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ABSTRACT OF THE DISSERTATION

Neural Networks in Economics

By

Alexander Parret

Doctor of Philosophy in Economics

University of California, Irvine, 2020

Professor Matthew Harding, Chair

The chapters of this dissertation explore the theoretical and empirical potential of neural

networks and deep learning as estimation techniques in economics. The first chapter pro-

vides a novel approximation result for two hidden layer neural networks that makes clear

the trade-off between width and depth. I leverage this result to provide consistency and

op(n
−1/4) convergence rates for this estimator and demonstrate its flexibility in finite sam-

ples. In addition, I introduce a new algorithm called cross-training that allows construction

of asymptotic confidence intervals for linear functionals. In the second chapter I provide

a new neural network designed for a panel data setting with a common index. I allow for

unobserved heterogeneity to enter in the form of additive cross-sectional fixed effects and

provide a correction for the incidental parameter bias by re-centering the score. I apply this

estimator to the demand for cigarettes in the United States. In the third and final chapter

I explore the role of autoencoders as a dimensionality reduction technique when outcomes

are binary. The autoencoder outperforms other dimensionality reduction techniques, like

principal components analysis, in uncovering latent choice probabilities. This estimator is

applied in a consumer segmentation exercise.
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Chapter 1

Consistency and Convergence Rates

for Extended Neural Networks

This chapter establishes a new approximation result for two hidden layer (extended) neural

networks. I leverage this approximation result to provide new consistency and op(n
−1/4)

convergence rate results for this estimator under a least squares objective. In addition, I

propose a novel and computationally feasible inference procedure for neural networks and

deep learning designed to construct pointwise valid confidence bands for linear functionals

of the parameters.

1.1 Introduction

Neural networks and deep1 learning have increasingly become attractive estimators for

economists. While the current state of theoretical results is limited, what we do know

suggests particular neural networks share many desirable properties with commonly used

1Neural networks with more than one hidden layer.
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estimators, e.g., sieve estimators2 (Chen, 2007). Neural networks use nonlinear transforma-

tions of affine combinations to construct functions from covariates. These nonlinear trans-

formations are referred to as activation functions and play a large role in both theoretical

and practical use. The current theoretical literature provides results for single hidden layer

neural networks with smooth3 activation functions (White (1990), Chen and White (1999),

Chen (2007)) and very recently deep neural networks with piecewise linear activation func-

tions4 (Farrell, Liang, and Misra, 2018). However, practitioners have experimented with a

variety of neural network architectures and found that increasing depth provides benefits in

accuracy and generalizability (Safran and Shamir (2017), Telgarsky (2016)).

This work extends the known theoretical results for single hidden layers with smooth activa-

tion functions to those with a second hidden layer. The first major hurdle to overcome is an

approximation result that depends on the width of the first and the second layer. I provide

an approximation theorem when the underlying function admits a suitable representation.

Heuristically, I separate the approximation into two components. The first approximates

a sequence of adaptive basis vectors, while the second projects the observed outcome onto

these vectors. This decomposition allows for the combination of known approximation results

from the single hidden layer neural network literature with those used in series estimation.

In addition to allowing for more flexibility in the approximation, the benefits of the pro-

posed decomposition can be intuitively justified as further breaking up the function into a

sequence of much simpler functions. In the single hidden layer network, one must rely on a

single sequence of nonlinear transformations to reconstruct the unknown function. A second

hidden layer allows the network to construct much simpler functions in this first layer and

combine them in the second.

Once an approximation result that depends directly on the width of each layer is available

2Some of the most commonly used sieve estimators are series and splines.
3These functions typically belong to the sigmoid family, but may also include radial basis functions (Chen,

Racine, and Swanson, 2001) or Fourier series (Gallant and White, 1988)
4In the literature these are referred to as rectified linear units or ReLU.
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it is possible to utilize general results from the sieve literature to establish convergence

rates. I explicitly provide consistency of the extended neural network and convergence rates

comparable to the single layer case. The key component to achieving fast enough rates is

restricting the growth rate of the parameter space. The final rate is achieved through a

delicate balance between the complexity of the estimator, measured by metric entropy, and

the approximation error.

The final contribution of this chapter is the introduction of cross-training. This algorithm, in

conjunction with, sample splitting facilitates the construction of pointwise confidence bands

for linear functionals. This modification uses ideas from other computational approaches like

the jackknife and cross-fitting to stabilize the local behavior of the optima. The underlying

idea is to augment the parameter space by auxiliary parameters that depend only on a subset

of the data. These parameters are then invariant to local perturbations with respect to the

left-out observations. Cross-training is shown, in simulations, to allow asymptotic variance

calculations for both classical and extended neural networks. In contrast estimating these

models without cross-training results in solutions where plug-in estimates of the variance are

unstable in finite samples. In addition, because cross-fitting utilizes a fixed number of splits,

the asymptotic properties related to consistency and convergence rate are unaffected.

The remaining of the chapter proceeds as follows. The first section (1.2) gives a brief overview

of the relevant literature. The next section (1.3) presents the model and assumptions along

with defining neural networks. Section 1.4 presents and discusses the approximation result

for extended neural networks. The consistency and rate results are presented in section 1.5.

I then discuss asymptotic normality for linear functionals in section 1.6 and introduce cross-

training in section 1.6.4. The remaining sections (1.7 and 1.8) provide simulation results and

conclude.
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1.2 Literature Review

Much of the success statistics and econometrics has in describing the behavior of neural

networks, and other adaptive estimators, lies in the method of sieves (Grenander, 1981).

However, this literature has primarily focused on what is termed “linear” sieves while neu-

ral networks belong to the class of “nonlinear” sieves (Chen, 2007). A highly attractive

property of linear sieves is the simplicity of their construction. Linear sieves utilize a fixed

transformation of the covariates space, e.g., power series estimation, where the order of the

polynomial grows with the sample size. These methods have been shown to work very well in

practice and are well understood in the theoretical literature, e.g., Newey (1994) and Newey

(1997). The nonlinear sieve literature is much less developed, and the construction is more

intricate. In contrast to linear sieves, the nonlinear sieve is data adaptive, e.g., free-knot

splines5. Neural networks fall into the class of nonlinear sieves as they operate in a similar

way to a series estimator but construct a data-driven transformation of the covariates space

rather than a fixed one.

The most relevant general framework for sieve and nonlinear sieve estimation is the sequence

of papers Shen and Wong (1994), Chen and Shen (1998) and Shen (1997) which provide the

conditions for calculating convergence rates under a variety of sampling assumptions. In the

particular case of neural networks I build upon Chen and White (1999) who6 established

op(n
−1/4) convergence rates for classical neural networks. Their results hinge on one’s ability

to impose sufficient control on the complexity of the network while taking advantage of

approximation results delivered by Makovoz (1996).

In more recent work Farrell, Liang, and Misra (2018) established convergence rates for deep

5These are splines where the location of the knots is a parameter of the model rather than a pre-determined
value.

6These rate results were the culmination of a decade of work on the statistical properties of neural networks
largely beginning with White (1990), Hornik, Stinchcombe, and White (1989), and Hornik, Stinchcombe,
and White (1990).
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neural networks with piecewise linear activation functions. I view this work as complimentary

as the activation function plays an important role in empirical work. There are clear trade-

offs between the approaches. If one believes the true functional form is smooth, then using

smooth activation functions in finite samples will have better approximation capabilities.

However, in very high dimensions smooth activation functions can become computationally

difficult to work with. I discuss this comparison further in Appendix A.2.

1.3 Model

I consider the nonparametric regression model where: {zi}ni=1 = {yi, x′i}
n
i=1 is a sequence of

random vectors. The outcome of interest yi is sampled from:

yi = g0(xi) + ei, E[ei|xi] = 0, E[e2
i |xi] = σ2(xi) <∞ (1.1)

The dependent variable yi ∈ Y ⊂ R is explained by some unknown function g0(·) of observed

covariates xi ∈ X ⊂ Rp. I impose the following restrictions on the function space G in

addition to the sampling properties of {zi}:

A1.3.1 The random vectors {zi}ni=1 = {yi, x′i}
n
i=1 are i.i.d.. In addition, yi ∈ Y ⊂ R and

xi ∈ X ⊂ Rp where X and Y are compactly supported.

A1.3.2 The unknown function g0 admits the representation: g0(xi) =
∑∞

k=1 βkψk(xi) where

Ψ = {ψ1, ψ2, . . . } is a bounded sequence. The elements of βk are ordered such that:

|βk| ≤ Ck−a for some constant C and a > 1.

