Title
Distribution and origination of zinc contamination in newly reclaimed heterogeneous dredger fills: Field investigation and numerical simulation

Permalink
https://escholarship.org/uc/item/85p3t9q6

Authors
Wu, Linbo
Wang, Jianxiu
Pei, Xiangjun
et al.

Publication Date
2019-12-01

DOI
10.1016/j.marpolbul.2019.110496

Peer reviewed
Distribution and origination of zinc contamination in newly reclaimed heterogeneous dredger fills: Field investigation and numerical simulation

Linbo Wu a, Jianxiu Wang a,b,c,e,f, Xiangjun Pei e,f, Graham E. Fogg d, Tianliang Yang e,f, Xuexin Yan e,f, Xinlei Huang e,f, Zipeng Liu g, Rui Qi a

a College of Civil Engineering, Tongji University, Shanghai 200092, China
b Key Laboratory of Geotechnical and Groundwater Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
c State Key Laboratory of Geohazard Prevention and Geo-environmental Protection, Chengdu University of Technology, Chengdu 610059, China
d Department of Land, Air and Water Resources, University of California, Davis 95616, US
e Key Laboratory of Land Subsidence Monitoring and Prevention, Ministry of Land and Resources, Shanghai 201204, China
f Shanghai Institute of Geological Survey, Shanghai 200072, China
g College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

ARTICLE INFO

Keywords:
Land reclamation
Heterogeneous dredger fills
Zn contamination
Field investigation
Stochastic modeling
Numerical simulation

ABSTRACT

Heavy metal elements, including Zn, Cd, As, Ni, Cu, Pb and Cr, were detected in soils (no deeper than 75 m) from newly reclaimed zones of Shanghai, China. The Zn concentration exceeded soil quality limits. The Zn contamination was tested in both dredger fills and sedimentary layers (H0, H2, H8, H10, H11 and H12). However, it was not detected in layer H12. PCA and HCA analysis show that exogenous Zn probably was the contaminant source of dredger fills before the fills were dredged from the neighboring waters. Stochastic heterogeneity of the dredger fills affects the Zn-depollution remarkably. Numerical simulations show both acid precipitation and widespread drainage channels in the zones contributed to Zn-decrease in the dredger fills no deeper than 1.2 m. Acid rainstorms work better than acid constant precipitation in Zn-remediation for layers below 0.4 m. To remove Zn contamination in deep dredger fills, un-consolidation of the fills should be utilized.

1. Introduction

The coastal regions within 60 km from the sea supported almost 60% population in 2016, and the ratio becomes higher in coming years (UN Atlas, 2019). This trend globally results in large-scale development of land reclamation to meet the demand for land. Area of reclaimed land in many countries, such as United States, South Korea and Netherlands exceeds 1000 km², China reclaimed the largest area of coastal land (Martin-Antón et al., 2016), over 1860 km² lands were reclaimed in China during 2000–2016, and a large portion of the lands hold worrying contamination risk (Wang et al., 2018). Environmental impacts by land reclamation were mainly focused on neighboring water and sediment quality (Manap and Voulvoulis, 2016), biological existence (Erftemeijer et al., 2012; Mostafa, 2012). Actually, contamination including heavy metal contamination within marine sediments and dredged materials was globally detected in many regions (Ho et al., 2002), especially in river estuaries (Caseiro et al., 2005; EPA, 2016; Mukesh et al., 2018). Many land reclamation programs using sediments of unknown quality for fills were conducted under poor environmental supervision especially in developing regions, this means environmental quality of the new lands should also catch enough attention.

Over 300 km² land was reclaimed for further development of the city of Shanghai, China (Wang et al., 2014), and large-scale new land reclamation are under construction. Shallow hydraulic dredger fills (at a depth of 0.5–1 m) were detected in 2016 showing no significant contamination in Shanghai’s newly reclaimed land, but surface sediments in some Shanghai’s coastal zones were detected to be contaminated by Zn (Liu et al., 2000), Cd (Zhang et al., 2009; Fang et al., 2013; Li et al., 2013), As (Li et al., 2013). This implies hydraulic dredger fills in this region were probably contaminated.

