process N is defined in functional

form by λ(t, x, y, z), the infinitesimal expected rate of events at time t and location

(x, y, z) given all the observations up to time t. When the point process N is a

Poisson process, λ is deterministic. Put more simply, λ(t, x, y, z) depends only on

t, x, y, and z. If λ is a constant, the Poisson process is stationary. The stationary

case is the most simple of all. Processes with spatial heterogeneity are occasionally

modeled as stationary in time but not space.

Stationary spatial-temporal point processes are sometimes described by the

second-order parameter measure ρ(t′, x′, y′, z′),. This quantity measures the co-

variance between the number of points in spatial-temporal regions A and B, where

region B is A shifted by (t′, x′, y′, z′). For a self-exciting (equivalently, clustered)

point process, the function ρ is positive for small values of t′, x′, y′, and z′; N is

self-correcting (equivalently, inhibitory) if instead the covariance is negative.
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Self-exciting point process models are common in epidemiology and seismology

for clusters of events in time and space. One such general model is the Hawkes

model, where λ(t, x, y, z) is written as

µ(t, x, y, z) +
∑
i

ν(t− ti, x− xi, y − yi, z − zi)

with the sum over the history of points (ti, xi, yi, zi) with ti < t. The respective

functions µ and ν represent the deterministic background rate and clustering

density. Often µ is modeled merely as a function of the spatial coordinates (x, y, z),

and may be estimated nonparametrically. When observed marks m associated

with each point are posited to affect the rate at which future points accumulate,

this information is typically incorporated into the function ν. The inclusion of

marks yields a conditional rate λ estimated as a background rate plus∑
i

ν(t− ti, x− xi, y − yi, z − zi,m−mi).

Sometimes λ is modeled as a product of marginal conditional intensities

λ(t, x, y, z) = λ1(t)λ2(x, y, z)

or even

λ(t, x, y, z) = λ1(t)λ2(x)λ2(y)λ4(z)

These forms convey that the temporal behavior of the process is independent

of the spatial behavior, and, in the stronger case, the behavior of each spatial

coordinate is independent.

2.3 Schoenberg (2004a)

The author studies the assumptions required for consistently estimated and asymp-

totically normal parameters. Three relatively lenient assumptions must be satis-

fied for the Poisson maximum likelihood estimator to be consistent and asymp-

totically normal. Poisson maximum likelihood estimation refers to estimation of

4



parameters in a Poisson distribution. Recall that the likelihood function of a spa-

tial point process is the sum over all observed points of the log of the conditional

intensity at the points minus the integral of the conditional intensity over the

whole space. The conditions for consistency of the Poisson MLE are: the parame-

ter space must be piecewise continuous; the variance of the sum over the log of the

conditional intensity for all possible solutions must be on the order of o(φ(T )2)

for some function φ(·), and both (1) the conditional intensity function using the

PMLE and (2) the absolute difference of the logarithm must be bounded away

from zero. Example 5.2 (their numbering) shows how one could easily verify these

conditions in a spatial-temporal Poisson process.

2.4 Peng et al. (2005)

The authors assess the performance of the burning index used to predict wild-

fires. The burning index is a composite of meteorological and fuel variables. The

data, which have missing values, are clustered by location, year and season. One

calculates the background rate and the burning index readings between weather

stations by kernel smoothers. Subsequently several constraints on the likelihood

are added. Overall fit is measured by AIC as well as by thinned residuals. In the

residual analysis, characteristics of the space-time process are clearly described.

2.5 Guan (2008b)

A non-parametric smoothing kernel that relates covariates is described. Although

the bias in the local smoother estimate typically is negligible, the variance does not

diminish. In other words, one does not claim that as the sample size gets bigger,

it becomes less and less likely that such an estimate differs from the population

parameter by at least some positive delta. As a result, the local smoother estima-
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tor is not consistent. The authors substitute a consistent covariate smoother in

place of a local smoother in order to estimate the conditional intensity function

of an inhomogeneous spatial-point process. The covariate smoother uses principal

component analysis, a particular kind of multivariate data analysis. The tech-

nique is demonstrated on locations of Ocotea whitei trees on the tropical Barro

Colorado island.

2.6 Vere-Jones (2009)

The author writes technical summaries of Poisson processes, first and second order

moments, variations of conditional intensity and estimation procedures. A process

is Poisson when all of the following are true: points are independent for disjoint

regions; the distribution of points is determined by

Pr[N(A) = k] =
[
Λ(A)k/k!

]
e−Λ(A);

and E[N(A)] = Var[N(A)] = Λ(A). The moments of a point process express the

expectations of the counting variables N(A). The first moment measure (equiv-

alently, the expectation measure) is M(A) = E[N(A)]. The second moment

measure, namely

M2(dz1 × dz2) = E[N(dz1)×N(dz2)]

where z is a generic variable, can be interpreted as the probability of finding points

of the process in neighborhoods of both z1 and z2. The author recognizes the

widespread use of partial likelihood estimation and notes that the log-likelihood

ratio given by

log[L1/L0] =

N(T )∑
i=1

log[λ∗F(ti)F/λ]−
T∫

0

[λ∗F(t)− λ]dt

differentiates between a conditional intensity λ∗F(t) and a simple Poisson process.

