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Abstract

Selection Rules for the Nonlinear Interactions of Internal Gravity Waves and
Inertia-Gravity Waves

by

Chung-Hsiang Jiang
Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Philip S. Marcus, Chair

Perturbation methods are used to calculate nonlinear interaction of waves, however most
analyses skip the question as to whether the zeroth order solutions exist. The dispersion
relation for internal gravity waves does not relate the magnitude of the wave vector and its
frequency, rather it relates the frequency and direction of the wave vector. Thus, spatially
columnated beams of internal waves are made of a continuum of plane waves with different
wavelengths, but the same magnitude of frequency. For two parent beams to create a daugh-
ter, the plane waves within the parent and daughter beams must obey the triad condition
(the spatial wave vector of the daughter equals the sum of the parents’ vectors, and temporal
frequency of the daughter equals the sum of the parents’ frequencies) and the dispersion re-
lation. Contrary to what is assumed implicitly, these conditions cannot always be satisfied.
If they could, then the interaction of two beams of gravity waves would produce 8 daughter
beams, consisting of two St. Andrew’s crosses (each with 4 beams). The beams in one cross
have a frequency equal to the sum of the frequencies of the parents and the beams in the
other have a frequency equal to the difference. At least two daughter beams cannot exist for
each cross according to the selection rules derived in this work.

Similar selection rules are obtained for the interaction among inertia-gravity conical waves.
When two parent conical waves intersect, unlike the two-dimensional beams, the interaction
area is not a single point. The intersection produces spatial continuous curves and there are
no more than two intersection points in any horizontal plane with a normal vector parallel to
gravity direction. Each intersection point is acted like the collision point of two-dimensional
beam-beam interaction. As a result, at most two harmonic beams with a frequency either
equal to the sum of the frequencies of the parents or to the difference, not a conical wave,
are produced from the nonlinear interaction.
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Chapter 1

Introduction

The internal gravity wave or inertia-gravity wave (IGW, in short) research can be traced
back to the 1890s (Love, 1891). The early theoretical studies are summarized in Lamb’s
famous 1932 book. In (Mowbray and Rarity, 1967), the oscillating bar experiments were
conducted to show four, columnated outgoing internal gravity wave beams in an ”X” pattern
a.k.a. the St. Andrew’s cross and to test the linear theory of the internal gravity waves in a
stably stratified background fluid. The oceanographers are more interested in the creation
and reflection of the internal gravity wave from sloping topography since it provides, at least
theoretically, a way to transfer energy and to possibly increase the mixing efficiency near
the seabed. (Alford, 2003) states that in order to trigger the Earth’s meridional overturning
circulation (MOC), order of 2 TW (an arguable number) of power is needed to turbulently
warm the abyssal waters and IGW could offer about 0.7 TW. Together with other energy
sources, wind input (∼ 1 TW available) and near-inertial waves (estimated to be ∼ 0.5
TW), it seems to be enough to start MOC. (Alford, 2003) and papers cited in it revived
the interest of IGW in oceanography. Studies about the creation and reflection of internal
gravity waves from complex bottom topography in the ocean and reflection from a flat
bottom seafloor (Lamb, 2004; Gerkema et al., 2006) show that it is fairly easy to generate
internal gravity waves from the tidal flow with M2 frequency passing through topography.
The higher harmonics that their frequency is the multiple of the tidal frequency are also
observed in these studies. From FIG. 2(b) in (Lamb, 2004) and FIG. 1 and FIG. 2(b) in
(Gerkema et al., 2006), the numerical simulations show that the reflection from the flat
ocean floor also generates beams with frequency M4 (M4 equals to twice the M2 frequency)
or even higher harmonics (triple or quadruple of M2 frequency). The reflection is found to
be asymmetric since the harmonic beams prefer certain direction (on the same side of the
reflected beam) instead of emitting on both incoming and reflected beam side to form the
top half of the St. Andrew’s cross. Similarly, an asymmetry is also found in the super- or
sub-critical reflection from a constant slope experiments, (Peacock and Tabaei, 2005; Zhang
et al., 2008). The second-harmonic waves (twice the oscillating object frequency) are spotted
only in the super-critical reflection experiments, see FIG. 2 in (Peacock and Tabaei, 2005) but
are missing in the sub-critical case, see also FIG. 4 in (Peacock and Tabaei, 2005). Another
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example shows the asymmetry is the permitted and forbidden formation of second-harmonic
waves from colliding beams with identical properties except the relative position difference
with respect to the collision region, see (Fig. 4.1(a)) and (Fig. 4.1(b)). In (van Haren and
Millot, 2004; van Haren, 2005, 2006), the authors pointed out enhanced poleward diurnal (or
local inertial frequency) energy transfer in 28− 30◦ north and a drop of semidiurnal energy
in 25 − 27◦ north where the latitude is around the diurnal critical latitude (local Coriolis
parameter equals to diurnal tidal frequency).

In general, the methodologies in current studies of internal gravity or inertia-gravity
waves in the ocean are divided into two categories. One is to use numerical simulations.
Either plug in the real bathymetry, real buoyancy frequency profile and modelling tidal
currents into the GCM (General Circulation Model) with lower spatial resolution or have
a modelling two-dimensional topography but with higher resolution to emulate the IGW
generated from tidal current passing through topography. And the other one is to analyze the
observation data from moorings, topography arrays or satellite altimetry to obtain spectral
information, sea surface height (SSH) and depth-integrated energy flux. Both approaches
show their own complexities and hide the fundamental properties of the nonlinear interactions
of internal gravity or inertia-gravity waves.

In (Tabaei et al., 2005), the authors noticed this lacking of fundamentals drawback and
tried to resolve it by using the small amplitude perturbation analysis to solve the reflecting
and colliding internal gravity wave beams problem. They pointed out the higher harmonic
beams are generated from the nonlinear interactions in the vicinity of interaction region.
The asymmetry seemed to be noticed by the authors but the prediction of the asymmetry
is not correct in several different configurations in colliding beams problem probably due to
the distraction of the complicated perturbation analysis. And the perturbation analysis is
probably way too difficult and tedious to extend to solve three-dimensional inertia-gravity
waves.

The idea that “the higher harmonic beams are generated from the nonlinear interactions
of two colliding beams” leads to famous nonlinear constraints:

k1 ± k2 = kH,

ω1 ± ω2 = ωH,

where the first beam has frequency ω1, wavevector k1, the second beam has frequency ω2,
wavevector k2 and the harmonic has frequency ωH, wavevector kH. The nonlinear constraints
are formally the same as equations imposed by “resonant triad interaction” which have been
studied in numerous articles, e.g. (Phillips, 1967). Actually, it is the lack of using geometric
form of the dispersion relation to connect components of individual wave vectors (i.e. extra
constraint) delays the discovery of selection rules derived in this work. Also in (Phillips,
1967), the author pointed out that “... the resonant interactions occurs at the third order,
and only among components whose wavenumbers form a quadrilateral ...”. This implies that
the interaction between three wave vectors is “forbidden” and actually can be treated as an
example of selection rule.
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Based on the knowledge that the higher harmonic beams are generated from the non-
linear interactions, (Jiang and Marcus, 2009) used the geometry (orientations of incoming
beams), linear dispersion relations for individual incoming and outgoing beams, radiation
conditions for outgoing beams and nonlinear interactions as constraints to show that there
are selection rules determining the permitted or forbidden generations of harmonic beams
for two colliding internal gravity wave beams with no rotational effect. The selection rules
are derived in a clever way without solving any partial differential equations and therefore
are easier to extend to three-dimensions or including Coriolis effect. In this dissertation, the
same methodology, geometry and algebra only and no PDE solving, is extended to cover
quasi-two-dimensional and three-dimensional inertia-gravity waves, too. In chapter 2, the
general equation of motion of a three-dimensional Boussinesq flow is specified with a general
Coriolis parameter, f = fxx + fyy + fzz. In chapter 3, the simplest two-dimensional with-
out any rotational effect case, i.e. internal gravity waves discussed in (Jiang and Marcus,
2009), is briefly reviewed. In chapter 4, a simple Coriolis parameter, f = fzz is added but
the flow is kept quasi-two-dimensional, ky = 0. The nonlinear interaction of two inertia-
gravity wave beams is studied. In chapter 5, the quasi-two-dimensional constraint is relaxed.
The collision of two conical inertia-gravity waves is being studied. In chapter 6, another
quasi-two-dimensional inertia-gravity waves problem is studied but this time with a general
f .
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Chapter 2

Governing Equations for Internal
Gravity and Inertia-Gravity Waves

In order to analyze the interactions among internal gravity, inertia-gravity wave beams
or more general conical, three-dimensional internal gravity, inertia-gravity waves, consider
the inviscid, constant Brunt-Väisälä frequency, Boussinesq flow. The stratification is chosen
to be in the simplest form because the focus is on the rotational effect side. The Coriolis
parameter therefore ranges from simplest form f = fzz to more general f = fxx+ fyy+ fzz
where all the components of f are constant.

The governing equations written in primitive variables form are

∂v

∂t
= −v·∇v − ∇P̃

ρ0
− ρ̃

ρ0
gẑ+ v × f ,

∂ρ̃

∂t
= −v·∇ρ̃− vz

dρ̄(z)

dz
,

∇·v = 0,

where ρ0 is a constant referential density, e.g. (
∫ Lz

−Lz

ρ̄(z′)dz′)/2Lz or ρ̄(z = 0). The base state

of the Boussinesq approximation is v̄ = 0, ρ̄ = ρ̄(z) and P̄ = P̄ (z) which is in hydrostatic
equilibrium, dP̄ (z)/dz = −ρ̄(z)g.

The linear plane wave dispersion relation is derived by using the linearized version of
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the Boussinesq flow written in component form,

∂vx
∂t

= (fz vy − fy vz)−
∂h

∂x
,

∂vy
∂t

= (fx vz − fz vx)−
∂h

∂y
,

∂vz
∂t

= (fy vx − fx vy)−
∂h

∂z
− ρ̃

ρ0
g,

∂ρ̃

∂t
= −vz

dρ̄(z)

dz
,

0 =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

,

where h ≡ P̃ /ρ0.
Assume each variable, ρ̃, v and h, can be written in the following form for specific

k⊥ ≡ (kx, ky) and frequency ω,

ρ̃→ ρ̂(z) eikxx eikyy e−iωt,

v → v̂(z) eikxx eikyy e−iωt,

h→ ĥ(z) eikxx eikyy e−iωt.

The flow is doubly periodic in the horizontal directions but in vertical direction either slip
(rigid-lid, free surface) or periodic boundary conditions are valid. Substituting above vari-
ables into the linearized governing equations leads to the following equation set,

−iωv̂x = fz v̂y − fy v̂z − ikx ĥ,

−iωv̂y = fx v̂z − fz v̂x − iky ĥ,

−iωv̂z = fy v̂x − fx v̂y −
dĥ

dz
− ρ̂

ρ0
g,

−iωρ̂ = −dρ̄
dz
v̂z,

0 = ikxv̂x + ikyv̂y +
dv̂z
dz

.

v̂x, v̂y and v̂z can be expressed in terms of ĥ and dĥ/dz only and the incompressible flow
constraint therefore turns out to be a second order ordinary differential equation of variable
ĥ,

(
ω2 − f 2

z

) d2ĥ

dz2
− 2 fz (ikx fx + iky fy)

dĥ

dz

+
{(
k2x + k2y

) (
N2 − ω2

)
+ (kx fx + ky fy)

2} ĥ,

where Brunt-Väisälä frequency is defined as N2 ≡ (−g/ρ0) (dρ̄/dz).
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If ĥ has eigenfunctions with eigenvalues kz’s, the linear dispersion relation for three-
dimensional inertia-gravity wave is

ω2 =
k2⊥
k2

N2 +
(k · f)2
k2

, (2.1)

where k⊥ ≡ kx x+ kyy, k ≡ k⊥ + kz z, k
2
⊥ = k⊥ · k⊥ and k2 = k · k = k2⊥ + k2z .

If the Coriolis parameter is in the simplest form, f = fzz = fz, the dispersion relation
reduces to

ω2 =
k2⊥
k2

N2 +
k2z
k2
f 2. (2.2)

For the three-dimensional internal gravity waves, the dispersion relation can be simplified
furthermore since fz = 0

ω2 =
k2⊥
k2

N2, (2.3)

and the dispersion relation for the special case two-dimensional internal gravity wave,

ω2 =
k2x
k2
N2, (2.4)

where k2 = k2x + k2z .
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Chapter 3

Selection Rules for
Quasi-Two-Dimensional Internal
Gravity Waves

3.1 Introduction

The internal gravity wave (IGW, in short) research can be traced back to the 1890s
(Love, 1891). The early theoretical studies are summarized in Lamb’s famous 1932 book. In
(Mowbray and Rarity, 1967), the oscillating bar experiments were conducted to show four,
columnated outgoing internal gravity wave beams in an ”X” pattern a.k.a. the St. Andrew’s
cross and to test the linear theory of the internal gravity waves in a stably stratified back-
ground fluid. The oceanographers are more interested in the creation and reflection of the
internal gravity wave from sloping topography since it provides, at least theoretically, a way
to transfer energy away from the generation sites [in O(1000 km)] and to possibly increase
the mixing efficiency in the deep sea. (Alford, 2003) states that in order to trigger the Earth’s
meridional overturning circulation (MOC), order of 2 TW (an arguable number) of power is
needed to turbulently warm the abyssal waters and IGW could offer about 0.7 TW. Together
with other energy sources, wind input (∼ 1 TW available) and near-inertial waves (estimated
to be ∼ 0.5 TW), it seems to be enough to start MOC. (Alford, 2003) and papers cited in
it revived the interest of IGW in oceanography. Studies about the creation and reflection of
internal gravity waves from complex bottom topography in the ocean and reflection from a
flat bottom seafloor (Lamb, 2004; Gerkema et al., 2006) show that it is fairly easy to generate
internal gravity waves from the tidal flow with M2 frequency passing through topography.
The higher harmonics that their frequency is the multiple of the tidal frequency are also
observed in these studies. From FIG. 2(b) in (Lamb, 2004) and FIG. 1 and FIG. 2(b) in
(Gerkema et al., 2006), the two-dimensional or quasi-two-dimensional numerical simulations
show that the reflection from the flat ocean floor also generates beams with frequency M4
(M4 equals to twice the M2 frequency) or even higher harmonics (triple or quadruple of M2
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(a) (b)

Figure 3.1 Numerical simulations of physical beams, shown by the magnitude of their vertical
velocities. Each primary beam has frequencies of ±ω with |ω|/N = 0.3746 < 1/2. (a) (left)
The primary beam sources lie within the circles in the corners on the right side of the panel.
Both primary beams propagate to the left, interact, and create two harmonic beams or “legs”
with frequencies ±2ω. (b) (right) As in (a), but with sources at the top. No harmonic beams
are produced.

frequency). The reflection is found to be asymmetric since the harmonic beams prefer certain
directions (on the same side of the reflected beam) instead of emanating on both incident
and reflected beam side to form the top half of the St. Andrew’s cross. Similarly, the asym-
metry has also been found in the super- or sub-critical reflection from a slope, (Peacock and
Tabaei, 2005; Zhang et al., 2008). The second-harmonic waves (twice the oscillating object
frequency) are spotted only in the super-critical reflection experiments, see FIG. 2 in (Pea-
cock and Tabaei, 2005) but are missing in the sub-critical case, see also FIG. 4 in (Peacock
and Tabaei, 2005). Another example shows the asymmetry is the permitted and forbidden
formation of second-harmonic waves from two-dimensional or quasi-two-dimensional collid-
ing beams with identical properties except the relative position difference with respect to
the collision region, see two-dimensional example (Fig. 3.1) and quasi-two-dimensional ex-
ample (Fig. 4.1) in Chapter 4. In (Tabaei et al., 2005), the authors used the small amplitude
perturbation analysis to solve the reflecting and colliding beams problem and pointed out
the higher-harmonic beams are generated from the nonlinear interactions in the vicinity of
interaction region. The asymmetry seemed to be noticed by the authors but the predictions
of the asymmetry are not correct in several different colliding configurations probably due to
the distraction of the complicated perturbation analysis. The selection rules introduced in
this and next chapter are able to explain the asymmetry without actually solving the partial
differential equations and show that geometry plus dispersion relation of IGW are enough
to identify the asymmetry found in two-dimensional or quasi-two-dimensional problems.
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Figure 3.2 In each quadrant, the phase velocity and group velocity need to pair up in specific
orientations in order to satisfy [Eqs. (3.1) and (3.2)].

3.2 Nonlinear Interaction of Internal Gravity Waves

A 2-dimensional, compact source of gravity waves oscillating at frequency ±ω creates
four, columnated outgoing beams in an “X” pattern, as in (Fig. 3.2), known as a “St.
Andrew’s cross” (Kundu and Cohen, 2004). There are four beams because the angle θ of
each beam with respect to the positive x-axis (horizontal) obeys the dispersion relation,
written in geometrical form, as

|ω|
N

= |sin θ| , (3.1)

where N ≡
√

−g(dρ̄/dz)/ρ0 is the Brunt-Väisälä frequency, dρ̄/dz is the horizontally-
averaged vertical (z) density gradient of the unperturbed fluid, g is the acceleration of gravity,
and ρ0 is the average density.

A wave beam consists of a packet of complex conjugate pairs of plane waves ei(kxx+kzz+ωt)

with a continuum of wave numbers constrained such that all of the waves’ group velocity
vectors c are parallel and point in the same direction. From [Eq. (3.1)] the absolute value
of the frequencies of all plane waves in a beam must be the same. To derive selection rules
it is important to understand the relative directions of the group velocity vector c and wave
vector k. For internal gravity waves:

sgn {cx} = sgn {ω kx}, (3.2a)

sgn {cz} = − sgn {ω kz}. (3.2b)

To prove [Eq. (3.2)], note that the dispersion relation written in its traditional form is (Kundu
and Cohen, 2004)

ω = ±N kx
k
. (3.3)

This dispersion relation and the definition c ≡ ∇kω show

ω kx = cxk
2

(
kx
kz

)2

, (3.4a)

ω kz = −czk2. (3.4b)
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which proves k ·c = 0 and relations (3.2a) and (3.2b). The definition of θ and [Eq. (3.4)]
show that for all beams:

cot θ ≡ cx
cz

= −kz
kx
. (3.5)

Note that [Eq. (3.1)] follows from Eqs. (3.3) and (3.5). Eqs. (3.3) and (3.4) show that
we must exclude the case when ω = 0 (i.e. θ = 0, or π) because no plane waves exist and
also the case when |ω| = N (i.e., θ = ±π/2) because c = 0, and we are only interested in
propagating beams.

Although a beam of waves consists of complex conjugate pairs of plane waves, so both
positive and negative frequencies are present, here we begin a thought experiment in which
the waves in a beam have only a positive or a negative frequency. Consider the interaction of
two of these beams. Because the linearized equations of motion for stratified gravity waves
(Kundu and Cohen, 2004) are reflection-symmetric about both the x and z axes, we let one
beam, labeled as the 0th beam, approach the origin from the first quadrant. We use the
notation that it has frequency ωin(0), wave vector kin(0), angle θin(0), and group velocity
cin(0) pointing toward the origin. At the origin this beam intersects a second beam, also
pointing toward the origin, with frequency ωin(j), wave vector kin(j), group velocity cin(j),
and angle θin(j) with j = 1, 2, 3, or 4. We use the notation that j is the quadrant that
contains the source of the second beam. Due to the fact that the inviscid, linearized equations
of motion for gravity waves are reversible in time, without loss of generality, we let ωin(0)
be positive, and by using the reflection symmetries we can require that ωin(0) ≥ |ωin(j)| for
j = 1, . . . , 4.

Similarly, the four harmonic outgoing beams generated at the origin ((Fig. 3.2)) have
frequency ωout, wave vector kout(n), group velocity, cout(n), and angle θout(n), where n is the
quadrant that the beam propagates into, and n = 1, . . . , 4. Because the outgoing waves in
the nth beam are generated from the waves in the incoming 0th and jth beams by quadratic
nonlinearities:

ωout = ωin(0) + ωin(j), (3.6a)

kout(n) = kin(0) + kin(j). (3.6b)

Note that ωout is independent of the quadrant n of the outgoing beam.
Using Eqs. (3.1) and (3.6a), we obtain

cot[θout(n)] = (−1)n+1

√

(N/ωout)2 − 1. (3.7)

The sign in [Eq. (3.7)] is obtained from geometry, which requires sgn {cot[θout(n)]} =
(−1)n+1.

From Eqs. (3.5) and (3.6b):

kinz (0) + kinz (j) = − cot[θout(n)]
(
kinx (0) + kinx (j)

)
. (3.8)
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(a) (b)

Figure 3.3 Schematic of permitted and forbidden formation of primary beams forcing at
single frequency: The thick double-headed arrows represent colliding primary beams be-
fore collision, thin double-headed arrows represent colliding primary beams after collision,
thin solid single-headed arrows represent permitted secondary harmonic beams and dotted
single-headed arrows represent forbidden secondary harmonic beams. (a) (left) Permitted
formation. Two harmonic beams with frequencies ±2ω are created. (b) (right) Forbidden
formation. No harmonic beams are produced.

3.2.1 Two Simple Examples to Illustrate the Methodology

We would like to explain the methodology by using two examples, (Fig. 3.1(a)) and
(Fig. 3.1(b)), first. In both examples, the two incoming beams are forced at the same
frequency ωin such that the ωout(n) is twice the ωin. The case that ωin(0) = −ωin(j)
produces ωout ≡ 0 which is not a propagating wave and hence it is not being considered here.
In both examples, we only need to consider the formation of one St. Andrew’s cross.

In the first example, the two beams collide and form a configuration that one of the
incoming beams propagates upward (j = 4) and the other downward (j = 0). Thus we
simplify the notations using ωin(0) = ωin(4) = ωin and ωout = 2ωin. See the schematic,
(Fig. 3.3(a)), for illustration.

Using [Eq. (3.5)] to relate the x-components of kin(0) and kin(4) in terms of their z-
components in [Eq. (3.6b)] and vice versa. Then multiplying both sides of [Eq. (3.8)] with
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ωin leads to

[ωin kinz (0)]
︸ ︷︷ ︸

>0

1− cot[θout(n)] tan[θin(0)]

1− cot[θout(n)] tan[θin(4)]
︸ ︷︷ ︸

>0
︸ ︷︷ ︸

>0

= − [ωin kinz (4)]
︸ ︷︷ ︸

<0
︸ ︷︷ ︸

>0

,

[ωin kinx (0)]
︸ ︷︷ ︸

<0

1− tan[θout(n)] cot[θin(0)]

1− tan[θout(n)] cot[θin(4)]
︸ ︷︷ ︸

<0
︸ ︷︷ ︸

>0

= − [ωin kinx (4)]
︸ ︷︷ ︸

<0
︸ ︷︷ ︸

>0

.

The sign of ωin kin(0) or ωin kin(4) is determined by applying [Eq. (3.2)] to satisfy the
radiation condition of the incoming beam. The coefficient on the left-hand side of the first
equation is > 0 by inspection since both |cot[θout(n)] tan[θin(0)]| and |cot[θout(n)] tan[θin(4)]|
are less than one for all n. For the same reason, the coefficient on the left-hand side of
the second equation is < 0. This is how “first selection rule” works. In deriving the first
selection rule, the dispersion relations and radiation conditions of the incoming beams, the
quadratic nonlinearities and the dispersion relations of the harmonics have been applied. In
this special case, it does not rule out any possible outgoing harmonic beams.

Multiplying [Eq. (3.6b)] by ωin, we obtain

[ωout koutz (n)] = 2



[ωin kinz (0)]
︸ ︷︷ ︸

>0

+ [ωin kinz (4)]
︸ ︷︷ ︸

<0



 ≶ 0,

[ωout koutx (n)] = 2



[ωin kinx (0)]
︸ ︷︷ ︸

<0

+ [ωin kinx (4)]
︸ ︷︷ ︸

<0



 < 0.

From the radiation conditions of the outgoing beams: [ωout koutx (n)] < 0 only if n = 2 or 3.
This is how the “second selection rule” works and can be used to explain the asymmetry
found in (Fig. 3.1(a)). In deriving the second selection rule, the quadratic nonlinearities and
the radiation conditions of possible outgoing beams are used.

In the second example, the two beams collide and form another configuration that both
the incoming beams propagate downward. Thus we simplify the notations using ωin(0) =
ωin(2) = ωin and ωout = 2ωin. See also the schematic, (Fig. 3.3(b)), for illustration.