Soil structure of hydraulic dredger fills are decided by the fill source (EPA, 1989), complex sedimentary layer faces in river estuaries result in heterogeneity of dredger fills using sediments from neighboring waters. Borehole data showed that explicit heterogeneity of hydraulic reclaimed soils in east Shanghai, and Wang et al. (2019) has established a comprehensive geo-model for a typical reclaimed field in Hengsha.
Island. In this geo-model, heterogeneity of newly reclaimed soils was characterized using stochastic geo-modeling but dredger fills in numerical modeling studies usually were considered as homogeneous layer (Stark et al., 2005; Sun et al., 2015). Numbers of numerical modeling studies were conducted on soil contaminant transport (Bekhit and Hassan, 2005; Appelo and Rolle, 2010), soil contamination remediation (Nützmann et al., 2005), soil contaminant leaching (Kedzirek et al., 1998; Mallants et al., 2011), stochastic geo-modeling (Carle and Fogg, 1997; Nezhad et al., 2011), and these aspects are needed to be integrated into one geo-model to analyze the evolution of solute transport within the heterogeneous newly reclaimed zone since the land was formed. Considering the potential problems caused by the newly reclaimed land in Shanghai, the authors surveyed seven heavy metal contaminations (Zn, Cd, As, Ni, Cu, Pb and Cr) within deep layers (deeper than 1 m) in those land on basis of primary investigation in shallow layers therein. To further explore source of Zn in the soils, concentrations of Zn, Mn and Fe were detected in 20 deep soil samples. Correlations among those elements and correlated factors such as

Fig. 1. Geotechnical and topographic background of study zones in Shanghai, China. (a) Geographical map of Shanghai. (b) Strata profile in borehole Y101 from Yunling zone and samples from there; (c) Satellite image of Hengsha Island photoed in December 2016 and surveyed points there; (d) Satellite image of the numerical modeling zone in Hengsha Island photoed in February 2016; (e) Drainage channel and phragmites in the numerical modeling zone photoed in December 2016; (f) Strata profile in Hengsha Island and samples from there; (g) Satellite image of Laogang Town photoed in December 2016 and surveyed points there; (h) Drainage channels in Laogang Town photoed in October 2018; (i) Strata profile in Laogang Town and samples from there. (The satellite maps were downloaded from http://www.google.cn/maps)
depth, soil type were analyzed. Considering the detected contamination distribution, a typical hydraulic reclaimed field was chosen as object for finite difference numerical modeling to explore contaminate transport within the layers.

2. Methods and materials

2.1. Field investigation

Contamination survey and sampling were performed in typical reclaimed fields in Hengsha Island and Longang Town in 2016 and 2017. Deep sediments were also sampled from Yunling zone, inland Shanghai for comparison in 2017 (Fig. 1). The drilling and sampling depth of all the boreholes were set < 75 m. The surveyed strata are shown in Fig. 1 and Table 1. Twenty nine soil and sediment samples were obtained from twelve boreholes in Hengsha Island (Fig. 1c, f). Thirty five soil samples were obtained from eleven boreholes in Longang Town (Fig. 1g, i). Two soil samples were obtained from one borehole in Yunling zone (Fig. 1b). The samples were selected in the contamination detection and evaluation. Additionally, eleven surface soil samples from Hengsha Island and two surface samples from Longang Town detected by Wang et al. (2018) were also included in this work (Fig. 1).

2.2. Laboratory tests

All samples were air-dried and homogenized after removing large debris for element concentration detection. Approximate 0.1 g soil from each sample was taken for the tests. All the tests were done in November 2016. The test methods and other information are shown in Table 2. Duplicates were determined to ensure data quality. The heavy metal concentration data by Wang et al. (2018) were detected together with the 46 soil samples in December 2016. The detected heavy metals can be verified whether exceeding the Environmental Quality Standards for Soil (CEPB and CTSB, 1995) (Table 3). According to the Standards, soil quality of level I aims to keep nature ecosystem background quality, level II to ensure humans’ good health, level III to enable both normal operation of agriculture and normal growth of plants, thus the level II and III were the focuses herein. The pH of phreatic water ranged from 7.7 to 8.2 in the surveyed zones (Wang et al., 2018), thus thresholds for pH higher than 6.5 (Table 3) were used to evaluate the soil quality.

2.3. Correlation analysis

Principal component analysis (PCA) was conducted on Zn, Mn and Fe concentrations from 20 soil specimens to examine the source of the Zn within the soils. The 20 specimens were all sampled at the depth no deeper than 39.15 m (⑨). In the PCA analysis, varimax rotation (Gotelli and Ellison, 2004) was applied to maximize the sum of the variance of the factor coefficients. Hierarchical clustering analysis (HCA) was performed on the heavy metal contents to explore the correlation among the Zn, Cd, As, Ni, Cu, Pb and Cr in 42 sedimentary samples from the reclaimed zones and their neighboring old intertidal flats. The specimens were all sampled from neighboring zones within

Table 1
Strata in the study regions.