The author predicts growth for the number of studies in the field of spatial-
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temporal marked point processes due to increasing performance of computers

and increasing availability of high-quality data. The author mentions the SSLib

package developed for earthquake modeling in the statistical software program R.

2.7 Diggle et al. (2010a)

This study of birds’ nests on the delta of the Ebro river in Spain estimates param-

eters by optimizing the partial likelihood. The authors reference the definition of

the log-likelihood for spatial point processes, namely

L(θ) =
n∑
i=1

log λ(xi, ti|Hti)−
∫ T

0

∫
A

λ(x, t|Ht)dxdt.

Sometimes this quantity is intractable, though the authors are optimistic a good

estimate may be obtained by maximizing the partial log-likelihood

Lp(θ) =
n∑
i=1

log pi =
n∑
i=1

log λ(xi, ti|Hti)−
n∑
i=1

log

{∫
Ri

λ(x, ti|Hti)dx

}
.

The authors describe Monte Carlo Markov Chain simulation and a population

growth model. The authors model bird nests in a wetlands near the Mediterranean

Sea as the spatial-temporal point process

λ(x, t|Ht) = λ0(t) exp{βz(x)}g(x, t|Ht),

where λ0(t) is arbitrary, z(x) denotes the elevation, and g(x, t|Ht) models depen-

dence. Among the fitted models, the conditional intensity of the model with the

greatest maximized likelihood value is

λ(x, t|Ht) = λ0(t) exp{β1z(x) + β2z(x)2} ×
[
1 + θ exp

{
−u

∗(t)− d0

φ

}]
I[u∗(t) > d0],

where u∗(t) is the distance to the nearest neighbor.
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2.8 Diggle et al. (2010b)

The authors extend the spatial-temporal model to data at the individual level

for cases and at the ecological level for the the population at risk. A model is

fit for meningococcal cases using discrete and continuous predictors, where the

population at risk are treated as a spatially inhomogenous Poisson process.

In preparatory remarks the authors report N observations in the data. The

first M observations are cases, and M is much smaller than the size of the pop-

ulation N . Let si be the spatial locations of the observations. One writes the

covariates as Xi = {Xi1, · · · , Xip} with Xi1 = 1. The covariates are observed

for the first M cases. The spatially aggregated covariates µ̃jk : j = 1, · · · , p are

substituted for the at-risk observations in each of the k = 1, · · · , K subregions of

D. The authors define

µ̂jk(β) =
M∑
i=1

Xj(s)

f [X(s)′β]
I(si ∈ Dk),

and note that µ̃1k is the number at risk in Dk. They remark that µ̃jk and µ̂jk(β)

are unbiased estimators for the true attributable number. The result is a set of

unbiased estimating equations for β

Uj(β;W ) =
K∑
k=1

wk[µ̃jk − µ̂jk(β)] = 0, j = 1, · · · , p,

where W = {wk : k = 1, · · · , K} is any set of predefined weights. The authors

then instruct how to choose the optimal weights under Poisson or non-Poisson

conditions. Non-Poisson behavior may be detected by defining

Gkl(β) =
M∑

i1,i2=1

I(si1 ∈ Dk, si2 ∈ Dl, i1 6= I2)

exp[X(si1)
′β] exp[X(si2)

′β]

and the estimated pair-correlation function

g̃(u; β) =

∑K
k,l=1 κ[(dkl − u)/h]Gkl(β)∑
k,l=1 κ[(dkl − u)/h]µ1kµ1l

,

8



where κ is a kernel function and h is the bandwidth. The pair-correlation function

indicates if the process is Poisson, clustered or inhibited by g̃(u; β) ≈ 1, g̃(u; β) > 1

or g̃(u; β) < 1, respectively. The authors demonstrate a formal test.

The authors focus on childhood meningococcal disease in the metropolitan

county of Merseyside, U.K., arriving at the model

λ(s, t) = λ0(s, t) exp[X(s, t)′β + h(t)],

where h(t) is a cubic spline term for the temporal trend at year t.
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CHAPTER 3

Epidemic-type aftershock sequence model and

clustering

The ETAS model is a central application of a spatial-temporal model to earth-

quakes. One can think about such a process as an example of a self-exciting

(equivalently, clustered) process where points can trigger additional points and

those points can trigger additional points. A self-exciting process is contrastable

with a self-correcting (equivalently, inhibitory) process, in which the conditional

intensity function is reduced in response to close points.