A1.3.3 Each ψk ∈ Wm
2 (X ) where W is a Sobelev space with m weak derivatives7 and has a

7By application of Morrey’s embedding theorem this space can be embedded into a Hölder space Λγ

(Wm
2 ↪→ Λγ) where γ = m− p/2 so long as the number of covariates p < 2m where m is the number of weak

derivatives

5



Fourier representation:

ψk(xi) =

∫
exp(iδ′xi)dσψ(δ) (1.2)

where σψ is a complex measure on Rp satisfying:

∫
max {|δ|, 1}m+1 d |σψ| (δ) <∞ (1.3)

The i.i.d. assumption in A1.3.1 will be convenient for the inference approach outlined in

section 1.6, but can be relaxed to weak dependence for the consistency and convergence rate

results with some modifications. The conditions on the covariate support X are made in

most of the nonparametric literature. However, the bound on yi is somewhat irregular. This

bound is typically present in the theory of neural networks and can essentially8 be imposed

by proper control over higher order moments as mentioned in Farrell, Liang, and Misra

(2018). Without loss of generality I take X = [0, 1]p and Y = [0, 1] to be the unit intervals.

Assumption A1.3.2 is a standard assumption in the series estimation literature. Functions

admitting such an expansion are commonly assumed in sieve estimation. Without loss of

generality I take ψk ∈ [0, 1] ∀k. In addition, this form of coefficient decay is standard

in the series estimation literature and is necessary for the approximation error to vanish

asymptotically Newey (1997). I impose the condition A1.3.3 to utilize approximation results

from Makovoz (1996) previously used in the neural network literature. In previous work,

e.g., Chen and White (1999) this assumption is made on the function itself. Here I impose

weaker assumptions by allowing the function to be a composition of functions satisfying this

property. This difference allows for increased flexibility in high-dimensional settings where

some or many elements of xi can be omitted from estimation9 of each ψk. It is important

8Alternatively one may introduce truncation arguments as in Shen (1997).
9I do not take advantage of this case in the theory as I focus on the fully connected model. The results

that follow can then be thought of as upper bounds as the entropy of this estimator will decrease with fewer
connections.
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to note that the δ in A1.3.2 refer to the same parameters from equations 1.4 and 1.5,

introduced in the next section. An extensive list of the properties of such functions can be

found in Barron (1993).

1.3.1 Neural Networks

I consider two specific neural networks. The first is a single hidden layer network:

g(nn)
n (xi) =

d∑
j=1

s(x̃′iδj)γj (1.4)

where x̃i = (1, x′i)
′, γj ∈ R and δj ∈ Rp+1. The second is a deep network, the extended

neural network, which appends an additional hidden layer to the classical case:

g(dnn)
n (xi) =

K∑
k=1

s

(
d∑
j=1

s(x̃′iδj)γjk

)
βk (1.5)

=
K∑
k=1

pd,k(xi)βk (1.6)

where βk ∈ R, δj ∈ Rp+1, and γjk ∈ R. For notation and intuition I define the scaled inner

sum s
(∑d

j=1 s(x̃
′
iδj)γjk

)
≡ pd,k(xi). This component is almost identical to the single layer

network in equation 1.4, but γj is now a vector in RK . The notation for this component is

labeled pd,k(·) to resemble series estimation terminology used in Andrews (1991) and Newey

(1994). The width in the first layer is determined by the subscript d. The function s(·) is

the so-called activation function and is a priori specified10. As discussed in the introduction

I focus on smooth activation functions s(·) belonging to the sigmoid class of functions:

C1.3.1 The function s(t) is a sigmoid function if it is bounded on an interval [a, b] for some

10This is in contrast to the projection pursuit regression estimator (Friedman and Stuetzle, 1981) where
s(·) is estimated.
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a, b ∈ R and satisfies the Lipschitz condition |s(t)− s(t′)| ≤ L|t− t′|

This choice has both theoretical and practical implications and was the dominant choice

for both theoretical and empirical work prior to the introduction of ReLU, one of the most

commonly used piecewise linear activation functions11. The theoretical advantages of sigmoid

functions follow from being Lipschitz and uniformly bounded supx∈X |s(x)| ≤ 1. These

properties are useful in establishing consistency and fast enough convergence rate results for

neural networks.

The practical implications for the choice of activation functions comes down to computation

or beliefs about the unknown function of interest. If the researcher believes the true function

is smooth, then using an activation function that is itself smooth will facilitate a more

efficient approximation in finite samples. However, in very large networks the computational

advantage from using the ReLU function can be quite large.

ĝ
(dnn)
n

... ...

...

x1

x2

x3

xp

s1

s2

s3

sd

pd,1

pd,2

pd,K

Figure 1.1: Graphical depiction of the extended neural network.

The primary difference between classical neural networks and deep learning is expanding

the number of hidden layers. There has been much work attempting to justify the empirical

11It is important to note that the choice of smooth activation functions has gone out of favor in modern
deep learning research. Most current work focuses on the rectified linear unit (ReLU) defined as s(t) = 1t>0t.
This switch is largely attributed to the difficulty of estimating networks with smooth activation functions.
The gradients of such networks are more complicated than piecewise linear functions. I fully acknowledge
that these issues exist but can be largely avoided through the usual nonparametric practice of attempting
different parameter initializations.
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success of adding additional layers both through simulations and theory. Unfortunately, most

of the approximation theorems for deep learning are not functions of the model parameters

with the notable exception Yarotsky (2017) leveraged by Farrell, Liang, and Misra (2018).

This approximation result was a huge step forward, but only applies to networks utilizing

the ReLU activation. The result presented in this chapter allows neural networks defined

with smooth activation functions to take advantage of an additional layer.

To ensure the sieve space Gdnnn is compact I make the following assumptions on the magnitude

of the parameters:

A1.3.4 The parameters of the sieve space Gdnnn satisfy the following bounds:

||β||1 ≤ ∆n,
dn∑
j=1

||δj||1 ≤ dn∆n,
Kn∑
k=1

||γk||1 ≤ Kn∆n (1.7)

where ∆n, Kn, dn →∞ slowly with n

These bounds can be enforced by proper control of the width, Kn and dn, or imposing

constraints or penalties directly on the objective. These assumptions are the same as in

White (1990) and Chen and White (1999) but include the additional bounds on ||γk||1.

Heuristically, these conditions force the complexity of the estimator to be bounded for fixed

values of n. The parameters, and thus the sieve space Gn, will be allowed to grow with n

such that Gn becomes dense in the original space G.

1.4 Approximation

Under assumption A1.3.3 Chen and White (1999) showed the approximation rate for g
(nn)
n

to functions satisfying A1.3.3 is O(d−1/2−1/(p+1)) under a weighted Sobolev norm by ap-

plying results from Makovoz (1996) to sigmoid type activation functions. I provide a new

9



approximation theorem for g
(dnn)
n that leverages the approximation results from Makovoz

(1996) along with results from the series literature.

The unknown function can be represented by an infinite series of basis functions by assump-

tion A1.3.2. Under assumption A1.3.3 each term in the series can be approximated by a

neural network. An approximation to the basis functions in the series are {pd,k}Kk=1 from the

equation 1.5. However, unlike the classical neural network case there will now be two sources

of approximation error. The first source is the approximation error due to estimating the

basis vectors and the second is induced by truncating the series at K.

Theorem 1.1. Suppose assumptions A1.3.2 and A1.3.3 are satisfied. The approximation

error of g
(dnn)
n to the target function g0 satisfies:

∣∣∣∣∣
∣∣∣∣∣g0 −

K∑
k=1

pd,kβk

∣∣∣∣∣
∣∣∣∣∣ = O(d−1/2−1/(p+1) logK) +O(K−a) (1.8)

Proof. Under assumption A1.3.2 one has:

∣∣∣∣∣
∣∣∣∣∣g0 −

K∑
k=1

pd,kβk

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=1

ψkβk −
K∑
k=1

pd,kβk

∣∣∣∣∣
∣∣∣∣∣ (1.9)

=

∣∣∣∣∣
∣∣∣∣∣
K∑
k=1

(ψk − pd,k)βk +
∞∑

k=K+1

ψkβk

∣∣∣∣∣
∣∣∣∣∣ (1.10)

Then by Minkowski’s inequality:

∣∣∣∣∣
∣∣∣∣∣
K∑
k=1

(ψk − pd,k)βk +
∞∑

k=K+1

ψkβk

∣∣∣∣∣
∣∣∣∣∣ ≤ ||(ψ1 − pd,1)β1||+ ||(ψ2 − pd,2)β2||+ · · · (1.11)

+ ||(ψk − pd,k)βk||+

∣∣∣∣∣
∣∣∣∣∣
∞∑

k=K+1

ψkβk

∣∣∣∣∣
∣∣∣∣∣ (1.12)

Each of the first K terms can be decomposed as:

||(ψk − pd,k)βk|| ≤ ||ψk − pd,k|| ||βk|| (1.13)

10



Now note that pd,k = s
(∑d

j=1 s(x̃
′
iδj)γjk

)
which is f

(nn)
n scaled to output units in [0, 1].