<table>
<thead>
<tr>
<th>Strata</th>
<th>Soil type</th>
</tr>
</thead>
<tbody>
<tr>
<td>②_1</td>
<td>Clay</td>
</tr>
<tr>
<td>②_2</td>
<td>Silt interbedded with clay</td>
</tr>
<tr>
<td>②_3</td>
<td>Muddy and silty clay</td>
</tr>
<tr>
<td>②_4</td>
<td>Sandy silt</td>
</tr>
<tr>
<td>②_5</td>
<td>Silt and sand</td>
</tr>
<tr>
<td>②_6</td>
<td>Clay</td>
</tr>
<tr>
<td>②_7</td>
<td>Clay</td>
</tr>
<tr>
<td>②_8</td>
<td>Sand with silt</td>
</tr>
</tbody>
</table>

Table 2
Test methods and information of the heavy metal concentration detection.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Test content</th>
<th>Apparatus</th>
<th>Type</th>
<th>Test lab</th>
<th>Test time</th>
<th>Test time</th>
</tr>
</thead>
<tbody>
<tr>
<td>46 soil samples and 1 reagent</td>
<td>Concentration of Pb, Zn, Ni, Cu, Cr, Cd, and Fe</td>
<td>Microwave digest system</td>
<td>Anton Paar Multiwave</td>
<td>Instrumental Analysis Center of SJTU</td>
<td>Dec., 2016</td>
<td>State Key Laboratory of Pollution Control and Resource Reuse of Tongji University</td>
</tr>
<tr>
<td>11 soil samples and 1 reagent</td>
<td>Concentration of Zn, Fe, Mn</td>
<td>Microwave digest system</td>
<td>Agilent 720ES</td>
<td>Instrumental Analysis Center of SJTU</td>
<td>Jan., 2018</td>
<td>State Key Laboratory of Pollution Control and Resource Reuse of Tongji University</td>
</tr>
<tr>
<td>8 soil samples and 1 reagent</td>
<td>Concentration of Zn, Fe, Mn</td>
<td>Microwave digest system</td>
<td>Agilent 720ES</td>
<td>Instrumental Analysis Center of SJTU</td>
<td>Feb., 2018</td>
<td>State Key Laboratory of Pollution Control and Resource Reuse of Tongji University</td>
</tr>
</tbody>
</table>

Table 3
Enviromental Quality Standards for Soil (CEPB and CTSB, 1995).

<table>
<thead>
<tr>
<th>Metal</th>
<th>Class I</th>
<th>Class II</th>
<th>Class III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>< 300 mg/kg</td>
<td>< 1000 mg/kg</td>
<td>< 5000 mg/kg</td>
</tr>
<tr>
<td>Cd</td>
<td>< 0.5 mg/kg</td>
<td>< 2 mg/kg</td>
<td>< 10 mg/kg</td>
</tr>
<tr>
<td>As</td>
<td>< 40 mg/kg</td>
<td>< 100 mg/kg</td>
<td>< 500 mg/kg</td>
</tr>
<tr>
<td>Ni</td>
<td>< 50 mg/kg</td>
<td>< 200 mg/kg</td>
<td>< 1000 mg/kg</td>
</tr>
<tr>
<td>Cu</td>
<td>< 10 mg/kg</td>
<td>< 50 mg/kg</td>
<td>< 300 mg/kg</td>
</tr>
<tr>
<td>Pb</td>
<td>< 2 mg/kg</td>
<td>< 10 mg/kg</td>
<td>< 50 mg/kg</td>
</tr>
<tr>
<td>Cr</td>
<td>< 1 mg/kg</td>
<td>< 5 mg/kg</td>
<td>< 25 mg/kg</td>
</tr>
</tbody>
</table>
Yangtze River estuary, indicating their mineral sources were similar. In the HCA analysis, the squared Euclidean distance linkage method (between-group linkage) was utilized as the basis of the distance metrics, and Z scores were applied to standardize the variable data.

2.4. Numerical model to simulate the evolution of Zn contamination

To understand the present distribution of Zn in shallow and deep soils, numerical model was introduced to simulate the potential transport mechanism of Zn under certain conditions. On basis of the field

Table 3
Environmental quality standards for soil in China (CEPB and CTSB, 1995).

<table>
<thead>
<tr>
<th>Level</th>
<th>Nature state</th>
<th>pH < 6.5</th>
<th>6.5 ≤ pH ≤ 7.5</th>
<th>pH > 7.5</th>
<th>pH > 6.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>35</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>Pb (ppm)</td>
<td>35</td>
<td>80</td>
<td>80</td>
<td>300</td>
<td>500</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Cd (ppm)</td>
<td>0.2</td>
<td>0.3</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr (ppm)</td>
<td>90</td>
<td>250</td>
<td>350</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>As (ppm)</td>
<td>15</td>
<td>40</td>
<td>30</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Ni (ppm)</td>
<td>40</td>
<td>40</td>
<td>60</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Geo-model for the numerical analysis. a. K₀ contour profile of comprehensive geo-model for the Zn transport modeling; b. Stochastic model for the heterogeneous reclaimed layers; c. Water head contour distribution in the surface layer after one year considering all the drainage channels; d. Water head contour distribution in the surface layer after over four year considering only one typical drainage channel.
investigation and heavy metal contamination detection, a typical newly reclaimed field in Hengsha Island was chosen for the numerical modeling (Fig. 1c). The selected field contains enough boreholes to ensure validity of the geo-model, and explicit Zn contamination was detected to exist in both the dredger fills and sedimentary layers therein.

