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Abstract

The pseudopotential (PP) approximation is one
of the most common techniques in computa-
tional chemistry. Despite its long history, the
development of custom PPs has not tracked
with the explosion of density functional ap-
proximations (DFAs). As a result, use of PPs
with exchange/correlation models for which
they were not developed is widespread, though
this practice is known to be theoretically un-
sound. The extent of PP inconsistency errors
(PPIEs) associated with this practice has not
been systematically explored across the types
of energy differences commonly evaluated in
chemical applications. We evaluate PPIEs for
a number of PPs and DFAs across 196 chemi-
cally relevant systems of both transition metal
and main group elements as represented by
the W4-11, TMC34, and S22 data sets. Near
the complete basis set limit, these PPs are

found to cleanly approach all electron (AE) re-
sults for non-covalent interactions, but intro-
duce root-mean-squared errors (RMSEs) up-
wards of 15 kcal mol−1 to predictions of covalent
bond energies for a number of popular DFAs.
We achieve significant improvements through
the use of empirical atom- and DFA-specific PP
corrections, indicating considerable systematic-
ity of PPIEs. The results of this work have im-
plications for chemical modeling in both molec-
ular contexts as well as for DFA design, which
we discuss.
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1 Introduction

Since its inception nearly a century ago,1 the
pseudopotential (PP) approximation has been
a widespread approach for enabling molecular
and particularly condensed matter electronic
structure calculations. While PPs initially
gained traction for use in solid state physics,2–4

their use in chemical applications was not long
to follow.5 In these latter applications, PPs
have come to enjoy wide spread use, and they
are routine for efficient inclusion of electronic
relativistic effects6 and modeling large, complex
systems.7–10 PP development has paced along-
side broadening applications, resulting in many
options for computational chemists.6,9,11–15

Strictly speaking, PPs are developed for use
in conjunction with particular methods of elec-
tron exchange and correlation.16–18 For in-
stance, a PBE PP is designed to be used
in PBE computations and may not perform
well in other contexts.10,19,20 Nevertheless, it is
common to report results obtained with mis-
matched methods and PPs. While these for-
mally inconsistent protocols are relatively be-
nign in some cases,9,21–23 they are not theo-
retically sound and can lead to significant er-
rors.19,20,23–31 For instance, previous work from
some of us identified PP inconsistency errors as
a significant obstacle to accurate modeling of
catalysis systems.20 Others have found inconsis-
tent PP methods result in significant errors in
band gap determinations for solids,18,19,29 exci-
tation and bond energies in molecules,19,20,28,31

and other physical parameters.31

The importance of PP consistency has been
recognized in the solid state community in
recent years. Indeed, the PseudoDojo
project provides tools to generate plane wave-
compatible PPs for most local density approxi-
mation (LDA) and generalized gradient approx-
imation (GGA) density functionals.32 While
development of this project is ongoing, it cur-
rently does not provide support for all types
of density functionals and furthermore is not
available for codes that employ Gaussian basis
sets. Thus, given the large number of available
density functional approximations (DFAs) and
the relatively small number of optimized PPs,

many computations today must necessarily em-
ploy PPs inconsistently. This is particularly
true in molecular contexts, where the role of
the resulting errors is not well characterized.

Herein, we evaluate the performance of the
PP approximation and PP inconsistency errors
across a variety of commonly used density func-
tional approximations (DFAs). In this work,
we consider performance for most of the major
classes of PP in routine use for chemical appli-
cations, as described in Section 1.1. We present
all of our computational procedures, including
details of benchmark datasets, calculation pa-
rameters, and the use of relativistic corrections,
in Section 2. Results across all electronic struc-
ture methods, PPs, and datasets are discussed
in Section 3, and recommendations for future
practice in Section 4.

1.1 Theory and structure of
pseudopotentials

At its core, the PP approximation rests on
the assumption that only electrons in some de-
fined valence space are relevant to an applica-
tion of interest.10 This can be justified by the
relatively small polarizability of core electrons,
meaning that their orbitals do not vary much
in typical chemical processes (of course excep-
tions exist, such as core excitations33). Ignoring
such exceptions, core electrons can be removed
from the model, replacing the exact Hamilto-
nian with a simplified operator that possesses
eigenvalues and eigenvectors similar to the ex-
act system, reducing computational complexity
in a number of ways.9 First, by definition, PPs
reduce the number of electrons in a system, de-
creasing its size. As a corollary of eliminating
the core electrons, overall pseudo wave func-
tions can be made smoother,10,19 and therefore
smaller basis sets may be adequate,15 which
provides clear computational benefits, partic-
ularly in plane wave calculations.

Though separation of core and valence elec-
trons is, strictly speaking, unphysical (electrons
are indistinguishable), we can write a model
Hamiltonian (Ĥv) that describes the physics of
this contrived system. Specifically, for Nv va-
lence electrons (coordinates i, j), of an atom a,
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we have

Ĥv = −1

2

Nv∑
i

∇2
i +

Nv∑
i<j

1

rij
+

Nv∑
i

V PP
a (ri), (1)

where V PP
a is the atomic pseudpotential.9 This

expression can easily be generalized to a molec-
ular context through inclusion of additional
cores and a classical core-core repulsion term.
We will not do this here, and we will drop the
a subscript in the following equations. While
a number of different formalisms for V PP ex-
ist, they generally contain both local (Vloc) and
nonlocal (Vnl) components, such that

V PP = Vloc + Vnl. (2)

The first term in the right-hand side of Eq. 2,
the local potential (Vloc), corresponds to the
long-range Coulomb potential of the eliminated
core electrons (and the nucleus they screen).
The most straightforward approach for Vloc is
a perfectly screened Coulomb potential,

Vloc(r) = −Zion

r
(3)

where Zion is obtained as the nuclear charge
less the charge of the electrons eliminated by
the PP. To improve numerical stability, partic-
ularly in plane wave codes, Gaussian smearing
is often applied to the nuclear charge, resulting
in a modified local potential

Vloc(r) = −Zion
erf(r/σ)

r
, (4)

where σ specifies the width of the Gaussian
charge distribution.10 Other terms may be
added to Vloc as well, depending on the formal-
ism.14,15

While Vloc captures important aspects of the
physics of the eliminated core, it is inadequate
to obtain accurate PP computations.19 Given
the nature of electron exchange, it is unsurpris-
ing the inclusion of nonlocal terms improves PP
performance significantly,9 which we represent
as Vnl. A number of different forms for Vnl exist,
but they generally decompose the V PP in terms
of angular-momentum eigenstates (the spheri-

cal harmonics, Y`,m) to account for the hierar-
chy of `-shells within the core and to incorpo-
rate `-dependent exchange effects.34 Hence, Vnl
takes the form of a projector along angular mo-
mentum eigenstates scaled by an `-dependent
potential, V`, viz.

Vnl =
`max−1∑

`

V`P` =
`max−1∑

`

∑̀
m=−`

V` |`m〉 〈`m| .

