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Abstract
The Availability bias, manifested in the over-representation of
extreme eventualities, is a well-known cognitive bias, and is
generally taken as evidence of human irrationality. In this
work, we present the first rational, metacognitive account of
the Availability bias, formally articulated at Marr’s algorith-
mic level of analysis. Concretely, we present a normative,
metacognitive model of how a cognitive system should over-
represent extreme eventualities, depending on the amount of
time available for decision-making. Our Sample-based Ex-
pected Utility model also accounts for two well-known fram-
ing effects in human decision-making under risk—the fourfold
pattern of risk preferences in outcome probability (Tversky
& Kahneman, 1992) and in outcome magnitude (Markovitz,
1952)—thereby providing the first metacognitively-rational
basis for the aforementioned effects. Empirical evidence con-
firms an important prediction of our model. Surprisingly, our
model is strikingly robust with respect to its focal parameter.
We discuss the implications of our work for studies on hu-
man decision-making, and conclude by presenting a counter-
intuitive prediction of our model, which, if confirmed, would
have intriguing implications for human decision-making un-
der risk. To our knowledge, our model is the first metacog-
nitive, resource-rational process model of cognitive biases in
decision-making. Notably, our work also contributes to the
fields of artificial intelligence and computational statistics, by
presenting a previously unknown proposal distribution, with
firm rational grounds, broadly applicable to the influential sub-
field of importance sampling Monte Carlo methods.
Keywords: Availability bias; Decision-making under uncer-
tainty and risk; Metacognitively rational models; Fourfold pat-
tern of risk preferences

1 Introduction
Which one comes to your mind more easily? The most horri-
ble car crash of your life, or the event of driving home safely
on any given day? Among the great many cognitive biases
documented in the literature, the Availability bias (Tversky &
Kahneman, 1972) is a notable one: People overestimate the
probability of events that easily come to mind. A number of
notable effects can be explained by this cognitive bias: peo-
ple’s overestimation of the frequency of extreme events like
an earthquake (Lichtenstein, Slovic, Fischhoff, Layman, &
Combs, 1978) and people’s overreaction to threats like ter-
rorism (Lichtenstein et al., 1978; Rothman, Klein, & Wein-
stein, 1996, Sunstein & Zeckhauser, 2011). Neurobiological
work shows that the strength of a memory is modulated by
the salience of its positive or negative valance (Cruciani et al.,
2011), thereby providing a possible explanation of the bias.

Recently, Lieder, Griffiths, and Hsu (2014, 2017) proposed
a boundedly-optimal, rational process model of the Availabil-
ity bias which can explain a wide range of findings in the

human-decision making literature. Drawing on the impor-
tance sampling paradigm, their account aimed to minimize
the mean squared error (MSE) of an expected utility estima-
tor, as a well-established and normatively-justified measure
of quality of an estimator (Poor, 2013). Since the variance
of the estimator is the asymptotically-dominant term in the
MSE (i.e., for large sample size, variance becomes an accu-
rate proxy for MSE), Lieder et al. (2014, 2017) suggest that
people adopt the following importance distribution (as the im-
portance distribution minimizing the variance):

q(o) ∝ p(o)|u(o)−Ep[u(o)]|, (1)

for mental simulations of events. In (1), o denotes an arbitrary
event, p the objective probability of event o, u(o) the utility
of event o, q the probability distribution one adopts for their
mental simulations (i.e., the subjective probability of event
o), and, finally, Ep[·] the expectation with respect to p.

Note that the expression in (1) does not depend on the num-
ber of samples drawn before deciding (denoted by s). In that
light, Lieder et al.’s (2014, 2017) account implies that time
availability, i.e., the amount of time a decision-maker has at
their disposal, should have no implications on what impor-
tance distribution q one adopts. While a cognitively-rational
agent is ignorant about adapting their importance distribution
q based on time availability, a metacognitively-rational agent
would plausibly make such considerations in their choice
of q. That is, the metacognitively-rational agent chooses,
among all q’s, the one which is normatively-justified based
on time availability considerations—this essentially makes
it a strategy selection task guided by time availability. In
agreement with this view, a large body of psychological work
on decision-making suggests that (1) people evoke different
strategies for decision making under time pressure vs. no time
pressure, and (2) people adapt their strategies in accord with
time availability (see e.g. Svenson & Maule, 1993; Svenson,
1993).