2.4.1. Comprehensive geo-model
Considering comprehensively void ratio, compression modulus, horizontal hydraulic conductivity, vertical hydraulic conductivity and density, HCA analysis on different dredger fill types was done to simplify dredger fill types set in the geo-mode. Transitional probability geo-statistics (Carle, 1999) was applied to build a comprehensive geo-model including a stochastic dredger fill geo-model in Hengsha Island (Wang et al., 2019) (Fig. 2a). The comprehensive geo-model was introduced herein. The geo-model consisted of the upper homogeneous fill layers (Ω3–2, layer 1–5), heterogeneous fill layers (Ω3–2, layer 6–29) and layer Ω3 (Layer 30–33). All the 29 fill layers are 0.4 m thick per single layer (Fig. 2a–b), the Ω3 is composed of four layers of 2.5 m thick silty-sandy sediments (Fig. 2a). To explore long term influence on the deep clay layer, 10 m layer Ω4 divided into two equal thick layers (Layer 34–35) were added to the geo-model (Fig. 2a). Depth of phreatic water table in the study zone ranged from 0 m to 0.5 m in December 2016, and soils in the field were saturated when it was reclaimed, thus the groundwater table in the numerical mode was set as 1 m, the same with elevation of the surface (Fig. 2a).

2.4.2. Environmental factors in the numerical model
Given that transport of Zn is sensitive to change of solution pH, and that pH mean of Shanghai’s precipitation in 2012–2016 was 4.64 (SMBEE, 2013), 4.81 (SMBEE, 2014), 4.90 (SMBEE, 2015), 5.07 (SMBEE, 2016a), 5.22 (SMBEE, 2017) successively, acid precipitation was assumed as a major reason driving Zn to transport in the weakly alkaline environment (Fig. 2a). Total precipitation mean of Shanghai during recent 107 years was 1158.9 mm per year, the subtropical monsoon climate in Shanghai brings 75.2% of the total precipitation in flood season during May to October, and a large portion of its precipitation done as rainstorms. Rainstorm with precipitation over 81 mm/h during 2001–2007 evenly happened twice every year (Lu et al., 2010), thus precipitation occurred in its flood season was divided into two rainstorms per year in the numerical model, and the remaining precipitation happened in constant rate. Rainstorms in Shanghai usually last for several hours, and the surface water brought by rainstorms usually take two to four days to be used up, thus precipitation infiltration by every rainstorm in the numerical modeling lasts for three days. When rainfall intensity becomes larger than soil infiltration capacity, the rainfall infiltration rate should take soil infiltration capacity value, thus 0.048 m/d (Morbidelli et al., 2018) was taken as the infiltration rate during the rainstorms in the numerical modeling. The subtropical monsoon climate in Hengsha Island governing the modeled zone also results in a phreatic evaporation intensity of 547.5 mm/y therein (Yang et al., 2004), which probably affects the phreatic water system remarkably, thus evaporation happened in the modeled zone was also considered in the numerical analysis.

Given that water pH from Huangpu River estuary to the modeling site changes from 7.25 to 8 (Sun et al., 2017), and that solubility of Zn (OH)2 was very low under room temperature and alkaline environment (Reichle et al., 1975), thus major formulation of Zn contamination within the modeling site was set as Zn(OH)2(c). Thus key chemical reactions happened during the modeling should be (Prommer and Post, 2010):
\[\text{Zn}^{2+} + \text{H}_2\text{O} = \text{Zn(OH)}^+ + \text{H}^+ \log k = -8.96 \] (2)

\[\text{Zn}^{2+} + 3\text{H}_2\text{O} = \text{Zn(OH)}_3^+ + 3\text{H}^+ \log k = -28.4 \] (3)

\[\text{Zn}^{2+} + 4\text{H}_2\text{O} = \text{Zn(OH)}_4^{2+} + 4\text{H}^+ \log k = -41.2 \] (4)

\[\text{Zn(OH)}_2(c) + 2\text{H}^+ = \text{Zn}^{2+} + 2\text{H}_2\text{O} \log k = 11.5 \] (5)

where \(k \) is the reaction equilibrium constant at 25 °C.

