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Abstract

Objectives: The past decade has seen tremendous progress in the development of biomedical agents that
are effective as pre-exposure prophylaxis (PrEP) for HIV prevention. To expand the choice of products and
delivery methods, new medications and delivery methods are under development. Future trials of non-
inferiority, given the high efficacy of ARV-based PrEP products as they become current or future standard
of care, would require a large number of participants and long follow-up time that may not be feasible.
This motivates the construction of a counterfactual estimate that approximates incidence for a randomized
concurrent control group receiving no PrEP.
Methods: Wepropose an approach that is to enroll a cohort of prospective PrEP users and aug-ment screening
for HIV with laboratory markers of duration of HIV infection to indicate recent infections. We discuss the
assumptions underwhich these datawould yield an estimate of the counterfactualHIV incidence anddevelop
sample size and power calculations for comparisons to incidence observed on an investigational PrEP agent.
Results: We consider two hypothetical trials for men who have sex with men (MSM) and transgender women
(TGW) from different regions and young women in sub-Saharan Africa. The calculated sample sizes are
reasonable and yield desirable power in simulation studies.
Conclusions: Future one-arm trials with counterfactual placebo incidence based on a recency assay can be
conducted with reasonable total screening sample sizes and adequate power to determine treatment efficacy.

Keywords: counterfactual placebo incidence; HIV prevention; pre-exposure prophylaxis; recency assay;
sample size calculation.

Introduction
The past decade has seen tremendous progress in the development of biomedical agents that are effective
as pre-exposure prophylaxis (PrEP) for HIV prevention (Grant et al. 2010). To date, use of PrEP by those at
risk for HIV infection remains limited (Koss et al. 2020). New medications and delivery methods are under
development in the hope that expanding the choice of products and delivery methods will facilitate the scale
up of PrEP (Baeten et al. 2012; Landovitz et al. 2021; Mayer et al. 2020b; Thigpen et al. 2012).
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Trials of investigative PrEP agents should acknowledge the current HIV prevention standard of care. This
is typically done by the use of a randomized active-control non-inferiority design. However, future trials of
non-inferiority, given the high efficacy of ARV-based PrEP products as they become current or future standard
of care, would require a much larger number of participants than current trials with longer follow-up times
(current trials have sample size 3–5,000 with approximately 2–3 years of follow-up). Given the epidemiology
of the HIV epidemic, enrolling tens of thousands of participants at risk is not feasible (Mayer, Agwu, and
Malebranche 2020a; Sullivan and Siegler 2018).

The recognition that we may not be able to conduct fully powered active-control non-inferiority trials for
future products motivates a search for alternative study designs that preserve a high evidence standard and
are feasible. One approach could compare HIV incidence among volunteers receiving an investigational PrEP
agent to a counterfactual estimate – one that approximates incidence for a randomized concurrent control
group receiving no PrEP. A variety of methods for estimating counterfactual incidence based on external data
sources have been explored or proposed (Glidden 2020) including the use of sexually transmitted infection
rates (Mullick and Murray 2020), incidence in placebo arms of recent trial, community HIV surveillance
data (Mera et al. 2019) or use of pharmacology biomarkers (Hanscom et al. 2019) when the study includes a
tenofovir-based PrEP control group.

A promising approach is to enroll a cohort of prospective PrEP users and augment screening for HIV with
laboratory markers of duration of HIV infection. We discuss the assumptions under which these data would
yield an estimate of the counterfactual HIV incidence and develop sample size and power calculations for
comparisons to incidence observed on an investigational PrEP agent. The basis of our work is an incidence
estimator proposed by Kassanjee et al. (2012).

Approach and identifiability
Suppose that we screen N volunteers, not taking PrEP, for a clinical trial of a candidate PrEP agent. Each
person is screened for HIV infection at the screening time (time 0). Those who are found to be HIV-positive
at time 0 are assessed through an HIV recency test to determine whether the HIV infection has a duration
of at most T prior to screening. Each person is classified at time 0 as: HIV-negative at 0, HIV-positive in the
period [−T,0] (recent infection) or HIV-positive prior to time −T. Suppose at time 0 that N+ subjects are
HIV-positive and N− ≡ N − N+ subjects are HIV-negative. Suppose that among N+ HIV-positive participants,
NR are found to be recent infections. Among those HIV-negative participants, suppose N−,enroll are recruited
to the active arm of a clinical trial for the candidate PrEP agent and we observe Nevent incidence cases after
𝜏-year of follow-up.

The efficacy of the candidate PrEP agent is determined by comparing the incidence of subjects receiving
the candidate PrEP agentwith the underlying incidence of HIV in enrolled participants in the absence of PrEP,
i.e., the counterfactual placebo incidence of HIV that we denote as 𝜆0. As described below, we estimate 𝜆0
from the recency assay samples. How closely this will estimate the true counterfactual effect will depend on
the eqnarrayment of the recency-based incidence estimate and 𝜆0. It is helpful to contrast some alternative
study designs and the estimate of 𝜆0 associated with them.