Using [Eq. (3.5)] to relate the x-components of kin(0) and kin(2) in terms of their z-
components in [Eq. (3.6b)] and vice versa. Then multiplying both sides of [Eq. (3.8)] with
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ωin leads to

[ωin kinz (0)]
︸ ︷︷ ︸

>0

1− cot[θout(n)] tan[θin(0)]

1− cot[θout(n)] tan[θin(2)]
︸ ︷︷ ︸

>0
︸ ︷︷ ︸

>0

= − [ωin kinz (2)]
︸ ︷︷ ︸

>0
︸ ︷︷ ︸

<0

,

[ωin kinx (0)]
︸ ︷︷ ︸

<0

1− tan[θout(n)] cot[θin(0)]

1− tan[θout(n)] cot[θin(2)]
︸ ︷︷ ︸

<0
︸ ︷︷ ︸

>0

= − [ωin kinx (2)]
︸ ︷︷ ︸

>0
︸ ︷︷ ︸

<0

.

The sign of ωin kin(0) or ωin kin(2) is determined by applying [Eq. (3.2)] to satisfy the
radiation condition of the incoming beam. The coefficient on the left-hand side of the first
equation is > 0 by inspection since both |cot[θout(n)] tan[θin(0)]| and |cot[θout(n)] tan[θin(2)]|
are less than one for all n. Similarly, the coefficient on the left-hand side of the second
equation is < 0. Again, this is how the first selection rule works. In this case, the left-hand
side of both equations are always greater than zero but the right-hand side are always less
than zero. So it rules out all the possible formation of second harmonic beams and explains
the asymmetry found in (Fig. 3.1(b)).

To clarify the methodology, we multiply [Eq. (3.6b)] by ωin to proceed the derivation of
the second selection rule:

[ωout koutz (n)] = 2



[ωin kinz (0)]
︸ ︷︷ ︸

>0

+ [ωin kinz (2)]
︸ ︷︷ ︸

>0



 > 0,

[ωout koutx (n)] = 2



[ωin kinx (0)]
︸ ︷︷ ︸

<0

+ [ωin kinx (2)]
︸ ︷︷ ︸

>0



 ≶ 0.

From the radiation conditions of the outgoing beams: [ωout koutz (n)] > 0 only if n = 3 or 4.
No constraint is imposed by “second selection rule”.

3.3 Conclusions

The selection rules for two colliding beams at individual frequencies are obtained in
(Jiang and Marcus, 2009), the final results are summarized in Table 3.1. The methodology
used in (Jiang and Marcus, 2009) is the same as in the two examples: to derive the first
selection rule, the dispersion relations and radiation conditions of the incoming beams, the
quadratic nonlinearities and the dispersion relations of the harmonics are the constraints
on the possible outgoing beams; on the other hand, the quadratic nonlinearities and the
radiation conditions of possible outgoing beams are used as constraints to obtain second
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Table 3.1 Selection rules for creating harmonic beams from two primary beams intersecting
at the origin. One incoming beam, labeled as the 0th lies in the first quadrant with frequency
ωin(0). The second incoming beam lies in the jth quadrant with frequency ωin(j). Depending
on the value of χ ≡ ωin(j)/ωin(0), there are four possible scenarios, indicated by each of
the four rows of the table. The first two columns specify χ. (Without loss of generality,
|χ| ≤ 1.) For each row, the quadrant numbers n of the allowable outgoing beams are listed
as a function of j (column). Solvability requires |ωin(j) + ωin(0)| < N . This table uses both
the first and second selection rules. For a harmonic beam to exist, it must satisfy both rules.
When sgn{χ} = +1 and j = 3, no harmonic beams are produced if ωin(3) = ωin(0).

sgn{χ} range of |χ| j = 1 j = 2 j = 3 j = 4
+1 none none 2, 3 2, 3
−1 |χ| < 1/2 2 2 3 3
−1 |χ| = 1/2 2 none none 3
−1 1/2 < |χ| ≤ 1 1, 2 none none 3, 4

selection rule. Although it might look quite different in (Jiang and Marcus, 2009) at first
sight.

This formulation seems to be counter-intuitive and sophisticated and also not easy to
extend to three-dimensional problem. Another methodology is introduced in next chapter
and would be used repeatedly in the next three chapters.
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Chapter 4

Selection Rules for
Quasi-Two-Dimensional
Inertia-Gravity Waves

4.1 Two dimensional inertia-gravity wave physics

A quasi-two-dimensional, compact source of inertia-gravity waves oscillating at fre-
quency ±ω in a rotating stratified fluid also creates four, columnated outgoing beams in
an “X” pattern. There are four beams, or “legs”, because the angle θ of each beam with
respect to the closest horizontal x-axis obeys the linear dispersion relation

ω2 − f 2

N2 − f 2
= sin2 θ, (4.1)

where 0 < θ < π/2, f is the constant Coriolis parameter, N ≡
√

−g(dρ̄/dz)/ρ0 is the
buoyancy frequency or Brunt-Väisälä frequency, dρ̄/dz is the vertical (z) density gradient
of the unperturbed fluid, g is the acceleration of gravity, and ρ0 is the average density.
Intersecting beams can produce harmonics with frequencies ω equal to the sum or difference
of the frequencies of the interacting beams, subject to the solvability condition imposed by
[Eq. (4.1)]: either f 2 < ω2 < N2 or N2 < ω2 < f 2. Thus, two interacting beams should
be able to produce at most two St. Andrew’s crosses, one with a “low frequency” equal to
the difference of the absolute values of the frequencies of the interacting beams and another
St. Andrew’s cross with a “high frequency” equal to the sum of the absolute values of the
frequencies of the interacting beams if the solvability condition is satisfied. Therefore, one
expects either four or eight harmonic beams or “legs”. However, in many simulations and
experiments of interacting beams of internal gravity waves (e.g., FIGs. 2(a),(b) in (Lamb,
2004); FIG. 2(b) in (Gerkema et al., 2006); and FIG. 3(a) in (Teoh et al., 1997)), one
or more “legs” are missing. (Fig. 4.1) shows another example of missing beams: the two
primary beams have the same frequencies, ±ω, so the “low frequency” St. Andrew’s cross
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(a) (b)

Figure 4.1 Numerical simulations of physical beams, shown by the magnitude of their vertical
velocities. Each primary beam has frequencies of ±ω with N = 1.5394 rad/s > |ω| =
0.6781 rad/s > f = 0.3848 rad/s. And the “high frequency” harmonics have frequencies,
±2ω, with N > |2ω| > f . (a) (left) The primary beam sources lie within the circles in the
corners on the left side of the panel. Both primary beams propagate to the left, interact,
and create two harmonic beams or “legs” with frequencies ±2ω. (b) (right) As in panel (a),
but with sources at the top. No harmonic beams are produced.

cannot form. However, one would expect the beams to pass through each other, interact and
create a “high frequency” cross because f 2 < (2ω)2 < N2. In (Fig. 4.1(a)) the sources of
the primary beams are located at the right-side corners, and only two of the four expected
“legs” are created. In (Fig. 4.1(b)) the sources of the primary beams are at the top, and
no “legs” are created. Tabaei et al. (Tabaei et al., 2005) found selection rules governing
the creation of harmonic “legs” that correctly predicted that the interaction in (Fig. 4.1(a))
creates only two, of the possible four, “legs”. However, their rules are incomplete; they also
predicted that the interaction in (Fig. 4.1(b)) would create all four “legs” (FIG. 6(b) and
Table 1 in (Tabaei et al., 2005)).

Similarly and not surprisingly, the “non-traditional” branch N2 < ω2 < f 2 also has this
missing “legs” mystery. This time, in (Fig. 4.2(a)) the sources of the primary beams are at
the right-side corner, and no “legs” are created. In (Fig. 4.2(b)) the sources of the primary
beams are located at the top corners, and only two of the four expected “legs” are created.

4.2 Selection Rules

A beam consists of a packet of complex conjugate pairs of plane waves ei(kxx+kzz+ωt) with
a continuum of wave numbers constrained such that all of the plane waves’ group velocity
vectors c point in the same direction. From [Eq. (4.1)], the absolute value of the frequencies
of all plane waves in a beam must be the same. It is important to understand the relative
directions of the group velocity vector c and wave vector k. First define a utility variable,
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Ψ,

Ψ ≡ sgn{N2 − f 2} =

{
+1 if f 2 < ω2 < N2

−1 if N2 < ω2 < f 2 ,

which distinguish the traditional (Ψ = +1) and non-traditional (Ψ = −1) branch. For
internal gravity waves:

sgn{cx} = sgn{ω kx}Ψ, (4.2)

sgn{cz} = −sgn{ω kz}Ψ. (4.3)

To prove the above equations, note that the dispersion relation written in its traditional
form is

ω2 = N2
(
k2x/k

2
)
+ f 2

(
k2z/k

2
)
, (4.4)

or
ω2 = N2 sin2 θ + f 2 cos2 θ.

This dispersion relation and the definition c ≡ ∇k ω show

ω kx
(
N2 − f 2

)
= cx k

2
[
f 2

(
k2z/k

2
x

)
+N2

] (
k2x/k

2
z

)
,

ω kz
(
N2 − f 2

)
= −cz k2

[
f 2

(
k2z/k

2
x

)
+N2

]
, (4.5)

which proves (k · c) = 0 and relations (4.2) to (4.3). The definition of θ and [Eq. (4.5)] show
that for all beams: (

cx
cz

)

= −
(
ω kz
ω kx

)

, (4.6)

and

tan2 θ =

(
ω kx
ω kz

)2

=
ω2 − f 2

N2 − ω2
. (4.7)

Although a beam consists of complex conjugate pairs of waves, consider a thought
experiment in which each beam has only a positive or a negative frequency. Because the
linearized equations for gravity waves are reflection-symmetric about the x and z axes, let one
beam, labeled as the first beam, approach the origin from the first quadrant. The notation
that it has frequency ω1, wave vector k1, angle θ1, and group velocity c1 pointing toward the
origin. At the origin this beam intersects a second beam, also pointing toward the origin,
with frequency ω2, wave vector k2, group velocity c2, and angle θ2. The inviscid, linearized
equations for gravity waves are reversible in time and by using the reflection symmetries,
the only assumption requires is that |ω1| ≥ |ω2|. Further, define another utility function
F (γ) ≡ (γ − f 2)/(N2 − γ) > 0. If γ > 0 satisfies the solvability condition,

dF (γ)

dγ
=

N2 − f 2

(N2 − γ)2
.

Thus,

sgn

{
dF (γ)

dγ

}

= Ψ,
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Table 4.1 Signs of frequency modified wave vector of the second incoming beam, ω2 k2, in
component form. Quadrant number indicates from where the IGW beam propagates.

Quadrant I II III IV
sgn{ω2 kx,2}Ψ −1 +1 +1 −1
sgn{ω2 kz,2}Ψ +1 +1 −1 −1

Table 4.2 Signs of frequency modified wave vector of the outgoing beam, ωH kH, in component
form. Quadrant number indicates where the IGW beam propagates into.

Quadrant I II III IV
sgn{ωH kHx }Ψ +1 −1 −1 +1
sgn{ωH kHz }Ψ −1 −1 +1 +1

which shows F is monotonically increasing when γ increases for traditional branch but F is
monotonically decreasing when γ increases for non-traditional branch. Therefore,

ω2
1 > ω2

2 ⇒ tan2 θ1 > tan2 θ2 for f 2 < ω2
1, ω

2
2 < N2, (4.8)

ω2
1 > ω2

2 ⇒ tan2 θ1 < tan2 θ2 for N2 < ω2
1, ω

2
2 < f 2. (4.9)

Since both incoming beams are propagating toward the origin, use [Eq. (4.2)] and
[Eq. (4.3)] to show:

sgn{ω1 kx,1}Ψ = −1,

sgn{ω1 kz,1}Ψ = +1.

And the results for the second incoming beam are listed in Table 4.1.
By rearranging [Eq. (4.7)], the relation between ω kx and ω kz is obtained

ω kx = sgn{ω kx} tan θ |ω kz|.

The frequency modified wave vector, ω k, can be expressed in terms of the absolute value of
vertical wave number only. For each incoming beam,

ω1 kx,1 = sgn{ω1 kx,1} |ω1 kz,1| tan θ1, (4.10)

ω2 kx,2 = sgn{ω2 kx,2} |ω2 kz,2| tan θ2, (4.11)

ω1 kz,1 = sgn{ω1 kz,1} |ω1 kz,1|, (4.12)

ω2 kz,2 = sgn{ω2 kz,2} |ω2 kz,2|. (4.13)
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Similarly, the four outgoing harmonics generated at the origin have frequency ωH, wave
vector kH, group velocity cH, and angle θH where “H” denotes “Harmonics”. Because the
outgoing waves are generated from the waves in the incoming beams by quadratic nonlin-
earities:

ωH = ω1 + ω2, (4.14)

kH = k1 + k2. (4.15)

The “high frequency” harmonics have frequencies of ±ωsum and the “low frequency” har-
monics are forcing at ±ωdiff where

ωsum ≡ |ω1|+ |ω2| > 0, (4.16)

ωdiff ≡ |ω1| − |ω2| > 0. (4.17)

The variable χ is useful in the comparison of ωdiff and |ω2| for “low frequency” harmonics
and R is used to determine the selection rules:

χ ≡ ω2

ω1

, (4.18)

R ≡ |kz,1|
|kz,2|

> 0. (4.19)

The frequency modified wave vectors of any outgoing beams written in component form are:

ωH kHx = ωH (sgn{ω1 kx,1} |ω1 kz,1| tan θ1 / ω1

+ sgn{ω2 kx,2} |ω2 kz,2| tan θ2 / ω2),

ωH kHz = ωH (sgn{ω1 kz,1} |ω1 kz,1| / ω1

+ sgn{ω2 kz,2} |ω2 kz,2| / ω2).

Now, put every piece together, if ω1 ω2 > 0, this corresponds to generation of “high
frequency” harmonics,

ωH kHx = KS
x (ωsum |kz,2|Ψ) , (4.20)

ωH kHz = KS
z (ωsum |kz,2|Ψ) , (4.21)

and

KS
x ≡ (Ψ sgn{ω1 kx,1} tan θ1R +Ψsgn{ω2 kx,2} tan θ2) , (4.22)

KS
z ≡ (Ψ sgn{ω1 kz,1}R +Ψsgn{ω2 kx,2}) , (4.23)

where the superscript “S” denotes “Sum” and ωH = ±ωsum. Moreover, if ω1 ω2 < 0, this
corresponds to “low frequency” harmonics generation,

ωH kHx = KD
x (ωdiff |kz,2|Ψ) , (4.24)

ωH kHz = KD
z (ωdiff |kz,2|Ψ) , (4.25)
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and

KD
x ≡ (Ψ sgn{ω1 kx,1} tan θ1R−Ψsgn{ω2 kx,2} tan θ2) , (4.26)

KD
z ≡ (Ψ sgn{ω1 kz,1}R−Ψsgn{ω2 kx,2}) , (4.27)

where the superscript “D” refers to “Difference” and ωH = ±ωdiff.
Therefore, the direction of the outgoing beam group velocity can be determined by

calculating K’s:

sgn{cHx } = sgn{KH
x }, (4.28)

sgn{cHz } = −sgn{KH
z }, (4.29)

because from definition Ψ2 = 1 and

sgn{cHx } = sgn{ωH kHx }Ψ = sgn{KH
x Ψ}Ψ = sgn{KH

x }Ψ2,

sgn{cHz } = −sgn{ωH kHz }Ψ = −sgn{KH
z Ψ}Ψ = −sgn{KH

z }Ψ2.

The frequency modified wave vector of a harmonic beam also needs to satisfy its own
dispersion relation in geometrical form, [Eq. (4.7)],

tan2 θH =
(KH

x )
2

(KH
z )

2
,

and the dispersion relation leads to a quadratic equation in R:

AHR2 − 2BHR + CH = 0. (4.30)

Define the discriminant in the following form:

∆H ≡ (BH)2 − AH BC,

then with the aid of the quadratic formula

RH,± =
BH ±

√
∆H

AH
, (4.31)

where “H” could refer to either “S” or “D”. The roots RH,± must be real ( therefore ∆H ≥ 0
) and positive otherwise violate the definition, [Eq. (4.19)], that R > 0.

Lemma 1 [Eqs. (4.28), (4.29) and (4.31)] lead to a drastic conclusion that at most there
are only TWO, NOT FOUR, “legs” permitted for each St. Andrew’s cross (with either “high
frequency” or “low frequency”) since the direction of a harmonic beam and the value of R is
a one-to-one mapping once the relative positions of the incoming beams have been designated.
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Table 4.3 The exact forms of KH
x and KH

z in terms of the quadrant from where the
second incoming beam is approaching. Define shorthand notations using in this table:
K+

x ≡ − tan θ1R + tan θ2 and K−
x ≡ − tan θ1R − tan θ2. By inspection, since the defi-

nition requires R > 0, K−
x < 0 and R + 1 > 0. Recall that sgn{cHx } = sgn{KH

x } and
sgn{cHz } = −sgn{KH

z }. If KH
x equals to K−

x , the corresponding beam must be propagating to
the left. And if KH

z equals to R+1, the corresponding beam must be propagating downward.

Quadrant I II III IV
KS

x K−
x K+

x K+
x K−

x

KS
z R + 1 R + 1 R− 1 R− 1

KD
x K+

x K−
x K−

x K+
x

KD
z R− 1 R− 1 R + 1 R + 1

Table 4.4 The value of BS in terms of the quadrant from where the second incoming beam
is approaching.

Quadrant BS sgn{BS}
I Ψ ( tan θ1 tan θ2 − tan2 θS) −1
II Ψ (− tan θ1 tan θ2 − tan2 θS) −Ψ
III Ψ (− tan θ1 tan θ2 + tan2 θS) +1
IV Ψ ( tan θ1 tan θ2 + tan2 θS) +Ψ

The functional forms of KH
x , KH

z and BH are dependent on the quadrant where the
second incoming beam approaches and the exact formulas are listed in Table 4.3, Table 4.4
and 4.5. But AH and CH are the same in every quadrant,

AS ≡ Ψ(tan2 θS − tan2 θ1) > 0,

CS ≡ Ψ(tan2 θS − tan2 θ2) > 0,

and

AD ≡ Ψ(tan2 θ1 − tan2 θD) > 0,

CD ≡ Ψ(tan2 θ2 − tan2 θD)







< 0, |χ| < 1/2
= 0, |χ| = 1/2
> 0, |χ| > 1/2

.

There are only two functional forms of ∆H: for second incoming beam coming from first
or third quadrant,

∆H = tan2 θH (tan θ1 − tan θ2)
2 > 0, (4.32)
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Table 4.5 The value of BD in terms of the quadrant from where the second incoming beam
is approaching.

Quadrant BD sgn{BD}
I Ψ ( tan θ1 tan θ2 − tan2 θD)

+1 |χ| ≥ 1/2
? |χ| < 1/2

II Ψ (− tan θ1 tan θ2 − tan2 θD) −Ψ

III Ψ (− tan θ1 tan θ2 + tan2 θD)
−1 |χ| ≥ 1/2
? |χ| < 1/2

IV Ψ ( tan θ1 tan θ2 + tan2 θD) +Ψ

and for second incoming beam coming from second or fourth quadrant,

∆H = tan2 θH (tan θ1 + tan θ2)
2 > 0. (4.33)

Because the discriminants are always greater than zero, both RH,± are real but not necessary
to be positive. After substituting the exact formulas of ∆H, the analytical form for R’s where
the second incoming beam is from first quadrant is

RS,± = −tan θS ± tan θ2
tan θS ± tan θ1

, (4.34)

RD,± =
tan θD ± tan θ2
tan θD ± tan θ1

; (4.35)

from second quadrant

RS,± = −tan θS ∓Ψtan θ2
tan θS ±Ψtan θ1

, (4.36)

RD,± =
tan θD ∓Ψtan θ2
tan θD ±Ψtan θ1

; (4.37)

from third quadrant

RS,± =
tan θS ∓ tan θ2
tan θS ∓ tan θ1

, (4.38)

RD,± = −tan θD ∓ tan θ2
tan θD ∓ tan θ1

; (4.39)

and from fourth quadrant

RS,± =
tan θS ±Ψtan θ2
tan θS ∓Ψtan θ1

, (4.40)

RD,± = −tan θD ±Ψtan θ2
tan θD ∓Ψtan θ1

. (4.41)
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R’s are determined to be positive or negative in a case by case sense (governed by Ψ
and χ) as follows.

4.2.1 Ψ = +1 and “high frequency” harmonics (χ > 0)

In this case, (ωH = ±ωsum)
2 > ω2

1 ≥ ω2
2, from [Eq. (4.8)]:

tan θS > tan θ1 ≥ tan θ2.

This relation is used to determine RS,±.
When the second incoming beam is from first quadrant:

RS,± = −

>0
︷ ︸︸ ︷

tan θS ± tan θ2

tan θS ± tan θ1
︸ ︷︷ ︸

>0

< 0;

from second quadrant

RS,± = −

>0
︷ ︸︸ ︷

tan θS ∓ tan θ2

tan θS ± tan θ1
︸ ︷︷ ︸

>0

< 0;

from third quadrant

RS,+ =

>0
︷ ︸︸ ︷

tan θS − tan θ2

tan θS − tan θ1
︸ ︷︷ ︸

>0

> 1,

RS,− =

>0
︷ ︸︸ ︷

tan θS + tan θ2

tan θS + tan θ1
︸ ︷︷ ︸

>0

> 0, < 1;

and from fourth quadrant

RS,+ =

>0
︷ ︸︸ ︷

tan θS + tan θ2

tan θS − tan θ1
︸ ︷︷ ︸

>0

> 1,

RS,− =

>0
︷ ︸︸ ︷

tan θS − tan θ2

tan θS + tan θ1
︸ ︷︷ ︸

>0

> 0, < 1.
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RS,± < 0 if the second incoming beam is from top half plane and RS,+ > 1, 0 < RS,− < 1
if the second incoming beam is from bottom half plane. R ≤ 0 contradicts the definition of
R and thus violates the dispersion relation. Therefore, there is no harmonic beam generated
if both incoming beams are from the top. Use Table 4.3 and [Eqs. (4.28) and (4.29)]:

KS
x = − tan θ1R

S,± + tan θ2 =
tan θS(tan θ2 − tan θ1)

tan θS ∓ tan θ2
< 0,

KS
z = RS,± − 1

{
> 0 w.r.t. RS,+

< 0 w.r.t. RS,− ,

for the second incoming beam from third quadrant. The same procedures can be applied to
incoming beam from quadrant IV. Therefore,

(cx)
S,± < 0,

(cz)
S,+ < 0,

(cz)
S,− > 0,

for the second incoming beam from quadrant III or IV. Or the outgoing “high frequency”
harmonics are propagating into second and third quadrant. Using reflection symmetries,
these statements can be generalized so that no beam needs to be in the first quadrant: a
high frequency cross is produced only if one of the incoming beams propagates upward and
the other downward. The cross has only two outgoing beams – one propagates upward and
the other downward. Both outgoing beams propagate horizontally in the same direction as
the incoming beam with the higher absolute value of its frequency. There is an exception
that the incoming beams have the same frequency and heading in opposite directions such
that RS,± = 1 and the corresponding group velocity is zero. This is not qualified to be a
wave.

4.2.2 Ψ = −1 and “high frequency” harmonics (χ > 0)

Similar procedures like in 4.2.1 are used to determine R again.But in this case, based on
[Eq. (4.9)]: tan θS < tan θ1 ≤ tan θ2. R

S,± < 0 if the second incoming beam is propagating
from right half plane, RS,± > 0 if that is from second quadrant and RS,± > 1 if that is from
quadrant III. By using Table 4.3 and [Eqs. (4.28) and (4.29)]:

(cx)
S,+ < 0,

(cx)
S,− > 0,

(cz)
S,± < 0,

for the second incoming beam is from left half plane. The outgoing “high frequency” har-
monics are propagating into third and fourth quadrant. Using reflection symmetries again,
these statements can be generalized so that no beam needs to be in the first quadrant: a
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high frequency cross is produced only if one of the incoming beams propagates leftward and
the other rightward. The cross has only two outgoing beams – one propagates rightward and
the other leftward. Both outgoing beams propagate vertically in the same direction as the
incoming beam with the higher absolute value of its frequency. The incoming beams have
the same frequency and propagate in the opposite directions is also an exception such that
RS,± = 1 and the corresponding group velocity is zero. Like in 4.2.1, this is not considered
to be a wave, either.