Considering the probable Zn transport in the layers of the study zone and influence on the sedimentary layers by the reclaimed layers, the initial Zn(OH)_2(c) concentration of \(@3 \) and \(@6 \) was set as Zn concentration of sample Hg01-20 and Hg01-25 respectively, since no reclaimed layers covered their location (Fig. 1f). And initial Zn(OH)_2(c) concentration of the dredge fill was set using the median of the detected Zn concentration in the neighboring \(@3 \) (Considering sample Hg04-16, Hg04-23, Hg05-21 in Fig. 1f). The initial Zn^{2+} concentration

Table 4

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial eigenvalues</th>
<th>Heavy metals</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total % of variance</td>
<td>Cumulative %</td>
<td>PCI</td>
</tr>
<tr>
<td>1</td>
<td>2.015</td>
<td>67.161</td>
<td>67.161</td>
</tr>
<tr>
<td>2</td>
<td>0.913</td>
<td>30.426</td>
<td>97.587</td>
</tr>
<tr>
<td>3</td>
<td>0.072</td>
<td>2.413</td>
<td>100.000</td>
</tr>
</tbody>
</table>

OH^- + H^+ = H_2O \log k = -14.0

![Hengsha profile](image)

![Laogang profile](image)

Fig. 4. Zn concentration contour profile using minimum curvature interpolation within depth of 0–75 m. The two profiles share the same legends.
in the seepage was calculated considering chemical equilibrium (1–5), and no Zn was assumed in the precipitation. The temperature condition was set as 25 °C. The modeling term started from June 1st 2012 when the field was just reclaimed, the end time was November 30th 2016 when the specimen were sampled.

2.4.3. PHT3D model

PHT3D mode coupling PHREEQC-2 (Parkhurst and Appelo, 1999) with MT3DMS (Zheng and Wang, 1999) was introduced to simulate the transport of multi chemical components and changing pH (Prommer et al., 2003; Prommer and Post, 2010). The reactive transport equation for the nth (mobile) aqueous component is:

\[
\frac{\partial C_n}{\partial t} = \frac{\partial}{\partial x} \left(D_{n,\alpha} \frac{\partial C_n}{\partial x} \right) - \frac{\partial}{\partial x} \left(u_{\alpha} C_n \right) + q \frac{C_s}{\theta} + r_{\text{react,n}}
\]

(6)

and for immobile entities:

\[
\frac{\partial C_n}{\partial t} = r_{\text{react,n}}
\]

(7)

where \(u_{\alpha}\) is the pore-water velocity in direction \(x_{\alpha}\) (LT\(^{-1}\)), \(D_{n,\alpha}\) is the hydrodynamic dispersion coefficient tensor (L\(^2\) T\(^{-1}\)), \(q\) is a volumetric flow rate per unit volume of aquifer representing fluid sources (positive) and sinks (negative) (T\(^{-1}\)), \(\theta\) is the porosity of the subsurface medium, \(C_s^\alpha\) is the concentration of the source or sink flux (ML\(^{-3}\)), \(r_{\text{react,n}}\) is a source/sink rate due to chemical reaction (ML\(^{-3}\) T\(^{-1}\)) and \(C_n\) is the total aqueous component concentration of the nth component (ML\(^{-3}\)) (Yeh and Tripathi, 1989; Engesgaard and Kipp, 1992).

2.4.4. Drainage in the numerical model

Wide-spread drains with water table of 0.5–0.75 m deep were considered in the numerical model which facilitate draining of the field soils. The drainage channels in the numerical model result in unsaturated grids in large area (Fig. 2c). And the influence of the acid precipitation on the Zn transport within the field would not be effectively reflected. Thus to explore influence on Zn transport by acid precipitation in long term, only one typical drainage channel in the zone was considered in the numerical modeling, resulting in small-scale area of grids aborting during the modeling process and higher water head within the layers (Fig. 2d). Meanwhile, advection package, dispersion package and source/sink mixing package were applied in the PHT3D modeling.

Using the detected element concentrations within the deep soils and collected data, correlation analysis was performed among those data using PCA and HCA. Furthermore, assuming that \(\oplus_3\)–\(\oplus_5\) was Zn-polluted

Table 5

<table>
<thead>
<tr>
<th></th>
<th>Upper homogeneous fill</th>
<th>Clayey soil</th>
<th>Silty-sandy soil</th>
<th>River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(OH)(_2)(c) (mol/L)</td>
<td>2.61 × 10(^{-3})</td>
<td>2.61 × 10(^{-3})</td>
<td>2.61 × 10(^{-3})</td>
<td>7.12 × 10(^{-4})</td>
</tr>
<tr>
<td>Zn(^{2+}) (mol/L)</td>
<td>9.91 × 10(^{-9})</td>
<td>9.91 × 10(^{-9})</td>
<td>9.91 × 10(^{-9})</td>
<td>9.91 × 10(^{-9})</td>
</tr>
<tr>
<td>pH</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>Pe</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Porosity</td>
<td>0.50</td>
<td>0.51</td>
<td>0.43</td>
<td>0.45</td>
</tr>
<tr>
<td>k(_h) (m/d)</td>
<td>3.92 × 10(^{-1})</td>
<td>5.70 × 10(^{-3})</td>
<td>3.92 × 10(^{-1})</td>
<td>2.34 × 10(^{-1})</td>
</tr>
<tr>
<td>k(_v) (m/d)</td>
<td>2.39 × 10(^{-1})</td>
<td>4.13 × 10(^{-3})</td>
<td>2.39 × 10(^{-1})</td>
<td>1.62 × 10(^{-1})</td>
</tr>
<tr>
<td>Specific storage (1/m)</td>
<td>0.0158</td>
<td>0.07899</td>
<td>0.0158</td>
<td>6.067E-03</td>
</tr>
<tr>
<td>Specific yield</td>
<td>0.28</td>
<td>0.05</td>
<td>0.28</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Fig. 5. Dendrogram of HCA showing the relevant association among Pb, Zn, Ni, Cu, Cr, Cd and As contents within sedimentary soils.
homogeneously, both ② and ④ unpolluted when the modeled field was just reclaimed, Zn transport during 2012–2016 was modeled using the comprehensive geo-model and finite difference.