Concurrent randomized control

Themost rigorousestimateof𝜆0 requires randomizationofN−,enroll participantsbetween thePrEP intervention
and a concurrent control group and following both groups for HIV incidence over [0, 𝜏] (shown in Figure 1).
This would yield a non-PrEP incidence (𝜆0) in a populationwith subjects who are (i) HIV-negative, (ii) eligible
for and (iii) consenting to the PrEP intervention at time 0. The concurrent randomized control trial provides
an unbiased estimate of the treatment efficacy under minimal assumptions. We can judge other non-PrEP
estimates by how well they replicate the randomized scenario.
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Figure 1: Concurrent randomized control trial.

Figure 2: Cross-over trial.

Cross-over trial

An alternative approach is to assess a PrEP agent in a cross-over trial (shown in Figure 2). Suppose that we
enroll at-risk HIV-negative participants at time −T who received no PrEP and ask them to return at time 0.
They are again assessed at time 0 and those who satisfies (i), (ii), and (iii) are enrolled to receive the PrEP
intervention. This on-study incidence could be compared to the HIV incidence over [−T,0] among those who
returned at time 0 and meet (ii) and (iii).

The cross-over trial has the potential for certain biases relative to the concurrent randomized control trial.
Since the cross-over trial constructs a closed cohort consisting of subjects who are HIV-negative and at risk
at−T, there is a selection effect if HIV risk is highly variable in the population: those enrolled to receive PrEP
intervention have an average lower risk. There may also be structural time trends in HIV risk (e.g., treatment
as prevention) which will render the two periods non-comparable. People may test positive before time 0 and
may not present for screening at time 0 because they know their status. Finally, people may initiate PrEP in
[−T,0).

In practice, it may also be difficult to assess (ii) and (iii) for those who were HIV-positive at time 0. A
sufficient condition for the pre-PrEP incidence to coincidewith the concurrent control estimand is that among
those HIV negative subjects at −T there is no systematic difference between HIV risks of those infected and
uninfected at time 0, incidence is constant over [−T, 𝜏) in those not taking PrEP, there is no HIV testing or
PrEP use between −T and 0, the attendance to screening at time 0 is independent of HIV status, and the
criterion (ii) and (iii) can be honestly assessed for subjects who return at time 0.

Perfect recency test at enrollment

Suppose that we screen a group of individuals, neutral to HIV status, who would be eligible for and willing
to initiate the PrEP intervention. These individuals are tested at time 0 for HIV infection and for HIV recency
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Figure 3: Trial with perfect recency test at enrollment.

over the period T. Figure 3 illustrates such a trial. Assume there is no misclassification in recency assessment
such that we accurately determine whether an HIV-positive subject was infected during [−T,0). Let NR be
number of recent infections by this perfect recency test.

This design mimics the cross-over trial and the difference is that the data are collected retrospectively
rather than prospectively. Indeed, the recency test approach is based on subjects from an open cohort, with
evolving at-risk population, instead of a closed cohort as in the cross-over trial. Thiswill alleviate the selection
bias induced by the cross-over design, since the high-risk subjects in the populationwill be “refreshed”. It will
also alleviates some of the concerns about honest assessment of (ii) and (iii) associated with the cross-over
design.

The (perfect) recency test approach yields multinomial data with counts and probabilities shown below.

Category Count Probability Approximate probability

HIV+ (not recent) N+ − NR p− (1− 𝜋)F0(T ) p− (1− p)𝜆0T
HIV+ (recent) NR (1− 𝜋)F0(T ) (1− p)𝜆0T
HIV− N− 1− p 1− p

Here, p and 𝜋 are the prevalence of HIV+ at time 0 and −T, respectively, and F(⋅) is the cumulative
distribution function of time to HIV infection. We assume constant incidence over [−T, 𝜏] and this incidence
is 𝜆0. Thus, F0(t) = 1− exp(−t𝜆0) ≈ t𝜆0 for t ≤ T when 𝜆0 is small and T is relatively short. We assume
constant prevalence over [−T,0] such that 𝜋 = p. Estimation of 𝜆0 by maximizing the likelihood based on
approximate probabilities is particularly simple in this case and is given by NR∕(N−T).

Recency test with false negative recency

In practice, all recency tests allow for false negative recency, i.e., participants that are infected less than T
years identified as long-infected. Let𝜙(t) be the probability that an individual infected t years ago is identified
as recently infected by the test, i.e., true positive rate. We suppose for now that 𝜙(t) vanishes for t > T, i.e.,
there is no false positive probability.

Suppose that incidence is constant over [−T, 𝜏] and prevalence is constant over [−T,0].When𝜆0 is small
and T is relatively short, the observed multinomial data with counts and probabilities are shown below.

Category Count Approximate probability

HIV+ (not recent) N+ − NR p − (1− p)𝜆0ΩT
HIV+ (recent) NR (1 − p)𝜆0ΩT
HIV− N− 1 − p
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Here,ΩT = ∫
T
0 𝜙(t) dt is the mean window period of the recency test. The maximum likelihood estimator

for𝜆0 (based on approximate probabilities) is given byNR∕(ΩTN−), which is the snapshot estimator in Kaplan
and Brookmeyer (1999). Note that compared to the estimator in Section 2.3, this estimator has an additional
elementΩT∕T in the denominator, reflecting average false negative rate.