4.2.3 Ψ = +1 and “low frequency” harmonics (χ < 0)

(i) |χ| < 1/2

Since |χ| < 1/2 and therefore ω2
1 > (ωH = ±ωdiff)

2 > ω2
2, from [Eq. (4.8)]: tan θ1 >

tan θD > tan θ2. Similar procedures like in 4.2.1 are used to determine R. 0 < RD,+ <
1, RD,− < 0 if the second incoming beam is from quadrant I or II and RD,+ > 0, RD,− < 0 if
that is from quadrant III or IV. By using Table 4.3 and [Eqs. (4.28) and (4.29)]:

(cx)
D,+ < 0,

(cz)
D,+ > 0,

for the second incoming beam from first and second quadrant and

(cx)
D,+ < 0,

(cz)
D,+ < 0,

for the second incoming beam from third and fourth quadrant. The single, outgoing “low
frequency” harmonic is propagating into second quadrant if the second incoming beam is
from the top and into the third quadrant if that is from the bottom. In general, a low
frequency cross with only one “leg” is always generated. This is because in the quadratic
formula,

√
∆D is always greater than

∣
∣BD

∣
∣, thus no matter what the numerator, BD +

√
∆D,

is always positive and BD −
√
∆D < 0. Therefore, one root is always positive and another

one is always negative. The outgoing beam propagates in the same horizontal direction as
the incoming beam with higher frequency. The outgoing beam propagates vertically in the
direction opposite that of the vertical direction of the incoming beam with lower frequency.

(ii) |χ| = 1/2

Since ω2
1 > ω2

2 = (ωH = ±ωdiff)
2, by using [Eq. (4.8)]:

tan θ1 > tan θ2 = tan θD.

0 < RD,+ < 1, RD,− = 0 if the second incoming beam is from first quadrant, RD,+ =
0, RD,− < 0 for that from the left half plane and RD,+ > 0, RD,− = 0 if the second incoming
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beam is from fourth quadrant. Based on Table 4.3 and [Eqs. (4.28) and (4.29)]:

(cx)
D,+ < 0,

(cz)
D,+ > 0,

for the second incoming beam from first quadrant and

(cx)
D,+ < 0,

(cz)
D,+ < 0,

for the second incoming beam from fourth quadrant. The outgoing “low frequency” harmonic
is propagating into second quadrant if the second incoming beam is from the first quadrant
and into the third quadrant if that is from the fourth quadrant. Extend this to general
case, a low frequency cross is created only when both incoming beams propagate in the
same horizontal direction. The cross has only one beam. It propagates horizontally in the
direction of the incoming beams. The outgoing beam propagates vertically in a direction
opposite that of the incoming beam with lower frequency.

(iii) |χ| > 1/2

Because ω2
1 > ω2

2 > (ωH = ±ωdiff)
2, [Eq. (4.8)] shows

tan θ1 > tan θ2 > tan θD.

0 < RD,± < 1 if the second incoming beam is from first quadrant, RD,± < 0 for that is from
the left half plane and RD,+ > 0, 0 < RD,− < 1 if that is from fourth quadrant. By using
Table 4.3 and [Eqs. (4.28) and (4.29)]:

(cx)
D,+ < 0,

(cx)
D,− > 0,

(cz)
D,± > 0,

for the second incoming beam from first quadrant and

(cx)
D,+ < 0,

(cx)
D,− > 0,

(cz)
D,± < 0,

for the second incoming beam from fourth quadrant. The outgoing “low frequency” harmon-
ics are propagating into first and second quadrant if the second incoming beam is from the
first quadrant and into the third and fourth quadrant if that is from the fourth quadrant. In
this case, a low frequency cross is generated only when the two incoming beams propagate
in the same horizontal direction. The cross has two “legs”. They propagate vertically in the
direction opposite that of the incoming beam with lower frequency. The two outgoing “legs”
propagate horizontally in opposite directions.
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4.2.4 Ψ = −1 and “low frequency” harmonics (χ < 0)

(i) |χ| < 1/2

Since ω2
1 > (ωH = ±ωdiff)

2 > ω2
2, from [Eq. (4.9)]:

tan θ1 < tan θD < tan θ2.

Similar procedures like in 4.2.1 are used again to determine R. RD,+ > 1, RD,− < 0 if the
second incoming beam is from top half plane, RD,+ > 0, RD,− < 0 if that is from the bottom
half. Based on Table 4.3 and [Eqs. (4.28) and (4.29)]:

(cx)
D,+ > 0,

(cz)
D,+ < 0,

for the second incoming beam from first and fourth quadrant and

(cx)
D,+ < 0,

(cz)
D,+ < 0,

for the second incoming beam from second and third quadrant. The outgoing “low frequency”
harmonic is propagating into fourth quadrant if the second incoming beam is from the right
and into the third quadrant if that is from the left. A low frequency cross with only one
“leg” is always generated for the same reason Ψ = +1 counter-part has. The outgoing
beam propagates in the same vertical direction as the incoming beam with higher frequency.
The outgoing beam propagates horizontally in the direction opposite that of the horizontal
direction of the incoming beam with lower frequency.

(ii) |χ| = 1/2

Because ω2
1 > ω2

2 = (ωH = ±ωdiff)
2, [Eq. (4.9)] leads to tan θ1 < tan θ2 = tan θD. RD,+ >

1, RD,− = 0 if the second incoming beam is from the top half plane and RD,+ = 0, RD,− < 0
if that is from bottom half plane. By using Table 4.3 and [Eqs. (4.28) and (4.29)]:

(cx)
D,+ > 0,

(cz)
D,+ < 0,

for the second incoming beam from quadrant I and

(cx)
D,+ < 0,

(cz)
D,+ < 0,

for the second incoming beam from quadrant II. The outgoing “low frequency” harmonic
is propagating into fourth quadrant if the second incoming beam is from the first quadrant
and into the third quadrant if that is from the second quadrant. Extend this to general case
by using reflection symmetries, a low frequency cross is created only when both incoming
beams propagate in the same vertical direction. The cross has only one beam. It propagates
vertically in the direction of the incoming beams. The outgoing beam propagates horizontally
in a direction opposite that of the incoming beam with lower frequency.
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(iii) |χ| > 1/2

ω2
1 > ω2

2 > (ωH = ±ωdiff)
2 in this case therefore [Eq. (4.9)] shows:

tan θ1 < tan θ2 < tan θD.

RD,+ > 1, 0 < RD,− < 1 if the second incoming beam is from top half plane and RD,± < 0 if
the second incoming beam is from the bottom half plane. Based on Table 4.3 and [Eqs. (4.28)
and (4.29)]:

(cx)
D,± > 0,

(cz)
D,+ < 0,

(cz)
D,− > 0,

for the second incoming beam from first quadrant and

(cx)
D,± < 0,

(cz)
D,+ < 0,

(cz)
D,− > 0,

for the second incoming beam from second quadrant. The outgoing “low frequency” harmon-
ics are propagating into first and fourth quadrant if the second incoming beam is from the
first quadrant and into the second and third quadrant if that is from the second quadrant.
In this case, a low frequency cross is generated only when the two incoming beams propagate
in the same vertical direction. The cross has two “legs”. They propagate horizontally in the
direction opposite that of the incoming beam with lower frequency. The two outgoing “legs”
emit vertically in opposite directions.

4.2.5 Conclusion

The results are summarized in Table 4.6 for traditional branch and Table 4.7 for non-
traditional branch.

All selection rules for both traditional and non-traditional branch have been verified by
numerical simulations, e.g. see (Figs. 4.1,4.2 and 4.3). The selection rules derived in this
chapter are sufficient because no harmonic beams allowed by Tables 4.6 and 4.7 are missing
from numerical simulations (all the possibilities have been tested).

4.3 Reflection from a Sloping Boundary in Traditional

Branch

Here the selection rules are applied to explain the fundamental difference between the
super- and sub-critical reflection from a sloping topography. The slope angle γ is measured
from the horizontal and the incident gravity wave beam inclination relative to the horizontal
is θ.



29

Table 4.6 Selection rules for creating harmonic beams from two primary beams intersecting
at the origin. One incoming beam, labeled as source 1, lies in the first quadrant with
frequency ω1. The second incoming beam can probably from any quadrant with frequency
ω2. Depending on the value of χ ≡ ω2/ω1, there are four possible scenarios, indicated
by each of the four rows of the table. The first two columns specify χ. (Without loss of
generality, |χ| ≤ 1.) For each row, the quadrant numbers n of the allowable outgoing beams
are listed as a function of quadrant in which second incoming beam lies. Solvability requires
f 2 < (ωH)2 < N2.

sgn{χ} range of |χ| I II III IV
+1 none none 2, 3 2, 3
−1 |χ| < 1/2 2 2 3 3
−1 |χ| = 1/2 2 none none 3
−1 1/2 < |χ| < 1 1, 2 none none 3, 4

Table 4.7 As in Table 4.6 but solvability requires N2 < (ωH)2 < f 2.

sgn{χ} range of |χ| I II III IV
+1 none 3, 4 3, 4 none
−1 |χ| < 1/2 4 3 3 4
−1 |χ| = 1/2 4 3 none none
−1 1/2 < |χ| < 1 1, 4 2, 3 none none

4.3.1 Super-critical Reflection from a Slope

In this case, θ > γ, the reflection is called super-critical. The reflected beam and the
observed second-harmonic beam would both go up-slope.

The flow of reflection from the slope can be emulated from the colliding of the incident
primary beam and an image beam coming from lower-right, as depicted in (Fig. 4.4). In the
inviscid limit, the normal velocity on the slope is zero:

(v(i) + v(I)) · n̂ = 0,

where

n = (− sin γx̂+ cos γẑ),

v(i)z = −v(i)x tan θ,

v(I)z = v(I)x tan θ,

and “i” denotes incident beam and “I” refers to image beam.
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The strength of the image gravity wave beam can be determined by combining the above
equations,

v(I)x =
tan θ + tan γ

tan θ − tan γ
︸ ︷︷ ︸

>0

v(i)x =
sin (θ + γ)

sin (θ − γ)
︸ ︷︷ ︸

>0

v(i)x . (4.42)

The incident beam and image beam collide in the sense like the colliding beams are from
quadrant I and IV. The outgoing second harmonic beam propagates horizontally in the same
direction as the incident primary beam but vertically in the opposite direction according to
the first row and quadrant IV of Table 4.6.

4.3.2 Sub-critical Reflection from a Slope

When θ < γ, the flow is called sub-critical. The reflected beam would go down-slope
and the second-harmonic beam, if exists, would only allow to go up-slope. Similar to super-
critical case but the image beam is coming from upper-left, as depicted in (Fig. 4.5). In the
inviscid limit, the normal velocity on the slope is zero:

v(I)x = −tan θ + tan γ

tan γ − tan θ
︸ ︷︷ ︸

<0

v(i)x = −sin (θ + γ)

sin (γ − θ)
︸ ︷︷ ︸

<0

v(i)x .

The incident beam and image beam collide in the sense like the colliding beams are from
quadrant I and II. According to first row and quadrant II of Table 4.6, the second harmonics
are forbidden. The result is confirmed by experiments (e.g. (Peacock and Tabaei, 2005)) and
numerical simulations, see (Fig. 4.5(b)).
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(a) (b)

Figure 4.2 Numerical simulations of physical beams, shown by the magnitude of their hori-
zontal velocities. Each primary beam has frequencies of ±ω with N = 1.5394 rad/s < |ω| =
2.7125 rad/s < f = 6.1575 rad/s. And the “high frequency” harmonics have frequencies,
±2ω, with N < |2ω| < f . (a) (left) The primary beam sources lie within the circles in the
corners on the right side of the panel. Both primary beams propagate to the left, interact,
and no harmonic beams are produced. (b) (right) As in panel (a), but with sources at the
top and create two harmonic beams or “legs” with frequencies ±2ω.
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Figure 4.3 Numerical simulations of physical beams, shown by the magnitude of their hori-
zontal velocities, ωy. The primary beam sources lie within the circles approaching the origin
from quadrant I (labelled 0) and II (labelled 2). Each primary beam has its own frequencies
of ±ωin with N = 1.5394 rad/s < |ωin(2)| = 1.9764 rad/s < |ωin(0)| = 3.9803 rad/s <
f = 6.1575 rad/s and |χ| = 0.4965 < 1/2. From Table 4.7, the “high frequency” harmonics
should propagate into quadrant III and IV and the “low frequency” harmonics should only
emanate into quadrant III. The numerical simulation verifies the theoretical selection rules.
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(a) (b)

Figure 4.4 Schematic (not to scale) and numerical simulation of physical beams, shown by the
magnitude of their vertical velocities of super-critical reflection. In the numerical simulation,
the incoming beam has frequency of ±ω with N = 1.5394 rad/s > |ω| = 0.6781 rad/s >
f = 0.3848 rad/s. The incoming beam angle is 22◦ and the slope angle is 16.5◦ measured
from the nearest horizontal axis. The slope is shaded in gray in the schematic. (a) (left)
Schematic of supercritical reflection: The thick, double-headed arrow outside the slope is the
primary incoming beam and that lies inside the slope is the image beam. The thin, double-
headed arrow represents the primary reflected beam. The thin, single-headed arrow shows
the only one second harmonic beam allowed and the dashed, single-headed arrow shows the
non-existed second harmonic beam. (b) (right) The numerical simulation confirms that only
one harmonic beam is produced.
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(a) (b)

Figure 4.5 Schematic (not to scale) and numerical simulation of physical beams, shown by the
magnitude of their vertical velocities of sub-critical reflection. In the numerical simulation,
the incoming beam has frequency of ±ω with N = 1.5394 rad/s > |ω| = 0.6781 rad/s > f =
0.3848 rad/s. The incoming beam angle is 22◦ and the slope angle is 29◦ measured from the
nearest horizontal axis. The slope is shaded in gray in the schematic. (a) (left) Schematic
of subcritical reflection: The thick, double-headed arrow outside the slope is the primary
incoming beam and that lies inside the slope is the image beam. The thin, double-headed
arrow represents the primary reflected beam. The dashed, single-headed arrows show the
non-existed second harmonic beam. (b) (right) The numerical simulation confirms that no
harmonics are produced.
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Chapter 5

Selection Rules for Three-Dimensional
Inertia-Gravity Waves

5.1 Introduction

The observation of the low-mode internal tides (internal waves at tidal frequency) is
complicated by the interactions of waves produced by multiple generation sites, e.g. (Zhao
and Alford, 2009) and (Rainville et al., 2010). In (Rainville et al., 2010), the authors pointed
out that although wave interference is not a new concept in oceanography and physics but
there is little documentation advocated to interference of internal tides. This chapter is
devoted to fill a gap in the fundamental research of the nonlinear interaction of internal
waves.

5.2 Three dimensional inertia-gravity wave physics

The dispersion relation for three-dimensional internal gravity wave with rotational effect
can be written in the form, recall [Eq. (2.2)],

ω2 =
k2⊥
k2
N2 +

k2z
k2
f 2 (5.1)

where ω is the forcing frequency, N is the Brunt-Väisälä frequency or the buoyancy frequency
and f is the Coriolis parameter or the inertial frequency (f = f z). k⊥ ≡

√
k2x + k2y and kz

is the horizontal and vertical wave number respectively and k2 ≡ k2⊥ + k2z . The Cartesian
coordinate system is chosen in the way that the apex of the conical wave is the origin and
the vertical axis is parallel to the gravity. θ is the angle between the conical wave and the
horizontal plane passing through the apex such that 0 < θ < π/2. The geometric form of the
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dispersion relation which is more useful in deriving the selection rules is defined as follows,

cos2 θ =
k2z
k2

=
N2 − ω2

N2 − f 2
, (5.2a)

sin2 θ =
k2⊥
k2

=
ω2 − f 2

N2 − f 2
, (5.2b)

tan2 θ =
k2⊥
k2z

=
ω2 − f 2

N2 − ω2
. (5.2c)

The phase velocity cp and group velocity c ≡ ∇k ω = cx x + cy y + cz z obeying the
dispersion relation are

cp =
1

k2
(ω kx x+ ω ky y + ω kz z), (5.3)

and

c =
N2 − f 2

ω2 k2
(cos2 θ ω kx x+ cos2 θ ω ky y − sin2 θ ω kz z) (5.4)

=
N2 − ω2

ω2 k2
(ω kx x+ ω ky y − tan2 θ ω kz z). (5.5)

Also the ratio between the components of group velocity is:

cx : cy : cz = kx : ky : − tan2 θ kz = ω kx : ω ky : − tan2 θ ω kz. (5.6)

It is straightforward to show that the phase velocity is orthogonal to the group velocity
since cp · c = 0. The dispersion relation actually allows two branches of inertia-gravity
waves. The first branch which is the most-studied, traditional branch has f 2 < N2. A well-
known example of this branch is the IGW propagating in the deep ocean. Another branch
which is the less-studied, non-traditional branch has N2 < f 2. The “non-traditional” branch
(Gerkema and Exarchou, 2008; van Haren and Millot, 2004; van Haren, 2006) pretty much
is ignored in oceanography since it requires very weak stratification which is not valid in
most of the ocean on earth (one counter-example, see (van Haren and Millot, 2004), is the
Algerian Basin of the Western Mediterranean Sea). But it is important in astrophysics that
IGW, which has been shown in numerical simulations, is able to transfer angular momentum
effectively radially outward and create vortices far away from the protoplanetary disk in the
planet formation process.

Recall Ψ ≡ sgn{N2 − f 2}, the signum function of N2 − f 2, such that the traditional
branch is with Ψ = +1 and the non-traditional branch corresponds to Ψ = −1. tan θ is
a monotonically increasing (decreasing) function of the absolute value of forcing frequency,
|ω|, for traditional (non-traditional) branch:

tan θ1 > tan θ2 if |ω1| > |ω2| and Ψ = +1, (5.7)

tan θ1 < tan θ2 if |ω1| > |ω2| and Ψ = −1, (5.8)
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because
d tan2 θ

dω
=

2ω (N2 − f 2)

(N2 − ω2)2
.

According to [Eqs. (5.3) and (5.5)], the group velocity and “frequency modified wave
vector”, ω k, have the following relations:

sgn{cx} sgn{ω kx} = +Ψ,

sgn{cy} sgn{ω ky} = +Ψ,

sgn{cz} sgn{ω kz} = −Ψ.

By using dispersion relation [Eq. (5.2c)], group velocity [Eq. (5.5)] is actually a function
of ω kz only because

c =
|N2 − ω2|Ψ

(ω kz)2 (tan
2 θ + 1)

(|ω kz| tan θΨcosφx+ |ω kz| tan θΨsinφy − tan2 θ (ω kz) z), (5.9)

where φ ∈ [0, 2π] is the azimuthal angle of the group velocity vector relative to the IGW
source. And

ω kx = |ω kz| tan θΨ cosφ,

ω ky = |ω kz| tan θΨ sinφ,

since k2⊥ = k2z tan
2 θ, following [Eq. (5.2c)]. The key point is to recognize that the group

velocity is parallel to the position vector measured from the IGW source. If the coordinates
of the intersection points of two double conical waves are determined, the group velocities
from two sources are known up to a constant (i.e. the magnitude of the group velocity vector)
and the frequency modified wave vectors are also known.

The interference or interaction patterns of two intersecting IGWs located at (0, 0, 0) and
(2H, 0, V ) are observed analytically here. The origin of the coordinate system are chosen to
be the apex of the first source. The x-coordinate is rotated to be parallel to the center line
connecting the two sources. Without loss of generality, H and V are positive by definition
and cannot be equal to zero at the same time. Also assume the magnitude of the forcing
frequency of the first source is not less than that of the second source, i.e. |ω1| ≥ |ω2|.

If the intersection point is at (xI , yI , zI), the azimuthal angles, φ1, φ2, relative to the
sources are

cosφ1 =
xI
r1
, sinφ1 =

yI
r1
,

and

cosφ2 =
xI − 2H

r2
, sinφ2 =

yI
r2
,

where r1 =
√

x2I + y2I = |zI | cot θ1 and r2 =
√

(xI − 2H)2 + y2I = |(zI − V )| cot θ2 are the
distances between the intersection point and sources. The three typical geometric patterns,
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Figure 5.1 Three intersection patterns. (a) (left) Geometric pattern I. At certain zI , the two
conical internal gravity waves intersect at some xI < 0. The red circle is the locus of internal
gravity wave emitted from source number 1 located at (0, 0, 0). The blue circle is the locus
of internal gravity wave emitted from source number 2 located at (2H = 22.7398 cm, 0, V =
35.5325 cm). Brunt-Väisälä frequency is 1.5394 rad s−1 and Coriolis parameter equals to a
quarter of Brunt-Väisälä frequency. Source number 1 is forced at frequency ω1 = 0.9351 rad
s−1. Forcing frequency of source number 2 is ω1/2. Under these settings, α2 > α1 > 1. For
every pair of α1 and α2 that yields xI < 0 (although α2 > α1 > 1 is used to generate this
schematics), cosΘ is always greater than zero because r2 is always greater than 2H in this
configuration. (b) (middle) Geometric pattern II. Parameters are the same as in Fig. 5.1(a).
But at a different zI , the two conical internal gravity waves intersect at 0 < xI < 2H. In this
configuration, range of cosΘ varies considerably from case to case. (c) (right) Geometric
pattern III. Parameters are the same as in Fig. 5.1(a). But at another different zI , the
two conical internal gravity waves intersect at xI > 2H. For every pair of α1 and α2 yields
xI > 2H, cosΘ is always greater than zero because r1 is always greater than 2H in this
configuration.

(I) xI < 0, (II) 0 < xI < 2H and (III) xI > 2, are illustrated in (Fig. 5.1(a), 5.1(b) and
5.1(c)).

With the knowledge of the coordinates of an intersection point, the frequency modified
wave vectors of both IGWs, ω1 k1 and ω2 k2, can be expressed in terms of the azimuthal
angles φ1, φ2, absolute values of the polar angles θ1, θ2, the vertical components of the wave
vectors and the utility variable, Ψ:

ω1 kx,1 = cosφ1 tan θ1 |ω1 kz,1|Ψ,
ω2 kx,2 = cosφ2 tan θ2 |ω2 kz,2|Ψ,
ω1 ky,1 = sinφ1 tan θ1 |ω1 kz,1|Ψ,
ω2 ky,2 = sinφ2 tan θ2 |ω2 kz,2|Ψ,
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and

ω1 kz,1 = −sgn{zI} |ω1 kz,1|Ψ,
ω2 kz,2 = −sgn{zI − V } |ω2 kz,2|Ψ.

The nonlinear interactions of the two sources would possibly generate harmonics at two
frequencies. One would be the sum and the other would be the difference of the intersecting
IGWs frequencies. The “high frequency” harmonics have frequencies with ±ωsum and the
“low frequency” harmonics are forcing at ±ωdiff where ωsum ≡ |ω1| + |ω2| and ωdiff ≡ |ω1| −
|ω2| > 0. The quadratic nonlinearities require that the frequencies and wave vectors of
harmonics being the sum of the frequencies and wave vectors of the incoming IGWs:

ωH = ω1 + ω2, (5.10)

kH = k1 + k2, (5.11)

where “H” stands for “Harmonics” and ωH is either ±ωsum or ±ωdiff.
Rewrite [Eq. (5.11)] in component form:

kHx = kx,1 + kx,2 = (ω1 kx,1)/ω1 + (ω2 kx,2)/ω2,

kHy = ky,1 + ky,2 = (ω1 ky,1)/ω1 + (ω2 ky,2)/ω2,

kHz = kz,1 + kz,2 = (ω1 kz,1)/ω1 + (ω2 kz,2)/ω2,

and therefore the frequency modified wave vectors for the harmonic waves written in terms
of kz,1, kz,2 are

ωH kHx = ωH
(

cosφ1 tan θ1
|ω1 kz,1|

ω1
+ cosφ2 tan θ2

|ω2 kz,2|

ω2

)

Ψ,

ωH kHy = ωH
(

sinφ1 tan θ1
|ω1 kz,1|

ω1
+ sinφ2 tan θ2

|ω2 kz,2|

ω2

)

Ψ,

ωH kHz = ωH
(

−sgn{zI} |ω1 kz,1|

ω1
− sgn{zI − V } |ω2 kz,2|

ω2

)

Ψ.

(5.12)

Instead of working on kz,1 and kz,2 directly, it is more succinct to use kz,2 and R ≡
|kz,1|/|kz,2| > 0, the ratio between vertical components of wave vectors of two intersecting
double conical waves. It will be shown later that the dispersion relation is function of R
only. The ratio between two forcing frequencies, χ ≡ ω2/ω1, is proved to be useful later, too.