3. Results

3.1. Distribution of Zn contamination

Seven heavy metal elements including Zn, Cd, As, Ni, Cu, Pb and Cr were tested in laboratory. Only Zn exceeded the limit of level II in the surveyed zones. One dredger fill sample even exceeded the limit of level III. All the polluted specimens were sampled from the depth shallower than 38.5 m. Thus Zn was selected as the focused contaminant in this work.

Zn in specimens of ①, ②, ③, ④ and ⑤ exceeded the limit of level II. Sampling points of Zn over 300 ppm in Hengsha Island were detected in borehole Hg04–Hg07 (Fig. 1c, f). The Zn-contaminated dredger fills were found in the depth < 5 m. The concentration of Zn in shallow dredger fills (depth < 1 m) was remarkably lower than the deep ones (Figs. 2a and 4a). Contaminated points in Laogang Town were disclosed within stratum ①, ③, ④ and ⑤ in (Fig. 1g, i), no dredger fill was detected over the limit of level II. And the previous drainage channel soil Lg04–04 in stratum ⑤ exceeded the limit of level II, significantly varied from its neighboring detected points (Fig. 4b). The two sampling points in borehole Yl01 also showed very low level of Zn. Zn concentration shows no explicit correlation with soil types (Fig. 1a–b). The concentration of Zn exceeding the limit of level II was detected in both clayey soils and silty-sandy soils in several points (Fig. 3b).

3.2. Potential origination of Zn

PCA on Zn, Mn and Fe of both dredger fills and sedimentary soils shows that the first two principal component (PCs) explained 97.59% of the total variance (i.e., PC1 and PC2 respectively explained 67.16% and 30.43% of the variance). PC1 had a strong positive relationship with Fe and Mn. PC2 had a highly positive relationship with Zn (Table 4). HCA analysis on different dredger fill types shows that clayey fills are differed from silty and sandy fills significantly in the study zones (Fig. 6). The difference validates soil type division in the stochastic geo-model for heterogeneous reclaimed layers in the modeled field by Wang et al. (2019) (Fig. 2a). The distribution of Zn(OH)₂, Zn²⁺ and pH in the surface layer (depth of 0–0.4 m) changed significantly during the modeling term. Zn(OH)₂ in most area of the surface layer decreased from 2.61 × 10⁻³ mol/L (307.32 ppm) to 2.50 × 10⁻³–2.53 × 10⁻³ mol/L, less than the limit of level II (2.55 × 10⁻³ mol/L) (Fig. 7a–b). Zn(OH)₂ decreased significantly in the second layer (depth of 0.4–0.8 m) mainly around the drainage channel and water head (Fig. 7c). The concentration of Zn exceeding the limit of level II was detected in both clayey soils and silty-sandy soils in several points (Fig. 3b).

Both Zn²⁺ and pH changed remarkably during the modeling term, and their distribution in dredger fills no deeper than 4.8 m was explicitly controlled by drainage channel and water head (Fig. 8). The pH
ranged from 8.41 to 8.44 in large belt around the drainage channel in depth of 0.4–0.8 m, slightly higher than the detected 7.7–8.2 in field surveys. Meanwhile, Zn$^{2+}$ ranged from 8×10^{-6} mol/L to 1×10^{-5} mol/L, slight higher than the detected 3×10^{-7}–6×10^{-7} mol/L in the modeled zone. Heterogeneous distribution of Zn$^{2+}$ and pH within layer 13 (Fig. 8e–f) correlates with soil heterogeneity within it (Fig. 8c), higher Zn$^{2+}$ concentration and lower pH can be detected in silty-sandy soils than neighboring clayey soil.