Counterfactual placebo HIV incidence estimator

In practice, assays are imperfect and we must allow for both false positive and false negative recency
classifications among HIV+ persons, that is 𝜙(t) > 0 for t > T. Suppose that 𝜙(t) is approximately constant
for t > T and we let 𝛽T be the constant value. In that case, ΩT is called mean duration of recent infection
(MDRI) and𝛽T coincideswith false-recent rate (FRR) defined inKassanjee et al. (2012),which is the probability
that a randomly chosen person infected for more than T years is test-recent. Then, the observed multinomial
data with counts and probabilities are shown below.

Category Count Approximate probability

HIV+ (not recent) N+ − NR p − (1 − p)𝜆0ΩT − {p− (1 − p)𝜆0T }𝛽T
HIV+ (recent) NR (1 − p)𝜆0ΩT + {p− (1 − p)𝜆0T }𝛽T
HIV− N− (1 − p)

The maximum likelihood estimator for 𝜆0 (based on approximate probabilities) is given by

�̂�0 =
NR − 𝛽TN+

N−(ΩT − 𝛽TT)
, (1)

which is the HIV incidence estimator proposed in Kassanjee et al. (2012). Compared to the estimator in
Section 2.3, this estimator has a different numerator reflecting false recent adjustment and an additional
element ΩT∕T − 𝛽T , reflective adjustment on false positive and false negative rates. In practice, we replace
ΩT and 𝛽T in (1) by Ω̂T and �̂�T , which are the estimated MDRI and FRR, respectively.

For the remainder of this paper, we will adopt the Kassanjee et al. (2012) estimator. This estimator (1)
(with Ω̂T and �̂�T) will be consistent as n→∞, subject to consistency of �̂�T and Ω̂T and similar conditions
as required in Sections 2.2–2.4. Particularly, it would require (a) no systematic difference between HIV risks
of those infected recently and those eligible for the trial, (b) incidence is constant over [−T, 𝜏) in those not
taking PrEP, (c) willingness to HIV screening is independent of HIV status, (d) prevalence is constant over
[−T,0], and (e) the criterion (ii) and (iii) can be honestly assessed for screened subjects.

Treatment efficacy evaluation

The HIV incidence in the active-arm trial, 𝜆1, can be estimated by

�̂�1 =
Nevent

𝜏N−,enroll
. (2)

WriteR = 𝜆1∕𝜆0 as the incidence ratio.Then, theefficacyof theactive treatment, representedby thepercentage
incidence reduction 𝜌 ≡ 1− R, can be estimated by �̂� ≡ 1− R̂, where R̂ = �̂�1∕�̂�0.

This paper will focus on developing a variance expression for log R̂ based on (1) and (2). It will be used
to develop power calculations for testing hypothesis based on �̂�.
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Asymptotics and power

Inference for incidence estimators and treatment efficacy

Let PR = 𝛽T + 𝜆0(1−p)
p (ΩT − 𝛽TT), where p is the HIV prevalence at time 0. PR is the probability of test-recent

among HIV-positive subjects. The number of test-recent subjects NR can be viewed as generated from a
Binomial distribution with size N+ and success probability PR, while the number of HIV-positive subjects N+
is from a Binomial distribution with size N (total screened subjects) and success probability p. Applying the
delta method (with details shown in Appendix A), we obtain that the log estimated incidence has asymptotic
distribution

log �̂�0 ∼ N
(
log 𝜆0,V0(𝜆0)

)
,

where V0(𝜆0) = 𝛾00(𝜆0)∕N + 𝛾01(𝜆0),

𝛾00(𝜆0) =
1
p

⎧
⎪
⎨
⎪
⎩

PR (1− PR)
(PR − 𝛽T)

2 + 1
(1− p) +

(1− p)𝜎2
�̂�T

(PR − 𝛽T)
2

⎫
⎪
⎬
⎪
⎭

,

𝛾01(𝜆0) =
𝜎
2
Ω̂T

(ΩT − 𝛽TT)
2 + 𝜎

2
�̂�T

{
(ΩT − PRT)

2

(PR − 𝛽T)
2 (ΩT − 𝛽TT)

2

}
,

and 𝜎
2
Ω̂T

and 𝜎
2
�̂�T

are the variances of Ω̂T and �̂�T , respectively. This formula is slightly different from the
formulas in Kassanjee et al. (2012) and in R package “inctools”, where the last term of 𝛾00(𝜆0) is neglected.
However, the difference is minimal when 𝜎2

�̂�T
is small. To estimate V0(𝜆0), we replace the expected values by

their estimators to obtain the variance estimator

V̂0 =
NR

(
N+ − NR

)

N+

(
NR − N+�̂�T

)2 +
N

N+N−
+ 𝜎

2
𝛽T

N+(N − N+)

N
(
NR − N+�̂�T

)2

+
𝜎
2
Ω̂T(

Ω̂T − �̂�TT
)2 + 𝜎

2
�̂�T

⎧
⎪
⎨
⎪
⎩

N+Ω̂T − NRT(
NR − N+�̂�T

)(
Ω̂T − �̂�TT

)

⎫
⎪
⎬
⎪
⎭

2

.