In this work, we present the first normative, metacognitive
model of how an agent should over-represent extreme even-
tualities, depending on the amount of time available at their
disposal for decision making. Concretely, our work serves
as a rational, meta-level model for the work by Lieder et
al. (2017, 2014). More specifically, the importance distribu-
tion suggested by Lieder et al. (2017, 2014) naturally follows
from our metacognitive account, when s is large. In con-
trast to Lieder et al. (2017, 2014), our meta-level account also

2394



specifies how a decision-maker should rationally choose their
importance distribution when they can only afford to collect
very few samples (i.e. when making decision under extremely
high time pressure).1 Importantly, recent work has provided
mounting evidence suggesting that people often use very few
samples in probabilistic judgments and reasoning under un-
certainty (e.g., Vul et al., 2014; Battaglia et al. 2013; Lake et
al., 2017; Gershman, Horvitz, & Tenenbaum, 2015; Hertwig
& Pleskac, 2010; Griffiths et al., 2012; Gershman, Vul, &
Tenenbaum, 2012; Bonawitz et al., 2014), elevating the im-
portance of developing process models specifically directed
at few number of samples.

We show that our model can account for two well-known
framing effects in human decision-making under risk: the
fourfold pattern of risk preferences in outcome probabil-
ity (Tversky & Kahneman, 1992) and in outcome mag-
nitude (Markovitz, 1952). Despite being often taken as
strong evidence for human irrationality, we provide the first
metacognitively-rational basis for these effects. Furthermore,
empirical evidence, confirms an important prediction of our
model: over-representation of extreme events regardless of
their frequencies. Our model also makes a counterintuitive
(normative) prediction, which, if confirmed, would have sur-
prising implications for human decision-making under risk.

2 Proposed Model
In this section, we formally present our metacognitively-
rational model for the Availability bias (Tversky & Kahne-
man, 1973). According to the expected utility theory (von
Neumann & Morgenstern, 1944), an agent chooses an action
a, with the highest expected utility

E[u(o)] =
∫

p(o|a)u(o)do, (2)

where p(o|a) denotes the distribution over outcomes o result-
ing from taking action a, u(o) the subjective utility associated
to outcome o, and E[·] the expectation operation. Since the
computation of (2) is generally intractable, we assume that
the agent estimates (2) using sampling methods (Hammersley
& Handscomb, 1964). Substantial neural and behavioral evi-
dence supports this hypothesis (see e.g. Fiser, Berkes, Orbán,
& Lengyel, 2010; Vul, Goodman, Griffiths, & Tenenbaum,
2014; Denison, Bonawitz, Gopnik, & Griffiths, 2013; Grif-
fiths & Tenenbaum, 2006). Concretely, following Lieder et
al. (2014, 2017), we assume that the agent estimates (2) us-
ing (self-normalized) importance sampling (Hammersley &
Handscomb, 1964; Geweke, 1989), which is shown to be re-
lated to both neural networks (Shi & Griffiths, 2009) and cog-
nitive process models (Shi, Griffiths, Feldman, & Sanborn,
2010):

Ê =
1

∑
s
j=1 w j

s

∑
i=1

wiu(oi), ∀i : oi ∼ q, wi =
p(oi)

q(oi)
. (3)

1The optimality of Lieder et al.’s (2017, 2014) model hinges on
the number of samples s being large. When s is small, Lieder et
al.’s (2017, 2014) model is no longer optimal. Our model, however,
remains rational for both small and large values of s.

In Eq. (3), s denotes the total number of mental simulations
performed by the agent, oi the ith mentally simulated out-
come, u(oi) the utility of oi, p the objective probability of
event oi, q the probability distribution the agent adopts for
their mental simulations (i.e., the subjective probability of
event oi), and, Ê the (normalized) importance sampling es-
timator of E[u(o)] given in (2).