Since ψk ∈ [0, 1] for any k ∈ {1, 2, . . . , K}, the approximation error of ||ψk − pd,k|| =

O(d−1/2−1/(p+1)) as in Makovoz (1996). This holds for each term in the sequence where

for some constant c1 > 0:

∣∣∣∣∣
∣∣∣∣∣
K∑
k=1

(ψk − pd,k)βk

∣∣∣∣∣
∣∣∣∣∣ ≤ c1

d1+2/(p+1)

K∑
k=1

||βk|| (1.14)

Then under A1.3.2 the coefficients are bounded by:

K∑
k=1

||βk|| ≤ c2

K∑
k=1

k−a ≤ c2

K∑
k=1

1

k
≤ c2 logK (1.15)

with some constant c2 > 0. The second inequality holds by a > 1 and the last inequality

follows from the partial sum of a Harmonic series being O(logK). Finally, the truncation

error can be bounded to depend on a with some constant c3 > 0.

∣∣∣∣∣
∣∣∣∣∣
∞∑

k=K+1

ψkβk

∣∣∣∣∣
∣∣∣∣∣ ≤

∞∑
K+1

||βk|| (1.16)

≤ c3

a− 1
K−a (1.17)

1.4.1 Discussion

This approximation partitions the original problem into many simpler ones. The target

function is approximated by the composition of many simpler ones as in Barron (1993) and

Makovoz (1996). However, the inclusion of an additional layer allows for these functions to

play the role of adaptive bases. Instead of learning the entire function12 in a single layer,

12It is possible to consider the case where g0(xi) cannot be completely characterized by a composition of
functions satisfying A1.3.3. In this case the inclusion of ψk rather than simply fnn may allow for tighter

11



the basis is learned by the sequence ψk. Furthermore, the trade-off between K and d is fully

characterized. Achieving a good approximation to the underlying function requires balancing

the approximation error of the sequence with the approximation error of each basis function:

Kn � d
1
2a

+ 1
a(1+p)

n (1.18)

This will ensure the truncation error vanishes proportionally to the error in estimating each

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
dn

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

K n

a=1.00
a=1.10
a=1.20
a=1.30
a=1.40
a=1.50
a=1.60
a=1.70
a=1.80
a=1.90
a=2.00

Figure 1.2: Growth rates for neural network widths Kn and dn over various choices of a with
a single covariate (p = 1).

basis function. This choice has clear theoretical implications for how to choose Kn and dn

given values of p and a. Figure 1.2 shows how Kn and dn vary a for fixed p = 1. An

important property of equation 1.18 is that when p is large the growth rate of dn is much

faster than Kn. This suggests that in high-dimensional problems one may want to include

many more terms in the first hidden layer relative to the second.13

control of the approximation error. I leave this investigation to future work.
13In the case where each adaptive basis was a function of a strict subset of the covariate space one

can find tighter entropy bounds. This may be one justification for why deeper networks work in practice
as methods like dropout (Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov, 2014) perform a
similar operation and are nearly always used.
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1.5 Asymptotic Theory

Consider the sieve least squares problem:

sup
g∈Gn

Qn(g) = sup
g∈Gn
− 1

n

n∑
i=1

`n(g, zi) (1.19)

The choice of sieve space, Gn, is equation (1.5) satisfying the constraints in A1.3.4 and

`n(g, zi) = (yi − g(xi))
2 = e2

i . I make the following assumptions on the error term ei and

properties of the objective:

A1.5.1 The second unconditional moment of the error term exists and is finite E[e2
i ] <∞. In

addition E(|ei|2+γ) <∞ for some γ > 0

A1.5.2 The sieve spaces Gn are compact.

A1.5.3 The population objective Q(g) is continuous at g0 and for any ε > 0:

Q(g0)− sup
g∈Gn:||g,g0||>ε

Q(g, zi) > 0 (1.20)

A1.5.4 For some constant C1 and any ε > 0

sup
g∈Gn:||g0−g||<ε

var(`n(g)− `n(g0)) ≤ C1ε
2 (1.21)

A1.5.5 For some constant C2 and any % > 0 there exists some s ∈ (0, 2) such that

sup
g∈Gn:||g0−g||<%

|`n(g)− `n(g0)| ≤ %sU(zi) (1.22)

E[U(zi)]
2+γ ≤ C2 for some γ ≥ 0 (1.23)
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A1.5.6 Let Fn = {`n(g)− `n(g0) : ρ(g, g0) ≤ %, g ∈ Gn} and for some constant C3 then there

exists:

% = inf

{
% ∈ (0, 1) :

1√
n%2

∫ %

%2

√
H[](ν,Fn, || · ||2)dε ≤ C3

}
(1.24)

The first condition is quite weak, ruling out only pathological examples like the Cauchy

and is made in most parametric and nonparametric literature. The second condition is also

standard in the nonparametric literature, e.g., Chen and Shen (1998), Shen and Wong (1994),

or Chen (2007). Compactness follows directly from the definition of the neural network spaces

Gn. The identification condition, A1.5.3 is a standard regularity condition and ensures the

population criterion has sufficient curvature to identify the population parameter. The

assumptions A1.5.4, A1.5.5, and A1.5.6 follow from Chen and Shen (1998) and control

the local behavior of the estimator close to the population parameter. The key condition is

A1.5.6 which is a bound on the bracketing metric entropy. Verifying this assumption for

the extended neural network is key for determining the final convergence rate.

1.5.1 Consistency

Under A1.5.3 and the approximation result from Theorem 1.1 consistency of gn follows from

a uniform convergence result for the sieve objective Qn to the population criterion Q.

Theorem 1.2. If the sampling and function form assumptions from section 1.3 hold along

with A1.5.1, A1.5.2, A1.5.3, ∆n = o(n1/4) and Kndn∆4
n log ∆ndnKn = o(n) then:

lim
n→∞

sup
g∈Gn
|Qn(g)−Q(g)| = 0 (1.25)

and gn
p→ g0

14



Proof. Using boundedness and the sampling assumptions from A1.3.1, it suffices to verify

the conditions from theorem 2.5 in White and Wooldridge (1991). Let the uniform bound

be defined as m(gn, zi) = supg∈Gn |yi − g(xi)| and define upper bounds:

sup
z

sup
g∈Gn
|`(gn, zi)| ≤ ¯̀

n (1.26)

sup
z

sup
g∈Gn
|yi − g(xi)| ≤ m̄n (1.27)

First note that one can use Bernstein’s Inequality for independent random variables to bound

deviations from the expectation of the objective function:

Pr

[∣∣∣∣∣∑
i

`(gn, zi)− E [`(gn, zi)]

∣∣∣∣∣ > ε

]
≤ 2 exp

[
−ε2

2¯̀2
n(n+ 2ε/3)

]
(1.28)

for any ε > 0. In addition, one can use the Lipschitz property of `n to define a bound on

differences between the objective for any gn ∈ Gn:

|`(gn, zi)− `(g0, zi)| ≤ sup
g∈Gn

|yi − g(xi)| ≤ m̄n (1.29)

Using 1.29 and Bernstein’s Inequality one can bound deviations of this difference from its

expectation:

Pr

[∣∣∣∣∣∑
i

m(gn, zi)− E [m(gn, zi)]

∣∣∣∣∣ > ε

]
≤ 2 exp

[
−ε2

2nm̄2
n + 4εm̄n/3

]
(1.30)

15



Putting these bounds together one has the desired maximal inequality:

Pr

[
sup
g∈Gn

∣∣∣∣∣n−1

n∑
i=1

[`(gn, zi)− E (`(gn, zi))]

∣∣∣∣∣ > ε

]
(1.31)

≤ 2 expHn

([
ε

6m̄n

]
,Gm, ||·||∞

)[
exp

[
−ε2n2

18n¯̀2
n + 4εn¯̀2

n

]
(1.32)

+ exp

[
−4n2m̄2

n

2nm̄2
n + 8nm̄2

n/3

]]
(1.33)

≤ 2 expHn

([
ε

6m̄n

]
,Gm, ||·||∞

)[
exp

[
−ε2n

¯̀2
n(18 + 4ε)

]
+ exp [−6n/7]

]
(1.34)

where Hn is the metric entropy. It suffices to show n−1 ¯̀2
n → 0 as n→∞ and ∀ε > 0

(¯̀2
n/n)Hn([ε/6m̄n],Gn, ||·||∞)→ 0 as n→∞ (1.35)

Let supg∈Gn |g| ≤ ∆n and ∆n > 1, then it can be shown ¯̀
n = 4∆2

n and m̄n = 4∆n. The first

condition is satisfied with ∆n = o(n1/4). In addition by the calculations in Appendix A.1:

Hn(ε,Gn, ||·||∞) ≤ ωn

[
log

16

ε
+ log

(
∆n(1 + ∆n + p∆2

n)
)

+ log dnKn

]
(1.36)

where ωn = 1 + Kn(dn + 2) + dn(pn + 1) is the number of parameters to characterize gn.