The decreasing rate of Zn(OH)$_2$ from the top layer of the homogeneous dredger fill (0–0.4 m) to the top layer of the heterogeneous dredger fills (2.0–2.4 m) declined sharply. The rate during rainstorms was remarkably higher than that during the remaining constant precipitation periods. The rate of the drainage points was higher than that of the points far from the drainage and the model boundaries. Zn(OH)$_2$ reduction in monitored points of layer 6 (2.0–2.4 m), bottom layer of the dredger fills (11.2–11.6 m) and top layer of Ω_3 (11.6–14.1 m) during

Fig. 7. Zn(OH)$_2$ concentration distribution within layers. a. Initial Zn(OH)$_2$ concentration distribution within surface on June 2nd 2012; b. Zn(OH)$_2$ concentration distribution within surface on November 30th 2016; c. Zn(OH)$_2$ concentration distribution within depth of 0.4–0.8 m on November 30th 2016; d. Zn(OH)$_2$ concentration distribution within layer 4 (depth of 1.2–1.6 m) on November 30th 2016; e. Zn(OH)$_2$ concentration distribution within bottom of heterogeneous fill (depth of 11.2–11.6 m) on November 30th 2016; f. Zn(OH)$_2$ concentration distribution within top of stratum Ω_3 on November 30th 2016.
the modeling term all turns out $< 5 \times 10^{-6}$ mol/L (Fig. 9a). Zn$^{2+}$ concentration in these monitored points evolved in an opposite trend of pH. The total change of both Zn$^{2+}$ concentration and pH in the upper two layers of dredger fills and layer 6 was remarkably higher than those in depth of 11.2–14.1 m (layer 29–30) (Fig. 9b–c). Both Zn$^{2+}$ concentration and pH of points within the three layers response intensively to rainstorms, which does not happen in layer 29–30. Thus, monitored points in the upper two layers of dredger fills and layer 6 were divided into strong response segment, and points in depth of 11.2–14.1 m were divided into weak response segment (Fig. 9d). In the strong response segment, the influence of rainstorms on Zn$^{2+}$ was similar to that of pH, higher in interior soil points of the upper two layers of dredger fills, and clayey points of layer 6, rainstorm contribution ratio in block points of the upper two layers of dredger fills and clayey points of layer 6 shows larger than 100%. The contribution of rainstorm to Zn(OH)$_2$ decrease in two points of the surface layer both shows around 34%, and 43%, 66% respectively in block point and drainage point of the second layer of homogeneous dredged fill. The influence trend on Zn(OH)$_2$ in layer 6 was similar to that of both Zn$^{2+}$ concentration and pH. Besides, the influence on change of both Zn$^{2+}$ concentration and pH within the top layer and interior points of layer 2 by the two rainstorms per year becomes less and less during the modeling period. Rainstorm contribution to change of three chemical components in the weak response segment all shows $< 10\%$ (Fig. 9d).

4. Discussion

4.1. Disclosure of Zn contamination

The previous works did not report Zn contamination within shallow dredger fills (depth < 1 m) of Hengsha Island and Laogang Town (Wang et al., 2018). Further work based on three batches of ICP detection disclosed that Zn contamination (Zn over 300 ppm) did exist within some parts of the deep reclaimed layers, Θ_2, Θ, and Θ_{1-1}. Deep soils in large area contained Zn exceeding the limit of level II, even over the limit of level III, thus potential risk for both nowadays ecosystem and future development existed herein.

4.2. Zn origination

PCA indicated that Zn in these soils held a different major source from that of Fe and Mn. The Zn contamination was artificially added to the soils, because major elements, Fe and Mn, are usually viewed as deposited into soils during sedimentary process (Martin et al., 2006; Mico et al., 2006). HCA implied that the source of Zn in the sedimentary soils is different from that of Cd and group of As, Ni, Cu, Pb and Cr, which is different from HCA on the seven heavy metal elements in the surface dredger fills by Wang et al. (2018). This was probably caused by the different transport processes among these elements during the land reclamation construction and the long term effects by exterior factors such as acid precipitation, plant uptake.

Soil type in many contaminated points belonged to clayey soils in Θ and Θ_{1-1}, and showed no identifiable impact on Zn concentration within the reclaimed layers. Thus soil heterogeneity in dredger fills held no significant correlation with its initial Zn concentration. Large-scale Zn-contamination exists under both the dredger fill layers and other surface layers, implying that the Zn contamination was not caused by the hydraulic land reclamation or the dredger fills. Numerical modeling also showed that no significant Zn transport from the contaminated dredger fill layers to the underlying sedimentary layers. No Zn contamination was detected in borehole Hg01 or Yl01. Thus the detected Zn contamination in stratum Θ_2, Θ and Θ_{1-1} was not formed during their deposition processes, which can also be verified by both the HCA and PCA results. Seldom artificial exploitation was conducted in
reclaimed land of Hengsha Island, meaning that the deep contamination Zn in the reclaimed layers was not formed after the land was reclaimed in 2012. The Zn contamination within the deep reclaimed soils was originated from fill source such as stratum ②③, ④ in the neighboring waters. The high level of Zn in the previous drainage soil sample Lg04-04 implied that one major contamination source of the Zn contamination within sediments in the neighboring waters was discharge of sewage by factories in neighboring coastal zones. Considering flushing by precipitation and draining by amounts of channels in the reclaimed areas, the widespread low level Zn in the surface dredger fills of Hengsha Island can be explained, although their fill source probably was also Zn-contaminated heterogeneously like the deep reclaimed fills, which can be reflected by the no significant Zn(OH)_2-change from 2012 to 2016 in the numerical modeling.