The mean-squared error (MSE) of the estimator in (3), as
a standard normative measure of the quality of an estima-
tor (Poor, 2013), can be decomposed as follows: E[(Ê −
E[u(o)])2] = (Bias[Ê])2+Var[Ê], where The bias Bias[Ê] and
variance Var[Ê] of the estimator Ê can be approximated by
(Zabaras, 2010):

Bias[Ê]≈ 1
s

∫ p(o)2

q(o)
(Ep[u(o)]−u(o))do, (4)

Var[Ê]≈ 1
s

∫ p(o)2

q(o)
(Ep[u(o)]−u(o))2do. (5)

Under mild technical conditions, it can be shown that the
rational importance distribution for minimizing the MSE of
the estimator Ê is given by:

q∗meta ∝ p(o)|u(o)−Ep[u(o)]|

√
1+ |u(o)−Ep[u(o)]|

√
s

|u(o)−Ep[u(o)]|
√

s
, (6)

where p denotes the objective probability of event o, and Ep[·]
the expectation with respect to distribution p.2 We refer to
q∗meta given in (6) as the metacognitively-rational importance
distribution the agent should adopt for mental simulation of
events for decision-making under uncertainty.

Comparing expressions (1) and (6) reveals that the

multiplicative factor

√
1+ |u(o)−Ep[u(o)]|

√
s

|u(o)−Ep[u(o)]|
√

s
, which we

term metacognitive rationality factor (MCRF), differentiates
Lieder et al.’s (2014, 2017) cognitively-rational model (see
Eq. (1)) from our metacognitively-rational model. In the re-
mainder of this work, we show that MCRF plays a crucial role
in accounting for two important framing effects in decision-
making under risk. It is crucial to note that q∗meta takes into
account the amount of time available for making a decision
(i.e., time availability), as evidenced by expression (6) ex-
plicitly depending on the number of mental simulations s per-
formed by the agent.

Following Lieder et al. (2017, 2014), and for ease of expo-
sition, we assume Ep[u(o)] = 0 hereinafter.

3 Extreme Eventualities are Over-represented
Regardless of their Frequency

A simple investigation of the metacognitively-rational impor-
tance distribution q∗meta given in (6) yields an important pre-
diction of our model: Extreme eventualities should be over-
represented in decision-making, regardless of how rare or fre-
quent they are. Importantly, this effect is already empirically

2For the derivation of the expression given in (6), the reader is
referred to https://arxiv.org/abs/1801.09848
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Figure 1: A metacognitively-rational agent should over-represent
extreme events precisely according to Lieder et al.’s (2014, 2017)
cognitively-rational model, evidenced by the curves converging to
1 as u(o)→ +∞. Importantly, however, a metacognitively-rational
agent should also over-represent mundane events significantly more
than what a merely cognitively-rational model prescribes, evidenced
by the curves overshooting at the neighborhood of u(o) = 0.

confirmed (Lieder et al., 2017). Note that this coverage is
to be expected as our proposed model subsumes the model
outlined in Lieder et al. (2014, 2017).

Importantly, a detailed analysis of MCRF reveals that a
metacognitively-rational agent should over-represent extreme
events precisely according to Lieder et al.’s (2014, 2017)
cognitively-rational model, however, it should also over-
represent mundane events significantly more than what the
cognitively-rational model by Lieder et al. prescribes. These
findings are depicted in Fig. 1.

Next, we formally show that when the number of samples
s is sufficiently large, our proposed metacognitively-rational
importance distribution q∗meta converges to the cognitively-
rational importance distribution of Lieder et al. (2014, 2017)
given in (1).3

3More accurately, in formal terms, q∗meta converges to (1)
almost surely, except at u(o) = 0. Notice that despite the unbound-
edness of MCRF at u(o) = 0 (see Fig. 1), q∗meta remains bounded at

Proposition 1. When the number of mental simulations s
is large, q∗meta converges to the importance distribution given
in (1). Formally, assuming u(o)−Ep[u(o)] 6= 0,

lim
s→+∞

q∗meta =
1
Z

p(o)|u(o)−Ep[u(o)]|, (7)

where Z is a normalizing constant (aka partition function).4

Proposition 1 formally establishes that our metacognitively
rational model of Availability bias serves as a rational, meta-
level model for the work by Lieder et al. (2017, 2014), with
our model converging to Lieder et al.’s when the number of
samples s is large. Note that, since Lieder et al.’s importance
distribution was specifically derived under the assumption
that s is large, the result presented in Proposition 1 is intuitive,
and, importantly, attests to the claim that our metacognitively-
rational model subsumes Lieder et al.’s cognitively-rational
model, with the rationality of our model holding for both
small and large s’s while that of Lieder et al.’s only for large
s’s.