3.1 Ogata (1998)

The paper models the locations, times and magnitudes of earthquakes using a

marked space-time point process. Since the earthquake events are clustered in

time and space, the author forms several quantitative models that can tolerate

non-homogeneity due to time, location, and magnitude. Ogata notes the predicted

rate for the process is conditioned from the history of aftershocks and that it can

be described by a Hawkes process. The candidate functions that satisfy the spatial

clustering constraint equation are:

ν(t, x, y;M) =
K0

(t+ c)p
exp

{
−1

2

x2 + y2

deα(M−M0)

}
,

ν(t, x, y;M) =
K0

(t+ c)p
eα(M−M0)

(x2 + y2 + d)q
,
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and

ν(t, x, y;M) =
K0

(t+ c)p

(
x2 + y2

eα(M−M0)
+ d

)−q
.

The author forms a theory that the common standard form

ν(t, x, y;M) = κ(M)× (p− 1)cp−1

(t+ c)p
×
[

1

πσ(M)
· f
{
r2(θ)

σ(M)

}]
represents the respective contributions of magnitude, time, and location. The

author formulates

r2(θ) =
1√

1− ρ2

(
σ2

σ1

x2 − 2ρxy +
σ1

σ2

y2

)
with θ = tan−1(y/x) as a model for elliptical aftershock zones. Various applica-

tions and extensions are compared using AIC to measure the goodness-of-fit. A

simulation is provided for corroboration. The discussion centers on earthquake

measurements taken during the twentieth century near Honshu Island, Japan,

which is the main island, as well as near the main island’s Tohuku region in the

Northeast.

3.2 Ogata and Zhuang (2006)

In this installment of modeling earthquake data near Japan, the authors evalu-

ate accumulating knowledge with a view to reducing bias. Assuming that every

aftershock can trigger successive incidents, the authors suggest predictions from

the epidemic-type aftershock sequence model

λ(t) = µ+
∑
j:tj<t

eα{Mj−Mc}v(t− tj)

or the space-time ETAS model

λ(t, x, y) = µ(x, y) +
∑
j:tj<t

v(t− tj)× g(x− xj, y − yj,Mj −Mc)

11



with the parameters also obtained by maximum likelihood estimation. In the

latter, the space effects are

g(x− xj, y − yj;Mj −Mc) = exp

[
−1

2

(x− xj, y −y j)Sj(x− xj, y − yj)t

deα(Mj−Mc)

]
,

or

g(x− xj, y − yj;Mj −Mc) =
eα(Mj−Mc)

[(x− xj, y −y j)Sj(x− xj, y − yj)t + d]q
,

or

g(x− xj, y − yj;Mj −Mc) =

[
(x− xj, y −y j)Sj(x− xj, y − yj)t

eα(Mj−Mc)
+ d

]−q
,

where Sj is 2 × 2 dimensional given by the identity matrix or a bivariate co-

variance matrix of an ellipsoidal cluster for isotropic or anisotropic distributions,

respectively. The presence of eα(Mi−Mc) in each of the above formulas traces to the

Utsu-Seki law, which describes the inverse power decay of aftershocks with regard

to spatial distance. Furthermore the Modified Omori formula specified by

v(t) = K(t+ c)−p, (K, c, p; parameters),

with parameters obtained by maximum likelihood estimation commonly holds true

for decades for aftershock rate decay notwithstanding limitations. After compar-

ing the AIC of each model, the authors selected the third out of the three spatial

effects models. The authors’ desire, however, is to continue the development of

the model. The authors recall the proposed common standard form

ν(t, x, y;M) = κ(M)× (p− 1)cp−1

(t+ c)p
×
[

1

πσ(M)
· g
{

(x, y)S(x, y)t

σ(M)

}]
and offer an improved model

g(x− xj, y − yj;Mj −Mc) = e(α−γ)(Mj−Mc)

[
(x− xj, y −y j)Sj(x− xj, y − yj)t

eα(Mj−Mc)
+ d

]−q
.

Using the data from four seismically active regions in Japan compiled by the Japan

Meterological Agency, they confirm the improved model is indeed superior to its

antecedent. The authors apply a declustering method – specifically, a thinning

method – to generate a random sample of dependent aftershocks.

12



3.3 Marsan and Lengline (2008)

The authors introduce an entirely nonparametric way of estimating the triggering

function in a branching point process model. They then apply it to California

earthquakes and show how the triggering decays as a function of time and distance

from the main shock.

3.4 Adelfio and Ogata (2010)

This paper follows others in the exploration of earthquakes affecting Japan. The

authors fit an ETAS model accompanied by the integral transformation

Λ(t|Ht) =

∫ t

0

λ(s|Hs)dt

yielding a cumulative timeline from the theoretical number of events. The rescaled

time units are signified by τ . The authors formulate a model with the separable

density

λ(τ, x, y) =
n∑
i=1

f(τ − τi)g(x− xi, y − yi).