Using this bound and our definition of m̄n:

Hn(ε/6m̄n,Gn, ||·||∞) = Hn(ε/24∆n,Gn, ||·||∞) (1.37)

≤ ωn log
384∆n

ε
+ ωn log

(
∆n(1 + ∆n + p∆2

n)
)

+ ωn log dnKn

(1.38)
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Then ∃ an n ∈ N s.th. ∀ε > 0 ∆3
n ≥ 384/ε and ∆3

n ≥ ∆2
n ≥ ∆n.

Hn(ε/24∆n,Gn, ||·||∞) ≤ ωn log ∆3
n + ωn log ∆3

n (p+ 2) + ωn log dnKn (1.39)

≤ ωn [6 log ∆n + log(p+ 2) + log dnKn] (1.40)

≤ ωn6 log ∆n(p+ 2)dnKn (1.41)

Putting this together with ¯̀2/n:

(¯̀2/n)Hn(ε/6m̄n,Gn, ||·||∞) ≤ n−196∆4
nωn log ∆n(p+ 2)dnKn (1.42)

Also note that ωn = O(Kndn) therefore Kndn∆4
n log ∆ndnKn = o(n)

It is worth noting that the requirement ∆n = o(n1/4) is not strong here given the coefficient

decay in A1.3.2. One may take ∆n = O(log n) which leaves the growth of dn and Kn

fairly flexible. Without any other considerations: dn = O(nα) and Kn = O(nβ) for some

0 < α + β < 1. This result follows from:

nαnβ(log n)4 log
(
(log n)nαnβ

)
= nαnβ(log n)4 [log(log n) + α log n+ β log n] (1.43)

≤ nαnβ(log n)4 [log n+ α log n+ β log n] (1.44)

≤ 3nα+β(log n)5 = o(n) (1.45)

Combining this result with the balance condition in 1.18 gives us an optimal trade-off:

nβ � nα(
1
2a

+ 1
a(1+p)) (1.46)

As noted in section 1.4.1, the number of basis functions Kn grows with n, but the rates

are much slower when p or a are larger. This follows from the increased complexity of

approximating ψk when p is large and the faster decay rates for the coefficients βk.
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1.5.2 Convergence Rates

The convergence rate result follows from verification of the conditions in Chen and Shen

(1998). The verification of A1.5.6 is specific to the extended neural network and is entirely

new in the literature.

Theorem 1.3. If A1.5.1, A1.5.4, A1.5.5, and A1.5.6 are satisfied and equation (1.18)

holds with decay parameter a > (p + 1)/2 then the convergence rate for an extended neural

network in a sieve least squares problem is:

||gn − g0||L2 = op(n
−1/4) (1.47)

Proof. The verification of A1.5.4 and A1.5.5 are shown in Chen and Shen (1998) and Chen

and White (1999) for g
(nn)
n and the least squares objective. The verification of A1.5.6 is

entirely new and is the key condition that determines the convergence rate.

First note that one can write the difference between the objective evaluated at any g ∈ Gn

and g0 as:

`n(g; zi)− `n(g0; zi) = −1

2
(yi − g)2 +

1

2
(yi − g0)2 (1.48)

= (g − g0)yi −
1

2
(g2 − g2

0) + (g − g0)g0 − (g − g0)g0 (1.49)

= (g − g0)

(
ei +

1

2
(g0 − g)

)
(1.50)

Now to verify A1.5.4, the variance term is bounded by Minkowski’s and Cauchy-Schwarz

inequalities.

E[`n(g; zi)− `n(g0; zi)]
2 ≤ E[((g − g0)ei)

2] +
1

2
E[(g0 − g)4] (1.51)

≤ E[e2
i ]||g − g0||2 +

1

2
E[(g0 − g)4] (1.52)
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The first term is taken care of by A1.5.1 and the second is handled by A1.3.1:

1

2
E[(g0 − g)4] ≤ sup

x
(g0 − g)2||g0 − g||2 (1.53)

≤ (sup
x
||g0||2 + sup

x
||g||2)||g0 − g||2 (1.54)

Without loss of generality supx ||g0|| = supx ||g|| = 1. Therefore:

E[`n(g; zi)− `n(g0; zi)]
2 ≤ const.||g − g0||2 (1.55)

To verify A1.5.5 I use the same uniform bound as above only now to both terms.

|`n(g; zi)− `n(zi, g0)| =
∣∣∣∣(g − g0)

(
ei −

1

2
(g − g0)

)∣∣∣∣ (1.56)

≤ ||g − g0||∞
(
|ei|+

1

2
(||g||∞ + ||g0||∞)

)
(1.57)

The first term requires an interpolation result between || · || and || · ||∞. Using Lemma 2.1

Chen and Shen (1998) ||g − g0||∞ ≤ ||g − g0||
2

2+p :

||g − g0||∞
(
|ei|+

1

2
(||g||∞ + ||g0||∞)

)
≤ ||g − g0||

2
2+p (|ei|+ 1) (1.58)

the desired result is achieved with U(zi) = (|ei|+ 1) which is finite by A1.5.1.

The most important component is the verification of A1.5.6. This condition controls the

complexity of the estimator and ensures the entropy integral is finite. I examine a bound on:

1√
n%2

∫ %

b%2

√
H[](ε,Fn, ||·||2)dε (1.59)

First note that H[](ν,Fn, ||·||2) ≤ H(ν1/s,Gn, ||·||). It sufficies to examine the bound on the

metric entropy for the sieve space Gn. Let ν1/s = ε and plugging in the calculations from
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appendix A.1:

∫ %

%2

√
Kndn∆n log

Kndn∆n

ε
dε (1.60)

Further let ϑn = Kndn and note that since n is large and ∆n = O(log n) one can treat ∆n

as a constant. Substituting Kndn for ϑn:

∫ %

%2

√
ϑn log

ϑn
ε
dε ≤

√
ϑn

∫ %

%2

√
log

ϑn
ε
dε (1.61)

Now let t =
√

log(ϑn/ε) then ε = ϑn exp {−t2} and dε = −2tϑn exp {−t2} dt. The limits of

integration are then u ≡
√

log(ϑn/%) and l ≡
√

log(ϑn/%2). After the change of variables:

ϑ(3/2)
n

∫ u

l

−2t2 exp{−t2}dt (1.62)

Integration by parts yields:

ϑ(3/2)
n

(
t exp

{
−t2
}∣∣u
l
−
∫ u

l

exp
{
−t2
}
dt

)
≤ (ϑn)3/2t exp

{
−t2
}∣∣u
l

(1.63)

= %
√
ϑn log(ϑn/%)− %2

√
ϑn log(ϑn/%2)

(1.64)

≤ %
√
ϑn log(ϑn/%) (1.65)

and % = n−1/2
√
ϑn log(ϑn). Since Kn � d

1
2a

+ 1
a(1+p)

n the final convergence rate is obtained by
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balancing the approximation error with %.

d−1/2−1/(p+1)
n log(Kn) = n−1/2

√
dnKn log(dnKn) (1.66)

√
n = d1/2+1/(p+1)

√
dnKn log(dnKn)

1

logKn

(1.67)

O(n) = d1+2/(p+1)

(
d

1+ 1
2a

+ 1
a(1+p)

n log(d
1+ 1

2a
+ 1

a(1+p)
n

)
/ log(d

1
2a

+ 1
a(1+p)

n )

(1.68)

= d2+2/(p+1)+(1+p+2a)/(2a(1+p))
n log(dn) (1.69)

||ĝn − g0|| = Op

[
(n/ log(n))−((1/2)+(1/(p+1)))/(2+2/(1+p)+(1+p+2a)/(2a(1+p)))

]
(1.70)

= Op

[
(n/ log(n))−a(p+3)/(2a(2p+5)+p+1)

]
= op(n

−1/4) (1.71)

which holds so long as:

−a(p+ 3)/(2a(2p+ 5) + p+ 1) < −1/4 (1.72)

a > (p+ 1)/2 (1.73)

The convergence rate here is similar to the result in Chen and White (1999) as the same

machinery is used. However, it is important to recognize this rate will never be faster than

the classical case. The rate for the classical neural network is governed by:

(
1 +

2

p+ 1

)
/4

(
1 +

1

p+ 1

)
=

p+ 3

4p+ 8
(1.74)

In the case of the extended neural network the presence of amakes direct comparison difficult.