4 Framing Effect in Decision-Making
Past work has documented that people’s risk preferences are
inconsistent and context-dependent (see e.g., Tversky & Kah-
neman, 1992; Markovitz, 1952). For example, in choos-
ing between a safe gamble (low payoff with high probabil-
ity) and a risky gamble (high payoff with low probability),
risk preferences change depending on the probabilities of the
gambles (Tversky & Kahneman, 1992), the amount offered
(Markovitz, 1952), and whether those gambles are framed as
a gain or loss (Tversky & Kahneman, 1992).

In what follows, we show that our metacognitively-rational
model can account for two well-known framing effects in hu-
man decision-making under risk: the fourfold pattern of risk
preferences in outcome probability (Tversky & Kahneman,
1992) and in outcome magnitude (Markovitz, 1952). Thus,

u(o) = 0.
4For a formal proof of Proposition 1, the reader is referred to

https://arxiv.org/abs/1801.09848.

(a) (b)

Figure 2: Accounting for the fourfold pattern of risk preferences in outcome probability (Tversky & Kahneman, 1992), with few samples
(s = 2) and the utility function given in (8) based on prospect theory (Tversky & Kahneman, 1992). (a) Our metacognitively-rational model
can account for the fourfold pattern of risk preferences in outcome probability, with s = 2 and the utility function given in (8). (b) The
prediction of Lieder et al.’s (2014, 2017) cognitively-rational model for the probability of choosing the risky choice, with s = 2 and the utility
function given in (8).
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our model establishes the first metacognitively-rational basis
for those effects.

4.1 Fourfold Pattern of Risk Preferences in
Outcome Probability

Framing outcomes as losses rather than gains can reverse peo-
ple’s risk preferences (Tversky & Kahneman, 1992): In the
domain of gains people prefer a lottery (o dollars with proba-
bility p) to its expected value (risk seeking) when p< 0.5, but
when p > 0.5 they prefer the expected value (risk-aversion).
To the contrary, in the domain of losses people are risk averse
for p < 0.5 but risk seeking for p > 0.5. This phenomenon is
known as the fourfold pattern of risk preferences in probabil-
ity outcome. Next we show that our metacognitively-rational
model can simulate this effect. Following the prescriptions
of the prospect theory (Tversky & Kahneman, 1992), as did
Lieder et al. (2014) postulate, we assume that the agent’s util-
ity function can be modeled by:

u(o) =
{

o0.85 if o≥ 0,
−|o|0.95 if o < 0.

(8)

Normatively, people should make their choice depending
on whether the expected value of the utility difference ∆u(o)
is negative or positive:

∆u(o) =
{

u(o)−u(p×o) with probability p,
−u(p×o) with probability 1− p. (9)

Fig. 2(a) shows that our metacognitively-rational model
can account for the fourfold pattern of risk preferences in out-
come probability (Tversky & Kahneman, 1992), with the util-
ity function given in (8) based on prospect theory (Tversky &
Kahneman, 1992) and very few samples (s = 2). This result
is fully consistent with past work suggesting that people often
use very few samples in probabilistic inference and reasoning
under uncertainty (e.g., Vul et al., 2014; Battaglia et al. 2013;
Lake et al., 2017; Gershman, Horvitz, & Tenenbaum, 2015;
Hertwig & Pleskac, 2010; Griffiths et al., 2012; Gershman,
Vul, & Tenenbaum, 2012; Bonawitz et al., 2014).

Fig. 2(b) shows the prediction of Lieder et al.’s (2014,
2017) cognitively rational model for the probability of choos-
ing the risky option, with s = 2 and the utility function
given in (8) based on prospect theory (Tversky & Kahneman,
1992). Lieder et al.’s cognitively-rational model seems un-
able to account for the probability of risky choice suggested
by Tversky and Kahneman (1992) using a suggested utility
function of prospect theory given in (8); our simulations sug-
gest that this apparent failure also holds for other values of
s. However, Lieder et al.’s (2014, 2017) cognitively-rational
model can partially account for this effect (see Fig. 3) based
on the expected value of the importance sampling estimator
given in (3), E[Ê], replicating the finding reported in Lieder
et al.’s (2014) Fig 3.5

5Importantly, the evaluation of E[Ê] hinges on the assumption of
averaging over multiple runs of mental simulations.