The value of the spatial component g(x, y) is 2πr ·g(r) of distance r from the origin

in polar coordinates. The authors consider the following symmetric proposals for

the temporal and spatial components:

f(τ) =
(√

2πσ
)−1

exp
{
−τ 2/(2σ2)

}
f(τ) = (2σ)−1 exp{−|τ |/σ}

f(τ) = (β − 1)σβ−1/{2(|τ |+ σ)β}

g(r) = 1/(2σρ) exp
{
−r2/(2ρ2)

}
g(r) = (γ − 1)ργ−1/

{
π(r2 + ρ)γ

}
,

preferring the final choices for f and g. The likelihood is maximized by cross-

validation followed by returning the time coordinate to its original units. The

13



results are compared to the parametric ETAS model. Graphical analysis is per-

formed on the Gaussian kernel (equivalently, the pair of initial choices for f and g ,

the inverse power-law model (equivalently, the latter final choices for f and g) and

the full parametrized ETAS model. The authors conclude that the ETAS model

is as flexible as the kernel estimate, although the ETAS model has a drawback

since µ(x, y) is not time dependent.

3.5 Marsan and Lengline (2010)

The authors expand previous research on the nonparametric estimation of the

triggering function in branching point processes. Let ωij denote the probability

that event i directly causes event j and ω′ik be the probability that event i indirectly

causes event k, namely that i triggers j and j triggers k. Assume earthquake

separated by time 4t interact according to λ4t. Arbitrary starting values are

chosen for λ4t, since the following algorithm is known to converge. In the first

step, calculate ωij as the percent share for λ||j−i||, where ||j − i|| represents the

time between i and j. In the second step, update λ4t, which is the mean number

of directly triggered aftershocks during the time interval 4t. The steps alternate

until λ4t is stable.

Triggering events condition the intensity. The distributions for the magnitude,

time and temporality follow the laws as per Gutenberg-Richter, r−γ (power law

for decay) and Omori-Utsu, respectively. The authors also consider distance from

a quake’s fault to the epicenter of its trigger, the number of faults, the number

of earthquakes, and earthquakes in dislocated regions. California is shown as an

example.
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CHAPTER 4

Characterizing the second-moment statistics

Higher-order statistics aid the perception of a point process’s properties. These

functions assist an investigator in development of hypotheses. They might give

answers on interaction or suggest deficiencies in the fitted model.

4.1 Baddeley et al. (2000)

The paper explains the theory to detect interaction using a nonparametric second-

order (equivalently, second-moment) statistic named the K-function functions in

inhomogeneous (equivalently, non-stationary) processes. Suppose Y is a second-

order intensity-reweighted stationary point process. Stated otherwise the second-

moment measure of Y is invariant after translation by the vector x. The inho-

mogenous K-function of Y is

Kinhom(t) =
1

|B|
E
∑

yi∈Y ∩B

∑
yj∈Y \{yi}

1(||yi − yj|| 6 t)

λ(yi)λ(yj)
, t > 0.

The notation means that the points in Y are restricted to B. When the pair-

correlation function exists and is isotropic (equivalently, the second-order mea-

sure depends only on the distance between two points), a point-wise, unbiased

estimator of Kinhom is given by

K̂inhom(t) =
1

|W |
∑

yi∈Y ∩W

∑
yj∈Y ∪W\{yi}

wyi,yj1(||yi − yj||) 6 t)

λ(yi)λ(yj)
, 0 6 t 6 t∗,

In the former equation, wyi,yj is Ripley’s edge correction factor

t∗ = sup{r 6 0 : |{s ∈ W : ∂B(s, r) ∩W 6= ∅}| > 0},
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where ∂B(s, r) denotes the boundary of B(s, r).

4.2 Guan (2006)

The authors propose a new theory to investigate independence between marks

and points and apply the results in data from an old-growth pine forest native to

Arizona.. The authors supply test procedures – both conventional and graphical

– based on their definition of the mark K and the mark G functions. The mark

K and the mark G functions are analogous to the K and the nearest-neighbor

function (equivalently, the G function) in spatial-point processes. By definition,

Km(r) = λ−1E{m(x)×Nr(x)},

Gm(r) = E[m(x)× I{δ(x) 6 r}],

where m(x) is a mark, Nr(x) is the number of points in the process N that are

within a distance or r from x and δ(x) is the distance from x to its nearest

neighbor. The estimator K̂m(r) is similar to K̂p(r) from the spatial-point process

with an adjustment to include marks and is defined by

K̂m(r) =
1

λ̂2

∑∑ I(||xi − xj|| 6 r)×m(xi)

A(Wxi ∪Wxj)
,

where the sums are over all distinct pairs xi and xj, λ̂ is an estimator of λ, A(W )

is the volume of W and Wx is W translated by x. The estimator Ĝm(r) is defined

by

Ĝm(r) =
1

λ̂

n∑
i=1

I{δ(xi) 6 r} × I{xi ∈ W	δ(xi)} ×m(xi)