[Eq. (5.12)] can be simplified in accordance with ω1 ω2 > 0 or ω1 ω2 < 0 and by using
the above definitions. For ω1 ω2 > 0 or equivalently χ > 0,

KS
x = (cosφ1 tan θ1R + cosφ2 tan θ2),

KS
y = (sinφ1 tan θ1R + sinφ2 tan θ2),

KS
z = (−sgn{zI}R− sgn{zI − V }),

ωH (kHx , k
H
y , k

H
z ) = (KS

x, KS
y , KS

z ) (Ψ |kz,2| ωsum),

(cx)
S : (cy)

S : (cz)
S = KS

x : KS
y : − tan2 θS KS

z ,
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and for ω1 ω2 < 0 or equivalently χ < 0,

KD
x = (cosφ1 tan θ1R− cosφ2 tan θ2),

KD
y = (sinφ1 tan θ1R− sinφ2 tan θ2),

KD
z = (−sgn{zI}R + sgn{zI − V }),

ωH (kHx , k
H
y , k

H
z ) = (KD

x , KD
y , KD

z ) (Ψ |kz,2| ωdiff),

(cx)
D : (cy)

D : (cz)
D = KD

x : KD
y : − tan2 θD KD

z .

The relation between K’s and the group velocity which is a function of R only is very
important:

sgn{(cx)H} = sgn{KH
x },

sgn{(cy)H} = sgn{KH
y },

sgn{(cz)H} = −sgn{KH
z }, (5.13)

where ’H’ can be either ’S’ or ’D’.
The harmonics are also required to satisfy their own dispersion relations in geometric

form [Eq. (5.2c)] respectively so that lead to quadratic equations in R,

tan2 θS =
(KS

x)
2 + (KS

y)
2

(KS
z )

2
⇒ ASR2 − 2BSR + CS = 0, (5.14)

if ω1 ω2 > 0 or χ > 0 and

tan2 θD =
(KD

x )
2 + (KD

y )
2

(KD
z )

2
⇒ ADR2 − 2BDR + CD = 0, (5.15)

if ω1 ω2 < 0 or χ < 0. The exact definitions of BS, BD, KS
z and KD

z are listed in Table 5.1
because of their dependencies on zI . But the formal definitions of AS, AD, CS, CD and cosΘ
are independent of zI :

AS ≡ Ψ(tan2 θS − tan2 θ1) > 0,

CS ≡ Ψ(tan2 θS − tan2 θ2) > 0,

AD ≡ Ψ(tan2 θ1 − tan2 θD) > 0,

CD ≡ Ψ(tan2 θ2 − tan2 θD)







< 0 |χ| < 1/2
= 0 |χ| = 1/2
> 0 |χ| > 1/2

,

cosΘ ≡ cosφ1 cosφ2 + sinφ1 sinφ2 = cos (φ2 − φ1) .

A quadratic equation has real roots if its discriminant is positive or zero. Accordingly,
discriminants of [Eqs. (5.14) and (5.15)] are greater than or equal to zero is a necessary
condition for R to be positive:

∆S = (BS)2 − AS CS ≥ 0,∆D = (BD)2 − AD CD ≥ 0.
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Table 5.1 Definitions of KS
z , KD

z , B
S
z and BD

z for zI at different ranges. 0 < zI < V collapses
into empty set when V ≡ 0.

zI > V, η > 1, ζ > 0 or zI , η, ζ < 0 0 < zI < V, 0 < η < 1
KS

z sgn{η or ζ} (−R− 1) −R + 1
KD

z sgn{η or ζ} (−R + 1) −R− 1
BS

z Ψ(tan θ1 tan θ2 cosΘ− tan2 θS) Ψ (tan θ1 tan θ2 cosΘ + tan2 θS)
BD

z Ψ(tan θ1 tan θ2 cosΘ− tan2 θD) Ψ (tan θ1 tan θ2 cosΘ + tan2 θD)

The roots then are given by the quadratic formula:

RS,± =
BS ±

√
∆S

AS
, RD,± =

BD ±
√
∆D

AD
.

Both RS,± and RD,± are needed to be positive in order not to violate the definition of R. Each
R corresponds to an internal gravity wave beam because frequency modified wave vector is
a constant vector multiplied by |ω kz,2| and the group velocity is another constant vector
divided by |ω kz,2| once R is fixed. In other words, the group velocities for different kz,2’s
with the same R are parallel to each other, i.e. forming a beam.

Lemma 2 [Eqs. (5.14) and (5.15)] lead to another drastic conclusion that for each harmonic
frequency (ω1 + ω2 or ω1 − ω2) at most there are only TWO BEAMS, not a double conical
wave, generated from quadratic nonlinearities at each intersection point.

The discriminants can be written in various equivalent forms (in the following formulas,
’H’ can be either ’S’ or ’D’):

∆H ≡ (tan θ1 tan θ2 cosΘ± tan2 θH)2

− (tan2 θH − tan2 θ1)(tan
2 θH − tan2 θ2) (5.16)

⇒ ∆H = (tan θ1 tan θ2 cosΘ± tan2 θH)2

− (tan θ1 tan θ2 − tan2 θH)2 + tan2 θH(tan θ1 − tan θ2)
2 (5.17)

⇒ ∆H = (tan θ1 tan θ2 cosΘ± tan2 θ1)
2

+ (tan2 θH − tan2 θ1) (tan
2 θ1 ± 2 tan θ1 tan θ2 + tan2 θ2)

︸ ︷︷ ︸

>0

, (5.18)

where

∆H

{
> (tan θ1 tan θ2 cosΘ± tan2 θ1)

2 if tan2 θH > tan2 θ1
< (tan θ1 tan θ2 cosΘ± tan2 θ1)

2 if tan2 θH < tan2 θ1
. (5.19)

Each form would be useful under different circumstances (e.g. to determine ∆H > 0 or R
is greater than unity or not which is used to determine the direction where the harmonics
propagate into).
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5.3 Selection rules, two sources forced at single fre-

quency

As described before, the first source is always located at (0, 0, 0). But the position of
the second source can be divided into three categories:

• Case I: H = 0, the horizontal distance between two sources is zero, the second source
is located at (0, 0, V ).

• Case II: V = 0, the vertical distance between two sources is zero, the second source is
located at (2H, 0, 0).

• Case III: H, V 6= 0, most general case, the second source is located at (2H, 0, V ).

Since the two sources are forced at single frequency, for simplicity set ω1 = ω2 = ω and
θ1 = θ2 = θ.

5.3.1 Case I: H = 0

The locus of the first IGW source in z = zI plane is

x2I + y2I = z2I cot2 θ

and that of the second source is

x2I + y2I = (zI − V )2 cot2 θ.

The two double conical waves intersect only at zI = V/2, thus x2I + y2I = (V/2)2 cot2 θ.
Therefore the locus of the intersection points is a circle in z = V/2 plane where (xI , yI , zI) =
(V/2 cot θ cosφ, V/2 cot θ sinφ, V/2) and φ ∈ [0, 2π] is the azimuthal angle. cosΘ can be
determined easily since cosφ1 = cosφ2 = cosφ and sinφ1 = sinφ2 = sinφ. This leads to
cosΘ = cos2 φ + sin2 φ = 1. Each intersection point is acting like the collision point in
two-dimensional colliding beams problem. The interaction scenario is analogous to j = 4
case studied in Chapter 4: both incoming beams are propagating horizontally in the same
direction but vertically in opposite directions. From Tables 4.6 and 4.7, one would expect
harmonics are produced for Ψ = +1 and harmonics are forbidden if Ψ = −1.

Since 0 < zI < V , it turns out that BS = Ψ(tan2 θS+tan2 θ) and ∆S = 4 tan2 θS tan2 θ >
0 by using Table 5.1 and assigning cosΘ = 1. Therefore,

RS,± =
(tan θS ±Ψtan θ)2

tan2 θS − tan2 θ
. (5.20)
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(A) Ψ = +1

From [Eq. (5.7)] and applying |ωH| = 2|ω| > |ω|, tan θS > tan θ thus

RS,+ =
tan θS + tan θ

tan θS − tan θ
> 1 ⇒ KS

z < 0 ⇒ (cz)
S,+ > 0,

0 < RS,− =
tan θS − tan θ

tan θS + tan θ
< 1 ⇒ KS

z > 0 ⇒ (cz)
S,− < 0.

By using the facts that sgn{KS
z} = sgn{−R + 1} from Table 5.1, RS,+ > 1 and sgn{cz} =

−sgn{KS
z} from [Eq. (5.13)], the corresponding vertical direction group velocity thus is

greater than zero, i.e. the beam is propagating upward. On the other hand, the beam
corresponds to 0 < RS,− < 1 is propagating downward using the same procedures. Since
KS

x = cosφ tan θ (R + 1) > 0 and KS
y = sinφ tan θ (R + 1) > 0, cy/cx = sinφ/ cosφ by using

[Eq. (5.6)]. Therefore the harmonics are going radially outward. One of the two harmonic
beams is propagating upward and radially outward. The other beam is propagating downward
and radially outward.

(B) Ψ = −1

In this case, tan θS < tan θ holds instead. The numerator of [Eq. (5.20)] is always
positive but the denominator is less than zero so that R < 0 which violates the definition of
R > 0. Therefore no harmonics are generated if Ψ = −1 (non-traditional branch: f 2 > N2).

RS,± =

>0
︷ ︸︸ ︷

(tan θS ∓ tan θ)2

tan2 θS − tan2 θ
︸ ︷︷ ︸

<0

< 0.

5.3.2 Case II: V = 0

The locus of the first IGW source in z = zI plane is x2I + y2I = z2I cot2 θ and that of the
second source is (xI −2H)2+y2I = z2I cot2 θ. The two IGWs thus intersect if z2I ≥ H2 tan2 θ.
The coordinates of intersection points are (H, ±W, zI) where W ≡

√

z2I cot
2 θ −H2. Be-

cause W = 0 when z2I = H2 tan2 θ, the two double conical waves first come into contact
in a single point. Since the coordinates are known, cosφ1 = H/r, cosφ2 = −H/r and
sinφ1 = sinφ2 = ±W/r where r2 ≡ H2 +W 2 are also determined. Therefore, the analytical
form of cosΘ can be obtained:

cosΘ =
W 2 −H2

W 2 +H2
.

When zI → ±H tan θ, cosΘ → −1 and zI → ±∞, cosΘ → 1, the range of cosΘ is
[−1,+1]. Only the case that yI > 0 and zI > 0 is considered here since the selection rules
can be derived using symmetric properties for all other intersection points with yI < 0 or
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zI < 0. The intersection points that have zI = ±H tan θ are analogous to j = 2 case in
Chapter 4 (after applying reflection symmetry about the x-axis): both incoming beams are
propagating vertically in the same direction but horizontally in opposite directions. But
when zI gradually moves away from ±H tan θ, the interaction starts to deviate from the
two-dimensional collision scenario. From Tables 4.6 and 4.7, one would expect harmonics
are not produced for Ψ = +1 and harmonics are produced if Ψ = −1 and the intersection
points are not too far away from ±H tan θ.

Since 0 < zI < V , it turns out that BS = Ψ(tan2 θ cosΘ − tan2 θS) from Table 5.1 and
the discriminant is

∆S = (tan2 θ cosΘ− tan2 θS)2 − (tan2 θS − tan2 θ)2

< (tan2 θ cosΘ− tan2 θS)2 = (BS)2,

∆S = [tan2 θ (cosΘ− 1)
︸ ︷︷ ︸

≤0

] [tan2 θ (cosΘ + 1)− 2 tan2 θS].

(A) Ψ = +1

Since tan θS > tan θ and accordingly [tan2 θ (cosΘ + 1) − 2 tan2 θS] < 0, ∆S is always
greater or equal to zero, ∆S ≥ 0.

Applying ∆S <
(
BS

)2
and BS < 0 to calculate RS,± gives:

RS,± =

BS<0
︷ ︸︸ ︷

(tan2 θ cosΘ− tan2 θS)±

<|BS|
︷ ︸︸ ︷√
∆S

tan2 θS − tan2 θ
︸ ︷︷ ︸

>0

< 0

because no matter what the numerator is always less than zero. This contradicts the defini-
tion that R > 0. Therefore there is no harmonic beam generated.

(B) Ψ = −1

Since tan θS < tan θ, ∆S is greater or equal to zero only if [tan2 θ (cosΘ+1)−2 tan2 θS] ≤
0, i.e.

cosΘ ≤ −1 +
2 tan2 θS

tan2 θ
,

and after rearrangement, the above inequality and the roots, R, have the following forms:

tan2 θS − tan2 θ cosΘ ≥ tan2 θ − tan2 θS > 0,

RS,± =

BS>0
︷ ︸︸ ︷

(tan2 θS − tan2 θ cosΘ)±

<|BS|
︷ ︸︸ ︷√
∆S

tan2 θ − tan2 θS
︸ ︷︷ ︸

>0

> 0.
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Applying [Eq. (A.1)], cosΘ ≤ −1/2 (a very crude and conservative estimate) or accordingly
z2I ≤ (2H)2 tan2 θ/3. This means harmonics are permitted to generate while |zI | is in the
neighborhood of H tan θ although the two conical IGWs intersect from |zI | = H tan θ to ∞.
Rewriting R and ∆S to determine R’s are greater than unity or not lead to

RS,± = 1 +
[2 tan2 θS − tan2 θ(1 + cosΘ)]±

√
∆S

tan2 θ − tan2 θS
,

∆S = {[tan2 θ (cosΘ + 1)− 2 tan2 θS]

− 2(tan2 θ − tan2 θS)
︸ ︷︷ ︸

>0

} [tan2 θ (cosΘ + 1)− 2 tan2 θS]

> [2 tan2 θS − tan2 θ (cosΘ + 1)]2.

Consequently, RS,+ > 1, 0 < RS,− < 1. In order to determine the direction of the group
velocity, K’s are needed to be determined first:

KS
x = (H/r) tan θ (R− 1) ⇒ KS,+

x > 0,KS,−
x < 0,

KS
y = (W/r) tan θ (R + 1) ⇒ KS,±

y > 0,

KS
z = −R− 1 ⇒ KS,±

z < 0.

The direction of the corresponding group velocity is

sgn{cx} = sgn{KS
x} ⇒ (cx)

S,+ > 0, (cx)
S,− < 0,

sgn{cy} = sgn{KS
y} ⇒ (cy)

S,± > 0,

sgn{cz} = −sgn{KS
z} ⇒ (cz)

S,± > 0.

Each intersection point satisfying cosΘ ≤ −1+2 tan2 θS/ tan2 θ is acting like an IGW source
emanating TWO BEAMS (NOT a double conical wave!) propagating upward. An observer
sitting at the intersection point and facing north would only see one beam emanating right-
ward and another leftward in this case.

5.3.3 Case III: H, V 6= 0

The derivation would rely on a non-dimensional parameter α and two non-dimensional
variables ξ, η where

α ≡ V

2H tan θ
> 0,

ξ ≡ xI
H
,

η ≡ zI
V
.
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The range of intersection points is dependent on α. If α > 1, the η-coordinate of the
intersection points must satisfy

0 <
1− α−1

2
≤ η ≤ 1 + α−1

2
< 1, (5.21)

and cosΘ in this region is:

cosΘ = −1 +
α2 − 1

2α2η(1− η)
.

Thus, the range of cosΘ can be determined to be +1 ≥ cosΘ ≥ −α−2 = cosΘ(η = 1/2)
where cosΘ(η = [1± α−1]/2) = +1.

On the other hand, if 0 < α < 1, the intersection point is either in

0 >
1− α−1

2
≥ η, or η ≥ 1 + α−1

2
> 1, (5.22)

and cosΘ is in the form:

cosΘ = 1− 1− α2

2α2η(η − 1)
.

cosΘ is in [−1,+1] where cosΘ(η = [1± α−1]/2) = −1 and cosΘ(η → ±∞) = +1.
The non-dimensional coordinates of intersection points obey the following relation:

ξ = 1 + α2(2η − 1). (5.23)

(A) α > 1

[Eq. (5.21)] shows the intersection region is in 0 < η < 1. From Table 5.1, this leads to

BS = Ψ(tan2 θ cosΘ + tan2 θS),

and ∆S < (BS)2 is obtained:

∆S = (tan2 θ cosΘ + tan2 θS)2 − (tan2 θS + tan2 θ)2

< (tan2 θ cosΘ− tan2 θS)2 = (BS)2,

∆S = [tan2 θ (cosΘ + 1)
︸ ︷︷ ︸

≥0

] [tan2 θ (cosΘ− 1) + 2 tan2 θS].

(A1) Ψ = +1
From [Eq. (5.7)], tan θS > tan θ is obtained and recall that +1 ≥ cosΘ ≥ −α−2, therefore

BS = tan2 θ cosΘ + tan2 θS > tan2 θS − α−2 tan2 θ > 0.

And after rearrangement:

tan2 θ (cosΘ− 1) + 2 tan2 θS ≥ 2 tan2 θS − (1 + α−2) tan2 θ > 0
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leads to ∆S > 0 because 0 < α−2 < 1.
Accordingly, the two real roots given by quadratic formula are

RS,± =

BS>0
︷ ︸︸ ︷

(tan2 θS + tan2 θ cosΘ)±

<|BS|
︷ ︸︸ ︷√
∆S

tan2 θS − tan2 θ
︸ ︷︷ ︸

>0

> 0.

The above equation can be rewritten in the following form to determine R is greater than
unity or not:

RS,± = 1 +

>0
︷ ︸︸ ︷

[tan2 θ(1 + cosΘ)]±
√
∆S

tan2 θS − tan2 θ
,

and ∆S is determined to be greater than [tan2 θ (cosΘ + 1)]2,

∆S = [tan2 θ (cosΘ + 1)] [tan2 θ (cosΘ + 1) + 2(tan2 θS − tan2 θ)]

> [tan2 θ (cosΘ + 1)]2.

Therefore, RS,+ > 1 and 0 < RS,− < 1. From Table 5.1, KS
z = −R + 1.. The corresponding

vertical direction group velocity has

sgn{cz} = −sgn{KS
z} ⇒ (cz)

S,+ > 0, (cz)
S,− < 0.

The nonlinear interference pattern would be at every intersection point one beam is emanating
upward and another is traveling downward. The numerical simulation, see (Fig. 5.2 and 5.3),
verifies the selection rules derived above.

(A2) Ψ = −1
[Eq. (5.8)] shows that tan θS < tan θ. ∆S ≥ 0 if and only if [tan2 θ (cosΘ−1)+2 tan2 θS] ≥

0, i.e.

cosΘ ≥ 1− 2 tan2 θS

tan2 θ
.

But, by rearranging the above inequality, it turns out that

tan2 θ cosΘ + tan2 θS ≥ tan2 θ − tan2 θS > 0,

and accordingly the roots given by the quadratic formula are less than zero,

RS,± =

BS<0
︷ ︸︸ ︷

−(tan2 θS + tan2 θ cosΘ)±

<|BS|
︷ ︸︸ ︷√
∆S

tan2 θ − tan2 θS
︸ ︷︷ ︸

>0

< 0,

which violates the definition that R > 0.
In this case, either there is no real root or the roots are negative. Harmonics are not

allowed to generate.
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(a) (b)

Figure 5.2 In this numerical simulation, Brunt-Väisälä frequency, N , equals to 1.5394 rad
s−1, f = N/4 and forcing frequency is at 0.4N . The figures are horizontal slices of the
density field at z = 0.4V, 0.8V where the two IGW sources located at (−H, 0,−V/2) and
(H, 0, V/2). The colormap is chosen to emphasize the second harmonics. α = 1.5 > 1 in
this case. The long dotted curve is the theoretical locus of second harmonics propagating
upward calculated by applying the selection rules. (a) (left) z = 0.4V . (b) (right) z = 0.8V .

(B) 0 < α < 1

The interaction pattern is exactly the same as in Case II. Although for non-traditional
branch, Ψ = −1, the intersection region that allows to generate harmonics is cosΘ ≤
−1 + 2 tan2 θS tan−2 θ. Using the estimate cosΘ ≤ −1/2 shows that the harmonics are
allowed in limited regions (1+α−1)/2 ≤ η ≤ (1+

√

(4α−2 − 1)/3)/2 (and the corresponding

ξ: 1 < 1+α ≤ ξ ≤ 1+α2
√

(4α−2 − 1)/3 < 2) and (1−α−1)/2 ≥ η ≥ (1−
√

(4α−2 − 1)/3)/2

(and the corresponding ξ: 1 > 1−α ≥ ξ ≥ 1−α2
√

(4α−2 − 1)/3 > 0 ). This implies that the
second harmonics are permitted to generate only in the neighborhoods of the IGW sources
(slightly higher than the second source and lower than first source vertically and in between
the two sources horizontally since 0 < ξ < 2).

5.3.4 Rule of Thumb

In the traditional branch, N2 > f 2, the high frequency harmonics are only allowed
to generate if and only if one of the two interacting conical waves is travelling downward
and the other upward. This constraint is satisfied when there is no horizontal distance
(H = 0) between two IGW sources or the nondimensional parameter α ≡ V/(2H tan θ) >
1. The phase difference between two internal gravity waves is NOT AT ALL important in
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(a) (b)

Figure 5.3 As in (Fig. 5.2), but the field plotted is the vertical velocity.

determining interference pattern. This geometric constraint is not commonly satisfied in the
ocean on earth since the ocean depth is typically pretty shallow compared to the horizontal
extent. For example, if the horizontal and vertical distance between two sources is 100 km
and 1 km (a very rough estimation for IGWs interacted near Hawaiian ridge), α ≈ 0.17 for
IGWs forced at M2 tidal frequency. In other words, if this geometric constraint is not met,
the IGWs just nonlinearly interact locally without generating higher harmonics and losing
energy. This is probably good since the IGW can thus propagate far away without feeding
energy to the local nonlinear interactions with other IGW sources.

On the other hand, the high frequency harmonic beams are permitted when two IGWs
both travelling upward or downward (no vertical distance between two IGW sources, V = 0,
or more general case: α < 1) in the non-traditional branch, f 2 > N2. In addition, another
geometric constraint, cosΘ ≤ −1 + 2 tan2 θS/ tan2 θ where tan2 θS/ tan2 θ is estimated to be
less than one quarter, must also be satisfied. This requires the intersection point is not too
far away from the sources. Consequently, the harmonic waves can only be detected in a
confined space in the vicinity of the sources.

5.4 Selection rules, two sources forced at individual

frequencies

Define ”slope ratio” in the following way,

Sr ≡ tan θ2
tan θ1

{
< 1, Ψ = +1
> 1, Ψ = −1

. (5.24)

Later on, it would be shown that Sr is critical in determining selection rules.
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From [Eqs. (5.7) and (5.8)] and by definition
∣
∣ωS

∣
∣ = |ω1|+ |ω2| > |ω1| > |ω2|, this leads

to:

for Ψ = +1 ⇒ θS > θ1 > θ2, tan θS > tan θ1 > tan θ2, (5.25a)

for Ψ = −1 ⇒ θS < θ1 < θ2, tan θS < tan θ1 < tan θ2. (5.25b)

The relation between
∣
∣ωD

∣
∣ = |ω1| − |ω2|, |ω1| and |ω2| is a bit complicated. It is not only

dependent on Ψ but also the absolute value of χ (recall that χ < 0):

for |χ| < |1/2| ⇒ |ω2| < |ωD| < |ω1|,
for |χ| = |1/2| ⇒ |ωD| = |ω2| < |ω1|,
for |χ| > |1/2| ⇒ |ωD| < |ω2| < |ω1|.

Therefore, for different pairs of Ψ and |χ|, there are six variations of the relation between
θD, θ1 and θ2:

for Ψ = +1 and |χ| < 1/2 ⇒ θ1 > θD > θ2, tan θ1 > tan θD > tan θ2, (5.26a)

for Ψ = +1 and |χ| = 1/2 ⇒ θ1 > θ2 = θD, tan θ1 > tan θ2 = tan θD, (5.26b)

for Ψ = +1 and |χ| > 1/2 ⇒ θ1 > θ2 > θD, tan θ1 > tan θ2 > tan θD, (5.26c)

for Ψ = −1 and |χ| < 1/2 ⇒ θ1 < θD < θ2, tan θ1 < tan θD < tan θ2, (5.27a)

for Ψ = −1 and |χ| = 1/2 ⇒ θ1 < θ2 = θD, tan θ1 < tan θ2 = tan θD, (5.27b)

for Ψ = −1 and |χ| > 1/2 ⇒ θ1 < θ2 < θD, tan θ1 < tan θ2 < tan θD. (5.27c)

The first source is placed at the origin of the coordinate system. Then the position of
the second source is divided into three categories like what have been done in the previous
section:

• Case IV: H = 0, the second source is located at (0, 0, V ).

• Case V: V = 0, the second source is located at (2H, 0, 0).

• Case VI: H, V 6= 0, the second source is located at (2H, 0, V ).