Figure 3: Expected value of the importance sampling estimator
given in (3), E[Ê], with s= 2 and and the utility function given in (8),
showing that Lieder et al.’s (2014, 2017) cognitively-rational model
can partially account for the fourfold pattern of risk preferences in
outcome probability. This replicates the finding reported in Lieder
et al.’s (2014) Fig 3. However, Lieder et al.’s (2017, 2014) model
appears to be unable to account for the probability of risky choice
suggested by Tversky and Kahneman (1992), using the utility func-
tion given in (8) based on prospect theory; cf. Fig. 2(b).

In their recent work, Lieder et al. (2017) showed that
their cognitively-rational model can better account for the for
the fourfold pattern of risk preferences in outcome probabil-
ity, provided that the utility function is noisy (efficient neu-
ral coding, Summerfield and Tsetsos, 2015); see Fig. 4 in
Lieder et al. (2017).6 The result reported in Fig. 2(a) strongly
suggests that this effect can be accounted for by a purely
metacognitively-rational model together with a utility func-
tion fully consistent with prospect theory (Tversky & Kah-
neman, 1992), without necessarily having to invoke a noisy
utility function (see Lieder et al., 2017, Appendix C).

4.2 Fourfold Pattern of Risk Preferences in
Outcome Magnitude

Past work in behavioral economics has documented another
curious inconsistency in human decision making under risk:
the fourfold pattern of risk preferences in outcome magnitude
(Markovitz, 1952; Hershey & Schoemaker, 1980; Scholten &
Read, 2014). Concretely, in choosing between a sure thing
and a low-probability risky gamble people demonstrate the
following behavioral pattern: In moderate-to-large outcomes,
people are risk-averse for gains and risk-seeking for losses.
This pattern reverses when outcomes are small, with people
being risk-seeking for gains and risk-averse for losses. For
example, people would rather choose a sure 1 million dollar
option rather than a (low-probability) risky gamble yielding
$10 million dollars with probability 0.1 and nothing other-
wise (Hershey & Schoemaker, 1980). When framed in the
context of losses, people prefer a risky gamble yielding $10
million dollar loss with probability 0.1 and nothing otherwise,
over a sure loss of $1 million dollars (Markowitz, 1952).

Prospect theory (Kahneman & Tversky, 1979; Tversky
& Kahneman, 1992), in its original form, cannot account

6Specifically, Lieder et al. (2017) adopt the noisy utility function
u(o) = o

omax−omin
+ ε, where ε is an additive Gaussian noise, i.e., ε∼

N(0,σ2).
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(a) (b)

Figure 4: Simulating both the fourfold pattern of risk preferences in outcome probability and in outcome magnitude, with few samples
(s = 2) and the normalized logarithmic utility function in (10) with α = 0.032 and β = 0.0031. (a) Our model can simultaneously account for
both effects: (Top-Right) Moving from left to right along the x-axis within the boxed region clearly shows the risk preference reversal from
risk-seeking to risk-aversion (in losses), back to risk-seeking and finally to risk-aversion (in gains). (Bottom-Right) The fourfold pattern of
risk preferences in outcome probability. (b) Lieder et al.’s (2014, 2017) cognitively-rational model prediction under the same setting as (a).