The simulated Zn contamination mainly in formulate of Zn(OH)_2 in November 2016 was significantly higher than the detected Zn within surface layer of dredger fills, resulting directly in the pH higher than the detected ones. Several reasons probably contributed to the result. Firstly, different from initially homogeneous Zn-contamination in the model, Zn concentration exceeded the limits existed only in some parts of the field (Fig. 4a), which probably decelerates the depollution of Zn in the numerical analysis. Secondly, only one drainage channel was
modeled to enable most part of the surface layer keep saturated during the modeling process (Fig. 2c–d), but amounts of drainage channels exist in the field (Fig. 1d, h), thus the quick decrease of Zn(OH)2 concentration by multi-channels was not characterized in the numerical modeling. Thirdly, bushy phragmites and typha grow in the reclaimed zones (Fig. 1e), actually, these plants can absorb much heavy metal elements including Zn from the soils (Duman et al., 2015; Kumari and Tripathi, 2015). Besides, much surface run-off was produced during rainstorm stages since the infiltration cannot allow all the precipitation by rainstorms to enter the layers, soil flushing process by the surface ruff-off was not included in the numerical model, and this probably weakens Zn remediation by the acid precipitation.

4.3. Countermeasures

Soil contamination within saturated belt is required to be monitored as unsaturated soils in Shanghai (SMBEE, 2016b). The detected Zn contamination in the study zones remains to be depolluted. Considering the depth of the Zn contamination was deeper than 5 m, field remediation methods treating deep soil contaminations were probably effective herein. Though rainstorms held key impacts on Zn-depollution within the deep dredger fills in the numerical modeling, it depends on the weather and needs too long time. In-situ water flushing (Mao et al., 2015) using eluents heightening Zn-transportability within the soils such as acid, Ammonium-based deep eutectic solvents (Mukhopadhyay et al., 2018), and permeable reactive barriers (Obiri-Nyarko et al., 2014) all were proved efficient for removing deep Zn contamination. Though ex-situ soil washing can also remediate soil Zn contamination (Feng et al., 2001), but it would take a great cost for so large-scale deep contaminated zones herein. Besides, electro-kinetic remediation (Pazos et al., 2006) probably can be effective for the deep Zn contamination. Dredger fill layers in the study zones are still unconsolidated, which means porosity within them is still higher, thus field remediation for the deep Zn contamination should be conducted as soon as possible so that the high soil porosity can be taken advantage.

5. Conclusions

With Shanghai's newly reclaimed fields as a typical background, field survey, lab detection and numerical modeling results in this work showed that:

(1) Zn contamination heterogeneously exists within saturated belt deeper than 1.8 m in both reclaimed zones of Hengsha Island and Laogang Town in Shanghai. The contaminated layers include deep dredger fill layers (Ω2,3, Ω3, Ω4, Ω5, Ω6 and Ω7,8) in the surveyed zones. No heavy metal element of Cd, As, Ni, Cu, Pb and Cr was detected to be over limits within these layers, and the strata Ω1,2 to Ω showed good soil environment quality.

(2) The Zn contamination within the deep sediments was formed due to exogenous contamination source before the land reclamation construction, and the slight alkali environment in the reclaimed regions resulted in weak Zn transport between the dredger fills and the underlying sedimentary layers. The Zn contamination within the deep dredger fills was probably from the fill source, and initially held no correlation with soil type of the fills. But heterogeneity of dredger fills could differentiate Zn-depollution rate within the reclaimed layers.

(3) Flushing process by acid precipitation and draining process due to widespread drainage channels in the reclaimed zones contributed much to the depollution of the Zn contamination shallower than 1.2 m. Rainstorms remarkably facilitated Zn reduction below 0.4 m since the fields were reclaimed.

(4) PH-control and electro-kinetic remediation can be considered as remediation measures for the deep Zn contamination within alkali reclaimed land. Un-consolidation state of the dredger fills can be used to facilitate the remediation process.

Acknowledgements

This work is sponsored by National Key Research and Development Program of China, China (2017YFC0806000), Shanghai Municipal Science and Technology Commission, China project (18DZ2201301), SKLGP Opening fund of (SKLGP2018K019), of State Key Laboratory of Geohazard Prevention and Geoenvironmental Protection (Chengdu University of Technology), China Key Laboratory of Karst Collapse Prevention; CAGS, China and IGC, UNESCO Project (663-La Subsidence in Coastal cities).

References