(5)
Here, `max is the largest angular momentum
represented in the (removed) core orbitals. All
valence pseudo orbitals with ` ≥ `max− 1 expe-
rience the same potential V`max that is usually
of a similar form to V` for ` < `max − 1.35 The
overall potential Vnl can then be written6

Vnl = V`max −
`max−1∑

`

(V` − V`max)P`, (6)

where the exact form of V` changes with the PP.
This framework can be expanded to include

the relativistic effects of core electrons, where
they are most important.6,36,37 Because spin–
orbit (SO) coupling lifts addition degeneracies
in the angular momentum eigenstates, the pro-
jection operators become

P`j =
∑
m

|j`m〉 〈j`m| , (7)

and Eq. 6 contains an additional sum over total
angular momentum quantum number j, afford-
ing

V rel
nl = V`max,jmax−

`max−1∑
`

`+ 1
2∑

j=|`− 1
2
|

(V`j − V`max,jmax)P`j.

(8)
The effects of SO coupling may be treated

in an average way to recover a relativistic PP
without explicit dependence on the j quantum
number for each `-subspace,38,39 given by

V avg
` (r, r′) =

1

2`+ 1

[
`V`−1/2(r, r

′) + (`+ 1)V`+1/2(r, r
′)
]
.

(9)
The form for the SO term can then be derived40

as the difference between the full relativistic PP
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and V avg
` . Properties of the projection opera-

tors and the angular momentum eigenstates can
be exploited to obtain a simplified expression

∆V SO
` =

`max−1∑
`=1

∆V rel
`

2`+ 1

[
`P`,`+1/2 − (`+ 1)P`,|`−1/2|

]
,

(10)
where the difference potential ∆V rel

` corre-
sponds to the relativistic potential between
neighboring Y`,m states, i.e.

∆V rel
` = V rel

`,`+1/2 − V rel
`,|`−1/2|. (11)

Alternatively, the SO difference potential may
be written in a form that is explicit in the SO
interaction,

∆V SO
` =

`max−1∑
`=1

2∆V rel
`

2`+ 1
P`

(
~̀ · ~s

)
P`, (12)

though this form was developed primarily for
use with configuration interaction (CI) calcula-
tions that do not concern the present work.41

Though discussion of common PPs follows
shortly, inclusion of one example here illustrates
how PPs are ultimately fit to all-electron re-
sults. Perhaps the most conceptually straight-
forward definition, expansion of each semilocal
potential V` in a set, {k}, of Gaussian-weighted
polynomials,35,42,43 yielding

V`(ri) =
∑
k

B`kr
n`k
i e−β`kr

2
i , (13)

where B`k, n`k, and β`k are adjustable parame-
ters, is common.6,9 Such an expansion may also
be applied to the relativistic case to introduce
additional parameters C`jk, n`jk, and γ`jk in a
similar expansion9

V`(ri) =
∑
k

C`jkr
n`jk

i e−γ`jkr
2
i . (14)

Where applicable, parameterization of the var-
ious coefficients in Equations 13 and 14 (and
other expressions for different formalisms) re-
sults in PPs that are explicitly fit to results of
a particular exchange/correlation method.

1.1.1 Desirable properties of pseudopo-
tentials

The ideal PP will reproduce desirable physi-
cal properties with high fidelity while lower-
ing the computational cost relative to an all-
electron procedure. In order to achieve this,
many have advocated for PPs that satisfy a va-
riety of (sometimes competing) theoretical cri-
teria.44–48

Norm conservation. First, many PPs
are designed to be norm-conserving.44 This
amounts to requiring charge densities for real
and pseudo wave functions agree outside some
core radius rc. Norm-conservation is formally
achieved by satisfying the following equa-
tions:19,44

ψ̃
(x)
i (r) = ψ

(x)
i (r) x = 0, 1, 2; r ≥ rc (15)

εPP = εAE (16)〈
ψ̃i

∣∣∣ψ̃i〉 = 〈ψi|ψi〉 = 1 (17)

∂

∂ε

(
d ln ψ̃i
dr

)∣∣∣∣∣
R

=
∂

∂ε

(
d lnψi
dr

)∣∣∣∣
R

R ≥ rc,

(18)

where ψi is an all-electron orbital, ψ̃i a pseu-
doorbital, (x) superscripts refer to xth deriva-
tives with respect to r, and ε the valence energy
eigenvalues. These criteria have been found to
result in better-conditioned PPs that perform
evenly across chemical environments for DFT
computations.16,44 Strict adherence to norm-
conservation for HF PPs results in nondecaying
tails, and localization schemes are necessary to
obtain accurate and well-defined results.49,50

Shape consistency. Early work expanded
the pseudoorbital ψ̃i as a linear combination of
(AE) valence orbital ψvi and core orbitals ψcj ,
viz.

ψ̃i = Cviψvi +
Nc∑
j

Ccjψcj , (19)

where Cvi and Ccj are expansion coefficients
for virtual and core orbitals, respectively.3,51

This formalism spuriously stores valence elec-
tron density in the core region,11 resulting in
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bond lengths that are too short and potential
wells that are too deep.51 Christiansen, et al.
proposed a new definition

ψ̃i = ψvi + fi, (20)

where fi is zero for r ≥ rc and is chosen to
cancel oscillations in ψi for r < rc.

11 This al-
ternate definition corrected the aforementioned
core/valence problems and improved PP per-
formance significantly (vide infra). Subsequent
shape-consistent PPs were developed to im-
prove computational efficiency.52

Energy consistency. Instead of fitting to or-
bital properties, some have opted to param-
eterize PPs to achieve agreement with ener-
getic properties directly,53 generally emphasiz-
ing that this approach focuses exclusively on
observables.54 Despite not being optimized for
this outcome, energy consistent PPs are guar-
anteed to satisfy Eq. 18 and thereby achieve
some degree of shape consistency.6,55 Energy
consistent PPs are usually fit to a number
of atomic reference states, and this generally
results in strong performance across distinct
bonding environments.6

1.1.2 Common classes of pseudopoten-
tials

Overviews for each of the types of PP used
in this study are provided in the following
paragraphs, emphasizing PP structure, devel-
opment, and performance. Various review arti-
cles provided more detailed treatments for the
interested reader.4,6

CRENB pseudopotentials. The Christiansen–
Ross–Ermler–Nash–Bursten (CRENB) pseu-
dopotentials were the first shape-consistent
Hartree–Fock pseudopotentials, designed to
ensure radial wave functions of main group
pseudoorbitals closely mirrored all-electron or-
bitals in the valence space.11 The form of these
potentials is determined by inverting the radial
Schrödinger equation and fitting the core region
of the pseudoorbital as a polynomial expansion,
with the requirement that the magnitude and

first three derivatives of the expansion smoothly
transition to the exact valence orbital outside
the core. This procedure brought significant
improvements for PP predictions of geometric
properties and dissociation energies for F2, Cl2,
and LiCl dimers, where earlier PPs resulted in
relative errors of up to 70 %.51,56 These PPs
were subsequently extended to include rela-
tivistic effects and all elements of the periodic
table through Rn, including both large and
small core variants (CRENBL and CRENBS,
respectively).57–60 Recent work to restructure
the radial form of these potentials has resulted
in significant improvements in computational
cost without affecting numerical accuracy.61

Stuttgart pseudopotentials. In contrast,
energy consistent Stuttgart relativistic PPs are
designed only to reproduce observable quanti-
ties like atomic excitation and ionization en-
ergies.54,62 Motivation for this approach came
from earlier work showing superb agreement
between PP and AE results for dissociation
energies for a variety of atoms, ions, and
dimers.12,53,63–67 Furthermore, relaxation of the
space consistency constraint accommodates a
simpler PP with form, viz.