However, using the condition a > (p + 1)/2 for any ε > 0 the extended neural network rate
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is governed:

a(p+ 3)

2a(2p+ 5) + p+ 1
=

(p+ 3)(p+ 1) + 2ε(p+ 3)

4(p+ 3)(p+ 1) + 4ε(2p+ 5)
(1.75)

One can see that when ε → 0 the extended neural network rate approaches 1/4 which is

never faster than the single layer rate (1.74). However, as p gets larger the rates will be

the same. This conclusion is not surprising as I am introducing additional complexity by

adding a layer, increasing the entropy number, while at the same time adding another level

of approximation error. This reduced rate comes at the benefit of additional flexibility in the

approximation, reducing the burden placed on any individual ψk to approximate the entire

function.

1.6 Inference

In this section I discuss an approach to obtaining pointwise confidence bands for linear

functionals of gn. I focus on the ‘evaluation functional’, i.e., gn(x̄) for some x̄ ∈ X . This

functional is linear, but irregular in the sense that it is not estimable at the
√
n rate (Chen,

Liao, and Sun, 2014). I abstract away from the theoretical difficulties of establishing normal-

ity and focus on the computational aspect of estimating the sieve variance14. To this end I

utilize sample splitting and introduce a new algorithm called cross-training to construct the

confidence bands. In simulations the proposed plug-in estimator performs well and attains

conservative, but reasonable coverage.

14I assume the estimator is asymptotically linear and a central limit theorem holds. The assumptions
necessary for this to be true are outlined in A.3, but left unverified.
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1.6.1 Asymptotic Normality

Suppose `(g, zi) − `(g0, zi) can be approximated by ∆`(g0, zi)[g − g0] which is the pathwise

derivative of `(g0, zi) in the direction of [g − g0] defined:

∆`(g0, zi)[g − g0] = lim
τ→0

`(g0 + τ [g − g0], zi)− `(g0, zi)

τ
(1.76)

In order to explicitly write down a normality result for functionals of the neural network

estimator I require some additional notation. Define the norm on Gn:

||g − g0||2` = lim
τ→0
−∂E [∆`(g0 + τ [g − g0], zi)[g − g0]]

∂τ
(1.77)

Let V be the closed linear span of Gn − {g0} under ||·||` with inner product defined as:

〈vg1 , vg2〉` = lim
τ→0
−∂E [∆`(g0 + τvg2 , zi)[vg1 ]]

∂τ
(1.78)

for any vg1 , vg2 ∈ V . The functional under consideration is the evaluation functional h(g) =

g(x̄). The path derivative of this functional in the direction of v = g − g0 is:

∂h(g0)

∂g
[v] = lim

τ→0

h(g0 + τ [v])− h(g0)

τ
(1.79)

which is linear in v. Then by the Riesz representation theorem there is a v?n that satisfies

the following conditions:

∂h(g0)

∂g
[v] = 〈v?n, v〉` (1.80)

∂h(g0)

∂g
[v?n] = ||v?n||

2
` = sup

v∈V,||v||6=0

∣∣∣∂h(g0)
∂g

[v]
∣∣∣2

||v||2`
(1.81)

23



If the functional is regular, the sieve representer under the norm ||·||2` will be finite. However,

this object diverges in the irregular case. Fortunately, the recent work Chen, Liao, and Sun

(2014) and Chen and Liao (2014) show that one can still construct valid inference in this

case. Now define:

||v?n||
2
sd = Var

(
1√
n

n∑
i=1

∆`(g0, zi)[v
?
n]

)
(1.82)

This object characterizes the sieve variance so long as ||v?n||` / ||v?n||sd = O(1). Let u?n =

v?/ ||v?n|| be the normalized representer and one has:

√
n (gn(x̄)− g0(x̄)) / ||v?n||sd =

√
nµn [∆(g0, zi)[u

?
n]] + op(1)→ N(0, 1) (1.83)

where µn is the centered empirical process. I do not prove this result here but assume that it

holds. I construct estimates of ||vn||?sd in the subsequent section and verify that this approach

works well in simulations.

1.6.2 Variance Estimation

The empirical sieve representer for the functional h(g0) solves the following optimization

problem:

||v?n||
2
` = sup

v∈V,||v||6=0

∣∣∣∂h(g0)
∂g

[v]
∣∣∣2

||v||2`
(1.84)

= sup
λ=(vg)∈Rω ,λ 6=0

λ′sns
′
nλ

λ′E [−Hn]λ
(1.85)

where ω = 1 +Kn(dn + 2) + dn(pn + 1) refers to the neural network dimension. The term sn

is the path derivative of the functional h(g0) and Hn = ∂2`(gn, zi)/∂θ∂θ
′. Furthermore by

24



equation 1.80:

∂h(g0)

∂g
[v] = s′nλ (1.86)

= 〈v?n, v〉` (1.87)

= λ?′nE [−Hn]λ (1.88)

such that v?n = λ?n = E[−Hn]−1sn. Now plugging this into the score for our particular form

of `(g0, zi):

∆`(g0, zi)[v
?
n] = −2E [−Hn]−1 snei (1.89)

||v?n||
2
sd = Var(∆`(g0, zi)[v

?
n]) = 4E [−Hn]−1 E [sneie

′
is
′
n]E [−Hn]−1 (1.90)

In practice one needs explicit analytical forms for sn and Hn. This can be done by treating

the problem ‘as-if’ it was fully parametric. This concept is not new to the literature for

linear sieves, e.g., Newey (1997) or Hahn, Liao, and Ridder (2018). However, it has yet to

be verified for use in the case of nonlinear sieves (Chen, Liao, and Sun, 2014). Recall the

form of g
(dnn)
n from 1.5:

g(dnn)
n (xi) =

K∑
k=1

s

(
d∑
j=1

s(x̃′iδj)γjk

)
βk (1.91)

=
K∑
k=1

pd,k(xi)βk (1.92)

If the form of pd,k(xi) was a fixed transformation of xi this would fall into the class of

series estimators. However, the neural network adds a further layer of adaptation and thus

complication to the construction of ||v?n||sd. The score function of g
(dnn)
n with respect to each
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parameter set {βk} , {γjk} , {δj} can be compactly written:

∂`(gn, zi)

∂βk
= −2pd,k(xi)ei (1.93)

∂`(gn, zi)

∂γjk
= −2

∂pd,k
∂γjk

βkei (1.94)

∂`(gn, zi)

∂δk
= −2

∂pd,k
∂δk

βkei (1.95)

where the expressions of ∂pd,k/∂γjk and ∂pd,k/∂γjk are the partial derivatives of the generated

basis functions. Let the parameters be collected into θ = [vec(δ)′, vec(γ)′, vec(β)′]′ and the

scores be stacked as:

∂`(gn, zi)/∂θ = [vec(∂`(gn, zi)/∂δ)
′, vec(∂`(gn, zi)/∂γ)′, vec(∂`(gn, zi)/∂β)′]

′
(1.96)

The hessian terms can then be written as ∂2`(gn, zi)/∂θ∂θ
′ and the complete characterization

of Var(gn) can be written in the familiar sandwich form:


∂h(g0)
∂δ

∂h(g0)
∂γ

∂h(g0)
∂β


′

E
[
∂2`(gn, zi)

∂θ∂θ′

]−1

E
(
∂`(gn, zi)

∂θ

∂`(gn, zi)

∂θ

′)
E
[
∂2`(gn, zi)

∂θ∂θ′

]−1


∂h(g0)
∂δ

∂h(g0)
∂γ

∂h(g0)
∂β

 (1.97)

This expression acts as a ‘delta-method’ plug-in estimator for equation 1.89. However, these

variance estimates tend to be quite poor in practice. Instead I alter the procedure by

introducing a sample splitting scheme and a new algorithm called cross-training.