for the fourfold of risk preferences in outcome magnitude
(Scholten & Read, 2014). However, Scholten and Read
(2014) show that, armed with a particular choice of util-
ity function, prospect theory can accommodate this effect.
Concretely, they show that prospect theory can best account
for this effect by adopting the normalized logarithmic utility
function (Rachlin 1992; Scholten & Read, 2010; Kirby, 2011;
Kontek, 2011):

unlog(o) =


1
α

log(1+α×o) if o≥ 0,

−λ

β
log(1−β×o) if o < 0,

(10)

where α,β ∈ R>0, λ≥ 1 are free parameters.
Using empirical data, Scholten and Read (2014) found the

maximum-likelihood estimates of α and β to be 0.032 and
0.0031, respectively (see Scholten and Read, 2014, Table 4).
Adopting the normalized logarithmic utility function in (10)
with λ = 1,α = 0.032,β = 0.0031, we show that our Sample-
based Expected Utility model can simultaneously account for
both the fourfold pattern of risk preferences in outcome prob-
ability (Tversky & Kahneman, 1992) and in outcome magni-
tude (Markovitz, 1952); see Fig. 4(a). However, Lieder et al.’s
(2014, 2017) cognitively-rational model appears to be unable
to account for these effects under the same setting. Again, our
simulations suggest this apparent failure holds for other val-
ues of s. These findings indicate that the fourfold pattern of
risk preferences in outcome magnitude could stem from the
optimization of a boundedly-rational agent’s decision strat-
egy at the metacognitive level, as suggested by (6).

5 Sensitivity Analysis
As discussed earlier, a metacognitively-rational agent opti-
mizes their decision strategy (in our case, their importance
distribution for mental simulations) according to time avail-
ability. This requires the agent to have a good estimate of the
number of samples s they will likely draw within the given
time frame, using which they can appropriately select their
importance distribution q∗meta. However, a crucial question

immediately presents itself: What happens if the agent is in-
accurate at approximating the number of samples they get to
draw before making their decision? After all, it seems plausi-
ble to assume that the agent would only have a rough estimate
of the parameter s. Thus, it is very likely that there would be
a mismatch between the number of samples the agent thinks
they can draw, and the actual number of samples they ulti-
mately draw. Our model nicely allows for a quantitative in-
vestigation of the effects of such a mismatch. The parameter
s in (6) indicates the the number of samples the agent thinks
they can draw, whereas the parameter s in (3) reflects the the
number of samples the agent actually draws before making
a decision. It is worth noting that the cognitively-rational
model by Lieder et al. (2014, 2017) does not permit the in-
vestigation of the possible mismatch alluded to above, as the
parameter s does not feature in Lieder et al.’s importance dis-
tribution (Eq. (1)).

Intriguingly, our model demonstrates a striking insensitiv-
ity to such mismatches: Even if the the number of sample the
agent thinks they can draw is unimaginably greater (to be pre-
cise, 108 times greater) than the the number of samples they
actually draw before making their decision, the agent should
still show the fourfold patterns. Figures are omitted due to
lack of space.

6 General Discussion
People overestimate the probability of extreme events, and
show the fourfold pattern of risk preferences in outcome
probability (Tversky & Kahneman, 1992) and in outcome
magnitude (Markovitz, 1952) in decision-making under risk;
these effects are generally taken as evidence against hu-
man rationality. In this work, we presented the first
metacognitively-rational process model which can account
for the aforementioned effects, indicating that these appar-
ent biases may not be signs of human irrationality after all,
but the result of a boundedly-rational decision-maker opti-
mizing their decision strategy (in our case, their importance
sampling distribution for performing mental simulations) in
accord with time availability. In fact, it can be shown that the
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metacognitively-rational importance distribution q∗meta in (6)
allows the decision-maker to ensure an upper-bound on the
MSE of their estimator for the expected value in (2) using
minimal number of samples, thereby demonstrating strong
signs of economy (rational minimalist program, Nobande-
gani, 2017). Furthermore, our model is unimaginably robust
to inaccurate estimations of its focal parameter s, position-
ing it as the first rational process model we know of which
scores near-perfectly in optimality, economical use of lim-
ited cognitive resources, and robustness, all at the same time.
Intriguingly, this aspect of our model, together with the fact
that Eq. (3) in conjunction with q∗meta can be used to decide
between an arbitrary number of actions a, makes our model
also very appealing to the artificial intelligence community.

The metacognitively-rational process model presented in
this work and Lieder et al.’s (2014, 2017) cognitively-rational
process model seem to suggest that a (boundedly) rational-
ist approach to understanding human decision-making at the
algorithmic level might be a fruitful endeavor. In fact, the
influential Rescorla-Wagner model (1972) and its extension
temporal-difference learning model (Sutton & Barto, 1987;
Sutton & Barto, 1998) can be given solid rational grounds
based on linear-Gaussian generative models and the Kalman
filtering paradigm, a rational scheme in signal detection the-
ory (Kalman, 1960).