5.4.1 Case IV: H = 0

The locus of the first IGW source in z = zI plane is x
2
I + y2I = z2I cot2 θ1 and that of the

second source is x2I + y2I = (zI − V )2 cot2 θ2. The two double conical waves would intersect
at two different vertical positions,

η =
1

1− Sr

{
> 1, Ψ = +1
< 0, Ψ = −1

,
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and

0 < η =
1

1 + Sr
< 1,

for both Ψ = ±1. The loci x2I + y2I = [V/(1 ∓ Sr)]2 cot2 θ1 in z = V/(1 ∓ Sr) plane are
circles. (xI , yI , zI) = (|V/(1∓ Sr)| cot θ1 cosφ, |V/(1∓ Sr)| cot θ1 sinφ, V/[1∓ Sr]) where
φ ∈ [0, 2π] is the azimuthal angle. Since cosφ1 = cosφ2 = cosφ and sinφ1 = sinφ2 = sinφ,
this leads to cosΘ = cos2 φ+ sin2 φ = 1 for every intersection point.

(A) Intersection point: η = (1− Sr)−1

Similar to Case I, each intersection point is acting like the collision point in two-
dimensional colliding beams problem. But the interaction scenario here is analogous to
j = 1 case in Chapter 4 (after applying reflection symmetries): both incoming beams are
propagating in the same direction vertically and horizontally. From Tables 4.6 and 4.7, one
would expect high frequency harmonics are forbidden for both Ψ = ±1.

Although for Ψ = +1, zI is higher than V and zI is lower than zero for Ψ = −1,
BS = Ψ(tan θ1 tan θ2 − tan θS) and BD = Ψ (tan θ1 tan θ2 − tan θD) are formally the same
from Table 5.1. Because cosΘ = 1, ∆S and ∆D therefore are always greater than zero:

∆S = tan2 θS (tan θ1 − tan θ2)
2 > 0,∆D = tan2 θD (tan θ1 − tan θ2)

2 > 0.

After putting everything together, the quadratic formula gives the roots

RS,± =
tan θ1 tan θ2 − tan2 θS

tan2 θS − tan2 θ1
± tan θS(tan θ1 − tan θ2)

tan2 θS − tan2 θ1
,

and

RD,± =
tan θ1 tan θ2 − tan2 θD

tan2 θ1 − tan2 θD
± tan θD(tan θ1 − tan θ2)

tan2 θ1 − tan2 θD
.

(A1) Ψ = +1

(i) χ > 0, tan θS > tan θ1 > tan θ2
The roots reduce to

RS,± = −

>0
︷ ︸︸ ︷

tan θS ± tan θ2

tan θS ± tan θ1
︸ ︷︷ ︸

>0

< 0.

This violates the restriction that R > 0 so no harmonics with frequencies ±ωsum are permit-
ted.
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(ii) χ < 0, |χ| < 1/2, tan θ1 > tan θD > tan θ2
Again, the roots cab be simplified to

0 < RD,+ =

>0
︷ ︸︸ ︷

tan θ2 + tan θD

tan θ1 + tan θD
︸ ︷︷ ︸

>0

< 1, RD,− =

<0
︷ ︸︸ ︷

tan θ2 − tan θD

tan θ1 − tan θD
︸ ︷︷ ︸

>0

< 0.

RD,− < 0 does not satisfy the dispersion relation of the low frequency harmonics. The
vertical direction group velocity with R = RD,+, using the fact that KD,+

z = −RD,+ + 1 > 0
from Table 5.1, has

sgn{cz} = −sgn{KD
z } ⇒ (cz)

D,+ < 0.

Because the values of KD
x and KD

y can actually be determined, too:

KD
x = cosφ (tan θ1R− tan θ2),

KD
y = sinφ (tan θ1R− tan θ2).

Thus cy/cx = sinφ/ cosφ and the group velocity is going radially. It is radially inward or
outward can be determined by computing

tan θ1R
D,+ − tan θ2 =

tan θD (tan θ1 − tan θ2)

tan θ1 + tan θD
> 0.

Only one low frequency harmonic beam is produced with frequencies ±ωdiff from the intersec-
tion point and is emanating downward and radially outward.

(iii) χ < 0, |χ| = 1/2, tan θ1 > tan θ2 = tan θD

0 < RD,+ =

>0
︷ ︸︸ ︷

2 tan θ2
tan θ1 + tan θ2
︸ ︷︷ ︸

>0

< 1, RD,− = 0.

Similar to (ii), only one low frequency harmonic beam is produced with frequencies ±ωdiff

from the intersection point and is emanating downward and radially outward.

(iv) χ < 0, |χ| > 1/2, tan θ1 > tan θ2 > tan θD

0 < RD,± =

>0
︷ ︸︸ ︷

tan θ2 ± tan θD

tan θ1 ± tan θD
︸ ︷︷ ︸

>0

< 1.
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Both harmonic beams with frequencies ±ωdiff are travelling downward at different azimuthal
and polar angles if the origin is set to be the intersection point. The group velocity is radially
inward or outward can be determined by computing

tan θ1R
D,+ − tan θ2 =

tan θD (tan θ1 − tan θ2)

tan θ1 + tan θD
> 0,

tan θ1R
D,− − tan θ2 = −tan θD (tan θ1 − tan θ2)

tan θ1 − tan θD
< 0.

RD,+ generates harmonic beam going radially outward and RD,− corresponds to harmonic
beam emanating radially inward. Both beams are propagating downward but at different
polar angles.

(A2) Ψ = −1

(i) χ > 0, tan θS < tan θ1 < tan θ2

RS,± = −

>0
︷ ︸︸ ︷

tan θ2 ± tan θS

tan θ1 ± tan θS
︸ ︷︷ ︸

>0

< 0.

This violates the restriction that R > 0 so no high frequency harmonics are permitted.

(ii) χ < 0, |χ| < 1/2, tan θ1 < tan θD < tan θ2

RD,+ =

>0
︷ ︸︸ ︷

tan θD + tan θ2

tan θD + tan θ1
︸ ︷︷ ︸

>0

> 1, RD,− =

<0
︷ ︸︸ ︷

tan θD − tan θ2

tan θD − tan θ1
︸ ︷︷ ︸

>0

< 0.

The corresponding vertical direction group velocity with R = RD,+, using the relation that
KD

z = R− 1, has
sgn{cz} = sgn{KD

z } ⇒ (cz)
D,+ < 0.

The group velocity is radially inward or outward can be determined by computing

tan θ1R
D,+ − tan θ2 =

tan θD (tan θ1 − tan θ2)

tan θ1 + tan θD
< 0.

Only one low frequency harmonic beam is produced with frequencies ±ωdiff and emanating
downward and radially inward.
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(iii) χ < 0, |χ| = 1/2, tan θ1 < tan θ2 = tan θD

RD,+ =

>0
︷ ︸︸ ︷

2 tan θ2
tan θ1 + tan θ2
︸ ︷︷ ︸

>0

> 1, RD,− = 0.

Similarly to (ii), only one low frequency harmonic beam is produced with frequencies ±ωdiff

and emanating downward and radially inward.

(iv) χ < 0, |χ| > 1/2, tan θ1 < tan θ2 < tan θD

RD,+ =

>0
︷ ︸︸ ︷

tan θD + tan θ2

tan θD + tan θ1
︸ ︷︷ ︸

>0

> 1, 0 < RD,− =

>0
︷ ︸︸ ︷

tan θD − tan θ2

tan θD − tan θ1
︸ ︷︷ ︸

>0

< 1.

RD,+ corresponds to harmonic beam emitting downward and RD,− is the beam propagating
upward. The group velocity is radially inward or outward can be determined by computing

tan θ1R
D,± − tan θ2 =

tan θD (tan θ1 − tan θ2)

tan θD ± tan θ1
< 0.

RD,+ generates harmonic beam going radially inward and downward and RD,− also emits
harmonic beam radially inward but going upward.

(B) Intersection point: η = (1 + Sr)−1

Like Case I, the interaction scenario here is analogous to j = 4 case in Chapter 4:
both incoming beams are propagating horizontally in the same direction but vertically in
opposite directions. From Tables 4.6 and 4.7, one would expect high frequency harmonics
are produced for Ψ = +1 and are forbidden if Ψ = −1.

For both Ψ = ±1, zI is in between zero and V ,

BS = Ψ (tan θ1 tan θ2 + tan θS),BD = Ψ (tan θ1 tan θ2 + tan θD)

are the same. ∆S and ∆D therefore are always greater than zero because

∆S = tan2 θS (tan θ1 + tan θ2)
2 > 0,∆D = tan2 θD (tan θ1 + tan θ2)

2 > 0.

After putting everything together, the quadratic formula gives the roots:

RS,± =
tan θ1 tan θ2 + tan2 θS

tan2 θS − tan2 θ1
±Ψ

tan θS(tan θ1 + tan θ2)

tan2 θS − tan2 θ1
,

and

RD,± =
tan θ1 tan θ2 + tan2 θD

tan2 θ1 − tan2 θD
±Ψ

tan θD(tan θ1 + tan θ2)

tan2 θ1 − tan2 θD
.
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(B1) Ψ = +1

(i) χ > 0, tan θS > tan θ1 > tan θ2

RS,+ =

>0
︷ ︸︸ ︷

tan θS + tan θ2

tan θS − tan θ1
︸ ︷︷ ︸

>0

> 1, 0 < RS,− =

>0
︷ ︸︸ ︷

tan θS − tan θ2

tan θS + tan θ1
︸ ︷︷ ︸

>0

< 1.

The corresponding vertical direction group velocity, using the relation that KS
z = −R + 1,

has
sgn{cz} = −sgn{KS

z} ⇒ (cz)
S,+ > 0, (cz)

S,− < 0.

Because the values of KS
x and KS

y can actually be determined

KS
x = cosφ (tan θ1R + tan θ2),

KS
y = sinφ (tan θ1R + tan θ2).

Thus cy/cx = sinφ/ cosφ and the group velocity is going radially. It is radially inward or
outward can be determined by computing

tan θ1R
S,± + tan θ2 =

tan θS (tan θ1 + tan θ2)

tan θ1 ∓ tan θS
> 0.

RS,+ generates harmonic beam going radially outward and upward and RS,− also generates
harmonic beam emanating radially outward but downward.

(ii) χ < 0, |χ| < 1/2, tan θ1 > tan θD > tan θ2

RD,+ =

>0
︷ ︸︸ ︷

tan θ2 + tan θD

tan θ1 − tan θD
︸ ︷︷ ︸

>0

> 0, RD,− =

<0
︷ ︸︸ ︷

tan θ2 − tan θD

tan θ1 + tan θD
︸ ︷︷ ︸

>0

< 0.

The corresponding vertical group velocity, using the fact that KD
z = −R− 1,

sgn{cz} = −sgn{KD
z } ⇒ (cz)

D,+ > 0.

Because the values of KD
x and KD

y can actually be determined:

KD
x = cosφ (tan θ1R− tan θ2),

KD
y = sinφ (tan θ1R− tan θ2).
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Thus cy/cx = sinφ/ cosφ and the group velocity is going radially. It is radially inward or
outward can be determined by computing

tan θ1R
D,+ − tan θ2 =

tan θD (tan θ1 + tan θ2)

tan θ1 − tan θD
> 0.

Only one harmonic beam is produced with frequencies ±ωdiff and emanating upward and
radially outward.

(iii) χ < 0, |χ| = 1/2, tan θ1 > tan θ2 = tan θD

RD,+ =

>0
︷ ︸︸ ︷

2 tan θ2
tan θ1 − tan θ2
︸ ︷︷ ︸

>0

> 0, RD,− = 0.

Similar to (ii), only one harmonic beam is produced with frequencies ±ωdiff and emanating
upward and radially outward.

(iv) χ < 0, |χ| > 1/2, tan θ1 > tan θ2 > tan θD

RD,± =

>0
︷ ︸︸ ︷

tan θ2 ± tan θD

tan θ1 ∓ tan θD
︸ ︷︷ ︸

>0

> 0.

Both harmonic beams are travelling upward but at different azimuthal angles and polar
angles if the origin is set to be the intersection point. Since

tan θ1R
D,+ − tan θ2 =

tan θD (tan θ1 + tan θ2)

tan θ1 − tan θD
> 0,

tan θ1R
D,− − tan θ2 = −tan θD (tan θ1 + tan θ2)

tan θ1 + tan θD
< 0,

RD,+ generates harmonic beam going radially outward and RD,− corresponds to harmonic
beam emanating radially inward. Both beams are propagating upward but at different polar
angles.

(B2) Ψ = −1
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(i) χ > 0, tan θS < tan θ1 < tan θ2

RS,± = −

>0
︷ ︸︸ ︷

tan θ2 ∓ tan θS

tan θ1 ± tan θS
︸ ︷︷ ︸

>0

< 0.

This violates the restriction that R > 0 so no harmonics are permitted.

(ii) χ < 0, |χ| < 1/2, tan θ1 < tan θD < tan θ2

RD,+ =

>0
︷ ︸︸ ︷

tan θ2 − tan θD

tan θ1 + tan θD
︸ ︷︷ ︸

>0

> 0, RD,− =

>0
︷ ︸︸ ︷

tan θ2 + tan θD

tan θ1 − tan θD
︸ ︷︷ ︸

<0

< 0.

The corresponding vertical group velocity, using the fact that KD
z = −R− 1, has

sgn{cz} = −sgn{KD
z } ⇒ (cz)

D,+ > 0.

The group velocity is radially inward or outward can be determined by computing

tan θ1R
D,+ − tan θ2 = −tan θD (tan θ1 + tan θ2)

tan θD + tan θ1
< 0.

RD,+ generates harmonic beam going radially inward and upward.

(iii) χ < 0, |χ| = 1/2, tan θ1 < tan θ2 = tan θD

RD,+ = 0, RD,− =

>0
︷ ︸︸ ︷

2 tan θ2
tan θ1 − tan θ2
︸ ︷︷ ︸

<0

< 0.

No harmonic beam is permitted.

(iv) χ < 0, |χ| > 1/2, tan θ1 < tan θ2 < tan θD

RD,+ =

<0
︷ ︸︸ ︷

tan θ2 − tan θD

tan θ1 + tan θD
︸ ︷︷ ︸

>0

< 0, RD,− =

>0
︷ ︸︸ ︷

tan θ2 + tan θD

tan θ1 − tan θD
︸ ︷︷ ︸

<0

< 0.

Similarly, no harmonic beam is permitted.



58

5.4.2 Case V: V = 0

Define another non-dimensional vertical coordinate, ζ, in terms of horizontal distance
and θ2,

ζ ≡ zI
2H tan θ2

(5.28)

due to the lack of an explicit vertical length scale (V = 0).
The locus of the first IGW source in z = zI plane is x

2
I + y2I = z2I cot2 θ1 and that of the

second source is (xI − 2H)2 + y2I = z2I cot2 θ2. The two double conical IGWs would intersect
in the range,

1

(1 + Sr)2
≤ ζ2 ≤ 1

(1− Sr)2
,

and ξ can be expressed in terms of ζ

ξ = 1− (1− Sr2)ζ2 = 1 + (Sr2 − 1)ζ2.

Since the interference pattern is reflection-symmetric with respect to z = 0 plane, consider
ζ > 0 only:

1

1 + Sr
≤ ζ ≤ 1

Ψ (1− Sr)
.

The intersection points that have ζ = ±1/(1 + Sr) are analogous to j = 2 case in Chapter
4: both incoming beams are propagating vertically in the same direction but horizontally
in opposite directions. But when ζ gradually moves away from ±1/(1 + Sr), the interaction
starts to deviate from the two-dimensional collision scenario. From Tables 4.6 and 4.7, one
would expect high frequency harmonics are not produced for Ψ = +1 but are produced if
Ψ = −1 if the intersection points are not too far away from ±1/(1 + Sr). Similarly, the
intersection points that have ζ = ±1/Ψ(1 − Sr) are analogous to j = 1 case in Chapter 4:
both incoming beams are propagating in the same direction vertically and horizontally. But
when ζ gradually moves away from ±1/Ψ(1 − Sr), the interaction starts to deviate from
the two-dimensional collision scenario. From Tables 4.6 and 4.7, one would expect high
frequency harmonics are not produced for both Ψ = ±1 if the intersection points are not
too far away from ±1/Ψ(1− Sr).

[Eq. (B.1)] is used to calculate cosΘ,

cosΘ =
Sr2 + 1

2Sr
− 1

2Srζ2
=

1

2Sr
(Sr2 + 1− ζ−2).

ζ(ξ = 1−Ψ) would be critical to determine the sign of BS or BD,

ζ(ξ = 1−Ψ) =

√

1

Ψ (1− Sr2)
.
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Thus, the intersection range of ζ can be divided into two regions:

1

1 + Sr
≤ ζ ≤ ζ(ξ = 1−Ψ) ⇒ −1 ≤ cosΘ ≤ (Sr)Ψ, (5.29)

ζ(ξ = 1−Ψ) ≤ ζ ≤ 1

Ψ (1− Sr)
⇒ (Sr)Ψ ≤ cosΘ ≤ 1. (5.30)

Since ζ > 0, from Table 5.1,

BS = Ψ(tan θ1 tan θ2 cosΘ− tan2 θS),BD = Ψ(tan θ1 tan θ2 cosΘ− tan2 θD), (5.31)

and the discriminants are

∆S = (tan θ1 tan θ2 cosΘ− tan2 θS)2

− (tan2 θS − tan2 θ1)(tan
2 θS − tan2 θ2),

∆D = (tan θ1 tan θ2 cosΘ− tan2 θD)2

− (tan2 θ1 − tan2 θD)(tan2 θ2 − tan2 θD). (5.32)

R’s for high frequency (RS,±) and low frequency (RD,±) harmonics are given by the quadratic
formula:

RS,± =
(tan θ1 tan θ2 cosΘ− tan2 θS)±Ψ

√
∆S

tan2 θS − tan2 θ1

RD,± =
(tan θ1 tan θ2 cosΘ− tan2 θD)±Ψ

√
∆D

tan2 θ1 − tan2 θD
. (5.33)

(A) Ψ = +1

(i) χ > 0, tan θS > tan θ1 > tan θ2
[Eq. (5.17)] is used to determine the value of ∆S

∆S = (tan θ1 tan θ2 cosΘ− tan2 θS)2

− (tan θ1 tan θ2 − tan2 θS)2 + tan2 θS (tan θ1 − tan θ2)
2

> tan2 θS (tan θ1 − tan θ2)
2 > 0,

and BS = tan θ1 tan θ2 cosΘ − tan2 θS ≤ tan θ1 tan θ2 − tan2 θS < 0. Therefore, RS,± are
proved to be less than zero:

RS,± =

<0
︷ ︸︸ ︷

<0
︷ ︸︸ ︷

(tan θ1 tan θ2 cosΘ− tan2 θS)±

<|BS|
︷ ︸︸ ︷√
∆S

tan2 θS − tan2 θ1
︸ ︷︷ ︸

>0

< 0.

The numerator is negative but the denominator is always positive for each root, hence the
roots are both negative. This violates the restriction that R > 0 so no harmonics are
permitted.
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(ii) χ < 0, |χ| < 1/2, tan θ1 > tan θD > tan θ2
The ∆D is always greater than zero since

∆D = (tan θ1 tan θ2 cosΘ− tan2 θD)2 −
>0

︷ ︸︸ ︷

(tan θ1 − tan θD)

<0
︷ ︸︸ ︷

(tan θ2 − tan θD)

> (tan θ1 tan θ2 cosΘ− tan2 θD)2 > 0,

so RD,± are both real but the sign of RD,± is still needed to determine. The sign of RD,±

depends on the sign of BD. If BD ≥ 0, RD,+ is greater than zero but RD,− is negative. On
the other hand, if BD < 0, both roots are negative and thus violate the requirement that
R > 0:

RD,± =
(tan θ1 tan θ2 cosΘ− tan2 θD)±

>|BD|
︷ ︸︸ ︷√
∆D

tan2 θ1 − tan2 θD
︸ ︷︷ ︸

>0

.

RD,− < 0 no matter what value BD is. RD,+ is greater than unity or not is used to determine
the direction of group velocity:

RD,+ = 1 +

<0
︷ ︸︸ ︷

(tan θ1 tan θ2 cosΘ− tan2 θ1)+
√
∆D

tan2 θ1 − tan2 θD
.

By using [Eq. (5.18)],

∆D = (tan θ1 tan θ2 cosΘ− tan2 θ1)
2

+ (tan2 θD − tan2 θ1)
︸ ︷︷ ︸

<0

(tan2 θ1 − 2 tan θ1 tan θ2 + tan2 θ2)
︸ ︷︷ ︸

>0

< (tan θ1 tan θ2 cosΘ− tan2 θ1)
2.

This sets 0 < RD,+ < 1. The corresponding vertical group velocity, using the fact that
KD

z = −R + 1, has
sgn{cz} = −sgn{KD

z } ⇒ (cz)
D,+ < 0.

The single low frequency harmonic beam is propagating downward.

(iii) χ < 0, |χ| = 1/2, tan θ1 > tan θ2 = tan θD

BD changes sign at cosΘ = Sr where ζ = ζ(ξ = 0):

BD = tan θ1 tan θ2 cosΘ− tan2 θ2 =

{ ≤ 0 , if 1
1+Sr

≤ ζ ≤ ζ(ξ = 0)

> 0 , if ζ(ξ = 0) < ζ ≤ 1
(1−Sr)

∆D = (tan θ1 tan θ2 cosΘ− tan2 θ2)
2 > 0.
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Accordingly, the roots given by the quadratic formula are different, too:

RD,+

{

= 0 , if 1
1+Sr

≤ ζ ≤ ζ(ξ = 0)

= 2 (tan θ1 tan θ2 cosΘ−tan2 θ2)
tan2 θ1−tan2 θ2

> 0 , if ζ(ξ = 0) < ζ ≤ 1
(1−Sr)

,

and

RD,−

{
< 0 , if 1

1+Sr
≤ ζ ≤ ζ(ξ = 0)

= 0 , if ζ(ξ = 0) < ζ ≤ 1
(1−Sr)

.

In ζ(ξ = 0) < ζ ≤ (1− Sr)−1,

0 < RD,+ = 1− (tan2 θ1 − 2 tan θ1 tan θ2 cosΘ + tan2 θ2)

tan2 θ1 − tan2 θ2
< 1.

The permitted harmonic beam is going downward if the intersection point is in the region
where Sr < cosΘ ≤ +1.

(iv) χ < 0, |χ| > 1/2, tan θ1 > tan θ2 > tan θD

∆D = (tan2 θ1 tan
2 θ2) cos

2 Θ− (2 tan2 θD tan θ1 tan θ2) cosΘ + · · ·
which is a concave up parabola in cosΘ and ∆D(cosΘ = ±1) = tan2 θD (tan θ1∓tan θ2)

2 > 0.
Also the minimum of ∆D equals to −(tan2 θ1−tan2 θD) (tan2 θ2−tan2 θD) < 0 at 0 < cosΘ =
Sr tan2 θD tan−2 θ2 < Sr. ∆D must be negative for some intersection points.

∆D = 0 ⇒ cosΘD,± = Sr
tan2 θD

tan2 θ2
±

√

(tan2 θ1 − tan2 θD)(tan2 θ2 − tan2 θD)

tan θ1 tan θ2
,

i.e.

∆D

{
≥ 0, cosΘ ∈ [−1, cosΘD,−] ∪ [cosΘD,+,+1]
< 0, cosΘ ∈ (cosΘD,−, cosΘD,+)

,

and cosΘD,− < Sr < cosΘD,+. Correspondingly, BD also changes sign:

BD

{
< 0 cosΘ ∈ [−1, cosΘD,−]
> 0 cosΘ ∈ [cosΘD,+,+1]

.

After putting every piece together, R has no real root for cosΘ ∈ [−1, cosΘD,−]. For
cosΘ ∈ (cosΘD,−, cosΘD,+),

RD,± =

<0
︷︸︸︷

BD ±

<|BD|
︷ ︸︸ ︷√
∆D

tan2 θ1 − tan2 θD
︸ ︷︷ ︸

>0

< 0,
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which contradict R > 0 definition. Only for cosΘ ∈ [cosΘD,+,+1],

RD,± =

>0
︷︸︸︷

BD ±

<|BD|
︷ ︸︸ ︷√
∆D

tan2 θ1 − tan2 θD
︸ ︷︷ ︸

>0

> 0.

And after rearrangement,

RD,± = 1 +

<0
︷ ︸︸ ︷

(tan θ1 tan θ2 cosΘ− tan2 θ1)±
√
∆D

tan2 θ1 − tan2 θD
.

Using the fact that ∆D < (tan θ1 tan θ2 cosΘ − tan2 θ1)
2, both positive roots are less than

unity. The corresponding vertical group velocity are therefore negative since

sgn{cz} = −sgn{KD
z } ⇒ (cz)

D,± < 0.