A{W	δ(xi)}

A testable null hypothesis of independence, namely Km(r) = E{m(x)} ×Kp(r),

implies that K̂m(r) and K̂p(r) are linearly related. For the conventional testing

procedure, let µ̂ be an estimator of the slope observed from plotting K̂m(r) against

K̂p(r). Let M̄ be the average of the observed marks. The authors state (µ̂ −

M̄)2/V̂ar(µ̂− M̄) converges to a χ2
1 random variable.
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The authors posit a permutation test for independence. Assume the marked,

spatial-point process under consideration is homogeneous. Consider the average

of the marks of a thinned process

T1(r) =

∑
m(xi)× I{δ(xi\x1, · · · , xi−1) 6 r}∑

I{δ(xi\x1, · · · , xi−1 < r}
.

Subsequently, the p value from the two-sided test of the statistic T1(R) is

2×min{# of T (R) 6 T1(R), # of T (R) > T1(R)}
# of random samples

.

4.3 Adelfio and Schoenberg (2009)

Second-order statistics include covariance density, K-function (a measure of clus-

tering), spectral density (a measure of periodic behavior), R/S statistic and cor-

relation integral. A typical analysis of these types of statistics would reference

a stationary Poisson distribution. This paper extends the utility of second-order

statistics to an arbitrary conditional intensity function by weighting each point

by the inverse of the conditional intensity function at the point’s location. The

value of the weighted second-order statistic is that the researcher is able to sus-

pend any comparisons to the stationary distribution as well calculation of residual

processes. The authors derive the asymptotic properties of the above statistics

using martingale theory.

One may gradually build a statistic for the study of long-range dependence

properties of temporal processes. Let the function Z(t) be the sum of values

from a simple process on the interval [0, t]. Let the difference of Z in the interval

[t, t + u] and the predicted value corresponding to the same interval estimating

during [t, t+ δ] be

D(u, t, δ) = [Z(u+ t)− Z(t)]− u

δ
[Z(t+ δ)− Z(t)].

The range over bins of lengths δ is given by

R(t; δ) = max
0≤u≤δ

D(u, t, δ)− min
0≤u≤δ

D(u, t, δ).
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Likewise the sample variance is specified by

S2(t; δ) =
Z(t+ δ) + Z(t)

δ
+

{
Z(t+ δ)− Z(t)

δ

}2

.

Then the rescaled range statistic (R/S statistic) is defined as:

R/S =
R(t; δ)

S(t; δ)

The slope of the graph of logR/S versus log δ should be the H-constant as δ

becomes large. The R/S statistic converges to the range of a Brownian bridge.

The authors present several measures of self-similarity. The correlation dimen-

sion is defined as

Dcorr = lim
δ→0

logC(δ)

log(δ)
,

where C(δ) is the number of points which have a smaller Euclidean distance that

a given distance δ. The authors bring down the definition of a fractal defined by

Mandelbrot (1977). An estimate for the correlation dimension can be obtained

by the slope of the log-log plot for δ versus Ĉ2, where

Ĉ2(δ) =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

I(|xi − xj| 6 δ)

The authors pursue the idea further. In the case of a point process, a formula of

a simple estimator of K(δ) is

K̂(δ) = λ̂−1
∑
i

∑
i 6=j

I(|xi − xj| 6 δ)/n,

where λ̂ is observed number of events per unit of the area `(A). The distribution

of the K−function follows

K̂(δ)
d→ N

(
πδ2,

2πδ2

λ2`(A)

)
The K−function is the expected mass in the circle centered at at a point with

radius δ divided by the rate λ. Since

Ĉ(δ) ≈ K̂(δ)

`(A)
,
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the distribution of Ĉ(δ) is

Ĉ(δ) ∼
(
πδ2

`(A)
,

2πδ2

`(A)2λ2

)
for a Poisson point process.

The authors introduce a weighted process

Nw =

∫
S

1

λ∗(s)
dN =

∫
S

λmin(s)

λ(s)
dN,

where N is a process defined on a set S ∈ Rd. The authors provide the prop-

erties for the expectation of the weighted process. Using this definition through

the derivation of the R/S statistic yields R/Sw (equivalently, the weighted R/S

statistic). The weighted correlation integral is the correlation integral weighted

by the inverse intensity, namely

ĈW (δ) =
2

n(n− 1)

n∑
i

1

λ(si)

n∑
j>i

1

λ(sj)
I(|si − sj| 6 δ).

This is estimated by

ĈW (δ) =
1

λ2
inf`(A)

n∑
i

λmin

λ(si)

n∑
j 6=i

λmin

λ(sj)
I(|si − sj| 6 δ).