V PP
i = −Zion

ri
+

`max∑
`=0

∑
k

A`k exp
(
−α`kr2i

)
P`,

(21)
where P` is a projector onto the subspace with
angular momentum `, and A`k and α`k are
parameters that are adjusted to minimize the
least-squares error between PP results and all-
electron, relativistic HF computations.53 Gen-
erally speaking, fewer Gaussian functions are
necessary in SRXC potentials (i.e. k is small),
resulting in more efficient implementations.61,62

Here too, both small core and large core (SRSC
and SRLC) formulations exist for many ele-
ments. Furthermore, agreement between AE
and SRXC radial wave functions in the valence
region can be quite good, despite the fact that
these PPs are not optimized for this outcome.54

Karlsruhe pseudopotentials. The popular
Karlsruhe basis sets68,69 were developed for use
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with previously published small-core Stuttgart
PPs.12,70–73 Following the convention of the ba-
sis set labeling, this PP set is referred to as def2-
ECP. Unlike most PP schemes, core electrons
are only removed for the fourth and fifth row el-
ements (Rb-Rd); all-electron computations are
used for all other elements. It is interesting to
note that basis set convergence for the Karl-
sruhe series is more rapid for DFT than wave
function methods, even though these were pa-
rameterized with reference to all-electron HF
computations.69,73

Dual-space separable pseudopotentials.
In plane wave contexts, it is advantageous to
develop PPs with optimal behavior in both real
and reciprocal space. This provided the impe-
tus for Goedecker–Teter–Hutter (GTH) PPs.14

The GTH local potential is obtained by smear-
ing the screened nuclear charge (Eq. 4) and
adding this to a Gaussian-weighted polynomial,
and the non-local potential is given by

Vnl(r) =
∑
`,m,i,j

Y`,m(r̂)p`,i(r)hi,jp`,j(r
′)Y`,m(r̂′),

(22)
where Y`,m are the spherical harmonics, p`,i the
Gaussian radial projector for angular momen-
tum `, and hi,j the expansion coefficients for the
projectors. Though somewhat obscured by the
formalism, these potentials and their Fourier
transforms both consist of Gaussian-weighted
polynomials, which is advantageous for compu-
tational and physical reasons.14 The parame-
ters in GTH PPs are least-squares optimized
to maximize agreement with all-electron charge
density and select (occupied and virtual) orbital
energy eigenvalues, and this was completed
separately for LDA and BLYP functionals in
the original publication. Inclusion of relativis-
tic effects results in Hartwigsen–Goedecker–
Hutter (HGH) potentials, which have been op-
timized with the LDA functional for all ele-
ments through Rn.15 Additional parameteriza-
tions have been reported for BLYP,17 BP,17

PBE,17,74,75 B97M-rV,20 and ωB97X-V20 den-
sity functionals.

Projector augmented waves. The projec-
tor augmented wave (PAW) approach13 is con-
ceptually similar to the PPs discussed above, in
that it creates a partition between core/valence
electrons. Here, the pseudo total wave function
ψ̃ is related to the AE wave function ψ through
a linear transformation, such that

|ψ〉 =
∣∣∣ψ̃〉+

∑
i

(
|φi〉 −

∣∣∣φ̃i〉)〈p̃i∣∣∣ψ̃〉 , (23)

where φi and φ̃i are the partial waves and
pseudo partial waves, respectively, and p̃i is a
projector onto the space of φ̃i.

13,76 As in the
case of PPs described above, the index i spec-
ifies an atomic center and angular momentum
quantum numbers (`,m). The basis of φ̃i func-
tions is complete, such that the expansion in
Eq. 23 is exact in the infinite limit.13 In prac-
tice, only one or two partial waves φ̃i are used
for each set of angular momentum quantum
numbers.10 These projectors are localized to a
pre-defined core region,13 and the size of this
region impacts the accuracy of a computation
considerable.10 As above, the partial wave ex-
pansion is fit to results from a particular AE
method, and a number of parameterizations
have been reported.77,78

1.2 Pseudopotential (in)consistency

Regardless of the details in form, each of the
preceding PPs undergo some fit procedure to
achieve agreement with a particular set of all-
electron computations. As a result, a PP com-
putation is only theoretically sound if it em-
ploys the same methods of electron exchange
and correlation as were used to paramaterize
the PP.19,21 Indeed, much of the groundbreak-
ing work on PPs for chemical applications antic-
ipated reparameterization with more accurate
correlation treatments in the future.14,16,24 This
has not, however, always been the case, and er-
rors associated with “inconsistent” use of PPs
are well-documented.

It is somewhat common to acknowledge the
lack of theoretical footing for inconsistent PP
use, but advocate this practice anyway on the
basis of empirical results.9,21–23 These stud-
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ies generally compare geometries and energetic
properties for a few (<10) small systems to
all-electron results, and conclude that errors
incurred by PPs are smaller than those due
to other approximations, like basis set trunca-
tion and inexact correlation treatments. To be
fair, there are certainly cases where inconsis-
tency errors are quite small. For instance, Ref.
23 provides mean absolute errors (MAEs) due
to use of HF potentials in DFT computations
across six small transition metal complexes;
these are 0.4 and 0.6 kcal mol−1 for S-VWN and
B-LYP density functionals, respectively. How-
ever, this same paper reports errors of −7.4 and
−13.2 kcal mol−1 for binding energies of TiF4

and Ni(CO)4 when the S-VWN potential is used
with B-LYP and presents these results as toler-
able. Similar patterns are present in the other
cited sources, where good (even great) perfor-
mance for a small number of systems is extrap-
olated to justify inconsistent PP use broadly,
despite the fact that performance is not uni-
form.