1.6.3 Sample Splitting

Consider a shuffled partition of the design matrix Z =
{
Z(1),Z(2)

}
where Z(1) = {zi}dn/2ei=1 and

Z(2) = {zi}ni=dn/2e+1. Furthermore define n1 = dn/2e and n2 = n − dn/2e. The conditional

mean function is identified using either Z(1) or Z(2) by assumption A1.3.1.
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The sieve least squares estimate on the first half of the data gives:

ĝn1 =
K∑
k=1

f̂d,k(xi) = sup
g∈Gn1

− 1

2n1

n1∑
i=1

`(gn1 , zi) (1.98)

Now for observations zi ∈ Z(2) let fKd = (fd,1, fd,2, . . . , fd,K)′ evaluated at zi we find optimal

weights α̂ that solve the sample objective:

α̂ = arg min
α

1

n2

n2∑
i=1

(
yi − fKd (xi)

′α
)2

(1.99)

=

(
1

n2

n2∑
i=1

fKd (xi)f
K
d (xi)

′

)†
1

n2

n2∑
i=1

fKd (xi)yi (1.100)

Clearly α̂ is an adjustment term to the estimate of β obtained in 1.98. The final estimate

for gn2(xi) =
∑K

k=1 f̂d,k(xi)αk =
∑K

k=1 pd,k(xi)β̃k

Constructing the variance of gn2 adds the additional parameter α, but all other parameters θ

depend only on observations in n1. Let the score vector be partitioned into si = ∂`(gn, zi)/∂α

and ζi = ∂`(gn, zi)/∂θ and the partitioned hessian matrix is:

∂ζi∂θ 0

∂si
∂θ

∂si
∂α

 (1.101)

where the upper right element is zero as α is fixed when estimating θ. An influence function

term for the parameters pertaining to θ is defined φi = −E
[
∂ζi
∂θ

]−1
ζ̂i and an estimate of the

variance of the evaluation functional gn(x̄) is:

fKd (xi)
′E
[
∂si
∂α

]−1
[
n−1

n∑
i=1

(
si + E

[
∂si
∂θ

]
φi

)(
si + E

[
∂si
∂θ

]
φi

)′]
E
[
∂si
∂α

]−1

fKd (xi)

(1.102)
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This expression15 has an interesting form as it is similar to the consistent estimate of ||v?n||2sd

for series estimation of the evaluation functional in the case where pKd (xi) is a fixed transfor-

mation (Chen, Liao, and Sun, 2014). The additional terms are necessary given the adaptive

construction of pd,k in the extended16 neural network.

1.6.4 Cross-training

Implementation of neural networks and deep learning can be difficult due to the presence of

many local minima or even more problematic, saddle points. To ensure stability of the opti-

mization and reach minima that will satisfy the normality conditions I augment estimation

by including additional parameters that depend on only a subset of the observations. The

justification for this approach is to augment the moment conditions implied by optimizing

the neural network sieve least squares problem. The modification is:

g(xnn)
n (xi) =

K∑
k=1

s((x′i ⊗ Ξ′i)δk + δ0k)βk (1.103)

where Ξi =
(

2,− 1
r−1

e′(i mod r)

)′
∈ Rr+1 and Ir = [e1, e2, . . . , er−1, e0] is an r dimensional

identity matrix. This vector expands the original covariate space by judiciously adding and

subtracting each covariate.

The completely general approach to cross-training is discussed in algorithm 1. However, to

get a feel for this method consider the case where the number of splits r is two and there

is only one covariate (p = 1). Let the indicator functions ιj(i) = 1 {(i mod r) = j} for

each j ∈ {0, 1, . . . , r − 1}. In the case with only two splits ι0 is equal to one for all even

15This formulation would make a two-step procedure like those found in Hahn, Liao, and Ridder (2018)
incredibly useful. Unfortunately, such a construction requires an explicit approximation result for pd,k
separately from gn. The approximation theorem in 1.4 has this in mind, but ultimately constructs one sieve
estimate rather than two.

16The form of the variance for the classical neural network is the same as in 1.102, but the elements of
each term change to reflect the construction in 1.4
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observations and zero otherwise. Likewise, ι1 is one for odd observations and zero otherwise.

The first four observations are transformed as:



x1 ⊗ Ξ1

x2 ⊗ Ξ2

x3 ⊗ Ξ3

x4 ⊗ Ξ4



′

=



2x1 0 −x1

2x2 −x2 0

2x3 0 −x3

2x4 −x4 0


(1.104)

For each observation the operation ⊗Ξi takes the p dimensional covariate vector xi and

for each j ∈ {1, 2, . . . , p} multiplies multiples17 the first element by two and the remaining

elements by either zero or −1/(r − 1). Plugging xi ⊗ Ξi into the first four observations of

g
(nn)
n :

g(xnn)(x(1,3)) =
K∑
k=1

s ((x1,3 ⊗ Ξ1,3)′δk + δ0k) βk (1.105)

=
K∑
k=1

s

([
2x(1,3) 0 −x(1,3)

]
δk + δ0k

)
βk (1.106)

g(xnn)(x(2,4)) =
K∑
k=1

s
(
(x(2,4) ⊗ Ξ(2,4))

′δk + δ0k

)
βk (1.107)

=
K∑
k=1

s

([
2x(2,4) −x(2,4) 0

]
δk + δ0k

)
βk (1.108)

When the number of splits is two (r = 2) there are effectively two estimates for g
(xnn)
n , the

estimates generated from equation (1.105) and (1.107). The first estimate is invariant to any

changes in the observations indexed by an even number, likewise for the second estimate with

respect to the odd index. The implied moment conditions for the cross-trained parameters

17In the case where p = 1 each xi is a scalar thus rendering the transposition and kronecker product
unnecessary, but included for the general cases.
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δ2k and δ3k are respectively:

1

n0

∑
i∈ι0

xisδ0k

(
yi −

K∑
k=1

s (x′iδ1k + x′i (δ1k − δ3k) + δ0k) βk

)
= 0 (1.109)

1

n1

∑
i∈ι1

xisδ1k

(
yi −

K∑
k=1

s (x′iδ1k + x′i (δ1k − δ2k) + δ0k) βk

)
= 0 (1.110)

where nj =
∑n

i=1 ιj(i) for j = {0, 1} and sδmk
= s′ (x′iδ1k + x′i (δ1k − δmk)) for m = {2, 3}

is the derivative of the activation function s(z) evaluated at z. The moment condition for

δ1 is the sum of 1.109 and 1.110. If the underlying function is exactly approximated by

this neural network and zi is truly i.i.d. all of the parameters would be equivalent, i.e.,

δ1k = δ2k = δ3k. However, in practice the neural network is only an approximation to the

true function and so a final estimate of g
(xnn)
n (xi can be constructed by averaging over all r

models. A straightforward way of achieving this is to replace Ξi with Ξ̃i = (2,−1
r
ι′r)
′ such

that g
(xnn)
n (xi) is:

g(xnn)
n (xi) =

K∑
k=1

s((xi ⊗ Ξ̃i)
′δk + δ0k)βk (1.111)

which will average over all the data to produce one estimate of g0.

In the general case for arbitrary p and r the algorithm can be summarized entirely by the

construction of Ξ. Once the number of splits is given the construction of Ξ informs the

dimensionality of the input space. The choice of r is a tuning parameter but does not

appear to be too important so long as the values are reasonable, at least in our simulations.

I summarize the procedure in Algorithm 1. A nice feature of cross-training is that it does not

require more than one pass through the data for optimization. The optimization problem

has higher complexity, as the number of parameters to optimize grows, but is solved only

once.
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Algorithm 1 Cross-Training

1: Shuffle the paired data {yi, xi}. Let the index of the shuffled data be i = {1, 2, . . . , n}.
2: Generate the r dimensional identity matrix Ir with columns Ir = [e1, e2, . . . , er−1, e0].
3: Construct the splitting matrix Ξ where each row can be written as an Rr+1 vector:

Ξi =

(
2,− 1

r − 1
e′(i mod r)

)′
(1.112)

This matrix expands the parameter space by r. The solution to (i mod r) determines the
expanded parameter to be omitted18.

4: Define the set Rm = {j ∈ Z : 0 ≤ j ≤ r − 1, j 6= m} and the indicator function ιj(i) =
1 {(i mod r) = j}. Let the sample size for any ιj be defined nj =

∑n
i=1 ιj(i).