The harmonics are generated in the space where cosΘ ∈ [cosΘD,+,+1] and are propagating
downward.

(B) Ψ = −1

(i) χ > 0, tan θS < tan θ1 < tan θ2
Similar to the case Ψ = +1 and χ < 0, |χ| > 1/2 just derived,

∆S = (tan2 θ1 tan
2 θ2) cos

2 Θ− (2 tan2 θS tan θ1 tan θ2) cosΘ + · · ·

which is also a concave up parabola in cosΘ. And ∆S(cosΘ = ±1) = tan2 θS (tan θ1 ∓
tan θ2)

2 > 0. Also the minimum of ∆S equals to −(tan2 θ1 − tan2 θS) (tan2 θ2 − tan2 θS) < 0
at 0 < cosΘ = Sr−1 tan2 θS tan−2 θ1 < Sr−1. ∆S must be zero somewhere.

∆S = 0 ⇒ cosΘS,± = Sr−1 tan2 θS

tan2 θ1
±

√

(tan2 θ1 − tan2 θS)(tan2 θ2 − tan2 θS)

tan θ1 tan θ2
,

i.e.

∆S

{
≥ 0, cosΘ ∈ [−1, cosΘS,−] ∪ [cosΘS,+,+1]
< 0, cosΘ ∈ (cosΘS,−, cosΘS,+)

,

and cosΘS,− < Sr−1 < cosΘS,+. BS also changes sign

BS

{
> 0 cosΘ ∈ [−1, cosΘS,−]
< 0 cosΘ ∈ [cosΘS,+,+1]

.
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After putting every piece together, there is no real root for cosΘ ∈ (cosΘS,−, cosΘS,+). For
cosΘ ∈ [cosΘS,+,+1],

RS,± =

<0
︷︸︸︷

BS ±

<|BS|
︷ ︸︸ ︷√
∆S

tan2 θ1 − tan2 θS
︸ ︷︷ ︸

>0

< 0,

which contradicts R > 0 definition. Only for cosΘ ∈ [−1, cosΘS,−],

RS,± =

>0
︷︸︸︷

BS ±

<|BS|
︷ ︸︸ ︷√
∆S

tan2 θ1 − tan2 θS
︸ ︷︷ ︸

>0

> 0.

The corresponding vertical group velocity, using KS
z = −R− 1, has

sgn{cz} = −sgn{KS
z} ⇒ (cz)

S,± > 0.

The harmonics are generated in the space where cosΘ ∈ [−1, cosΘS,−] and are propagating
upward. cosΘ ∈ [−1, cosΘS,−] is analogous to the two-dimensional colliding beams problem
with beams having same sign vertical group velocity but opposite sign horizontal group
velocity and cosΘ ∈ [cosΘS,+,+1] is similar to that with beams having both same sign
horizontal and vertical group velocities. And cosΘ ∈ (cosΘS,−, cosΘS,+) does not have any
two-dimensional counter-part.

(ii) χ < 0, |χ| < 1/2, tan θ1 < tan θD < tan θ2
The discriminant is always greater than zero since

∆D > (tan2 θD − tan θ1 tan θ2 cosΘ)2 > 0.

Therefore the quadratic formula gives

RD,± =
(tan2 θD − tan θ1 tan θ2 cosΘ)±

>|BD|
︷ ︸︸ ︷√
∆D

tan2 θD − tan2 θ1
︸ ︷︷ ︸

>0

,

where RD,+ > 0 and RD,− < 0. After rearrangement, RD,+ is determined to be greater than
unity:

RD,+ = 1 +
(tan2 θ1 − tan θ1 tan θ2 cosΘ) +

√
∆D

tan2 θD − tan2 θ1
> 1
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since ∆D > (tan2 θ1 − tan θ1 tan θ2 cosΘ)2. The corresponding vertical group velocity, using
KD

z = −R + 1, is greater than zero:

sgn{cz} = −sgn{KD
z } ⇒ (cz)

D,+ > 0.

The single low frequency harmonic beam is propagating upward.

(iii) χ < 0, |χ| = 1/2, tan θ1 < tan θ2 = tan θD

The discriminant is positive since ∆D = (tan2 θ2 − tan θ1 tan θ2 cosΘ)2 > 0. Again, the
quadratic formula gives

RD,+ = 1 +

>0
︷ ︸︸ ︷

(tan2 θ2 − 2 tan θ1 tan θ2 cosΘ + tan2 θ1)

tan2 θ2 − tan2 θ1
︸ ︷︷ ︸

>0

> 1

and
RD,− = 0.

This also generates a low frequency harmonic beam with (cz)
D,+ > 0.

(iv) χ < 0, |χ| > 1/2, tan θ1 < tan θ2 < tan θD

From ∆D > (BD)2 > 0, the discriminant is greater than zero.

RD,± =

>0
︷ ︸︸ ︷

(tan2 θD − tan θ1 tan θ2 cosΘ)±

<|BD|
︷ ︸︸ ︷√
∆D

tan2 θD − tan2 θ1
︸ ︷︷ ︸

>0

> 0,

and after rearrangement

RD,± = 1 +
(tan2 θ1 − tan θ1 tan θ2 cosΘ)±

√
∆D

tan2 θD − tan2 θ1
.

[Eq. (5.19)] tells ∆D > (tan2 θ1 − tan θ1 tan θ2 cosΘ)2 so RD,+ > 1 and 0 < RD,− < 1. The
corresponding vertical group velocity would be (cz)

D,+ > 0 and (cz)
D,− < 0. In other words,

there are two low frequency harmonic beams generated. One harmonic beam is propagating
upward and the other one is downward.

5.4.3 Case VI: H, V 6= 0

The ranges of intersection points are dependent on two non-dimensional parameters,

α1 ≡ V

2H tan θ1
, (5.34)

α2 ≡ V

2H tan θ2
. (5.35)



65

The locus of the first IGW source in z = zI plane is x2I + y2I = z2I cot2 θ1 and that of the
second source is (xI −2H)2+y2I = (V −zI)2 cot2 θ2. The general formula for the coordinates
of intersection point is

ξ = 1 + α2
1η

2 − α2
2(η − 1)2. (5.36)

The above formula is correct under the following geometric constraint,

(η − η1) (η − η2) (η − η3) (η − η4) ≤ 0, (5.37)

which ensures that (xI , yI , zI) actually belongs to two IGW double cones and where

η1 ≡ α2 + 1

α2 − α1

, (5.38)

η2 ≡ α2 − 1

α2 + α1

, (5.39)

η3 ≡ α2 + 1

α2 + α1

, (5.40)

η4 ≡ α2 − 1

α2 − α1

. (5.41)

It is obviously that the relationship between η1 to η4 is dependent on Ψ and α1, α2 are
greater or less than unity. The intersection regions are concluded as followed,

(A): α1, α2 > 1.
For Ψ = +1, α2 > α1 > 1 and intersection ranges are region (A1):

η1 > η > η4 > 1,

and region (A2):
1 > η3 > η > η2 > 0.

For Ψ = −1, α1 > α2 > 1 and intersection ranges are region (A1):

0 > η4 > η > η1,

and region (A2):
1 > η3 > η > η2 > 0.

(B): max(α1, α2) > 1,min(α1, α2) < 1.
For Ψ = +1, α2 > 1 > α1 and intersection ranges are region (B1):

η1 > η > η3 > 1,

and region (B2):
1 > η4 > η > η2 > 0.

For Ψ = −1, α1 > 1 > α2 and intersection ranges are region (B1):

0 > η2 > η > η1,
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and region (B2):
1 > η3 > η > η4 > 0.

(C): α1, α2 < 1
For Ψ = +1, 1 > α2 > α1 and intersection ranges are region (C1):

η1 > η > η3 > 1,

and region (C2):
0 > η2 > η > η4.

For Ψ = −1, 1 > α1 > α2 and intersection ranges are region (C1):

0 > η2 > η > η1,

and region (C2):
η4 > η > η3 > 1.

The ranges of cosΘ in each region are listed in Appendix B.

(A) α1, α2 > 1

Region (A1)
Although zI > V for Ψ = +1 and zI < 0 for Ψ = −1 in this region, the formal forms

of B’s, ∆’s and roots of R’s are exactly the same as in Case V. So [Eqs. (5.31), (5.32) and
(5.33)] are still valid. But the ranges of cosΘ are different, the selection rules might be
different from case to case.

Ψ = +1 in Region (A1)

(i) χ > 0, tan θS > tan θ1 > tan θ2
The result is the same as in Case V even though the ranges of cosΘ are different. No

harmonic beams are produced.

(ii) χ < 0, |χ| < 1/2, tan θ1 > tan θD > tan θ2
The result is the same as in Case V. The single permitted low frequency harmonic beam is

going downward.

(iii) χ < 0, |χ| = 1/2, tan θ1 > tan θ2 = tan θD

Similar to Case V but this time cosΘ > Sr is valid for every intersection point, therefore

0 < RD,+ = 1− (tan2 θ1 − 2 tan θ1 tan θ2 cosΘ + tan2 θ2)

tan2 θ1 − tan2 θ2
< 1,

and RD,− < 0. The single permitted low frequency harmonic beam is going downward.
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(iv) χ < 0, |χ| > 1/2, tan θ1 > tan θ2 > tan θD

The minimum of cosΘ equals to cosΘ(η = η+c ) > Sr > 0. The selection rules are identical
to the one in Case V except the regions where the harmonics are allowed to generate may
be different. From [Eq. (C.1a)] and [Eq. (C.1b)],

if
1

α2
1

>
tan2 θD

tan2 θ2
⇒ cosΘ ∈ [cosΘD,+,+1],

if
1

α2
1

<
tan2 θD

tan2 θ2
⇒ cosΘ ∈ [cosΘ(η = η+c ),+1],

are the regions where the harmonics are allowed to produce. Both low frequency harmonic
beams, if existed, are propagating downward.

Ψ = −1 in Region (A1)
The selection rules are similar to Case V after applying the reflection-symmetry about

z-axis.

(i) χ > 0, tan θS < tan θ1 < tan θ2
The results from Case V show that the harmonics are generated if cosΘ is in the interval

[−1, cosΘS,−] where cosΘS,− < Sr−1. But [Eq. (B.13)] shows cosΘ > Sr−1 in region (A1).
Consequently, there is no harmonic wave generated.

(ii) χ < 0, |χ| < 1/2, tan θ1 < tan θD < tan θ2
The single low frequency harmonic beam is propagating downward.

(iii) χ < 0, |χ| = 1/2, tan θ1 < tan θ2 = tan θD

The single low frequency harmonic beam is also propagating downward.

(iv) χ < 0, |χ| > 1/2, tan θ1 < tan θ2 < tan θD

Two low frequency harmonic beams are generated. One harmonic beam is propagating
downward and the other one is upward.

Region (A2)
In this case, the geometric constraint requires that cosΘ ≥ cosΘ(η = η−c ) > −SrΨ.
Since 0 < η < 1, from Table 5.1, the formulas of B’s and the discriminants are

BS = Ψ(tan θ1 tan θ2 cosΘ + tan2 θS),

BD = Ψ(tan θ1 tan θ2 cosΘ + tan2 θD), (5.42)
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and

∆S = (tan θ1 tan θ2 cosΘ + tan2 θS)2

− (tan2 θS − tan2 θ1)(tan
2 θS − tan2 θ2),

∆D = (tan θ1 tan θ2 cosΘ + tan2 θD)2

− (tan2 θ1 − tan2 θD)(tan2 θ2 − tan2 θD). (5.43)

Therefore, the roots given by quadratic formula are

RS,± =
(tan θ1 tan θ2 cosΘ + tan2 θS)±Ψ

√
∆S

tan2 θS − tan2 θ1
,

RD,± =
(tan θ1 tan θ2 cosΘ + tan2 θD)±Ψ

√
∆D

tan2 θ1 − tan2 θD
. (5.44)

Ψ = +1 in Region (A2)

(i) χ > 0, tan θS > tan θ1 > tan θ2
[Eq. (5.17)] is used to determine the value of ∆S where

∆S = (tan θ1 tan θ2 cosΘ + tan2 θS)2

− (tan θ1 tan θ2 − tan2 θS)2 + tan2 θS (tan θ1 − tan θ2)
2

> tan2 θS (tan θ1 − tan θ2)
2 > 0,

and BS = tan θ1 tan θ2 cosΘ + tan2 θS ≥ tan2 θS − tan θ1 tan θ2 > 0. Therefore, the values of
RS,± can be determined to be greater than zero:

RS,± =

>0
︷ ︸︸ ︷

(tan θ1 tan θ2 cosΘ + tan2 θS)±

<|BS|
︷ ︸︸ ︷√
∆S

tan2 θS − tan2 θ1
︸ ︷︷ ︸

>0

> 0,

and

RS,± = 1 +
(tan θ1 tan θ2 cosΘ + tan2 θ1)±

√
∆S

tan2 θS − tan2 θ1
.

With the use of [Eq. (5.19)], ∆S > (tan θ1 tan θ2 cosΘ + tan2 θ1)
2. This shows that RS,+ > 1

and 0 < RS,− < 1. The corresponding vertical direction group velocity, using the relation
KS

z = −R + 1, has

sgn{cz} = −sgn{KS
z} ⇒ (cz)

S,+ > 0, (cz)
S,− < 0.

There are two high frequency harmonic beams generated. One beam is emanating upward
and the other one is downward.
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(ii) χ < 0, |χ| < 1/2, tan θ1 > tan θD > tan θ2
The discriminant can be determined to be greater than zero by carefully identifying the

sign of each term:

∆D = (tan θ1 tan θ2 cosΘ + tan2 θD)2 −
>0

︷ ︸︸ ︷

(tan θ1 − tan θD)

<0
︷ ︸︸ ︷

(tan θ2 − tan θD)

> (tan θ1 tan θ2 cosΘ + tan2 θD)2 =
(
BD

)2
> 0.

Since ∆D >
(
BD

)2
, RD,± are defined as follows,

RD,± =
(tan θ1 tan θ2 cosΘ + tan2 θD)±

>|BD|
︷ ︸︸ ︷√
∆D

tan2 θ1 − tan2 θD
︸ ︷︷ ︸

>0

.

Obviously, RD,− < 0 and RD,+ > 0 no matter what value BD is. The corresponding vertical
group velocity, knowing that KD

z = −R− 1, has

sgn{cz} = −sgn{KD
z } ⇒ (cz)

D,+ > 0.

The single low frequency harmonic beam generated is going upward.

(iii) χ < 0, |χ| = 1/2, tan θ1 > tan θ2 = tan θD

The geometric constraint cosΘ > −Sr shows

BD = tan θ1 tan θ2 cosΘ + tan2 θ2 > 0,

∆D = (tan θ1 tan θ2 cosΘ + tan2 θ2)
2 =

(
BD

)2
> 0.

Therefore the sign of RD,± can be determined too:

RD,+ =
2 (tan θ1 tan θ2 cosΘ + tan2 θ2)

tan2 θ1 − tan2 θ2
> 0

and RD,− = 0. The permitted low frequency harmonic beam is going upward.

(iv) χ < 0, |χ| > 1/2, tan θ1 > tan θ2 > tan θD

The discriminant has the form:

∆D = (tan2 θ1 tan
2 θ2) cos

2Θ+ (2 tan2 θD tan θ1 tan θ2) cosΘ + · · ·
which is a concave up parabola in cosΘ. And ∆D(cosΘ = ±1) = tan2 θD (tan θ1± tan θ2)

2 >
0. Also minimum of ∆D equals to −(tan2 θ1− tan2 θD) (tan2 θ2− tan2 θD) < 0 at 0 > cosΘ =
−Sr tan2 θD tan−2 θ2 > −Sr. ∆D may be negative.

∆D = 0 ⇒ cosΘD,± = −Sr
tan2 θD

tan2 θ2
±

√

(tan2 θ1 − tan2 θD)(tan2 θ2 − tan2 θD)

tan θ1 tan θ2
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i.e.

∆D

{
≥ 0, cosΘ ∈ [−1, cosΘD,−] ∪ [cosΘD,+,+1]
< 0, cosΘ ∈ (cosΘD,−, cosΘD,+)

,

where cosΘD,− < −Sr < cosΘD,+. Accordingly,

BD > 0 for cosΘ ∈ [cosΘD,+,+1].

From [Eq. (C.2a)] and [Eq. (C.2b)],

if α−2
1 >

tan2 θD

tan2 θ2
⇒ cosΘD,− < −Sr < cosΘ(η−c ) < cosΘD,+,

if α−2
1 <

tan2 θD

tan2 θ2
⇒ cosΘD,− < −Sr < cosΘD,+ < cosΘ(η−c ),

Hence, if α−2
1 > tan2 θD tan−2 θ2, for cosΘ ∈ (cosΘ(η−c ), cosΘ

D,+) there is no real root.
But for cosΘ ∈ [cosΘD,+,+1] if α−2

1 > tan2 θD tan−2 θ2 and for every intersection point if
α−2
1 < tan2 θD tan−2 θ2,

RD,± =

>0
︷︸︸︷

BD ±

<|BD|
︷ ︸︸ ︷√
∆D

tan2 θ1 − tan2 θD
︸ ︷︷ ︸

>0

> 0.

The corresponding vertical group velocity has

sgn{cz} = −sgn{KD
z } ⇒ (cz)

D,± > 0.

There are two low frequency harmonic beams generated from each intersection point satisfying
cosΘ ∈ [max (cosΘD,+, cosΘ(η−c )),+1]. Both beams are propagating upward. The selection
rules are verified by numerical simulation, see (Fig. 5.4).

Ψ = −1 in Region (A2)

(i) χ > 0, tan θS < tan θ1 < tan θ2
The discriminant has the form:

∆S = (tan2 θ1 tan
2 θ2) cos

2Θ+ (2 tan2 θS tan θ1 tan θ2) cosΘ + · · ·

which is also a concave up parabola in cosΘ. And ∆S(cosΘ = ±1) = tan2 θS (tan θ1 ±
tan θ2)

2 > 0. The minimum of ∆S equals to −(tan2 θ1 − tan2 θS) (tan2 θ2 − tan2 θS) < 0 at
0 > cosΘ = −Sr−1 tan2 θS tan−2 θ1 > −Sr−1. ∆S may be less than zero for some cosΘ.

∆S = 0 ⇒ cosΘS,± = −Sr−1 tan
2 θS

tan2 θ1
±

√

(tan2 θ1 − tan2 θS)(tan2 θ2 − tan2 θS)

tan θ1 tan θ2
,
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(a) (b)

Figure 5.4 In this numerical simulation, Brunt-Väisälä frequency, N , equals to 1.5394 rad
s−1, f = N/4 and forcing frequencies are 0.6583 rad s−1 located at (−H, 0,−V/2) and
0.5629 rad s−1 emanated from (H, 0, V/2). The figures are horizontal slices of the density
and vertical velocity fields at z = 0.4V . The colormap is chosen to emphasize the second
harmonics. α2 = 2.0080 > α1 = 1.5 > 1 corresponds to Case VIA2. The long dotted curve
is the theoretical locus of second harmonics propagating upward calculated by applying the
selection rules. (a) (left) Density field. (b) (right) Vertical velocity field.

i.e.

∆S

{
≥ 0, cosΘ ∈ [−1, cosΘS,−] ∪ [cosΘS,+,+1]
< 0, cosΘ ∈ (cosΘS,−, cosΘS,+)

,

where cosΘS,− < −Sr−1 < cosΘS,+. Also from [Eq. (B.14)], cosΘ > −Sr−1. Correspond-
ingly,

BS < 0 for cosΘ ∈ [cosΘS,+,+1].

From [Eq. (C.2c)] and [Eq. (C.2d)],

if α−2
2 >

tan2 θS

tan2 θ1
⇒ cosΘS,− < −Sr−1 < cosΘ(η−c ) < cosΘS,+,

if α−2
2 <

tan2 θS

tan2 θ1
⇒ cosΘS,− < −Sr−1 < cosΘS,+ < cosΘ(η−c ).

Therefore, if α−2
2 > tan2 θS tan−2 θ1, for cosΘ ∈ (cosΘS,−, cosΘS,+) there is no real

root. For cosΘ ∈ [cosΘS,+,+1] if α−2
2 > tan2 θS tan−2 θ1 and for every intersection point if
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α−2
2 < tan2 θS tan−2 θ1,

RS,± =

<0
︷︸︸︷

BS ±

<|BS|
︷ ︸︸ ︷√
∆S

tan2 θ1 − tan2 θS
︸ ︷︷ ︸

>0

< 0

which contradicts R > 0 definition. No high frequency harmonics are allowed to generate.

(ii) χ < 0, |χ| < 1/2, tan θ1 < tan θD < tan θ2
The discriminant has

∆D > (tan2 θD + tan θ1 tan θ2 cosΘ)2 =
(
BD

)2
> 0.

Since ∆D >
(
BD

)2
, RD,± are defined as follows

RD,± =
(tan2 θD + tan θ1 tan θ2 cosΘ)±

>|BD|
︷ ︸︸ ︷√
∆D

tan2 θD − tan2 θ1
︸ ︷︷ ︸

>0

.

So RD,− < 0 and RD,+ > 0. The corresponding vertical group velocity, using KD
z = −R− 1,

has
sgn{cz} = −sgn{KD

z } ⇒ (cz)
D,+ > 0.

There is only one low frequency harmonic beam generated from every intersection point and
is propagating upward.

(iii) χ < 0, |χ| = 1/2, tan θ1 < tan θ2 = tan θD

The geometric constraint, cosΘ > −Sr, shows

∆D =
(
tan2 θ2 + tan θ1 tan θ2 cosΘ

)2
> 0,

and therefore

RD,± =

<0
︷ ︸︸ ︷

−(tan2 θ2 + tan θ1 tan θ2 cosΘ)±
√
∆D

tan2 θ2 − tan2 θ1
︸ ︷︷ ︸

>0

,

i.e. RD,+ = 0 and RD,− < 0. There is no low frequency harmonic beam permitted to generate.
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(iv) χ < 0, |χ| > 1/2, tan θ1 < tan θ2 < tan θD

From [Eq. (5.17)], ∆D > (BD)2 > 0 and therefore

RD,± =

<0
︷ ︸︸ ︷

−(tan2 θD + tan θ1 tan θ2 cosΘ)±

<|BD|
︷ ︸︸ ︷√
∆D

tan2 θD − tan2 θ1
︸ ︷︷ ︸

>0

< 0.

There is no low frequency harmonic beam permitted to generate.

(B) max(α1, α2) > 1,min(α1, α2) < 1

Region (B1)
The selection rules are identical to Case V although application of reflection-symmetries

is needed for Ψ = −1.

Region (B2)
In this case, BS, BD and therefore ∆S and ∆D are formally the same as in region (A2) of

Case VI (A). But cosΘ ∈ [−1, 1] is different from that in region (A2) of Case VI (A) and
changes the selection rules in a case by case sense.

Ψ = +1 in Region (B2)

(i) χ > 0, tan θS > tan θ1 > tan θ2
The result is the same as that in region (A2) of Case VI (A).

(ii) χ < 0, |χ| < 1/2, tan θ1 > tan θD > tan θ2
Nothing is different from region (A2) of Case VI (A).

(iii) χ < 0, |χ| = 1/2, tan θ1 > tan θ2 = tan θD

BD changes sign when cosΘ = −Sr:

BD = tan θ1 tan θ2 cosΘ + tan2 θ2 > 0 if cosΘ > −Sr,

BD = tan θ1 tan θ2 cosΘ + tan2 θ2 ≤ 0 if cosΘ ≤ −Sr.

and ∆D = (tan θ1 tan θ2 cosΘ + tan2 θ2)
2 > 0. Therefore,

RD,+ =
2 (tan θ1 tan θ2 cosΘ + tan2 θ2)

tan2 θ1 − tan2 θ2
> 0

and RD,− = 0 if cosΘ ∈ (−Sr,+1]. The permitted low frequency harmonic beam is going
upward. Also if cosΘ ∈ [−1,−Sr], RD,+ = 0 and RD,− < 0. Low frequency harmonic beams
are forbidden.
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(iv) χ < 0, |χ| > 1/2, tan θ1 > tan θ2 > tan θD

Recall, in region (A2) of Case VI (A),

∆D

{
≥ 0, cosΘ ∈ [−1, cosΘD,−] ∪ [cosΘD,+,+1]
< 0, cosΘ ∈ (cosΘD,−, cosΘD,+)

,

and
cosΘD,− < −Sr < cosΘD,+.

Consequently,

BD

{
< 0 cosΘ ∈ [−1, cosΘD,−]
> 0 cosΘ ∈ [cosΘD,+,+1]

.