Indeed, a number of other studies have
reached the opposite conclusion, finding PP
reparameterization is necessary to achieve high
fidelity to AE computations.15,18–20,26 To take
a recent instance, use of a PBE0 potential in
lieu of a PBE one reduced mean absolute rel-
ative PP errors from 8 to 4.5 % in comparison
to all-electron results.19 This finding is consis-
tent with other work that indicates methods
that employ exact exchange (HF, hybrid DFT)
require PPs that incorporate these effects.18,26

Likewise, results from Ref. 28 indicate that
use of the SRSC potential (fit to HF results54)
in DFT computations results in inconsistency
MAEs ranging from about 1–15 kcal mol−1 for
lanthanide complexes, depending on the den-
sity functional. Additionally, previous work
from some of us found that use of the GTH-
PBE14,17 in B97M-rV and ωB97X-V compu-
tations incurred mean absolute PP errors of
5.1 and 4.6 kcal mol−1 for binding energies of
the first-row transition metal monocarbonyls.20

Parameterization of new GTH potentials for
these functionals reduced these MAEs to 3.5
and 2.4 kcal mol−1, respectively.

Despite the long-time recognition of theoreti-

cal and practical limitations of inconsistent PP
use, systematic exploration of this issue is all-
but-absent from the literature. Commendable
work from Borlido, et al. examined inconsis-
tent use of PAW potentials for determination
of band gaps for 473 materials with a vari-
ety of common density functionals.29 These re-
searchers found that inconsistent use of PPs
increased errors at least three-fold relative to
consistent computations, but that these gener-
ally incurred MAEs of around 0.1 eV, which are
argued to be tolerable in solid state contexts.
Even so, errors for individual systems yawned
to multiple eV in some instances, and problem-
atic cases could not be identified in any pre-
dictable way.29

Studies of similar scope for PP consistency er-
rors in properties of chemical interest have not
been reported, even as use of PPs in these con-
texts expand, particularly in ab initio molec-
ular dynamics where PPs may be applied to
all atoms7,8,79,80 As discussed above, select re-
sults in this domain are mixed, making broad
recommendations for practice difficult. In the
present work, we address this by evaluating PP
inconsistency errors incurred for HF and var-
ious forms of the density functional approxi-
mation (DFA), including local density approx-
imations, generalized gradient approximations
(GGAs), meta-GGAs, and hybrids. We evalu-
ate these errors for fit-CRENBL, SRLC, def2-
ECP, GTH-PBE, and PAW-PBE potentials
across a diverse set of 196 benchmark energies,
including atomization energies for main group
elements, non-bonded interactions, and both
barrier heights and reaction energies for tran-
sition metal dimers and organometallic com-
plexes. These DFAs, PPs, and data sets are
described in Section 2, and our results are pre-
sented in Section 3.

2 Methods

Pseudopotential (PP) errors, including incon-
sistency errors, were determined in reference to
all-electron results across a variety of exchange
and correlation methods. We report these er-
rors for three diverse benchmark datasets, de-
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Table 1: Core size for each of five pseudopotentials included in this study across all relevant
elements. Highlighted blocks correspond to successive rows of the periodict table.

Elements def2-ECPa fit-CRENBLb SRLCc GTHd PAWe

B–F – [He] [He] [He] [He]
Al–Cl – [Ne] [Ne] [Ne] [Ne]
Sc–V – [Ne] [Ar] [Ne] [Ne]

Cr–Mn – [Ne] [Ar] [Ne] [Ne] + 3s
Fe – [Ne] [Ar] [Ne] [Ar]

Cu–Zn – [Ne] [Ar] [Ar] [Ar]
Y–Mo [Ar] + 3d [Ar] + 3d – [Ar] + 3d [Ar] + 3d
Tc–Rh [Ar] + 3d [Ar] + 3d – [Ar] + 3d [Ar] + 3d + 4s

Pd [Ar] + 3d [Ar] + 3d – [Ar] + 3d [Kr]
Ag–Cd [Ar] + 3d [Ar] + 3d – [Kr] [Kr]
Hf–Ta [Kr] + 4d + 4f [Kr] + 4d + 4f – [Kr] + 4d + 4f [Kr] + 4d + 4f + 5s

W [Kr] + 4d + 4f [Kr] + 4d + 4f – [Kr] + 4d + 4f [Kr] + 4d + 4f
Re–Pt [Kr] + 4d + 4f [Kr] + 4d + 4f – [Kr] + 4d + 4f [Xe] + 4f
Au–Hg [Kr] + 4d + 4f [Kr] + 4d + 4f – [Xe] + 4f [Xe] + 4f
a Ref. 81
b Refs. 57–61
c Ref. 62
d Refs. 14,15
e Ref. 76

scribed in Section 2.1. In order to include a
breadth of the PP classes described above, we
have employed a number of different electronic
structure codes. Essential aspects of each of
these computations can be found in Section 2.2.
For systems involving transition metals, we in-
clude scalar relativistic effects through the ex-
act two-component (X2C) framework,33 which
we briefly describe in Section 2.3.

2.1 Benchmark datasets

Performance was evaluated across a diverse col-
lection of benchmark datasets representing the
broad range of interactions relevant to complex
chemical systems. Non-bonded interactions
were represented by the S22 set of non-covalent
dimers, which include a range of intermolec-
ular forces, including hydrogen bonds.82 The
W4-11 set of 140 total atomization energies for
small first- and second-row molecules and radi-
cals was used to evaluate performance on main
group (MG) thermochemistry.83 Finally, PP
performance for transition metal (TM) chem-
istry was evaluated using the TMC34 set,84

which is comprised of three subsets: (a) the
TMD10 set of first-row TM dimers with MG el-
ements,85 (b) the MOR13 set of metal-organic
reaction energies for TM complexes,86 and (c)
the TMB11 set of TM barrier heights for re-
actions in second- and third-row TM com-
plexes.87–91 Further details about the compo-
sition of each dataset can be found in Section
S3.2.

For all results presented in the main text,
published benchmark geometries were used for
computations. The impact of geometry opti-
mization on benchmark energies is explored for
select systems and methods in Section S2.3,
where it is found to be negligible.

2.2 Computational details

Pseudopotential (PP) errors were evaluated in
comparison to all-electron (AE) computations
across a variety PPs, including def2-ECP,81 fit-
CRENBL,57–61 SRLC,62,92 PAW-PBE,13,76 and
GTH-PBE.14,15,17 Core sizes for each of these
PPs are found in Table 1, and further descrip-
tions in Section 1.1, above. We study the
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Table 2: Basis set and pseudopotential combinations used for various computations in this work.
Citations for each basis set are found in text.

All-Electron S22 W4-11 TMC34
BSIE Ref. def2-QZVPPD def2-QZVPPD def2-QZVPPDa

PP Ref. def2-QZVPPD def2-QZVPPD TZVPPall (+X2C)
Truncated basis def2-TZVPPD def2-TZVPP def2-TZVPP

Pseudopotential S22 W4-11 TMC34
fit-CRENBL def2-QZVPPD def2-QZVPPD def2-TZVPP
SRLC def2-QZVPPD def2-QZVPPD –
GTH-PBE – TZV2P TZV2P
PAW-PBE – 1000 eV 1000 eV
a Results only obtained for the TMD10 subset.

use of these PPs in conjunction with differ-
ent electron exchange and correlation methods,
including Hartree–Fock (HF) theory,93–96 and
five density functional approximations (DFAs):
LDA,97 PBE,98 SCAN,99 B97M-rV,100,101 and
ωB97X-V.102 For computations involving tran-
sition metals, scalar relativistic effects were in-
cluded through the X2C procedure33 (Section
2.3).