Our model also makes a counterintuitive (normative) pre-
diction, which, if confirmed, would have surprising implica-
tions for human decision-making under risk: In choosing be-
tween a lottery (o dollars with probability p) and its expected
value (p.o), people should qualitatively behave the same un-
der the following two conditions: (i) making a decision based
on a mere single sample (i.e., under extremely high time pres-
sure) and (ii) making a decision based on a great many sam-
ples (i.e., after a along deliberation time). Note that, given
the normative status of our model, this is exactly the behav-
ior that a boundedly-rational agent should manifest, a finding
which would be of great interest for the artificial intelligence
community. If confirmed, this prediction seems to suggest an
intriguing possibility for human decision-making under risk:
People’s performance after long deliberation time is qualita-
tively similar to their performance under extremely high time
pressure (i.e., s = 1). This clearly serves as a motivation for
avoiding over-thinking.

For their cognitively-rational process model, Lieder et al.
(2017) proposed a neurally-plausible learning mechanism , a
simple modifications of which permits our metacognitively-
rational to be learned in a neurally-plausible manner as well.
Lieder et al. (2017) showed that their model can account
for an impressively wide range of cognitive biases in deci-
sions from experience, decisions from description, and mem-
ory recall. Future work should investigate how well our
metacognitively-rational model can account for those biases.
The fact that our model subsumes Lieder et al.’s (2014, 2017)
model (see Proposition 1), greatly elevates the possibility of
our model capturing those effects as well.

To our knowledge, our Sample-based Expected Utility
model is the first metacognitive, resource-rational process
model of cognitive biases. In that light, our work suggests
perhaps those cognitive biases that do not easily lend them-
selves to cognitive-level accounts, might be better suited to
higher-level explanations (e.g., the metacognitive-level). We
hope to have shed some light on possible rational grounds of
human decision-making.
Acknowledgments: We would like to thank Falk Lieder for fruit-
ful discussions. This works is supported by an operating grant to
TRS from NSERC.

References
Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an engine of physical

scene understanding. Proceedings of the National Academy of Sciences, 110(45), 18327–18332.
Bonawitz, E., Denison, S., Griffiths, T. L., & Gopnik, A. (2014). Probabilistic models, learning

algorithms, and response variability: sampling in cognitive development. Trends in cognitive
sciences, 18(10), 497–500.

Cruciani, F., Berardi, A., Cabib, S., & Conversi, D. (2011). Positive and negative emotional arousal
increases duration of memory traces: common and independent mechanisms. Frontiers in behav-
ioral neuroscience, 5, 86.

Denison, S., Bonawitz, E., Gopnik, A., & Griffiths, T. L. (2013). Rational variability in childrens
causal inferences: The sampling hypothesis. Cognition, 126(2), 285–300.

Fiser, J., Berkes, P., Orbán, G., & Lengyel, M. (2010). Statistically optimal perception and learning:
from behavior to neural representations. Trends in cognitive sciences, 14(3), 119–130.

Gershman, S. J., Horvitz, E. J., & Tenenbaum, J. B. (2015). Computational rationality: A converging
paradigm for intelligence in brains, minds, and machines. Science, 349(6245), 273–278.

Gershman, S. J., Vul, E., & Tenenbaum, J. B. (2012). Multistability and perceptual inference. Neural
computation, 24(1), 1–24.

Geweke, J. (1989). Bayesian inference in econometric models using monte carlo integration. Econo-
metrica: Journal of the Econometric Society, 1317–1339.

Griffiths, T. L., & Tenenbaum, J. B. (2006). Optimal predictions in everyday cognition. Psychological
science, 17(9), 767–773.

Griffiths, T. L., Vul, E., & Sanborn, A. N. (2012). Bridging levels of analysis for probabilistic models
of cognition. Current Directions in Psychological Science, 21(4), 263–268.