The weighted K-function becomes

K̂W (δ) =
1

λ2
inf`(A)

n∑
i

ωj

n∑
j 6=i

ωjI(|(si − sj)| ≤ δ),

where in this formula exclusively each λ term follows the null hypothesis and

ωk = λinf/λ(sk). Each of the weighted second order statistics are distributed as

K̂
(m)
W (δ)

d→ N

(
πδ2,

2πδ2

`(A)(m)H((λ(m))2)

)
and

Ĉ
(m)
W (δ)

d→ N

(
πδ2

`(A)(m)
,

2πδ2

(`(A)(m))2H((λ(m))2)

)
,

where H((λ(m))2) is the harmonic mean of the squared intensity in the observer

region A(m).
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4.4 Gabriel and Diggle (2009)

This paper continues to develop the inhomogenous K-function. Whereas the K-

function presented by Baddeley et al. (2000) depends upon the distance between

two spatial locations, this method also considers temporal distance. The authors

analyze incidence of Campylobacter infections of humans in England using a hy-

pothesis test, a permutation test and a simulation to determine bias.

4.5 Guan (2009a)

Let an inhomogenous spatial point processes be called second-order intensity

reweighed stationary processes if λ(s1, s2) = λ(s1)λ(s2)g(s1 − s2), where g(·) is

the pair-correlation function. Let k(·) denote a kernel function with bandwidth

h. The empirical estimate of the PCF given from the author is

ĝ(t;h) =
1

2πh

6=∑∑
s1,s2∈(N∩D)

e(s1, s2)
k[(t− ||s1 − s2||)/h]

λ(s1; β̂)λ(s2; β̂)||s1 − s2||

where N is a spatial-point process and D is a spatial domain of interest. The

author states

E[ĝ(t;hn)] ≈
∫
R
k(u)g(t− hnu)du

and

Var[ĝ(t;hn)] ∝ g(t; θ)/t.

Ignoring the effect of β̂n on ĝ(t;hn), this means that the estimated PCF is unbiased

as long as g(t) is continuous and hn goes to 0.

The author desires a bandwidth selection procedure for an inhomogenous

spatial-point process that rejects the trivial solution where h = 0. One may

choose h to maximize
6=∑∑

s1,s2∈(N∩D)

{
log[g̃(||s1 − s2||;h)− log

[∫
D

∫
D

λ(u; β̂)λ(v; β̂)ĝ(||u− v||;h)dudv

]}
,
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where g̃(||s1 − s2||;h) is the cross-validated version of ĝ(||s1 − s2||;h) obtained

by deleting the pair (s1, s2). The authors suggest the composite likelihood cross-

validation criterion as a computationally faster alternative, namely

C(h) =

6=∑∑
s1,s2∈(N∩D)

W (s1, s2)

{
log[g̃(||s1 − s2||;h)]− log

[∫ rh

0

tĝ(t;h)dt

]}
,

with the weights defined as

W (s1, s2) =
I(||s1 − s2|| 6 rh)

λ(s1; β̂)λ(s2; β̂)|D ∪D − s1 + s2|
.

The tuning parameter rh is set to be around the dependence range, which can be

observed in an empirical PCF plot based on a pilot bandwidth.

The authors report positive results for minimum contrast estimation in the

simulation study.

The authors analyze the spatial distribution of three tree species established

by the Center for Tropical Forest Science in Barro Colorado Island.

4.6 Guan (2009b)

The author estimates the variance of second-order statistics taken from intensity

reweighed stationary processes. In preparatory remarks, the author recalls that

a spatial point process is kth-order intensity reweighed stationary if its weight

depends only on the interpoint lags. Such a process is isotropic if its weight

is the distance between the two points. The author addresses nonparametric

variance estimators for second-order statistics of the generic form S0(B, β̂) =
6=∑∑

u,v∈(N∪B)

f(u,v)

λ(u;β̂)λ(v;β̂)
. An example is the K-function, which represents clustering or

inhibition by values less than or greater than πt2, respectively, at a distance of

t. The functional form of the variance is stated, then a theoretical justification

is produced. The knowledge is applied to tree locations on the Barro Colorado

Island.
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CHAPTER 5

Residual analysis

Residuals must be extended for spatial reasoning. Various choices of residuals

are plausible. In any event checking the residuals is essential so that models

can be evaluated, compared, and improved. Also several tests for interaction or

separability have been designed.

5.1 Schoenberg (2003)

The author distinguishes epidemic-type aftershock sequence model by rescaled

residuals and thinned residuals. Similar to Ogata (1998), the conditional intensity

is modeled as

λ(t,x,m) = f(m)[µ(x, y) +
∑
i;ti<t

ν(t− ti, ||x− xi||,mi)],

f(m) ∝ exp{−β(m−m0)},

and

ν(t, x, y,m) =
K0 exp{α(m−m0)}
(t+ c)p(x2 + y2 + d)q

,

on account of the ETAS model, Gutenberg-Richter relation and the modified

Omori law, respectively. The µ term is estimated from larger earthquakes with

kernel smoothing, either by the simple case or by the nonisotropic distance or-

thogonal to the linear best fit. Under the hypothesis that the model matches the
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observations, points retained with probability min(λ(ti, xi, yi,mi))/λ(ti, xi, yi,mi)

or alternatively

kλ̂(ti, xi, yi,mi)
−1/

N(S)∑
i=1

λ̂(ti, xi, yi,mi)
−1

 ,

will be distributed as homogenous Poisson process. Additionally a plot of the

integral transform of points on one dimension versus a covariate will yield uniform

dispersed residuals, provided the model is correct. The model is fitted to a catalog

of earthquakes in Bear Valley, California.