The number of incidence cases in the active-arm trial Nevent follows a Poisson distribution with mean
𝜆1N−,enroll𝜏. Then, the log estimated incidence has asymptotic distribution

log �̂�1 ∼ N
(
log 𝜆1,V1(𝜆1)

)
,

where V1(𝜆1) = 𝛾 1(𝜆1)∕N,
𝛾1(𝜆1) =

1
𝜆1(1− p)r𝜏

,

and r is the probability of enrollment among HIV-negative subjects at time 0. We replace the expected values
by their estimators to obtain an estimator for V1(𝜆1)

V̂1 =
1

Nevent
.

In Appendix A, we find the asymptotic variance of log R̂ is equal to V̂0 + V̂1. Then, a 95% confidence
interval for 𝜌 can be constructed as

(

1− �̂�1

�̂�0
exp

(
z0.975

√
V̂0 + V̂1

)
, 1− �̂�1

�̂�0
exp

(
−z0.975

√
V̂0 + V̂1

))

,

where zc is the c-quantile of the standard normal distribution.
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Sample size determination

We would like to determine the sample size for testing H0:R = R0, with significance level 𝛼 and power
𝛽 against a specific alternative H1:R = R1. This is equivalent to testing H0: logR = logR0 vs. the specific
alternative H1: logR = logR1. Based on the asymptotic distribution of log R̂, we consider the Z-statistic

Z = log R̂− log R0√
V̂0 + V̂1

. (3)

Under the null hypothesis, the Z statistic is asymptotically N(0, 1) distributed. Under the alternative hypoth-
esis, the mean of the Z statistic is

E(Z) ≈ log R1 − log R0√
V0(𝜆0)+ V1(𝜆0R1)

,

but the asymptotic variance of Z departs from 1 significantly. In Appendix B, we show the derivation of
the asymptotic variance of Z under H1:R = R1, denoted as VR1 . To attain 𝛼-significance level, the cut-off for
rejecting null hypothesis is set to z1−𝛼∕2. To attain power 𝛽, we need

Pr
(

WR1 +
log R1 − log R0√

{𝛾00(𝜆0)+ 𝛾1(𝜆0R1)}∕N + 𝛾01(𝜆0)
> z1−𝛼∕2

)

≥ 𝛽,

where WR1 is an independent normal random variable with mean 0 and variance VR1 (expression given in
Appendix B), such that the sample size is given by

N = 𝛾00(𝜆0)+ 𝛾1(𝜆0R1){
log R1−log R0
z1−𝛼∕2+

√
VR1 z𝛽

}2
− 𝛾01(𝜆0)

. (4)

Remark 1. Note that the variance of log R̂, V0(𝜆0)+ V1(𝜆0R1), will not go to zero as the total screening sample
size N goes to infinity. Particularly, as N goes to infinity, the asymptotic variance converges to 𝛾01(𝜆0), which
is a weighted sum of the variabilities from Ω̂T and �̂�T . Therefore, we are not able to to achieve 𝛽-power for
alternative hypothesis (H1:R = R1) with

log R1 > log R0 +
√
𝛾01(𝜆0)

(
z1−𝛼∕2 +

√
VR1z𝛽

)
.

Numerical results

Sample size calculation

We first consider the setting of a hypothetical trial for men who have sex with men (MSM) and transgender
women (TGW), with trial participants recruited from different regions. Specifically, wemimic the composition
of the screening population of the HIV Prevention Network (HPTN) 083 study (Landovitz et al. 2021). Details
on the incidence, prevalence are shown in Table 1, togetherwith theMDRI,MDRI relative standard error (RSE),
andFRRof the recency test based onLAgAvidity (SediaHIV-1 LAgAvidity EIA; Sedia Biosciences Corporation,
Portland, OR, USA) ODn ≤1.5 and viral load >1,000 copies/mL with cutoff T = 2 years (Grebe et al. 2019),
where an Estimated dates of detectable infection (EDDIs) offset of 16 days was applied to the MDRI for using
4th generation assay for HIV diagnosis (Facente et al. 2020).

Based on this combination of subtypes, the overall incidence and prevalence of HIV are 4.4% and 15%,
respectively. Since the property of the recency test for subtypeA/E is not available,we approximately calculate



8 | F. Gao et al.: Active-arm trial with counterfactual incidence

Table 1: Composition of subtypes for hypothetical MSM trial.

Region Proportion Incidence Prevalence Subtype MDRI (days) MDRI RSE FRR

US-black 18.5% 5.9% 15% B 142 10 1.0%
US-other 18.7% 1.3% 15% B
Brazil 17.5% 5% 15% B
Peru 18.2% 3.5% 15% B
Buenos Aires 7.3% 6.4% 15% B
Cape Town 3.3% 4.7% 25% C 118 7 1.5%
Bangkok 9.1% 5.2% 15% A/E NA NA NA
Chiang Mai 3.1% 8.2% 15% A/E
Hanoi 4.4% 4% 15% A/E

the overall performance of the recency test byweighting theMDRI and FRR among subtypes B and C, to obtain
anMDRI of 141 days with RSE 10% and an FRR of 1.0%.We assume 25%RSE for FRR, all HIV-positive subjects
will receipt recency test, and 85% of HIV-negative subjects will be enrolled to received active treatment. We
consider 𝜏 = 1 or 2 to examine the effect of follow-up time on sample size.