5: Let the parameters δ and β be collected into θ. The cross-trained neural network solves the
sieve least squares problem:

max
θ
− 1

n

n∑
i=1

(
yi −

K∑
k=1

s((xi ⊗ Ξi)
′δk + δ0k)βk

)2

(1.113)

The moment conditions for the cross-trained parameters δmk for any m ∈ {0, 1, . . . , r − 1} are:

1

nm

∑
i∈ιm

xisδmk

yi − K∑
k=1

s

x′iδ1k + x′i

δ1k −
1

r − 1

∑
j∈Rm

ιjδj+2,k

+ δ0k

βk

 = 0

(1.114)

where sδmk
is the first derivative of the activation function evaluated at the index x′iδ1k +

x′i

(
δ1k −

∑
j∈Rm

ιjδj+2,k

)
. The parameter that uses the full sample, δ1, satisfies the sum of all

these conditions:

r−1∑
m=0

1

nm

∑
i∈ιm

xisδmk

yi − K∑
k=1

s

x′iδ1k + x′i

δ1k −
1

r − 1

∑
j∈Rm

ιjδj+2,k

+ δ0k

βk

 = 0

(1.115)

One uses these moment conditions to update the parameters iteratively until convergence is
achieved.

6: The cross-training algorithm finds r different neural network estimates. This occurs because

g
(xnn)
n (xi) depends on what partition i belongs to. An average of these estimates can be con-

structed by using:

g(xnn)
n (xi) =

K∑
k=1

s((x′i ⊗ Ξ̃′i)δk + δ0k)βk (1.116)

where the matrix Ξ̃i =
(
2,−1

r ι
′
r

)
. This constructs a single estimate averaged over all r splits.
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1.7 Monte Carlo

To compare the most used approaches in econometrics to the extended neural network it

is important to first consider the univariate case (p = 1). This is a useful exercise as in

smooth univariate settings, linear sieves and kernel estimation perform well and have been

used across a myriad of empirical applications.

1.7.1 Univariate Simulation Design

Let the data generating process be defined by:

xi ∼ Tri[−1, 0, 1] (1.117)

g(xi) = sin(3πxi/2)(1 + 18x2[sgn(x) + 1])−1 (1.118)

yi = g(xi) + ei (1.119)

ei ∼ N(0, 1) (1.120)

I chose this function as it was recently used in Calonico, Cattaneo, and Farrell (2018).

However, I modify the covariate distribution to be symmetric triangular rather than uniform.

I report results across various choices of dn = Kn for n = 500 and n = 2500 with r ∈

{0, 5, 10}.

The nominal level for confidence intervals is 95%. In addition, I report the percentage of

simulations (out of 500) for which the asymptotic variance produced unstable estimates

without cross-training. For comparison I consider local linear and local constant kernels of

various order where the bandwidth is chosen via cross-validation.

As noted in section 1.6.4, estimation without the cross-training extension begins to become

unstable once Kn = 10 for n = 500 and is never stable for our choices of Kn when n = 2500.
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Figure 1.3: An illustration of the extended neural network output with a 95% confidence
band in the univariate simulation design. The width of both layers in the extended neural
network pictures is ten.

It is apparent that for inference standard estimation (without cross-training) does not work

well. In addition, the deep extension performs slightly better relative to xnn when the

sample size is larger. In addition, the cross-trained extended neural network outperforms

kernel estimation in RMSE across all choices of Kn = dn when r = 10 and nearly all choices

when r = 5.
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Method Kernel-Ord. RMISE Abs. Bias ISD SE Med Len Avg. Coverage Med. CV bw

Const.
Epa-2nd 0.1317 0.0478 0.1174 0.1105 0.4176 0.9180 0.0852
Epa-4th 0.1285 0.0426 0.1168 0.1052 0.3996 0.8970 0.1882
Epa-6th 0.1299 0.0415 0.1188 0.1044 0.3925 0.8930 0.2883

Linear Epa-2nd 0.1305 0.0485 0.1148 0.1037 0.3972 0.8920 0.0966

Neural Net K Est. RMISE Abs. Bias ISD SE Med Len Avg. Coverage Fail-pct

6
NN 0.1220 0.0321 0.1041 0.1521 0.5711 0.9839 <1%
X-NN-5 0.1197 0.0416 0.1023 0.1166 0.4543 0.9600 0%
X-NN-10 0.1229 0.0400 0.1070 0.1178 0.4587 0.9520 0%
X-DNN-5 0.1344 0.0328 0.1165 0.1272 0.4924 0.9560 0%
X-DNN-10 0.1361 0.0385 0.1182 0.1285 0.4974 0.9480 0%

10
NN 0.1426 0.0181 0.1172 0.1784 0.6787 0.9925 47%
X-NN-5 0.1207 0.0388 0.1032 0.1241 0.4856 0.9700 0%
X-NN-10 0.1202 0.0353 0.1038 0.1246 0.4868 0.9699 <1%
X-DNN-5 0.1291 0.0293 0.1140 0.1433 0.5542 0.9780 0%
X-DNN-10 0.1257 0.0272 0.1128 0.1451 0.5617 0.9840 0%

12
NN 0.1504 0.0158 0.1216 0.1912 0.7198 0.9915 76%
X-NN-5 0.1208 0.0355 0.1043 0.1279 0.5001 0.9740 0%
X-NN-10 0.1188 0.0323 0.1042 0.1268 0.4956 0.9760 <1%
X-DNN-5 0.1282 0.0274 0.1148 0.1495 0.5783 0.9850 0%
X-DNN-10 0.1245 0.0217 0.1126 0.1491 0.5763 0.9880 <1%

14
NN 0.1545 0.0147 0.1258 0.1846 0.6984 0.9886 82%
X-NN-5 0.1210 0.0324 0.1021 0.1311 0.5111 0.9800 0%
X-NN-10 0.1197 0.0305 0.1047 0.1295 0.5041 0.9780 0%
X-DNN-5 0.1262 0.0234 0.1146 0.1548 0.5952 0.9900 0%
X-DNN-10 0.1259 0.0214 0.1138 0.1550 0.5982 0.9900 0%

16
NN 0.1557 0.0145 0.1260 0.1950 0.7343 1.0000 83%
X-NN-5 0.1250 0.0297 0.1052 0.1340 0.5200 0.9820 <1%
X-NN-10 0.1185 0.0281 0.1050 0.1316 0.5115 0.9800 0%
X-DNN-5 0.1286 0.0191 0.1173 0.1590 0.6105 0.9900 0%
X-DNN-10 0.1278 0.0175 0.1159 0.1563 0.6056 0.9900 <1%

Table 1.1: Simulation results for the first design with n = 500 over 500 replications.
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Method Kernel-Ord. RMISE Abs. Bias ISD SE Med Len Avg. Coverage Med. CV bw

Local Const
Epa-2nd 0.0682 0.0229 0.0613 0.0594 0.2274 0.9240 0.0567
Epa-4th 0.0632 0.0170 0.0587 0.0555 0.2126 0.9220 0.1322
Epa-6th 0.0650 0.0172 0.0610 0.0552 0.2110 0.9120 0.2038

Local Lin. Epa-2nd 0.0668 0.0245 0.0588 0.0563 0.2148 0.9120 0.0645

Neural Net K Est. RMISE Abs. Bias ISD SE Med Len Avg. Coverage Fail-pct

10
NN 0.0665 0.0178 0.0528 0.0780 0.2976 0.9872 53%
X-NN-5 0.0684 0.0394 0.0452 0.0572 0.2271 0.9598 <1%
X-NN-10 0.0671 0.0413 0.0446 0.0538 0.2134 0.9360 0%
X-DNN-5 0.0618 0.0279 0.0495 0.0617 0.2409 0.9660 0%
X-DNN-10 0.0599 0.0269 0.0473 0.0628 0.2446 0.9780 0%

14
NN 0.0689 0.0125 0.0550 0.0893 0.3362 0.9865 85%
X-NN-5 0.0684 0.0394 0.0452 0.0572 0.2271 0.9598 <1%
X-NN-10 0.0660 0.0393 0.0446 0.0557 0.2216 0.9559 <1%
X-DNN-5 0.0604 0.0240 0.0482 0.0650 0.2538 0.9760 <1%
X-DNN-10 0.0596 0.0219 0.0496 0.0652 0.2549 0.9780 0%

18
NN 0.0701 0.0117 0.0566 0.0931 0.3458 0.9861 85%
X-NN-5 0.0715 0.0334 0.0499 0.0619 0.2394 0.9718 <1%
X-NN-10 0.0644 0.0362 0.0443 0.0575 0.2275 0.9679 <1%
X-DNN-5 0.0605 0.0189 0.0515 0.0684 0.2666 0.9820 <1%
X-DNN-10 0.0582 0.0192 0.0494 0.0669 0.2610 0.9860 <1%