5.2 Schoenberg (2004b)

The author thoroughly explores the topic of separability including its nature and

scope and evaluates a multitude of nonparametric statistical tests with relevance.

Let N be a random set of marks in a metric space X ∈ R1+n+d formed as a

join of one temporal coordinate, n spatial coordinates, and a d-dimensional mark.

The conditional intensity λ(t, x,m) is the expected rate that the mark m will

be recorded on the infinitesimally small point (t, x) of space-time, conditional on

the history of the process prior to time t. A process is separable if λ(t, x,m) =

f(m)λ1(t, x) or λ(t, x,m) = f(m)+λ1(t, x), where f is a nonnegative function and

λ1 is a nonnegative and predictable process. A process is completely separable if

λ(t, x,m) = λ1(t)f1(x)f2(m). One may verify that clustering in spatial-temporal

marked point processes is different from separability.

Estimate

λ̄1(t, x1, · · · , xn) =

∫
X
kn+1(t− u, x1 − y1, · · · , xn − yn)dN(u, y1, · · · , yn,m),

and

f̄(m) =

∫
X
kd(m−m′)dN(t, x1, · · · , xn,m′),
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where kn+1 and kd are (n+1)-dimensional and d-dimensional kernels, respectively.

Also estimate

λ̂(t, x1, · · · , xn,m) =

∫
X
kn+d+1(t− u, x1 − y1, · · · , xn − yn,m−m′)dN(u, y1, · · · , yn,m′)

and compare the conditional intensity estimates λ̂(t, x1, · · · , xn,m) and λ̃(t, x1, · · · , xn,m) :=

λ̄1(t, x1, · · · , xn)f̄(m)/N(X ). While a variety of tests are considered, the author

substantiates the power of the Cramer-von Mises-type statistic given by∫ T

0

∫
Rn

∫
Rd

[λ̂(t, x,m)− λ̃(t, x,m)]2dmdxdt.

The Cramer von-Mises type statistic is powerful amid ordered processes. What’s

more the L-function on the rescaled residuals is preferable in clustering or inhibi-

tion situations. The author draws an example from Los Angeles County wildfire

data.

5.3 Baddeley et al. (2005)

The authors define point processes residuals like residuals for generalized linear

models. The paper uses innovative graphics and references models from other

papers. In addition, the authors created the spatstat package. The authors

received an enthusiastic response.

The authors define conditional intensity, the quantity of interest, as λ(t) =

E[dNt|Ns, s < t]/dt. The innovation or error process is I(t) = Nt −
∫ t

0
λ(s)ds.

The innovation places a mass of 1 at each point xi of the spatial-point process

and a negative density −λ(u,X) at all other spatial locations u. By setting

h(u,x) = 1{u ∈ B}, Eθ[Iθ(B)] = 0 is satisfied. The raw residual process is

R(t) = Nt −
∫ t

0
λ̂(s)ds. The likelihood of the point process on the interval [0,t] is

Lθ(t) =

{∏
ti6t

λθ(ti)

}
exp

{
−
∫ t

0
λθ(s)ds

}
. A homogeneous Poisson process, inho-

mogeneous Poisson process, and pairwise interaction point process have densities
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f(x) = αβn(x), f(x) = α
n∏
i=1

b(xi), and f(x) = α

{
n(x)∏
i=1

b(xi)

}∏
i<j

c(xi, xj) respec-

tively, where α represents a normalizing constant, b(u) > 0, u ∈ W , is the ‘activity’

and c(u, v) = c(v, u) > 0, u, v ∈ W , is the ‘interaction’. A stationary pairwise in-

teraction process has the function b constant and c(u, v) = c(u − v). The ‘hard

core’ process is obtained by setting c(u, v) = 1{‖u − v‖ > δ}, where δ > 0, has

λ(u, x) = b(u) if ‖µ − η‖ > δ for all points xi in x and λ(u,x) = 0 otherwise.

To scale the raw residuals, one chooses an alternative of the function h. Then,

the variance of the innovations is var{I(B, h, λ)} =
∫
B
E[h(u,X)2λ(u,X)]du +∫

B

∫
B
E[S(u, v,X)]dudv, where S(u, v,x = λ(u,x)λ(v,x)h(u,x)h(v,x)+λ(u, v,x)h(v,x∪

{u})[h(u,x ∪ {v})− 2h(u,x)].