We consider the null hypothesis H0:R = 0.5, i.e., the active treatment is 50% effective for preventing
HIV infection and the alternative hypothesis H1:R = 0.15, i.e., the active treatment prevents 85% of HIV
infections. The null hypothesis reflects the fact that future products should be highly effective such that
effectiveness compared to placebo would be expected to exceed 50%. The required total screening sample
sizes for 𝛼 = 0.05 and 𝛽 = 0.9 are given in Table 2. We also display the expected number of events under
the alternative hypothesis. If all subjects are followed for one year in the active-arm trial, then 1910 subjects
are needed for screening, leading to 28.8 expected recency-test-positive subjects and 9.0 expected incidence
cases in the trial. If the follow-up time is extended to two years, then about 460 fewer subjects are needed for
screening, with fewer expected recency-test-positive subjects but more expected incidence cases observed in
the trial.

We also consider another setting for a population of young women in sub-Saharan Africa, mimicking the
population enrolled in HPTN 084. The population is dominated by subtype C, such that the mean MDRI of
119 days with 7% RSE and FRR of 1.0% are used. The overall incidence and prevalence of HIV are 3.5% and
25%, respectively. We consider the same hypothesis testing H0:R = 0.5 vs. H1:R = 0.15. The required total
screening sample sizes for 𝛼 = 0.05 and 𝛽 = 0.9 are given in Table 3. The total screening sample sizes are
larger, mostly driven by lower HIV incidence in the sub-Saharan Africa women population.

Simulation studies

The proposed sample size calculation procedure is based on asymptotic theory of the estimators. To evaluate
if the proposed testing procedure has desired type-I error and power in finite samples, we conduct simulation

Table 2: Total screening sample sizes and expected number of events for MSM and TGW population under alternative
hypothesis.

Follow-up year Screening Recency test Active-arm trial

𝝉 N E(N+) E(NR) E(N−,enroll) E(Nevent)

1 1,910 292.9 28.8 1,374.6 9.0
2 1,452 222.6 21.9 1,045.0 13.7
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Table 3: Total screening sample sizes and expected number of events for sub-Saharan Africa women population under
alternative hypothesis.

Follow-up year Screening Recency test Active-arm trial

𝝉 N E(N+) E(NR) E(N−,enroll) E(Nevent)

1 3,811 952.8 43.6 2,429.5 12.8
2 3,236 809.0 37.0 2,063.0 21.7

Table 4: Simulation results for Type-I error and power.

Setting Follow-up year Screening Type-I error Power
𝝉 N

MSM and TGW 1 1910 0.047 0.879
2 1,452 0.045 0.885

Women 1 3,811 0.035 0.859
2 3,236 0.038 0.869

studies. For a given total screened sample size N and given risk ratio R, we use the following simulation
procedure.
1. We generate N+ from Bin(N, p), where p is prevalence and calculate N− = N − N+.
2. We generate NR from Bin(N+,PR), where PR = 𝛽T + 𝜆0(1−p)

p (ΩT − 𝛽TT). We generate �̂�T ∼ N(𝛽T , 𝜎2
�̂�T
), and

Ω̂T ∼ N(ΩT , 𝜎
2
Ω̂T
).

3. We generate N−,enroll from Bin(N−, r), where r is the proportion of HIV-negative subjects enrolled to the
trial. We generate Nevent from Poisson distribution with mean 𝜏𝜆1N−,enroll, where 𝜏 is the follow-up year
and 𝜆1 = 𝜆0R.

4. We calculate the incidence estimates �̂�0 and �̂�1 by (1) and (2), respectively, and calculate their variance
estimators V̂0 and V̂1.

5. We calculate Z by formula (3).

For each setting, we simulate the data using the calculated sample size as in Table 2 under the null hypothesis
R = R0 = 0.5 or alternative hypothesis R = R1 = 0.15. We evaluate the type-I error and power by calculating
the average rejection (|Z| > z0.975) probabilities under null and alternative hypotheses, respectively. Table 4
shows the simulation results based 10,000 replicates. The proposed testing procedure has empirical type-1
error smaller than 0.05 and empirical power close to 0.9 (nominal level).

Discussion
In this paper,wederived sufficient conditions for estimating counterfactual incidence in active-arm trial based
on recency assay and proposedmethods for calculating sample sizes. Our results suggest that future one-arm
trials with counterfactual placebo incidence based on a recency assay can be conductedwith reasonable total
screening sample sizes and adequate power to determine treatment efficacy.

Counterfactual incidence based on a recency assay is closely related to a cross-over design in which a
cohort has a pre-PrEP period used as a comparator for a post-PrEP period. The use of recency designs allows
a cohort to be constructed retrospectively among those who screen for a trial, such that the assumption on
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similar HIV risks between subjects that contribute to two estimators is more plausible due to the open-cohort
nature of the recency approach.