Hammersley, J., & Handscomb, D. (1964). Monte carlo methods. London: Methuen & Co Ltd.
Hershey, J. C., & Schoemaker, P. J. (1980). Prospect theory’s reflection hypothesis: A critical exami-

nation. Organizational Behavior and Human Performance, 25(3), 395–418.
Hertwig, R., & Pleskac, T. J. (2010). Decisions from experience: Why small samples? Cognition,

115(2), 225–237.
Kahneman, D., & Tversky, A. (1972). Subjective probability: A judgment of representativeness.

Cognitive psychology, 3(3), 430–454.
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of basic

Engineering, 82(1), 35–45.
Kirby, K. N. (2011). An empirical assessment of the form of utility functions. Journal of Experimental

Psychology: Learning, Memory, and Cognition, 37(2), 461.
Kontek, K. (2011). On mental transformations. Journal of Neuroscience, Psychology, and Economics,

4(4), 235.
Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that

learn and think like people. Behavioral and Brain Sciences, 40.
Lichtenstein, S., Slovic, P., Fischhoff, B., Layman, M., & Combs, B. (1978). Judged frequency of

lethal events. Journal of experimental psychology: Human learning and memory, 4(6), 551.
Lieder, F., Griffiths, T. L., & Hsu, M. (2017). Overrepresentation of extreme events in decision making

reflects rational use of cognitive resources. Psychological Review.
Lieder, F., Hsu, M., & Griffiths, T. L. (2014). The high availability of extreme events serves resource-

rational decision-making. In Proceedings of the annual meeting of the cognitive science society
(Vol. 36).

Markowitz, H. (1952). The utility of wealth. Journal of political Economy, 60(2), 151–158.
Maule, A. J., & Svenson, O. (1993). Theoretical and empirical approaches to behavioral decision

making and their relation to time constraints. In Time pressure and stress in human judgment and
decision making (pp. 3–25). Springer.

Nobandegani, A. S. (2017). The Minimalist Mind: On Mininality in Learning, Reasoning, Action, &
Imagination. McGill University, PhD Dissertation.

Poor, H. V. (2013). An Introduction to Signal Detection and Estimation. Springer Science & Business
Media.

Rachlin, H. (1992). Diminishing marginal value as delay discounting. Journal of the Experimental
Analysis of Behavior, 57(3), 407–415.

Rescorla, R. A., Wagner, A. R., et al. (1972). A theory of pavlovian conditioning: Variations in the
effectiveness of reinforcement and nonreinforcement. Classical conditioning II: Current research
and theory, 2, 64–99.

Rothman, A. J., Klein, W. M., & Weinstein, N. D. (1996). Absolute and relative biases in estimations
of personal risk. Journal of Applied Social Psychology, 26(14), 1213–1236.

Scholten, M., & Read, D. (2010). The psychology of intertemporal tradeoffs. Psychological review,
117(3), 925.

Scholten, M., & Read, D. (2014). Prospect theory and the forgotten fourfold pattern of risk preferences.
Journal of Risk and Uncertainty, 48(1), 67–83.

Shi, L., & Griffiths, T. L. (2009). Neural implementation of hierarchical bayesian inference by
importance sampling. In Advances in neural information processing systems (pp. 1669–1677).

Shi, L., Griffiths, T. L., Feldman, N. H., & Sanborn, A. N. (2010). Exemplar models as a mechanism
for performing bayesian inference. Psychonomic Bulletin & Review, 17(4), 443–464.

Sunstein, C. R., & Zeckhauser, R. (2011). Overreaction to fearsome risks. Environmental and Re-
source Economics, 48(3), 435–449.

Sutton, R. S., & Barto, A. G. (1987). A temporal-difference model of classical conditioning. In
Proceedings of the ninth annual conference of the cognitive science society (pp. 355–378).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1) (No. 1). MIT
press Cambridge.

Svenson, O. (1993). Time pressure and stress in human judgment and decision making. Springer
Science & Business Media.

Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of
uncertainty. Journal of Risk and uncertainty, 5(4), 297–323.

von Von Neumann, J., & Morgenstern, O. (1955). The theory of games and economic behavior.
Princeton University Press.

Vul, E., Goodman, N., Griffiths, T. L., & Tenenbaum, J. B. (2014). One and done? optimal decisions
from very few samples. Cognitive science, 38(4), 599–637.

2399