Computations for all-electron results as well
as the def2-ECP, fit-CRENBL, and SRLC PPs
were obtained using the Q-Chem computa-
tional chemistry package.103 These computa-
tions employed one of the def2-TZVPP, def2-
TZVPPD, or def2-QZVPPD basis sets,68,69,104

as indicated in Table 2 and the discussion be-
low. For select fit-CRENBL and SRLC compu-
tations, additional results were obtained using
the native basis sets for these potentials,57,62

augmented with polarization functions from
the 6-311(2df,2dp) set.105,106 Unrestricted refer-
ence states were employed, and stability anal-
ysis was used to ensure that minimum energy
states were obtained. Fine (99,590) Lebedev
integration grids were used to evaluate inte-
grals of the exchange-correlation (XC) func-
tional.107,108 Energy convergence thresholds of
at most 1× 10−8 a.u. were used to terminate
self-consistent field (SCF) iterations, though
more stringent convergences of 1× 10−10 a.u.
were obtained in the majority of cases. In
troublesome systems, explicit excitations into
the valence space resulted in lower energy solu-

tions; this procedure was used as necessary to
ensure energy comparisons relied on the same
electronic state.

Results for PBE and B97M-rV computa-
tions with Goedecker–Teter–Hutter (GTH) po-
tentials14,15 optimized for PBE17 and B97M-
rV20 were obtained using the CP2K code,109–111

in combination with the molecular optimized
(MOLOPT) TZV2P basis set.112 Kohn-Sham
orbitals were optimized using the orbital trans-
formation method113 for molecules or using the
traditional diagonalization approach for metal
atoms. Computations were performed using a
box size of 20�A × 20�A × 20�A, and the en-
ergy cutoff was set at 800 Ry for the calcula-
tion of electrostatic energy terms. SCF itera-
tions were taken to be converged when energy
changes were smaller than 1× 10−6 a.u..

Finally, VASP77,114 was used for PAW-PBE
results, obtained with the plane wave (PW) ba-
sis set cutoffs indicated in Table 2. All calcula-
tions were performed at the gamma point with
Gaussian smearing using a width of 0.03 eV.
Calculations were performed with 12 Å of vac-
uum between periodic images. For charged sys-
tems, we include monopole and dipole correc-
tions to the energy to avoid spurious interac-
tion between charged periodic replicas. Non-
spherical contributions to the gradient correc-
tion inside the PAW spheres were included, as
was an additional support grid for the aug-
mentation charges. Symmetry was not used
in any of these computations. The energy

9



convergence criterion was 2.721 14× 10−9 eV
(1× 10−10 a.u.) for SCAN and PBE functionals
and 2.721 14× 10−8 eV (1× 10−9 a.u.) for HF
and B97M-rV functionals, with rare exceptions
for a few systems where convergence proved
challenging. Basis set convergence studies sug-
gest basis set errors are <1 kcal mol−1 for in-
dividual molecules and <0.5 kcal mol−1 for all
reaction energies, with most systems exhibiting
errors lower than those upper bounds.

Throughout this study, PP performance is
evaluated in reference to all-electron basis set
incompleteness errors (BSIEs), as has been sug-
gested by other authors.14 In all cases, ener-
gies obtained with the def2-QZVPPD basis set
were taken as good approximations to the com-
plete basis set (CBS) limit.69,104 In the major-
ity of cases, the BSIE associated with use of the
def2-TZVPP set was determined as sets of this
quality are generally used in production com-
putations.69 The def2-TZVPPD set was used,
however, for computations on the S22 set, as
diffuse functions are known to be important
for accurate modeling of non-covalent interac-
tions.115,116 We do not report BSIEs for the
TMB11 and MOR13 subsets of the TMC34, as
def2-QZVPPD computations for these systems
are intractable.

2.3 Relativistic effects for TMC34
benchmarks

All-electron scalar (i.e. spin-free) relativis-
tic calculations were performed within the ex-
act two-component (X2C) framework.117 The
X2C model transforms the one-electron Hamil-
tonian by effectively incorporating information
from the solutions of the four-component, one-
electron Dirac Hamiltonian.118–120 Our imple-
mentation of X2C has been previously used
to study K-edge core-spectroscopy of third pe-
riod main group elements and first row transi-
tion metals,33 where scalar relativistic effects
are bound to play a major role. A possible
limitation of our relativistic treatment concerns
the handling of two-particle interelectronic in-
teractions. Besides being described by a purely
coulombic potential, these terms are left unal-
tered within the simple X2C formalism. For

core spectroscopy of transition metals, lack of
such effects, known as picture-change effects,119

can lead to large errors in predicting excitation
energy,33 but their effect should be minor for
valence electrons in first row transition metals
and our X2C approach should be adequate for
these systems.121 The same convergence criteria
and DFT quadrature grids used in the PP cal-
culations were employed in the all-electron X2C
counterparts. For the X2C calculations, the de-
contracted x2c-TZVPPall basis set122 was used
for all elements. This basis set was specifically
designed to be consistent with the the def2 fam-
ily of basis sets and provides all-electron sup-
port for heavy elements whose cores are usually
replaced by PPs. Therefore, our all-electron
X2C results allow for a straightforward assess-
ment of PP errors for some transition metal
complexes.

3 Results and Discussion

We assess the performance of PPs across a wide
range of benchmark datasets that encapsulate
the types of interactions relevant to complicated
multiscale modeling problems, as described in
Section 2.1 above. PP errors are highly het-
erogeneous across this wide array of systems,
prohibiting uniform recommendations for the
use of PPs in modeling systems of interest.
Throughout this section, we discuss these er-
rors in reference to the magnitude of basis set
incompleteness errors (BSIEs) for each system
type, which are explored in Section 3.1. We
then present results for systems in order of in-
creasing PP errors in Sections 3.2-3.4. We sum-
marize results for all systems in Section 4, and
conclude with recommendations for future work
and practice in Section 4.

3.1 The scale of basis set incom-
pleteness error

The importance of pseudopotential errors
(PPEs) in a given calculation should be mea-
sured against the scale of other errors in the
methodology. It is commonly argued that
PPEs are smaller than basis set incompleteness
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Figure 1: Basis set incompleteness error (BSIE) for all-electron def2-TZVPP results is within
chemical accuracy for most systems: (a) BSIE relative to interaction energy indicates small errors
across system size and (b) base-ten logarithm of magnitude of BSIE shows most errors are in the
0.1–1 kcal mol−1 range. Chemical accuracy is achieved by points within the gray band in panel
(a) and below the gray line in panel (b). (c) Root-mean-squared BSIE satisfies chemical accuracy
across methods for the S22, W4-11, and TMD10 data sets, except HF for W4-11, where large errors
for FOO and ClOO dominate. Omission of these species lowers HF RMSE to 1.0 kcal mol−1.

errors (BSIEs)14 and/or density functional er-
rors (DFEs),9,14,23 and therefore PPEs may be
safely ignored. Previous studies have bench-
marked DFEs across a range of interactions
(cf. Mardirossian and Head-Gordon123 and ci-
tations therein), and we do not repeat this work
here. We do, however, report BSIEs across the
present data sets and for each of the present
DFAs as a reference point for later discussion
of PP errors in these same systems.