An important context for this alternative design approach is the expectation that future products will be
required to be highly effective relative to placebo, given high efficacy of previously tested ARV-based PrEP
products (FTC/TDF, F/TAF (Mayer et al. 2020b) and CAB-LA (Landovitz et al. 2021)); effectiveness compared to
placebo would be expected to exceed 50%. Additionally, because of the existence of highly effective PrEP, it
is also assumed that effectiveness below some threshold, e.g., 50% would be considered unacceptable. This
context – essentially the same that mandates the use of randomized active-control non-inferiority designs
also supports the assumption that substantial differences in HIV incidence are expected between no-PrEP
and PrEP groups. Large observed differences in HIV incidence, as used in our examples, are also likely to be
robust to small deviations from our assumptions.

The proposed approach requires a population which is not currently engaged in HIV care or active
prevention and this would be a major shift in how populations are screened for HIV prevention studies. A
major objective of the trial will not only be reaching a target number of on-study infections but also reaching
a minimum number of recent infections. Some aspects of the screening phases of the trial would have to be
adapted to accomplish the dual aims of estimating on-PrEP and off-PrEP HIV incidence.

Recency assays will misclassify individuals and good estimates of these error rates are a key part of this
estimation. Further, recency assay misclassification rates are a source of variability that are not reduced by
the size of the trial. Improved assay performance or less uncertainty about the misclassification rates will
improve incidence estimation. The choice of T from the assay requires importance considerations. If the
period T is chosen to be short, there will be few recent infections and power is reduced. If the period T is
chosen to be long, the assumptions of the approach can become more implausible and effects of violations
can be magnified.

An estimate of relative efficacy not based on a randomized comparison necessarily makes assumptions
about HIV risk in the participants contributing to the two estimates. In our case our strongest assumption
is that the distribution of HIV risk exposure remains the same in the group (and period) assessed for cross-
sectional incidence and the group (and period) receiving active product. We also assume willingness to
enter trial screening is independent of HIV status. Both of these assumptions relate to the characteristics of
participants at the time of trial entry, and point to the need for careful attention to screening processes and
eligibility criteria.

We calculate the required screening sample size by a closed form formula based on normal
approximations of log incidence estimate distributions, making use of the unexpected fact that �̂�0 and
�̂�1, the incidence estimates from the recency assay and the active-arm trial, are asymptotically independent.
Alternatively, we can use the exact distributions of these variables and determine the required sample size by
simulations. Noted that complete exploration of the design space via simulations is intensive, both compu-
tationally and in terms of programming. The closed form formula we propose has nice properties in realistic
settings such that the empirical power is close to the desired power.

In estimating counterfactual incidence based on recency assay, we made use of estimator proposed
by Kassanjee et al. (2012), which maximizes the likelihood based on approximate probabilities. A natural
extension is to explore the likelihood function without approximations or constant incidence and prevalence
requirements. Based on such a likelihood, we may further consider Bayes-based approaches, where external
information (e.g., incidence or prevalence estimated from other sources) can be incorporated.

Our formulation of objectives has focused on one-arm trial design with counterfactual placebo based on
recency assay, as a first step to assess necessary assumptions and provide power analysis. Randomized active-
control non-inferiority trial may also be suggested to provide valuable safety comparison and assessment
of comparative effectiveness. Our next step is to explore statistical and practical issues in combining an
active-control non-inferiority trial combined with a recency assay counterfactual incidence estimate.
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Appendix A: Derivation of asymptotic variances
Note that N, N+, and N− are the numbers of total screened, HIV-positive, and HIV-negative subjects, p is
HIV prevalence, r is the proportion of HIV-negative subjects enrolled to the trial, N−,enroll is the number of
HIV-negative subjects enrolled to the trial, and 𝜏 is the follow-up time, and �̂�T and Ω̂T are the estimated false
recency rate and MDRI for the recency assay.

WriteW = (NR − N+�̂�T ,N+, Ω̂T − �̂�TT,Nevent,N−,enorll)T. Then, the estimators �̂�0 in (1) and �̂�1 in (2) can be
written as

�̂�0 =
W1

(N −W2)W3

and
�̂�1 =

W4
𝜏W5

,

whereWk is the kth element ofW for k = 1,… , 5. Therefore, by the delta method, the asymptotic variance of
log R̂ = log �̂�1 − log �̂�0 can be written as d

T var(W)d, where

d =
(
− 1
E (W1)

,− 1
E (N −W2)

,
1

E
(
W3

) , 1
E
(
W4

) ,− 1
E
(
W5

)
)T

=
(
− 1
Np(PR − 𝛽T)

,− 1
N(1− p) ,

1
ΩT − 𝛽TT

,
1

N(1− p)r𝜏𝜆1
,− 1

N(1− p)r

)T
.

Note that N+ ∼ Bin(N, p),N− = N − N+,andN−,enroll ∼ Bin(N−, r). The number of test-recent subjectsNR
can be viewed as from Bin(N+,PR), where

PR = 𝛽T +
𝜆0(1− p)

p (ΩT − 𝛽TT).