5.4 Baddeley et al. (2008)

The article gives a definition of innovations and residuals for point processes.

In addition these diagnostics’ properties are covered, including first and second

moments, variance deflation, conditional independence, a set-indexed martingale

property, lack of correlation and marginal distributions. The h-weighted innova-

tion is the signed random measure defined by

Ih(B) =
∑
u∈XB

h(u,XW\{u})−
∫
B

h(u,XW )λ(u,XW )du.

The raw, inverse-λ, and Pearson innovations are special cases where h = 1, 1/λ

and 1/
√
λ respectively. The expected value of the innovations is zero.

Given a realization of a point process, the h-weighted residual becomes

Rĥ(B) =
∑
u∈XB

h(u,XW\{u})−
∫
B

h(u,XW )λ(u,XW )du.

The authors state that the the residuals are commonly biased for an inhomogenous

Poisson process.
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5.5 Guan (2008a)

The author calls Dc(t; θ̂) =
∫
A

[{rc(x, t; θ̂)}2−N(x, t)]dx the discrepancy function,

where the function r is the raw residual process from [6]. He shows that T (θ̂) =

{Dc(θ̂)−bias(θ̂)}/σc(θ̂) follows a standard normal, where σ2
c (θ̂) = 2

∫
A

∫
A
{Λc(x, y; θ̂)}2dxdy

and Λc(x, t; θ̂) =
∫
B(x,y)∩A λc(u; θ̂)du with λ a Poisson variable. The test statistic

T (θ̂) is rejected based on critical values from the standard normal. The author

contemplates a spatial model to describe cases of larynx and lung cancer near an

incinerator in northwest England.

5.6 Adelfio and Chiodi (2009)

The paper adapts residual analysis methods for point processes by weighting the

original point process by the inverse of its conditional intensity function to yield

new second-order statistics. The authors pursue the integral transformed process

(equivalently, rescaling) and the thinned residual process with the idea in mind

that these estimated models will follow the null distribution. For a model that is

temporal point process, the authors say

τi = Λ(ti) =

∫ ti

0

λ(t)dt

yields a residuals process. If there is a good fit between model and data, the resid-

uals τi will follow a standard Poisson process. Likewise, the thinning method ran-

domly yields its residuals by randomly retaining points with probability λmin

λ(ti,xi,yi,mi)
,

where the numerator is the minimum intensity in the observation region. A model

exemplifying a good fit will have residuals that follow a homogenous Poisson pro-

cess. In addition, one may analyze the weighted version of second-order statistics

rather than the residuals.

The authors enable the creation of an autocorrelation plot using data weighted

by the model. Accordingly, the weighted correlation integral for a time point
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process can be written as

ĈW (δ) =
1

(λminT )2

n∑
i

ωi

n∑
j 6=i

ωjI(|ti − tj) 6 δ)

with ωk = λmin

λ(tk)
. By extension the definition of the weighted correlation integral is

ĈW (δ) =
2

n(n− 1)

∑
i

1

λ(si)

∑
j>i

1

λ(sj)
I(|ti − tj) 6 δ).

The authors use weighted residual processes evaluate various ETAS models de-

scribing earthquakes in Sicily and California according to the weighted second-

order statistics. If after weighting the data the autocorrelation diagnostic plot

exhibits significant correlation, this is a sign of misestimation.
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CHAPTER 6

Conclusion

This survey gives many reasons to favor spatial-temporal point process models.

One striking aspect is the power of quantitative analysis in spatial problems. This

can be illustrated by the intensity and contour plots. Also remarkable is the ability

to consider a plurality of models to interpret data. A particular case of interest

is the electric signals model discussed in Vere-Jones (2009). The development of

the subject is made possible by considering various models.

In conclusion, this survey gives a mere opening to the field. The previous sam-

ple includes biologists, ecologists, epidemiologists, firefighters, and seismologists

using space-time point processes. For further awareness of current developments,

see Bailey (2001), Bonneu and Thomas-Agnan (2009), Brillinger et al. (03), Cho

et al. (2012), Cronie and Sarkka (2011), Faenza et al. (2003), Felzer et al. (2002),

Gabriel et al. (2013), Grillenzoni (2005), Helmstetter and Sornette (2002a and

2002b), Kagan (1997), Kagan and Jackson (2000), Louie et al. (2010), Lewis et al.

(2012), Mohler et al. (2011), Parsons et al. (2008), Rathbun and Cressie (1994),

Rhoades and Eivson (2004), Stoyan (2006), Waagepetersen and Guan (2009), van

Lieshout (2011), Veen and Schoenberg (2005), Vere-Jones and Schoenberg (2004),

Xu and Schoenberg (2011), Zhuang (2005), Zhuang et al. (2002), and Zhuang et

al. (2004). Admittedly there exist openings for further studies.
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