Across all of the present systems, def2-
TZVPP BSIEs are generally within the bounds
of chemical accuracy (<1 kcal mol−1), regard-
less of the density functional and the system
(Figure 1[a]). The logarithm of these BSIEs
(Figure 1[b]) provides a fuller picture of these
data, indicating that the majority of errors fall
within the 0.1–1 kcal mol−1 range, though even
higher accuracy is achieved for many systems.
The slight positive slope of the data in Figure
1(a) indicates that BSIE varies only slowly with
the interaction size, such that chemical accu-
racy in the BSIEs obtains even for systems with
very large transformation energies. The loga-
rithm plot (Figure 1[b]) highlights this struc-
ture even more clearly, as seen in the slope of
the lower edge of accuracy as we vary the sys-

tem size.
Summary statistics for BSIEs in these sys-

tems are also encouraging across each data set,
although as is well known, performance varies
considerably from one type of energy differ-
ence (and thus one kind of data set) to another
(Figure 1[c]). Due to favorable error cancel-
lation, BSIEs are generally small for the non-
bonded interactions in the S22 set, with RMS
errors ≤0.2 kcal mol−1 for all density function-
als. BSIEs are statistically larger for the W4-11
and TMD10 sets, which contain total atomiza-
tion energies for small main group molecules
and first-row transition metal dimers, respec-
tively. Across these results, only HF for the
W4-11 fails to achieve chemical accuracy in the
BSIEs, and poor performance for two species
(FOO and ClOO) dominates this error. Omis-
sion of these entries results in an adjusted RMS
error of 1.0 kcal mol−1, still slightly larger than
BSIEs for the DFAs. In general, HF energies
converge more slowly than DFT ones with the
Karlsruhe basis sets,69,73 so this is unsurprising.

For present purposes, these results define
what we consider a tolerable PP error, i.e. one
that is smaller than the BSIEs in similar sys-
tems. In what follows, we evaluate PP errors
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Figure 2: Pseudopotential errors (kcal mol−1)
for the S22 dataset of intermolecular interac-
tions versus the value of the interaction energy.
The errors are defined as deviations between fit-
CRENBL/def2-QZVPPD PP calculations and
all-electron calculations, for each of the 6 DFAs
listed. Errors for all data points are within
the chemical accuracy threshold of 1 kcal mol−1,
and vary linearly with the size of the interac-
tion. Similar results obtain for the SRLC po-
tential (Figure S1).

for these systems using the BSIE benchmark in
conjunction with reference to previous results
for DFA performance. As seen for the BSIEs,
pseudopotential performance is also expected to
vary depending upon how well errors cancel in
evaluating energy differences. We shall see be-
low that PP errors range from fractions to tens
of kcal mol−1.

3.2 The good: Barrier heights
and non-bonded interactions

The systems in the S22 set were used in or-
der to assess the validity of common pseudopo-
tential approximations in the context of non-
bonded interactions. The benchmarks in this
set correspond to the dimerization energy of or-
ganic monomers, with computed interaction en-
ergies ranging from −0.5–21 kcal mol−1.82 Pseu-

dopotential errors were evaluated relative to all-
electron def2-QZVPPD calculations for the fit-
CRENBL and SRLC potentials with the same
basis set.

As seen in Figure 2, PP errors for fit-
CRENBL are below the limits of chemical ac-
curacy for all systems in the S22 across all
DFAs in this study. These deviations are size-
extensive in the magnitude of the interaction,
as demonstrated by the clear linearity in the er-
rors. This behavior also characterizes the SRLC
pseudopotential error for these systems (Fig-
ure S1), with average relative errors of about
1–3 % for the fit-CRENBL PP and the meth-
ods and systems in Figure 2. The largest abso-
lute errors therefore occur in systems with the
highest dimerization energies, here the formic
acid dimer, the formamide dimer, and the uracil
dimer, each of which possess two hydrogen
bonds. Still, even the largest absolute error of
−0.66 kcal mol−1 (formic acid dimer, ωB97X-V)
is only 3 % of the interaction energy and toler-
ably small in almost all circumstances.

In addition to being small in absolute terms,
fit-CRENBL and SRLC errors are smaller than
BSIEs for 67 and 59 % of the S22 systems, re-
spectively. Given the size of both types of er-
rors, failures in the DFA correlation scheme will
tend to dictate overall model performance for
non-bonded interactions. While these results
suggest a small degree of caution in systems
with extremely strong intermolecular forces,
like those with multiple hydrogen bonds, they
lend general support to the use of the pseudopo-
tential approximation in non-bonded contexts.

Barrier heights for the transition metal com-
plex reactions of the TMB11 set also generally
exhibited small PP errors (Figure 3). Still, even
here, differences in the quality of various PPs
emerges. The def2-ECP exhibits the strongest
performance and transferability of all consid-
ered PPs, with RMSEs around 0.5 kcal mol−1

for all DFAs. In part this is because the def2-
ECP is more conservative than the other PPs
considered here: def2-ECP is all-electron until
the second-row transition metals (cf. Table 1).
The barrier for Mo-catalyzed splitting of a sul-
fonyl bond reaction represents a clear and single
outlier for the HF/def2-ECP combination, with
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Figure 3: Pseudopotential errors [kcal/mol] for (a) def2-ECP, (b) fit-CRENBL, (c) GTH-PBE, and
(d) PAW-PBE for the TMC34 data set of transition metal containing energy changes. TMC34
contains 3 subsets: barrier heights (TMB; crosses), reaction energies (MOR; circles) and dimer
bond strengths (TMD; diamonds). Errors generally increase from TMB to MOR to TMD. Gray
bands correspond to chemical accuracy of ±1 kcal mol−1. Outliers and other aspects of the data
are discussed in the text.

an error of 9.8 kcal mol−1 error. If this point
is omitted, HF/def2-ECP exhibits the small-
est RMSE of all functional/method combina-
tions for the TMB set (0.26 kcal mol−1, down
from 2.91 kcal mol−1; see Tables S13 and S16).
The GTH-PBE performs similarly well for PBE
computations (RMSE = 0.45 kcal mol−1) and
exhibits only a small inconsistency error result-
ing in a 0.77 kcal mol−1 RMSE upon removal of
the same sulfonyl splitting reaction barrier dis-
cussed above, which is problematic here as well.

TMB 11 results for the PAW-PBE poten-
tial as implemented in VASP are more mixed.