The number of incidence cases Nevent is from Poisson(N−,enroll𝜏𝜆1). Then, calculation yields

var(W1) = Np
{
PR(1− PR)+ (1− p)(PR − 𝛽T)2 + 𝜎

2
�̂�T
(1− p+ Np)

}

var(W2) = Np(1− p)

var(W3) = 𝜎
2
Ω̂T

+ 𝜎
2
�̂�T
T2

var(W4) = N(1− p)r𝜆1𝜏{1+ 𝜆1𝜏pr + 𝜆1𝜏(1− r)}

var(W5) = N(1− p)r(1− r + pr)

cov(W1,W2) = Np(1− p)(PR − 𝛽T)

cov(W1,W3) = Np𝜎2
�̂�T
T

cov(W1,W4) = −Np(1− p)(PR − 𝛽T)r𝜆1𝜏

cov(W1,W5) = −Np(1− p)(PR − 𝛽T)r

cov(W2,W3) = 0

cov(W2,W4) = −Np(1− p)r𝜆1𝜏

cov(W2,W5) = −Np(1− p)r

cov(W3,W4) = 0

cov(W3,W5) = 0

cov(W4,W5) = N(1− p)r(1− r + pr)𝜆1𝜏.
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Then, the asymptotic variance of log R̂ is given by V0 + V1 + CV, where

V0 = d21var(W1)+ d23var(W2)+ d24var(W3)+ 2d1d3cov(W1,W2)+ 2d1d4cov(W1,W3)

is the asymptotic variance of log �̂�0,

V1 = d25var(W4)+ d26var(W5)+ 2d5d6cov(W4,W5)

is the asymptotic variance of log �̂�1, and

CV = 2d1d5cov(W1,W4)+ 2d1d6cov(W1,W5)+ 2d3d5cov(W2,W4)+ 2d3d6cov(W2,W5)

is the asymptotic covariance of log �̂�0 and log �̂�1. Note that

V0 =
PR(1− PR)+ (1− p)(PR − 𝛽T)2 + 𝜎

2
�̂�T
(1− p+ Np)

Np(PR − 𝛽T)2
+ p
N(1− p)

+
𝜎
2
Ω̂T

+ 𝜎
2
�̂�T
T2

(ΩT − 𝛽TT)
2 +

2
N −

2𝜎2
�̂�T
T

(PR − 𝛽T)(ΩT − 𝛽TT)

= 1
Np

⎧
⎪
⎨
⎪
⎩

PR (1− PR)
(PR − 𝛽T)

2 + 1
(1− p) +

(1− p)𝜎2
�̂�T

(PR − 𝛽T)
2

⎫
⎪
⎬
⎪
⎭

+
𝜎
2
Ω̂T

(ΩT − 𝛽TT)
2

+ 𝜎
2
�̂�T

{
ΩT − PRT

(PR − 𝛽T) (ΩT − 𝛽TT)

}2
,

V1 =
1+ 𝜆1𝜏pr + 𝜆1𝜏(1− r)

N(1− p)r𝜆1𝜏
+ 1− r + pr

N(1− p)r −
2(1− r + pr)
N(1− p)r = 1

N(1− p)r𝜆1𝜏
,

and
CV = 2

N − 2
N + 2p

N(1− p) −
2p

N(1− p) = 0.

That is, log𝜆0 and log𝜆1 have asymptotic covariance zero and the asymptotic variance of R̂ is given inV0 + V1.
Particularly, the variance of log �̂�0 can be estimated by

V̂0 =
NR

(
N+ − NR

)

N+

(
NR − N+�̂�T

)2 +
N

N+N−
+ 𝜎

2
�̂�T

N+(N − N+)

N
(
NR − N+�̂�T

)2

+
𝜎
2
Ω̂T(

Ω̂T − �̂�TT
)2 + 𝜎

2
�̂�T

⎧
⎪
⎨
⎪
⎩

N+Ω̂T − NRT(
NR − N+�̂�T

)(
Ω̂T − �̂�TT

)

⎫
⎪
⎬
⎪
⎭

2

,

and the variance of log �̂�1 can be estimated by

V̂1 =
1

Nevent
.

In a special case when 𝛽T = 0 and 𝜎
2
�̂�T

= 0, i.e., the false recent probability for the recency test is zero, the

variance estimator of log R̂ is given by

1
NR

+ 1
N−

+ 1
Nevent

+
𝜎
2
Ω̂T

Ω̂2
T

.

That is, the variance of the estimated incidence ratio is driven by the numbers of observed events and the
variability of MDRI of the recency test.
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Appendix B: Derivation of asymptotic distribution of Z under
alternatives
In this section,we calculate the asymptotic distribution of Z under alternative hypothesisR = R1. Particularly,
we consider the derivation under a simplified case with 𝜎

2
Ω̂T

= 𝜎
2
�̂�T

= 0. Without considering variability
associated with the recency assay properties, we will show that the asymptotic variance of Z is a constant
(with respect to N) that departs from 1 under alternative hypothesis.