Therefore, for cosΘ ∈ (cosΘD,−, cosΘD,+) there is no real root.
For cosΘ ∈ [−1, cosΘD,−],

RD,± =

<0
︷︸︸︷

BD ±

<|BD|
︷ ︸︸ ︷√
∆D

tan2 θ1 − tan2 θD
︸ ︷︷ ︸

>0

< 0,

which contradicts R > 0 definition. Only for cosΘ ∈ [cosΘD,+,+1],

RD,± =

>0
︷︸︸︷

BD ±

<|BD|
︷ ︸︸ ︷√
∆D

tan2 θ1 − tan2 θD
︸ ︷︷ ︸

>0

> 0.

The corresponding vertical group velocity has sgn{cz} = −sgn{KD
z } ⇒ (cz)

D,± > 0. There
are two low frequency harmonic beams generated from every intersection point satisfying
cosΘ ∈ [cosΘD,+,+1]. Both beams, if existed, are propagating upward. The selection rules
are verified using numerical simulation, see (Fig. 5.5).

Ψ = −1 in Region (B2)

(i) χ > 0, tan θS < tan θ1 < tan θ2
Recall, in region (A2) of Case VI (A),

∆S

{
≥ 0, cosΘ ∈ [−1, cosΘS,−] ∪ [cosΘS,+,+1]
< 0, cosΘ ∈ (cosΘS,−, cosΘS,+)

,

and
cosΘS,− < Sr−1 < cosΘS,+.
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(a) (b)

Figure 5.5 In this numerical simulation, Brunt-Väisälä frequency, N , equals to 1.5394 rad
s−1, f = N/4 and forcing frequencies are 0.6583 rad s−1 located at (−H, 0,−V/2) and
0.5274 rad s−1 emanated from (H, 0, V/2). The figures are horizontal slices of the density
and vertical velocity fields at z = V . The colormap is chosen to emphasize the second
harmonics. α2 = 1.2317 > 1 > α1 = 0.8 corresponds to region (B2) of Case VI. The long
dotted curve is the theoretical locus of second harmonics propagating upward calculated
by applying the selection rules. The thin solid circles represent the primary conical waves
emanated from the sources at frequencies ±ω1, ±2ω1 and ±ω2. (a) (left) Density field. (b)
(right) Vertical velocity field.

Correspondingly,

BS

{
> 0 cosΘ ∈ [−1, cosΘS,−]
< 0 cosΘ ∈ [cosΘS,+,+1]

.

After putting everything together, for cosΘ ∈ (cosΘS,−, cosΘS,+) there is no real root.
For cosΘ ∈ [cosΘS,+,+1],

RS,± =

<0
︷︸︸︷

BS ±

<|BS|
︷ ︸︸ ︷√
∆S

tan2 θ1 − tan2 θS
︸ ︷︷ ︸

>0

< 0,
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which contradicts R > 0 definition. Only for cosΘ ∈ [−1, cosΘS,−],

RS,± =

>0
︷︸︸︷

BS ±

<|BS|
︷ ︸︸ ︷√
∆S

tan2 θ1 − tan2 θS
︸ ︷︷ ︸

>0

> 0.

And rearrange the above equation, recall ∆S < (tan θ1 tan θ2 cosΘ + tan2 θ1)
2,

RS,± = 1 +

>0
︷ ︸︸ ︷

−(tan θ1 tan θ2 cosΘ + tan2 θ1)±
√
∆S

tan2 θ1 − tan2 θS
> 1.

The corresponding vertical group velocity, using KS
z = −R + 1,

sgn{cz} = −sgn{KS
z} ⇒ (cz)

S,± > 0.

There are two high frequency harmonic beams generated from every intersection point satis-
fying cosΘ ∈ [−1, cosΘS,−]. Both beams, if existed, are propagating upward.

(ii) χ < 0
The results from region (A2) of Case VI (A) are also valid here.

(C) α1, α2 < 1

Region (C1)
The selection rules are identical to Case V although application of reflection-symmetries

is needed for Ψ = −1.

Region (C2)
The selection rules are identical to Case V although application of reflection-symmetries

is needed for Ψ = +1.

5.5 Short Summary

In general, the selection rules are analogous to two-dimensional collision counterparts
if cosΘ → ±1. In the traditional branch, N2 > f 2, the high frequency harmonics are
only allowed to generate if and only if one of the two interacting conical waves is travelling
downward and the other upward. This constraint is satisfied when there is no horizontal
distance (H = 0) between two IGW sources or at least one of two nondimensional parameters
is greater than unity, i.e. max(α1, α2) > 1. The phase difference between two internal gravity
waves is NOT AT ALL important in determining interference pattern.



77

On the other hand, the high frequency harmonic beams are permitted when two IGWs
satisfy the geometric constraint, cosΘ ∈ [−1, cosΘS,−] in the non-traditional branch, f 2 >
N2. This constraint is satisfied when there is no vertical distance (V = 0) between two IGW
sources or at least one of two nondimensional parameters is less than unity, i.e. min(α1, α2) <
1. This requires the intersection point is not too far away from the sources. Consequently,
the harmonic waves can only be detected in a confined space in the vicinity of the sources.

Unfortunately, due to the limited time and resource, only a few selection rules are well
testified. The cases confirmed by numerical simulations are Case I to Case V and region
(A2), (B2) of Case VI for traditional branch, Ψ = +1, only. The verification of all selection
rules by numeric experiments will be addressed as part of future work.
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Chapter 6

Nonlinear Interaction of the
Quasi-Two-Dimensional
Inertia-Gravity Waves with More
Realistic Coriolis Force

6.1 Introduction

The selection rules can be extended to deal with more general rotational effect. Instead
of f = fz, consider f = fxx+ fyy+ fzz where fx, fy, fz are constant. The general dispersion
relation has the following form, with constant Brunt-Väisälä frequency,

ω2 =
k2⊥
k2

N2 +
(k · f)2
k2

=
k⊥
k2

N2 +
(k · f)2
k2 f 2

f 2, (6.1)

and f = |f |. The last term reduces to (k2z/k
2) f 2 if f = fz.

The group velocity and phase velocity with respect to the general dispersion relation
would be,

(ω2 k2) c =
[
(N2 − ω2)ω kx + (k · f)ω fx

]
x

+
[
(N2 − ω2)ω ky + (k · f)ω fy

]
y

+
[

− ω2 ω kz + (k · f)ω fz
]
z, (6.2)

and

(ω2 k2) cp =

(
k2⊥
k2

N2 +
(k · f)2
k2

)

(ωk) . (6.3)

The orthogonality of phase and group velocities is still valid, i.e. c · cp = 0.
Consider a simpler quasi-two-dimensional special case by rotating the coordinate sys-

tem such that x-axis is parallel to the horizontal group velocity vector and without loss of
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generality also setting fy fz > 0. This is suitable for IGWs propagating in the northern
hemisphere where positive y-axis is pointing to higher latitude in general and to north pole
if x-axis is parallel to longitudinal direction. In most part of the IGW beam (not too close
to the source and the propagating front of the beam), kx can be approximated by zero. The
approximation is confirmed by GCM numerical simulations (Chavanne et al., 2010) where
the IGW is generated through tides flowing over topography. The dispersion relation then
is function of

kratio ≡
ky
kz

=
ω ky
ω kz

(6.4)

only and the group velocity is dependent on kratio and ω kz. The dispersion relation is a
constant coefficient quadratic equation in kratio. Therefore, if the solvability condition is
satisfied, there are only two fixed value kratio’s satisfying dispersion relation. Notice that,
if kratio is fixed, the group velocity is also fixed up to a constant, i.e. the magnitude of the
group velocity. That says, all IGW plane waves with same sign but different vertical modal
numbers (ω kz’s) would propagate in the same direction, in other words a beam, if they have
the same kratio. The group velocity in terms of kratio is

(ω2 k2) c = [(fx fy) kratio + (fx fz)] (ω kz)x

+
[
(N2 − ω2 + f 2

y ) kratio + (fy fz)
]
(ω kz)y

+
[
( − ω2 + f 2

z ) + (fy fz) kratio
]
(ω kz) z,

and the dispersion relation leads to a quadratic equation in kratio:

(N2 − ω2 + f 2
y ) k

2
ratio + 2 fy fz kratio + (f 2

z − ω2) = 0. (6.5)

kratio’s must be real by definition, from the well-known quadratic formula, the discriminant
therefore must be greater than or equal to zero:

∆ ≡ f 2
y f

2
z + (N2 − ω2 + f 2

y ) (ω
2 − f 2

z ) = (N2 − ω2) (ω2 − f 2
z ) + f 2

y ω
2 ≥ 0.

This is equivalent to:
ω2
min ≤ ω2 ≤ ω2

max,

where

ω2
min ≡

(N2 + f 2
y + f 2

z )−
√

(N2 + f 2
y + f 2

z )
2 − 4 f 2

z N
2

2
,

ω2
max ≡

(N2 + f 2
y + f 2

z ) +
√

(N2 + f 2
y + f 2

z )
2 − 4 f 2

z N
2

2
,

and f 2
z , (N

2 + f 2
y ) ∈ (ω2

min, ω
2
max). Similarly, redefine the variable Ψ = sgn{(N2 + f 2

y )− f 2
z },

there are still two branches of IGW permitted: one would be ω2
min < f 2

z < N2 + f 2
y < ω2

max

corresponding to Ψ = +1 and the other one is ω2
min < N2 + f 2

y < f 2
z < ω2

max where Ψ = −1.



80

The solvability condition does not rule out the possibility that (N2 + f 2
y ) = f 2

z . But for
simplicity, (N2 + f 2

y ) = f 2
z or Ψ = −1 cases are not considered here.

When the solvability condition is met, there are two real roots of kratio:

k±ratio =
−fy fz ±

√
∆

N2 + f 2
y − ω2

, (6.6)

and recall ∆ ≡ f 2
y f

2
z + (N2 + f 2

y − ω2) (ω2 − f 2
z ). Accordingly, for Ψ = +1,

∆







> f 2
y f

2
z , f 2

z < ω2 < N2 + f 2
y

= f 2
y f

2
z , ω2 = f 2

z

< f 2
y f

2
z , ω2

min < ω2 < f 2
z ∪ ω2

max > ω2 > N2 + f 2
y

,

and correspondingly,

(k+ratio) (k
−
ratio)







< 0 , f 2
z < ω2 < N2 + f 2

y

= 0 , ω2 = f 2
z

> 0 , ω2
min < ω2 < f 2

z ∪ ω2
max > ω2 > N2 + f 2

y .
.

The range of allowable frequency band is therefore divided into four intervals, ω2
min < ω2 <

f 2
z , ω

2 = f 2
z , f

2
z < ω2 < N2 + f 2

y and ω2
max > ω2 > N2 + f 2

y .
k±ratio correspond to beams propagating at different angles ψ± measured relative to the

positive x-axis,

cotψ± ≡ cy
cz

= −(k±ratio)
−1 = −kz

ky
⇒ tanψ± = −k±ratio, (6.7)

and

cy = (ω ky) (ω
2 k2)−1 (±

√
∆) (k±ratio)

−1, (6.8)

cz = −(ω kz) (ω
2 k2)−1 (±

√
∆) (k±ratio). (6.9)

It can be proved (the derivation is straightforward but tedious) that

d k+ratio
dω2

> 0, (6.10)

d k−ratio
dω2

< 0. (6.11)

These two relations are used to compare values of kratio’s at different frequencies.
Applying [Eq. (6.6)], [Eq. (6.8)] and [Eq. (6.9)], the signs of k±ratio and the relation

between phase and group velocities are listed in Table 6.1. Beware that the relation between
phase and group velocities is different for each frequency interval that solvability condition
is met.

The general theory is not ready yet at this point, but several special cases would be
presented here.
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Table 6.1 The signs of k±ratio and the relation between phase and group velocities in different
frequency intervals are listed here.

ω2
min < ω2 < f 2

z ω2 = f 2
z f 2

z < ω2 < N2 + f 2
y ω2

max > ω2 > N2 + f 2
y

k+ratio < 0 = 0 > 0 > 0
k−ratio < 0 < 0 < 0 > 0

sgn{c+y } −sgn{ω k+y } +sgn{ω k+y } +sgn{ω k+y } +sgn{ω k+y }
sgn{c+z } +sgn{ω k+z } −sgn{ω k+z } −sgn{ω k+z } −sgn{ω k+z }
sgn{c−y } +sgn{ω k−y } +sgn{ω k−y } +sgn{ω k−y } −sgn{ω k−y }
sgn{c−z } −sgn{ω k−z } −sgn{ω k−z } −sgn{ω k−z } +sgn{ω k−z }

6.2 IGW Sources Forced at Frequency, f 2z < ω2 < N 2+f 2y

First, consider the simplest case that two sources are forcing at the same frequency ω
where f 2

z < ω2 < N2 + f 2
y . There are two collision configurations: the first one is that

both primary beams have the same sign horizontal group velocity, like in (Fig. 6.1(a)) and
(Fig. 6.2(a)), and the other one is with same sigh vertical group velocity, see (Fig. 6.1(b)) and
(Fig. 6.2(b)). The outgoing second harmonics therefore may fall into two different frequency
intervals, f 2

z < (2ω)2 < N2 + f 2
y , see (Fig. 6.1), or ω2

max > (2ω)2 > N2 + f 2
y , see (Fig. 6.2).

In the first configuration, label the beam from the quadrant II as the first beam and that
from quadrant III as the second beam. Since f 2

z < ω2 < N2 + f 2
y and the group velocities

are known, from Table 6.1:

ω ky,1 > 0, ω kz,1 > 0,

ω ky,2 > 0, ω kz,2 < 0,

and
ky,1 = k+ratio kz,1, ky,2 = k−ratio kz,2.

Applying the constraint that the harmonics are generated from nonlinear interaction of the
two primary beams, the wave vectors of harmonic beams in component form are

(2ω) kHy = 2 (ω ky,1 + ω ky,2) > 0, (6.12)

(2ω) kHz = 2 (ω kz,1 + ω kz,2),

and must satisfy [Eq. (6.7)]

kHy
kHz

= kH,±
ratio =

k+ratio kz,1 + k−ratio kz,2
kz,1 + kz,2

.
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The above equation can be rewritten in the form:

kz,1
kz,2
︸︷︷︸

<0

= −k
H,±
ratio − k−ratio
kH,±
ratio − k+ratio

.

The right-hand side of the above equation must be less than zero otherwise there is a con-
tradiction. If there is no contradiction, the harmonics are permitted to generate. Otherwise,
the harmonics are forbidden since the dispersion relation is not satisfied. And this is how
the “selection rule” works.

If the harmonic frequency falls in f 2
z < (2ω)2 < N2 + f 2

y , by using [Eq. (6.10)] and
[Eq. (6.11)]:

kH,+
ratio > k+ratio > 0 > k−ratio > kH,−

ratio.

Use the above relation to testify the selection rule

kz,1
kz,2
︸︷︷︸

<0

= −

>0
︷ ︸︸ ︷

kH,+
ratio − k−ratio
kH,+
ratio − k+ratio

︸ ︷︷ ︸

>0

< 0,

kz,1
kz,2
︸︷︷︸

<0

= −

<0
︷ ︸︸ ︷

kH,−
ratio − k−ratio
kH,−
ratio − k+ratio

︸ ︷︷ ︸

<0

< 0.

There are two fixed valued (kz,1/kz,2) satisfying the selection rule, i.e. two beams emanating

at individual fixed angles which correspond to kH,±
ratio. The kH,+

ratio beam has group velocity
cH,+
y > 0 (known from [Eq. (6.12)]) and therefore cH,+

z < 0, i.e. propagating into quadrant

IV. Similarly, kH,−
ratio beam has group velocity cH,−

y > 0 and cH,−
z > 0 corresponds to the beam

emanating into quadrant I.
If the harmonics have frequency in ω2

max > (2ω)2 > N2 + f 2
y interval,

kH,−
ratio > kH,+

ratio > k+ratio > 0 > k−ratio.

Similar to above procedures, this time

kz,1
kz,2
︸︷︷︸

<0

= −

>0
︷ ︸︸ ︷

kH,+
ratio − k−ratio
kH,+
ratio − k+ratio

︸ ︷︷ ︸

>0

< 0,

kz,1
kz,2
︸︷︷︸

<0

= −

>0
︷ ︸︸ ︷

kH,−
ratio − k−ratio
kH,−
ratio − k+ratio

︸ ︷︷ ︸

>0

< 0.



83

There are also two fixed valued (kz,1/kz,2) satisfying the selection rule. The kH,+
ratio beam

has group velocity cH,+
y > 0 and cH,+

z < 0, i.e. propagating into quadrant IV. But kH,−
ratio

beam has group velocity cH,−
y < 0 (using last column of Table 6.1 and be aware that the

relation between phase velocity and group velocity is different from the “traditional” one)
and cH,−

z > 0 corresponds to the beam emanating into quadrant II (introducing fy where
fy fz > 0 is like counterclockwisely rotating the “St. Andrew’s cross”).

The result is confirmed by numerical simulations, see (Fig. 6.1(a)) and (Fig. 6.2(a)).
In the other configuration, label the beam from the quadrant II as the first beam and

that from quadrant I as the second beam. Similarly, judging from the group velocities and
Table 6.1:

ω ky,1 > 0, ω kz,1 > 0,

ω ky,2 < 0, ω kz,2 > 0,

and

ky,1 = k+ratio kz,1,

ky,2 = k−ratio kz,2.

Applying the constraint that the harmonics are generated from nonlinear interaction of the
two primary beams, the wave vectors of harmonic beams in component form are

(2ω) kHy = 2 (ω ky,1 + ω ky,2),

(2ω) kHz = 2 (ω kz,1 + ω kz,2) > 0 (6.13)

and must satisfy [Eq. (6.7)]:

kz,1
kz,2
︸︷︷︸

>0

= −k
H,±
ratio − k−ratio
kH,±
ratio − k+ratio

.

The right-hand side of the above equation must be greater than zero otherwise there is a
contradiction.

If the harmonic frequency falls in f 2
z < (2ω)2 < N2 + f 2

y , recall

kH,+
ratio > k+ratio > 0 > k−ratio > kH,−

ratio.

Use the above relation to testify the selection rule,

kz,1
kz,2
︸︷︷︸

>0

= −

>0
︷ ︸︸ ︷

kH,+
ratio − k−ratio
kH,+
ratio − k+ratio

︸ ︷︷ ︸

>0

< 0,

kz,1
kz,2
︸︷︷︸

>0

= −

<0
︷ ︸︸ ︷

kH,−
ratio − k−ratio
kH,−
ratio − k+ratio

︸ ︷︷ ︸

<0

< 0,
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yield a contradiction, i.e. LHS is greater than zero but RHS is less than zero. The harmonics
are therefore forbidden.

If the harmonics have frequency in ω2
max > (2ω)2 > N2 + f 2

y interval,

kH,−
ratio > kH,+

ratio > k+ratio > 0 > k−ratio.

Similar to above procedures, this time

kz,1
kz,2
︸︷︷︸

>0

= −

>0
︷ ︸︸ ︷

kH,+
ratio − k−ratio
kH,+
ratio − k+ratio

︸ ︷︷ ︸

>0

< 0,

kz,1
kz,2
︸︷︷︸

>0

= −

>0
︷ ︸︸ ︷

kH,−
ratio − k−ratio
kH,−
ratio − k+ratio

︸ ︷︷ ︸

>0

< 0.

No harmonics are permitted, either.
The results are demonstrated in (Fig. 6.1(b)) and (Fig. 6.2(b)).

6.3 IGW Sources Forced at Frequency, ω2
min < ω2 < f 2z

This time, consider if two sources are forcing at the same frequency ω where ω2
min < ω2 <

f 2
z . There are also two collision configurations: the first one is that both primary beams have
the same sign horizontal group velocity, like in (Fig. 6.3(a)), and the other one is both beams
are heading toward each other, see (Fig. 6.3(b)). The outgoing second harmonics therefore
may fall into three different frequency intervals, f 2

z < (2ω)2 < N2 + f 2
y , see (Fig. 6.3), or

ω2
min < (2ω)2 < f 2

z and ω2
max > (2ω)2 > N2 + f 2

y which numerical simulations currently are
not available.

In the first configuration, label the bottom source as the first beam and top one as the
second beam. Since ω2

min < ω2 < f 2
z and the group velocities are known, from Table 6.1:

ω ky,1 > 0, ω kz,1 < 0,

ω ky,2 < 0, ω kz,2 > 0,

and

ky,1 = k+ratio kz,1,

ky,2 = k−ratio kz,2.

Applying the constraint that the harmonics are generated from nonlinear interaction of the
two primary beams, the wave vectors of harmonic beams in component form are

(2ω) kHy = 2 (ω ky,1 + ω ky,2),

(2ω) kHz = 2 (ω kz,1 + ω kz,2),
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(a) (b)

Figure 6.1 Numerical simulations of physical beams, shown by the magnitude of their x-dir
vorticity. Each primary beam has frequency of ω with f 2

z < ω2 < N2 + f 2
y and second

harmonics have frequency in f 2
z < (2ω)2 < N2 + f 2

y interval, too. In these simulations,
f/N = 1/4, fy = f cos 40◦, fz = f sin 40◦ and |ω|/fz = 2.51. The angles ψ for primary
beams are 161.1◦ (from quadrant II), 203.4◦ (from quadrant III) and 23.4◦ (from quadrant
I) respectively and that for second harmonics are 310◦ (into quadrant IV) and 53.5◦ (into
quadrant I). (a) (left) The primary beam sources lie in the corners on the left side of the
panel. Both primary beams propagate to the right, interact, and create two harmonic beams
or “legs” with frequencies ±2ω. (b) (right) As in panel (a), but with sources at the top. No
harmonic beams are produced.

and must satisfy [Eq. (6.7)]

kz,1
kz,2
︸︷︷︸

<0

= −k
H,±
ratio − k−ratio
kH,±
ratio − k+ratio

.

If the harmonic frequency falls in f 2
z < (2ω)2 < N2 + f 2

y , by using [Eq. (6.10)] and
[Eq. (6.11)]:

kH,+
ratio > 0 > k+ratio > k−ratio > kH,−

ratio.

Use the above relation to testify the selection rule

kz,1
kz,2
︸︷︷︸

<0

= −

>0
︷ ︸︸ ︷

kH,+
ratio − k−ratio
kH,+
ratio − k+ratio

︸ ︷︷ ︸

>0

< −1,

kz,1
kz,2
︸︷︷︸

<0

= −

<0
︷ ︸︸ ︷

kH,−
ratio − k−ratio
kH,−
ratio − k+ratio

︸ ︷︷ ︸

<0

< 0, > −1.
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(a) (b)

Figure 6.2 Numerical simulations of physical beams, shown by the magnitude of their x-dir
vorticity. Each primary beam has frequency of ω with f 2

z < ω2 < N2 + f 2
y but second

harmonics have frequency ω2
max > (2ω)2 > N2 + f 2

y . In these simulations, f/N = 3/4,
fy = f cos 40◦, fz = f sin 40◦ and |ω|/fz = 1.22. The angles ψ for primary beams are 170.7◦

(from quadrant II), 216.0◦ (from quadrant III) and 36.0◦ (from quadrant I) respectively and
that for second harmonics are 286.1◦ (into quadrant IV) and 100.7◦ (into quadrant II). The
ratio of Coriolis parameter to Brunt-Väisälä frequency is chosen to emphasize the possibility
that the second harmonic beam is able to propagating into quadrant II (which is impossible
if f 2

z < (2ω)2 < N2 + f 2
y , as in (Fig. 6.1(a))). (a) (left) The primary beam sources lie in the

corners on the left side of the panel. Both primary beams propagate to the right, interact,
and create two harmonic beams with frequencies ±2ω. (b) (right) As in panel (a), but with
sources at the top. No harmonic beams are produced.

There are two fixed valued (kz,1/kz,2) satisfying the selection rule, i.e. two beams emanating

at individual fixed angles which correspond to kH,±
ratio. The kH,+

ratio beam has group velocity
cH,+
z > 0 (since ω kz,2 < −ω kz,1 ⇒ (ω kz,1 + ω kz,2) < 0 ⇒ (2ω) kH,+

z < 0) and therefore

cH,+
y < 0, i.e. propagating into quadrant II. Similarly, kH,−

ratio beam has group velocity cH,−
z < 0

(since ω kz,2 > −ω kz,1 ⇒ (ω kz,1 + ω kz,2) > 0 ⇒ (2ω) kH,+
z > 0) and cH,−

y < 0 corresponds to
the beam emanating into quadrant III.