If charged systems are omitted, PP errors
are in line with the values discussed in the
preceding paragraph, with RMSEs of 0.55
and 0.60 kcal mol−1 for the PBE and SCAN
functionals, respectively. Barrier heights for
charged systems are abysmal (Tables S17 and
S18), but this represents a known challenge for
periodic codes,124,125 and is not an indictment
of the PAW-PBE potential. Finally, of results
for the TMB11 set, the fit-CRENBL poten-
tial exhibits the worst performance, with DFA-
dependent RMS PP errors of 0.8–1.2 kcal mol−1.
Once again, Mo-catalyzed sulfonyl splitting ex-
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hibits the worst performance for most DFAs,
and its omission brings the overall statistics for
fit-CRENBL results within chemical accuracy.

Direct comparison to BSIE cannot be made
for the TMB11 systems, as many of these re-
action complexes are large enough to prohibit
near-CBS treatment with the def2-QZVPPD
basis. Still, once pathological cases are re-
moved, chemical accuracy is achieved in the
majority of cases for all of the DFA/PP com-
binations considered here. Performance of PPs
on transition metal reaction barrier heights and
overall energies for non-bonded interactions are
similarly strong, and the present results lend
support to the use of PPs in such applications.

3.3 The bad: Transition metal
reaction energies

Pseudopotential performance degrades when
moving from transition metal barrier heights
to overall reaction energies for similar systems.
Within this category, we include the thermody-
namics for the MOR13 TM complex reactions
and the dimerization energies of the TMD10.
The latter benchmark set is particularly well-
suited for differentiating between different PPs,
as their performance varies greatly here.

As before, the def2-ECP and PAW-PBE po-
tentials perform well for the MOR13 reaction
energies (Figure 3). DFA/def2-ECP RMSEs
hover around chemical accuracy, ranging from
0.9 kcal mol−1 for B97M-rV to 1.2 kcal mol−1 for
SCAN. As in the TMB11 above, the HF/def2-
ECP error is dominated by a single outlier (Pd-
catalyzed splitting of C2H6), and omission of
this point brings the RMSE for this methodol-
ogy to 1.0 kcal mol−1 and does not change the
other def2-ECP results significantly. RMSEs
for PAW-PBE are similar in overall magnitude
for the MOR13, at 1.2 and 1.0 kcal mol−1 for the
PBE and SCAN functionals, respectively. Per-
haps more than any other result in this study,
this demonstrates very good transferability of
the PAW-PBE potential as the overall error for
SCAN is actually less than that of its native
PBE. Additionally, each of the def2-ECP and
PAW-PBE potentials are able to consistently
capture the scalar relativistic effects associated

with these systems as approximated by our X2C
calculations.

Neither the GTH-PBE nor fit-CRENBL po-
tentials provide as reliable results as def2-
ECP or PAW-PBE for the MOR13 reactions.
RMS PP errors for fit-CRENBL span 2.0–
3.7 kcal mol−1 depending on the method, and
one cannot clearly attribute these discrepan-
cies to any single outlier (Figure 3[b]). In-
deed, removal of the largest-error species does
not significantly improve the statistical picture
for fit-CRENBL across any of the correlation
methods. Similar comments can be made for
GTH-PBE (Figure 3[c]), where errors for PBE
and B97M-rV are 1.9 and 2.8 kcal mol−1, re-
spectively. The increase in error magnitudes
from PBE to B97M-rV provides a first indi-
cation of the sensitivity of GTH potentials to
inconsistency errors, as has been noted else-
where.14,15,17,20 Still, even when used in con-
junction with its parent PBE functional, this
GTH potential exhibits errors outside of chem-
ical accuracy in all but four of the MOR13
systems. Unlike the treatment of non-bonded
interactions and barrier heights, where perfor-
mance was relatively good for all PPs assessed,
the MOR13 subset discriminates between the
PPs considered here, with fit-CRENBL and
GTH-PBE exhibiting consistently larger errors
than def2-ECP and PAW-PBE.

Discrepancies in PP performance become
larger in moving to the TMD10 set of dimer-
ization energies for first-row TM–X complexes,
where X is a main group element. The best re-
sults are obtained with PAW-PBE, where PP
RMSEs are 1.2 and 1.4 kcal mol−1, respectively,
for PBE and SCAN (Figure 3[d]). While in-
cluded in Figure 3(a), TMD10 performance is
a poor metric for def2-ECP, as this potential is
all-electron for the first-row TM series. Thus
def2-ECP errors are largely associated with ne-
glect of relativistic effects, rather than PP suc-
cess or failure (see Section S3.1). Still, RMSEs
ranging from 1.6–2.5 kcal mol−1 for def2-ECP
indicate that relativistic effects can be signif-
icant even in these systems.

GTH-PBE and fit-CRENBL errors are trou-
bling in these systems. For the latter, RM-
SEs range from 2.3 kcal mol−1 for SCAN to
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Figure 4: Errors (kcal/mol) in the W4-11 total atomization energies relative to all-electron def2-
QZVPPD results. PP errors for each methodology are indicated by the left-hand side of each
violin. Inclusion of element-specific atomic corrections significantly improves performance in all
cases (right violins), indicating a large degree of systematic PP error. Violins are decorated with
root-mean-squared pseudopotential errors (RMSEs).

5.0 kcal mol−1 for B97M-rV, and a number of
individual fit-CRENBL TMD10 predictions err
by over 5 kcal mol−1 for each of the tested
DFAs. For GTH-PBE, a 3.5 kcal mol−1 RMSE
for the PBE functional indicates an apparent
inadequacy of the GTH procedure, resulting
in errors up to 6 kcal mol−1 (for MnBr), af-
fording an RMSE of 3.5 kcal mol−1. Incon-
sistency errors further plague B97M-rV/GTH-
PBE computations, where the smallest PP er-
ror is −2 kcal mol−1, and over half of these
TMD10 errors are in excess of 8 kcal mol−1. Re-
fitting GTH potentials for each density func-
tional is therefore necessary but by no means
sufficient for obtaining high fidelity results rel-
ative to AE computations.

Prediction of dimerization energies between
TM and MG atoms therefore represents a
challenging problem for PPs, and differences
in performance between PAW and GTH/fit-
CRENBL are notable. These differences are
consistent with previous findings in solid-
state contexts, where PAW performance was
markedly better than other classes of PP.126

Thus, while PPs introduce few errors for barrier
heights of TM complexes and relatively small

errors for MOR13 reaction energies, atomiza-
tion energies present significant challenges for
some of the most common types of PPs.

3.4 The ugly: Main-group bond
breaking

Pseudopotential errors in dimerization ener-
gies for the TMD10 portend further trouble
for evaluation of main group atomization ener-
iges like those of the W4-11 set.83 Errors for
these systems turn out to exhibit an extremely
strong dependence on the density functional,
with startling error distributions in some cases
(Figure 4).