Note thatW = (NR − N+�̂�T ,N+, Ω̂T − �̂�TT,Nevent,N−,enorll)T. In the special case with 𝜎2
Ω̂T

= 𝜎
2
�̂�T

= 0, there

is no variability associated with �̂�T and Ω̂T , such that �̂�T = 𝛽T and Ω̂T = ΩT . Write W6 = NR and W∗ =
(W1,W2,W4,W5,W6)T. Then, the test statistic is given by

Z = A√
B
,

where

A = log �̂�1 − log �̂�0 − log R0

= − log(W1)+ log(N −W2)+ log(ΩT − 𝛽TT)+ log W4 − log W5 − log 𝜏 − log R0,

B = NR
(
N+ − NR

)

N+
(
NR − N+𝛽T

)2 +
N

N+N−
+ 1
Nevent

= W6 (W2 −W6)
W2W2

1
+ 1
W2

+ 1
N −W2

+ 1
W4

.

We would like to apply the delta method with respect toW∗ to calculate the distribution of Z.
ReplacingWj(j = 1, 2, 4, 5, 6) by their expectations in the definitions of A and B, we denote

Ã = − log E (W1)+ log{N − E (W2)} + log(ΩT − 𝛽TT)+ log E
(
W4

)

− log E
(
W5

)
− log 𝜏 − log R0

= log 𝜆1 − log 𝜆0 − log R0

B̃ = E (W6) {E (W2)− E (W6})
E (W2)E (W1)

2 + 1
E (W2)

+ 1
N − E (W2)

+ 1
E
(
W4

)

= 1
N

{
PR(1− PR)
p(PR − 𝛽T)2

+ 1
p(1− p) +

1
(1− p)r𝜆1𝜏

}
.

We apply the delta method to find the asymptotic mean of Z is given by Ã∕
√
B̃, and the asymptotic

variance of Z is given by dTZvar(W
∗)dZ, where

dZ =
1√
B̃

(
− 1
E (W1)

,− 1
E (N −W2)

,
1

E
(
W4

) ,− 1
E
(
W5

) ,0
)T

− Ã
2B̃3∕2

(

− 2E (W6) {E (W2)− E (W6)}
E (W2)E (W1)

3 ,
E (W6)

2

E (W2)
2 E (W1)

2 −
1

E (W2)
2 −

1
E (N −W2)

2 ,

− 1
E
(
W4

)2 ,0,
E (W2)− 2E (W6)
E (W2)E (W1)

2

)T

= 1
N
√
B̃
dZ1 −

Ã
2N2B̃3∕2

dZ2.
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where

dZ1 =
(
− 1
p(PR − 𝛽T)

,− 1
1− p ,

1
(1− p)r𝜏𝜆1

,− 1
(1− p)r ,0

)T

and

dZ2 =
(
− 2PR(1− PR)
p2(PR − 𝛽T)3

,
P2R

p2(PR − 𝛽T)2
− p2 + (1− p)2

p2(1− p)2 ,− 1
(1− p)2r2𝜆21𝜏2

,0, 1− 2PR
p2(PR − 𝛽T)2

)T

.

Since B̃ is the variance of A, we have dTZ1var(W
∗)dZ1∕N2 = B̃ and

var(Z) = dTZ1var(W
∗)dZ1

N2B̃
− ÃdTZ1var(W

∗)dZ2
N3B̃2

+ Ã2dTZ2var(W
∗)dZ2

4N4B̃3

= 1+ Ã
4(NB̃)3

{
ÃdZ2 − 4(NB̃)dZ1

}T var(W∗)
N dZ2.

Note that Ã is a constant related to the relationship of 𝜆0 and 𝜆1. Particularly, if 𝜆1∕𝜆0 = R0, i.e., the
true relationship of 𝜆0 and 𝜆1 follows from the null hypothesis, then Ã = 0, E(Z) = 0, and var(Z) = 1. When
𝜆1∕𝜆0 = R1, i.e., the true relationshipof𝜆0 and𝜆1 follows fromthealternativehypothesis, Ã = log R1 − log R0,
and

E(Z) = log R1 − log R0√
V0(𝜆0)+ V1(R1𝜆0)

.

Note that var(W∗) is proportional toN and B̃ is proportional to 1∕N. Then, the second termof the last expression
is a constant with respect to N. When this constant is non-zero, the asymptotic variance of Z departs from 1.
Particularly, the asymptotic variance of Z under alternative hypothesis R = R1 is given by the formula

VR1 = dTR1VWdR1 ,

where

dR1 =
1√
B̃R1

dZ1 −
log R1 − logR0

2B̃3∕2R1

dZ2,

B̃R1 =
PR(1− PR)
p(PR − 𝛽T)2

+ 1
p(1− p) +

1
(1− p)r𝜆0R1𝜏

,

and VW is the covariancematrix ofW∗ divided byN (which does not depend onN). Note that to calculate VW ,
we make use of the covariance matrix ofW calculated in Appendix A and

var(W6) = NpPR(1− pPR),

cov(W1,W6) = NpPR(1− PR)+ Np(1− p)(PR − 𝛽T)PR,

cov(W2,W6) = Np(1− p)PR,

cov(W4,W6) = −Np(1− p)PRr𝜆1𝜏,

cov(W5,W6) = −Np(1− p)PRr.

VR1 is the calculated asymptotic variance of Z under alternative hypothesis R = R1, in the special case
with 𝜎

2
Ω̂T

= 𝜎
2
�̂�T

= 0. When the variabilities of �̂�T and Ω̂T cannot be ignored, VR1 serves as an approximation
of the asymptotic variance of Z.
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