In the second configuration, label the beam from quadrant III as the first beam and
that from quadrant I as the second beam. From Table 6.1 and the known group velocities:

ω ky,1 < 0, ω kz,1 > 0,

ω ky,2 < 0, ω kz,2 > 0,

and

ky,1 = k+ratio kz,1,

ky,2 = k−ratio kz,2.
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Applying the constraint that the harmonics are generated from nonlinear interaction of the
two primary beams, the wave vectors of harmonic beams in component form are

(2ω) kHy = 2 (ω ky,1 + ω ky,2) < 0,

(2ω) kHz = 2 (ω kz,1 + ω kz,2) > 0,

and must satisfy [Eq. (6.7)]

kz,1
kz,2
︸︷︷︸

>0

= −k
H,±
ratio − k−ratio
kH,±
ratio − k+ratio

.

If the harmonic frequency falls in f 2
z < (2ω)2 < N2 + f 2

y , by using [Eq. (6.10)] and
[Eq. (6.11)]:

kH,+
ratio > 0 > k+ratio > k−ratio > kH,−

ratio.

Use the above relation and testify the selection rule

kz,1
kz,2
︸︷︷︸

>0

= −

>0
︷ ︸︸ ︷

kH,+
ratio − k−ratio
kH,+
ratio − k+ratio

︸ ︷︷ ︸

>0

< −1,

kz,1
kz,2
︸︷︷︸

>0

= −

<0
︷ ︸︸ ︷

kH,−
ratio − k−ratio
kH,−
ratio − k+ratio

︸ ︷︷ ︸

<0

< 0, > −1.

The contradiction here means there is no harmonic beam permitted.
The second configuration can be extended to explain the reflection from the flat bottom,

see (Fig. 6.4). Unlike the beam in the frequency band f 2
z < ω2 < N2+f 2

y or the more familiar
case f 2

z < ω2 < N2, the reflected beam is back into quadrant I instead of propagating into
quadrant II. Also there is no second harmonics generated. This example offers a possible
explanation for the trapping of near-inertial band energy in 28−30◦ north where the Coriolis
parameter f coincides with diurnal tidal frequency (van Haren, 2005). The reflected beam has
the same sign slope as that of the incoming beam would confine the near-inertial band energy
transfer in the vicinity of the generation site and there is no second harmonics generated
might be the cause of the drop of the semidiurnal energy flux in lower latitudes.

6.4 Conclusion

The selection rules are still similar to the quasi-two-dimensional inertia-gravity waves
with simple Coriolis effect. With the introduction of more realistic Coriolis parameter, the
solvability condition for inertia-gravity waves has a broader frequency band ω2

min < f 2
z <
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(a) (b)

Figure 6.3 Numerical simulations of physical beams, shown by the magnitude of their z-dir
velocity. Each primary beam has frequency of ω with ω2

min < ω2 < f 2
z but second harmonics

have frequency f 2
z < (2ω)2 < N2+f 2

y . In these simulations, f/N = 3/4, fy = f cos 40◦, fz =
f sin 40◦ and |ω|/fz = 0.91. The angles ψ for primary beams are 5.2◦ (from quadrant I),
21.6◦ (also from quadrant I) and 185.2◦ (from quadrant III) respectively and that for second
harmonics are 149.1◦ (into quadrant II) and 237.6◦ (into quadrant III). (a) (left) The primary
beam sources lie in the corners on the right side of the panel. Both primary beams propagate
to the left, interact, and create two harmonic beams with frequencies ±2ω. (b) (right) As
in panel (a), but with one source at the top and the other one at the bottom. No harmonic
beams are produced.

N2 + f 2
y < ω2

max and thus changes the relation between group velocity and phase velocity in
the frequency intervals ω2

min < ω2 < f 2
z and ω2

max > (2ω)2 > N2+f 2
y . The reflection from flat

bottom in the frequency interval ω2
min < ω2 < f 2

z example offers a possible solution to explain
the trapping of energy transfer in near-inertial frequency band and drop of semidiurnal energy
flux in lower latitudes near the 28−30◦ north where the Coriolis parameter f coincides with
diurnal tidal frequency (van Haren, 2005).
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Figure 6.4 Numerical simulations of physical beams, shown by the magnitude of their y-dir
velocity. The primary beam has frequency of ω with ω2

min < ω2 < f 2
z but the harmonics,

if exist, lie in f 2
z < (2ω)2 < N2 + f 2

y interval. In this simulation, f/N = 3/4, fy =
f cos 40◦, fz = f sin 40◦, |ω|/fz = 0.91 and |ω|/ωmin = 1.07. The angles ψ for primary
beams are 21.6◦ and 5.2◦ respectively and that for second harmonics, if exist, are 57.6◦ and
30.9◦. This example is used to explain the trapping of near-inertial internal gravity wave
energy flux near the 28 − 30◦ north where the Coriolis parameter f coincides with diurnal
tidal frequency (van Haren, 2005). The reflected beam has the same sign slope as that of
the incoming beam would confine the near-inertial band energy transfer in the vicinity of
the generation site and there is no second harmonics generated might be the cause of the
drop of the semidiurnal energy flux in lower latitudes
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Chapter 7

Summary and Future Work

After all, a question naturally arises: Are the selection rules specific to internal gravity
waves or inertia-gravity waves? If the answer is “no” to this question, can selection rules
be extended to waves with any form of dispersion relation? Or, what are the properties of
dispersion relation that are necessary/sufficient for the existence of selection rules?

Let’s consider a generic setup: Suppose two two-dimensional plane waves with known
frequencies, ω1, ω2, and known wave vectors, k1,k2 interact nonlinearly and thus generate
an interacted plane wave with unknown frequency, ωH, and unknown wave vector, kH. Each
interacting plane wave must satisfy a generic dispersion relation, D, such that

D (ω1, kx,1, kz,1) = 0,

D (ω2, kx,2, kz,2) = 0,

and the unknown frequency and wave vector of interacted harmonic then are obtained by
applying quadratic nonlinearities:

ωH = ω1 + ω2,

kHx = kx,1 + kx,2,

kHz = kz,1 + kz,2.

Obviously, the interacted harmonic is allowed if

D (ωH, kHx , k
H
z ) = 0,

and is forbidden if
D (ωH, kHx , k

H
z ) 6= 0.

In general, there is probably no explicit rule to avoid applying the above procedures to every
pair of interacting plane waves.

Suppose a family of dispersion relation can be expressed in the following form:

D (ω, kx, kz) ≡ k2nx − F (ω;G1, G2, . . . , Gs) k
2n
z = 0,
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where G1 to Gs are s parameters independent of ω,k and F is non-dimensional. Thus, the
dispersion relations for both interacting waves can be expressed as follows,

k2nx,1 = F (ω1;G1, G2, . . . , Gs) k
2n
z,1,

k2nx,2 = F (ω2;G1, G2, . . . , Gs) k
2n
z,2.

The dispersion relation for interacted harmonic in terms of kz,1 and kz,2 reduces to either

[
F 1/(2n)(ω1;G1, G2, . . . , Gs) kz,1 + F 1/(2n)(ω2;G1, G2, . . . , Gs) kz,2

]
=

±F 1/(2n)(ω1 + ω2;G1, G2, . . . , Gs) (kz,1 + kz,2),

or

[
F 1/(2n)(ω1;G1, G2, . . . , Gs) kz,1 − F 1/(2n)(ω2;G1, G2, . . . , Gs) kz,2

]
=

±F 1/(2n)(ω1 + ω2;G1, G2, . . . , Gs) (kz,1 + kz,2),

a total of four variations. Therefore, this family of dispersion relation alone is not enough
to determine the existence of harmonics.

If n is equal to 1, G1 is the Brunt-Väisälä frequency, N , and G2 is the Coriolis parameter,
f , the dispersion relation for inertia-gravity wave is recovered:

k2x = F (ω;N, f) k2z , F (ω;N, f) =
ω2 − f 2

N2 − ω2
= tan2 θ,

and

kx = ±
√

ω2 − f 2

N2 − ω2
kz.

In chapter 3 and 4, one more constraint is introduced to resolve this ambiguity: the radi-
ation conditions of incoming beams. The radiation condition helps decide the direction of
group velocity and phase velocity of the incoming beams. Consequently, one could distin-
guish which configuration out of the four variation is correct. In the thought experiments
performed in chapter 3 and 4, the radiation condition contains the least geometric informa-
tion needed from the two wave sources because the setup cleverly guarantees the interaction
would always happen. Hence, some sort of geometric information about the two wave sources
is needed to make sure that the two waves can interact somewhere for this family of disper-
sion relation. For interaction among IGW beams, radiation condition is enough. But for
interaction between inertia-gravity conical waves, the determination of intersection points is
necessary to retrieve the geometric information needed to obtain the relation between group
velocity and phase velocity.

Therefore, the interaction of IGWs has several properties which are good for explaining
selection rules: 1. It is easy to identify the interaction area. As a result, the extra geometric
information needed is obtained easily. 2. The wave beam is a wave packet contains infinite
number of wave vectors. Thus, there are infinite number of k1,k2 pairs interacting in the
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interaction area and some of them would produce harmonics that satisfy quadratic nonlin-
earities and dispersion relation at the same time. 3. The phenomenon is distinguishable
even by inspection: the internal wave beams with different frequencies propagate at different
polar angles. 4. It has real physical applications, such as reflection from a slope and the
interference pattern of the internal tide.

The selection rules derived in Chapter 3 and 4 are sufficient because no harmonic beams
allowed by Tables 4.6 and 4.7 are missing from numerical simulations (all the possibilities
have been tested). The selection rules derived in Chapter 5 are most probably also sufficient
because no harmonic beams allowed are missing from numerical simulations (but not all the
possibilities have been tested). The verification of all selection rules by numeric experiments
will be addressed as part of future work.
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Appendix A

Determine 2 tan2 θS/ tan2 θ for Ψ = −1

The range of tan2 θS/ tan2 θ for Ψ = −1 provides important information to determine
necessary (not sufficient) conditions in Case II and III to distinguish intersection points
which are capable to generate harmonics or not.

Based on [Eq. (5.2c)], the ratio between tan2 θS and tan2 θ is

tan2 θS

tan2 θ
=

f 2 − 4ω2

4ω2 −N2

ω2 −N2

f 2 − ω2
,

and is subjected to the constraint N2 < ω2 < (f/2)2 such that N2 < (2ω)2 < f 2 is still
valid. Taking derivative with respect to ω2 of the ratio leads to

d

dω2

(
tan2 θS

tan2 θ

)

=
−12(f 2 −N2)(ω4 −N2f 2/4)

(4ω2 −N2)2(f 2 − ω2)2
.

The derivative equals to zero while ω2 = Nf/2 and

d

dω2

(
tan2 θS

tan2 θ

){
> 0 if ω2 < Nf/2
< 0 if ω2 > Nf/2

.

Thus the maximum of tan2 θS/ tan2 θ is located at ω2 = Nf/2 and the value is

max

(
tan2 θS

tan2 θ

)

=
tan2 θS

tan2 θ

∣
∣
∣
∣
ω2=Nf/2

=

(
f − 2N

2f −N

)2

.

This maximum is bounded in between 0 while N → (f/2) and 1/4 while N → 0, i.e.

0 < max

(
tan2 θS

tan2 θ

)

<
1

4
.

Therefore, a very conservative estimate is obtained:

0 <
2 tan2 θS

tan2 θ
<

1

2
. (A.1)
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Appendix B

Determine cosΘ in Case VI?

The range of cosΘ is crucial in deriving the selection rules. Since Θ is the angle enclosed
by r1 and r2 in the triangle with sides of lengths r1, r2 and 2H, see (Fig. 5.1(a)), (Fig. 5.1(b))
and (Fig. 5.1(c)) for illustrations. The famous law of cosines gives,

cosΘ =
r21 + r22 − (2H)2

2r1r2
=
r̃21 + r̃22 − 1

2r̃1r̃2
=

(r̃1 + r̃2)
2 − 1

2r̃1r̃2
− 1, (B.1)

where nondimensional r̃1 and r̃2 are defined as,

r̃1(η) ≡
r1
2H

=
|zI cot θ1|

2H
= α1|η|,

and

r̃2(η) ≡
r2
2H

=
|(zI − V ) cot θ2|

2H
= α2|η − 1|.

In the following derivation, it is also useful to work on r̃sum ≡ r̃1 + r̃2 and r̃diff ≡ r̃1 − r̃2
instead of r1 and r2. The nondimensional x-coordinate of intersection point, ξ, therefore can
be rewritten as,

ξ − 1 = r̃sum r̃diff,

and 2r̃1r̃2 can also be expressed in terms of r̃sum and r̃diff:

2r̃1r̃2 = (r̃2sum − r̃2diff)/2.

Therefore, cosΘ in terms of r̃sum and r̃diff is

cosΘ =
r̃2sum − 1

2r̃1r̃2
− 1 =

r̃2sum + r̃2diff − 2

r̃2sum − r̃2diff
. (B.2)

Also, from the fundamental triangular inequality and inverse triangular inequality, the rela-
tion between r̃sum and r̃diff is

|r̃diff| < 1 < r̃sum.
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When ξ = 0 or ξ = 2, the formula reduces to

0 < cosΘ =
r̃2sum − 1

r̃2sum + 1
< 1. (B.3)

since r̃2sum = r̃−2
diff. Thus, cosΘ(ξ = 0, 2) are always greater than zero and less than unity.

Substituting the definitions of r̃1(η) and r̃2(η) to rewrite cosΘ in terms of η, the formula
becomes:

cosΘ =

{
[(α1−α2)η+α2]2−1

2α1α2η(1−η)
− 1, 0 < η < 1

[(α1+α2)η−α2]2−1
2α1α2η(η−1)

− 1, η > 1 or η < 0
, (B.4)

and the derivative of cosΘ can be determined in terms of η, too:

d cosΘ

dη
=

{
(α2

1
−1)η2−(α2

2
−1)(η−1)2

2α1α2η2(1−η)2
, 0 < η < 1

(α2
2
−1)(η−1)2−(α2

1
−1)η2

2α1α2η2(1−η)2
, η > 1 or η < 0

. (B.5)

The denominators of d cosΘ/dη are always positive so the signs are determined by their
numerators. The numerators are parabolae in η. If the parabolae never cross the η-axis in
the intersection range of two conical waves, cosΘ is monotonically increasing or decreasing
with respect to η for sure. Otherwise, it is complicated to determine the range of cosΘ.
d cosΘ/dη cross η-axis at η±c ,

η±c ≡







(α2
2
−1)±

√
(α2

2
−1)(α2

1
−1)

α2
2
−α2

1

, Case VI (A)

No solutions, Case VI (B)
(α2

2
−1)±

√
(1−α2

2
)(1−α2

1
)

α2
2
−α2

1

, Case VI (C)

,

and

cosΘ(η = η±c ) =
±1 +

√

(α2
2 − 1)(α2

1 − 1)

α1α2

, Case VI (A) . (B.6)

The ranges of cosΘ are summarized as follows.
For Ψ = +1, in region (A1):







1 < η4 ≤ η ≤ η+(ξ = 2), 1 = cosΘ(η4) ≥ cosΘ ≥ cosΘ(η+c ) > Sr
η+(ξ = 2) ≤ η ≤ η+(ξ = 0), cosΘ(η+(ξ = 0)) ≥ cosΘ ≥ cosΘ(η+(ξ = 2)) > Sr
1 < η+(ξ = 0) ≤ η ≤ η1, 1 = cosΘ(η1) ≥ cosΘ ≥ cosΘ(η+(ξ = 0)) > Sr,

(B.7)

since η4 < η+c < η+(ξ = 2). In region (A2):







0 < η2 ≤ η ≤ η−(ξ = 0), 1 = cosΘ(η2) ≥ cosΘ ≥ cosΘ(η−(ξ = 0)) > 0
η−(ξ = 0) ≤ η ≤ η−(ξ = 2), cosΘ ≥ cosΘ(η−c ) > −Sr
η−(ξ = 2) ≤ η ≤ η3 < 1, 1 = cosΘ(η3) ≥ cosΘ ≥ cosΘ(η−(ξ = 2)) > 0,

(B.8)

since η−(ξ = 0) < η−c < η−(ξ = 2).
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In region (B1) or (C1) if α2
1 < 1− Sr2:

{
1 < η3 ≤ η ≤ η+(ξ = 0), cosΘ(η+(ξ = 0)) ≥ cosΘ ≥ cosΘ(η3) = −1
1 < η+(ξ = 0) ≤ η ≤ η1, 1 = cosΘ(η1) ≥ cosΘ ≥ cosΘ(η+(ξ = 0)) > 0.

(B.9)

In region (B1) or (C1) if α2
1 ≥ 1− Sr2:







1 < η3 ≤ η ≤ η−(ξ = 2), cosΘ(η−(ξ = 2)) ≥ cosΘ ≥ cosΘ(η3) = −1
η−(ξ = 2) ≤ η ≤ η+(ξ = 2), cosΘ(η+(ξ = 2)) ≥ cosΘ ≥ cosΘ(η−(ξ = 2)) > 0
η+(ξ = 2) ≤ η ≤ η+(ξ = 0), cosΘ(η+(ξ = 0)) ≥ cosΘ ≥ cosΘ(η+(ξ = 2)) > 0
1 < η+(ξ = 0) ≤ η ≤ η1, 1 = cosΘ(η1) ≥ cosΘ ≥ cosΘ(η+(ξ = 0)) > 0.

(B.10)
In region (B2):
{

0 < η2 ≤ η ≤ η−(ξ = 0), 1 = cosΘ(η2) ≥ cosΘ ≥ cosΘ(η−(ξ = 0)) > 0
η−(ξ = 0) ≤ η ≤ η4 < 1, cosΘ(η−(ξ = 0)) ≥ cosΘ ≥ cosΘ(η4) = −1.

(B.11)

In region (C2):
{
η4 ≤ η ≤ η−(ξ = 0) < 0, 1 = cosΘ(η4) ≥ cosΘ ≥ cosΘ(η−(ξ = 0)) > 0
η−(ξ = 0) ≤ η ≤ η2 < 0, cosΘ(η−(ξ = 0)) ≥ cosΘ ≥ cosΘ(η2) = −1.

(B.12)

Since 0 < η+c < 1 and η−c < η4, η
±
c are not in region (C1) or (C2).

For Ψ = −1, in region (A1):






η1 ≤ η ≤ η−(ξ = 2) < 0, 1 = cosΘ(η1) ≥ cosΘ ≥ cosΘ(η−(ξ = 2))
η−(ξ = 2) ≤ η ≤ η−(ξ = 0), cosΘ(η−(ξ = 2)) ≥ cosΘ ≥ cosΘ(η−(ξ = 0))
η−(ξ = 0) ≤ η ≤ η4 < 0, 1 = cosΘ(η4) ≥ cosΘ ≥ cosΘ(η+c ),

(B.13)

since η4 > η+c > η−(ξ = 0). Also, cosΘ > Sr−1. In region (A2):






0 < η2 ≤ η ≤ η+(ξ = 0), 1 = cosΘ(η2) ≥ cosΘ ≥ cosΘ(η+(ξ = 0)) > 0
η+(ξ = 0) ≤ η ≤ η+(ξ = 2), cosΘ ≥ cosΘ(η−c ) > −Sr−1

η+(ξ = 2) ≤ η ≤ η3 < 1, 1 = cosΘ(η3) ≥ cosΘ ≥ cosΘ(η+(ξ = 2)) > 0,
(B.14)

since η+(ξ = 0) < η−c < η+(ξ = 2).
In region (B1) or (C1) if α2

1 < Sr2 − 1:
{
η1 ≤ η ≤ η−(ξ = 2) < 0, 1 = cosΘ(η1) ≥ cosΘ ≥ cosΘ(η−(ξ = 2)) > 0
η−(ξ = 2) ≤ η ≤ η2 < 0, cosΘ(η−(ξ = 2)) ≥ cosΘ ≥ cosΘ(η2) = −1.

(B.15)

In region (B1) or (C1) if α2
1 ≥ Sr2 − 1:







η1 ≤ η ≤ η−(ξ = 2) < 0, 1 = cosΘ(η1) ≥ cosΘ ≥ cosΘ(η−(ξ = 2)) > 0
η−(ξ = 2) ≤ η ≤ η−(ξ = 0), cosΘ(η−(ξ = 2)) ≥ cosΘ ≥ cosΘ(η−(ξ = 0)) > 0
η−(ξ = 0) ≤ η ≤ η+(ξ = 0), cosΘ(η−(ξ = 0)) ≥ cosΘ ≥ cosΘ(η+(ξ = 0)) > 0
η+(ξ = 0) ≤ η ≤ η2 < 0, cosΘ(η+(ξ = 0)) ≥ cosΘ ≥ cosΘ(η2) = −1.

(B.16)
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In region (B2):

{
0 < η4 ≤ η ≤ η+(ξ = 2), cosΘ(η+(ξ = 2)) ≥ cosΘ ≥ cosΘ(η4) = −1
η+(ξ = 2) ≤ η ≤ η3 < 1, 1 = cosΘ(η3) ≥ cosΘ ≥ cosΘ(η+(ξ = 2)) > 0.

(B.17)

In region (C2):

{
1 < η3 ≤ η ≤ η+(ξ = 2), cosΘ(η+(ξ = 2)) ≥ cosΘ ≥ cosΘ(η3) = −1
1 < η+(ξ = 2) ≤ η ≤ η4, 1 = cosΘ(η4) ≥ cosΘ ≥ cosΘ(η+(ξ = 2)) > 0.

(B.18)

Since 0 < η+c < 1 and η−c > η4, η
±
c are not in region (C1) or (C2).
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Appendix C

Determine the Relation Between
cosΘ(η = η±c ) and cosΘS,±, cosΘD,± in
Case VI

In the region (A1), [Eq. (B.6)] can be rewritten as follows,

cosΘ(η+c ) = Sr

{

α−2
1 +

√
(
Sr−2 − α−2

1

) (
1− α−2

1

)
}

= Sr−1

{

α−2
2 +

√
(
Sr2 − α−2

2

) (
1− α−2

2

)
}

.

In the case that Ψ = +1, |χ| > 1/2 and θD < θ2 < θ1, recall

cosΘD,+ = Sr

{

tan2 θD

tan2 θ2
+

√
(

Sr−2 − tan2 θD

tan2 θ2

)(

1− tan2 θD

tan2 θ2

)}

,

and in the case Ψ = −1, θS < θ1 < θ2,

cosΘS,+ = Sr−1

{

tan2 θS

tan2 θ1
+

√
(

Sr2 − tan2 θS

tan2 θ1

)(

1− tan2 θS

tan2 θ1

)}

.

Define utility functions F (P ) and G(P ) in the following ways,

F (P ) ≡ P +
√

(
Sr−2 − P

)
(1− P ) for Sr < 1, 0 < P < 1,

G(P ) ≡ P +
√

(
Sr2 − P

)
(1− P ) for Sr > 1, 0 < P < 1.

Obviously, cosΘ(η+c ), cosΘ
D,+ and cosΘS,+ can be expressed in terms of F (P ) or G(P ):

cosΘ(η+c ) = SrF (P = α−2
1 ) = Sr−1G(P = α−2

2 ),
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and

cosΘD,+ = SrF

(

P =
tan2 θD

tan2 θ2

)

,

cosΘS,+ = Sr−1G

(

P =
tan2 θS

tan2 θ1

)

.

It can be shown that dF (P )/dP < 0 and dG(P )/dP < 0 if 0 < P < 1. Putting every piece
together, the relations between cosΘ(η = η+c ) and cosΘS,+, cosΘD,+ in region (A1) are

if α−2
1 >

tan2 θD

tan2 θ2
⇒ cosΘ(η+c ) < cosΘD,+, (C.1a)

if α−2
1 <

tan2 θD

tan2 θ2
⇒ cosΘ(η+c ) > cosΘD,+, (C.1b)

if α−2
2 >

tan2 θS

tan2 θ1
⇒ cosΘ(η+c ) < cosΘS,+, (C.1c)

if α−2
2 <

tan2 θS

tan2 θ1
⇒ cosΘ(η+c ) > cosΘS,+. (C.1d)

Similarly, in the region (A2):

if α−2
1 >

tan2 θD

tan2 θ2
⇒ cosΘD,− < cosΘ(η−c ) < cosΘD,+, (C.2a)

if α−2
1 <

tan2 θD

tan2 θ2
⇒ cosΘD,− < cosΘD,+ < cosΘ(η−c ), (C.2b)

if α−2
2 >

tan2 θS

tan2 θ1
⇒ cosΘS,− < cosΘ(η−c ) < cosΘS,+, (C.2c)

if α−2
2 <

tan2 θS

tan2 θ1
⇒ cosΘS,− < cosΘS,+ < cosΘ(η−c ). (C.2d)