Once again, out-of-the-box treatments using
the PAW-PBE PP provide most consistently re-
liable treatment for these systems, with RMSEs
of 2.1–2.8 kcal mol−1 for the SCAN, PBE, and
B97M-rV DFAs. The greatest range of perfor-
mance for the W4-11 atomization energies is
found in fit-CRENBL, where PP RMSEs for
HF and ωB97X-V are 2.0 and 2.4 kcal mol−1.
Meanwhile, fit-CRENBL errors are unaccept-
ably large for each of the other four DFAs (Fig-
ure 4). For each of SCAN, B97M-rV, and LDA,
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PP errors are in excess of 1 kcal mol−1 for over
95 % of the W4-11 systems. Furthermore, PP
errors are larger than def2-TZVPP BSIEs in at
least 97 % of systems for each of these three
DFAs, as well as PBE. Errors of this magni-
tude persist for fit-CRENBL computations even
when the native basis set is used (Section S2
and Table S8). For B97M-rV, where errors are
the largest, we also demonstrate that these can-
not be improved by using method-optimized
geometries (Section S2.3). Hence, the general
assumption that PP errors are small relative
to other computational approximations9,15,23

clearly does not hold here. The difference with
ωB97X-V and HF, where about 45 % and 60 %
of energies are within chemical accuracy of AE
results, is striking, potentially pointing to the
importance of exact exchange in the fitting of
PPs. This could also explain the larger PAW-
PBE errors for HF relative to the tested DFAs.
Error distributions for the GTH-PBE approxi-
mation in PBE and B97M-rV computations are
similar to those for fit-CRENBL: PP errors are
significant for both DFAs, but the potential is
particularly ill-suited for use with B97M-rV.

Since atomization energies reflect changes in
electronic environment between molecules and
atoms, it is possible that a significant part of
these large errors can be corrected on an atom-
by-atom basis. Indeed, at least one previous
report on similar datasets has advocated for
atomic correction schemes to ameliorate PP er-
rors in these systems.127 We define atomic cor-
rections δEX for atom X, according to

E ′X = EX + δEX, (24)

where EX is the uncorrected energy for atom X.
Corrections for each DFA/PP pair were opti-
mized by multiple linear regression to minimize
the RMSE of the W4-11 and used to recom-
pute TAEs for this set. All values of δEX are
reported in Tables S9-S12. The errors for cor-
rected PPs are represented by the right-hand
distributions of each violin in Figure 4, indicat-
ing that significant reductions in PP errors are
achieved through atomic corrections. Once cor-
rected, nearly uniform performance across all
DFA/PP pairs is achieved, and error distribu-

tions are roughly normal. These atomic correc-
tions are specifically fit to the W4-11 set, and
we do not necessarily recommend their wide
use in other systems without further validation.
Nevertheless, the success of this approach indi-
cates that the most egregious errors in atom-
ization energies for unmodified PPs are highly
systematic, and simple correction schemes can
correct for this in native and transferred use of
PPs.

While element-specific corrections are clearly
valuable for atomization energies, these are not
directly applicable to more general types of re-
action energies. This highlights the need for
more universal correction schemes for PPs. On
the basis of fit-CRENBL results, where high
performance in HF and ωB97X-V suggests the
importance of exact exchange in PP fitting, we
have attempted the use of density corrected
(DC) DFA calculations128–130 to improve PP er-
rors (Section S2.2 and Figure S3). While these
led to minor reductions in fit-CRENBL error for
the remaining four DFAs, this procedure was
unable to recover anything near the high per-
formance of the empirical corrections. Others
have successfully employed non-linear core cor-
rections (NLCCs) to reduce PPEs (though not
necessarily PP inconsistency errors) in similar
systems,127 and we are currently exploring their
use in these systems.

4 Summary and conclu-

sions

The preceding sections have demonstrated that
PP errors and PP inconsistency errors are not
evenly distributed across all types of molecu-
lar energy differences. In particular, we find it
helpful to divide these into three categories:

• The Good. These are cases where PP
errors are minimal relative to this in-
troduced by other approximations in the
computation and/or achieve chemical ac-
curacy. They include non-bonded inter-
actions (like S22 systems82) and barrier
heights for organometallic reactions (like
TMB11 systems84,87–91). There are se-
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lect cases where PP errors are greater
than 1 kcal mol−1 for TMB11 predictions,
but even the worst of these is about
5 kcal mol−1, and errors are much smaller
in a statistical sense.

• The Bad. Here we include systems
where PP errors are significant for enough
systems that chemical accuracy is not
achieved statistically. We find this to
be the case for transition metal reac-
tion84,86and dimerization84,85energies for
most of the classes of PPs studied herein.
PAW-PBE and def2-ECP RMS PP er-
rors hover right around 1 kcal mol−1, but
errors and inconsistency errors for fit-
CRENBL and GTH-PBE are 2–3 times
this large.

• The Ugly. For breaking of main group
bonds (the W4-11 systems83), PP incon-
sistency errors can be strikingly bad. The
difference between consistent and incon-
sistent PP use is most striking for the fit-
CRENBL potential, whereas GTH poten-
tials result in significant errors regardless
of the consistency of the protocol. The
PAW-PBE potentials as implemented in
VASP exhibit the best performance out
of the box, and only with use in HF do
errors become notable.

Overall, we find that inconsistent use of PPs
represents an often overlooked but potentially
serious source of error in modern DFT com-
putations. Based on a relatively small set
of results, previous authors have argued that
these errors are “much smaller than the er-
rors...introduced by incomplete basis sets”15 or
that “error inherent in the (ab initio) electron
correlation or density functional procedure is
almost always larger than the error produced
by the pseudopotential approximation.”9 How-
ever, the results presented here indicate that
there are many contexts where these conclu-
sions are simply not true. Particular care
should be taken when PPs are used in circum-
stances that break main group bonds, and po-
tentials like def2-ECP, where elements in the

first three rows of the periodic table are all-
electron, are strongly recommended where pos-
sible.

This work has additional implications for the
development of PPs and even density function-
als. First, results on the W4-11 set indicate that
PP inconsistency errors for atomization ener-
gies are extremely systematic, and a single en-
ergy correction for each atom can remove them
almost entirely. Others have come to similar
conclusions.127 There may also be scope for de-
velopment of generalizations of this approach
that permit application to classes of chemical
energy differences beyond atomization energies.

However, it is more desirable to instead pur-
sue corrections to the PP formalism itself. Non-
linear core corrections (NLCCs) represent one
possible path forward,10,127 and we are explor-
ing their use in the mitigating inconsistency er-
rors.

Additionally, the results of this study indicate
that PP inconsistency errors do not plague all
DFAs equally. Specifically, the B97M-rV meta-
GGA seems to be particularly susceptible to PP
errors. We have not explored the reason for
this, but it is possible that the excellent perfor-
mance of this functional for main group ther-
mochemistry100,101 is accompanied by greater
sensitivity to the representation of the density.
More broadly, differential inconsistency errors
between DFAs suggests the possibility that per-
formance in PP calculations be considered in
the course of future DFA design; this would be
relatively straightforward by including energy
differences evaluated with and without use of
PPs in training, validation and test sets.
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