22
NN 0.0703 0.0104 0.0570 0.0981 0.3509 0.9615 89%
X-NN-5 0.0996 0.0301 0.0785 0.0813 0.2676 0.9792 4%
X-NN-10 0.0634 0.0336 0.0448 0.0587 0.2313 0.9717 1%
X-DNN-5 0.0626 0.0145 0.0554 0.0730 0.2807 0.9920 <1%
X-DNN-10 0.0587 0.0171 0.0508 0.0686 0.2678 0.9880 <1%

26
NN 0.0705 0.0110 0.0566 0.1347 0.4184 1.0000 86%
X-NN-5 0.3016 0.0384 0.2526 0.1965 0.4830 0.9902 18%
X-NN-10 0.0629 0.0314 0.0446 0.0600 0.2355 0.9799 <1%
X-DNN-5 0.0736 0.0129 0.0647 0.0819 0.2996 0.9899 1%
X-DNN-10 0.0586 0.0154 0.0505 0.0697 0.2717 0.9920 <1%

Table 1.2: Simulation results for the first design with n = 2, 500 over 500 replications.
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1.7.2 Bivariate Simulation Design

In the second design the dimension of the input is increased to p = 2. The true function is

a non-additive bivariate function of x1 and x2. This setting is of much greater interest as

standard sieve or kernel estimators start performing poorly in practice for larger p. The case

where p = 2 is already a non-trivial exercise. Let the data be generated as:

xij ∼ Tri[0, 0.5, 1] j ∈ {1, 2} (1.121)

g0(xi) =
40 exp {8((x1 − .5)2 + (x2 − .5)2)}

(exp {(8((x1 − .2)2 + (x2 − .7)2)} exp {(8((x1 − .7)2 + (x2 − .2)2)))}
(1.122)

yi = g0(xi) + ei (1.123)

ei ∼ N(0, 1) (1.124)

The function is difficult to visualize solely from the formula, but is depicted in figure 1.4.
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Figure 1.4: Visualization of the true function g0 in the bivariate simulation design.
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Method Kernel-Ord. RMISE Abs. Bias ISD SE Med Len Avg. Coverage Med. CV bw

Local Const
Epa-2nd 0.2796 0.1436 0.2234 0.2227 0.8649 0.8920 0.0536
Epa-4th 0.2679 0.1371 0.2095 0.1846 0.7168 0.8140 0.1215
Epa-6th 0.2809 0.1457 0.2189 0.1766 0.6889 0.7500 0.1745

Local Lin Epa-2nd 0.2516 0.0985 0.2070 0.1939 0.7534 0.9090 0.0660

Neural Net K Est. RMISE Abs. Bias ISD SE Med Len Avg. Coverage Fail-pct

10
NN 0.2502 0.0628 0.2120 0.2503 0.9088 0.9404 22%
X-NN-5 0.2280 0.0405 0.1963 0.1632 0.6194 0.8830 0%
X-NN-10 0.2258 0.0457 0.1904 0.1651 0.6254 0.8960 0%
X-DNN-5 0.3054 0.0717 0.2727 0.1865 0.7102 0.8060 0%
X-DNN-10 0.2316 0.0322 0.2120 0.1812 0.6906 0.8948 <1%

14
NN 0.2383 0.0495 0.2014 0.3007 1.0770 0.9732 70%
X-NN-5 0.2214 0.0396 0.1908 0.1748 0.6624 0.9200 0%
X-NN-10 0.2186 0.0448 0.1859 0.1754 0.6631 0.9279 <1%
X-DNN-5 0.2985 0.0599 0.2673 0.2088 0.7967 0.8660 0%
X-DNN-10 0.2179 0.0249 0.2030 0.2012 0.7674 0.9420 0%

18
NN 0.2296 0.0323 0.1932 0.4045 1.3256 0.9825 88%
X-NN-5 0.2169 0.0430 0.1862 0.1835 0.6938 0.9400 0%
X-NN-10 0.2122 0.0438 0.1792 0.1831 0.6913 0.9458 <1%
X-DNN-5 0.2751 0.0490 0.2482 0.2229 0.8488 0.9120 0%
X-DNN-10 0.2082 0.0221 0.1880 0.2126 0.8092 0.9699 <1%

22
NN 0.2291 0.0263 0.1882 6.9869 15.7343 1.0000 92%
X-NN-5 0.2167 0.0443 0.1831 0.1916 0.7226 0.9509 <1%
X-NN-10 0.2127 0.0419 0.1788 0.1877 0.7078 0.9498 <1%
X-DNN-5 0.2546 0.0372 0.2306 0.2327 0.8893 0.9479 <1%
X-DNN-10 0.2080 0.0210 0.1867 0.2212 0.8404 0.9780 0%

Table 1.3: Simulation results for the second design with n = 500 over 500 replications.

In the multivariate setting the performance of xnn and xdnn is noticeably better than the

bivariate kernel across all metrics for both sample sizes. In addition, the inclusion of cross-

training is essential if inference is desired. The asymptotic variance for the minima found

without this approach is almost never finite. The performance of the cross-trained classical

and extended neural networks are similar with respect to RMSE for the smaller sample size

with the slight edge going to the extended model in the larger n case. The extended neural

network exhibits reduced bias from the increased complexity but an increased monte carlo

variance as well as the asymptotic estimates.
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Method Kernel-Ord. RMISE Abs. Bias ISD SE Med Len Avg. Coverage Med. CV bw

Local Const
Epa-2nd 0.1626 0.0871 0.1256 0.1298 0.5029 0.9100 0.0405
Epa-4th 0.1567 0.0810 0.1205 0.1067 0.4145 0.8460 0.0975
Epa-6th 0.1657 0.0888 0.1254 0.1030 0.4015 0.7660 0.1478

Local Lin Epa-2nd 0.1393 0.0596 0.1108 0.1080 0.4189 0.9140 0.0528

Neural Net K Est. RMISE Abs. Bias ISD SE Med Len Avg. Coverage Fail-pct

18
NN 0.1473 0.0378 0.1240 0.1473 0.5316 0.9216 89%
X-NN-5 0.1070 0.0195 0.0919 0.0791 0.2964 0.8980 0%
X-NN-10 0.1062 0.0213 0.0932 0.0795 0.2986 0.8920 0%
X-DNN-5 0.1020 0.0095 0.0918 0.0902 0.3442 0.9440 0%
X-DNN-10 0.1004 0.0103 0.0895 0.0935 0.3558 0.9540 0%

24
NN 0.1252 0.0263 0.1034 4.4848 16.1341 1.0000 95%
X-NN-5 0.1042 0.0204 0.0878 0.0861 0.3221 0.9357 <1%
X-NN-10 0.1053 0.0207 0.0897 0.0836 0.3136 0.9217 <1%
X-DNN-5 0.1025 0.0103 0.0909 0.0969 0.3690 0.9639 <1%
X-DNN-10 0.1002 0.0101 0.0888 0.0994 0.3776 0.9699 <1%

30
NN 0.1175 0.0212 0.0943 7.4350 28.2281 1.0000 94%
X-NN-5 0.1041 0.0195 0.0879 0.0912 0.3396 0.9513 1%
X-NN-10 0.1053 0.0222 0.0886 0.0881 0.3291 0.9398 <1%
X-DNN-5 0.1017 0.0106 0.0895 0.1028 0.3899 0.9720 0%
X-DNN-10 0.1002 0.0106 0.0882 0.1034 0.3917 0.9780 <1%

36
NN 0.1166 0.0195 0.0940 13.0976 45.0650 1.0000 95%
X-NN-5 0.1045 0.0180 0.0881 0.0957 0.3544 0.9635 1%
X-NN-10 0.1041 0.0202 0.0881 0.0923 0.3442 0.9554 1%
X-DNN-5 0.1009 0.0100 0.0881 0.1072 0.4053 0.9819 <1%
X-DNN-10 0.1003 0.0100 0.0875 0.1070 0.4048 0.9819 <1%

Table 1.4: Simulation results for the second design with n = 2, 500 over 500 replications.

1.8 Conclusion and Future Work

I have shown consistency and relatively fast convergence rates for neural networks with two

hidden layers. This estimator has good finite sample properties and may improve on the

single layer counterpart in large n settings depending on the dimensionality of xi and the

smoothness properties of the underlying function. I developed a straightforward approach

to constructing asymptotically valid pointwise confidence intervals. This construction re-

lies on standard sieve results for inference but utilizes cross-training to improve empirical

performance.

There are many avenues to consider extensions for this estimator and variants thereof. The

two directions that seem most promising and potentially fruitful are a rigorous analysis
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of cross-training and extending the approximation results. In the former case a rigorous

analysis of cross-training with respect to the finite sample optimization problem as well as

the implications for the stochastic equicontinuity conditions is necessary to determine the

impact on asymptotic normality. In addition, this analysis may illuminate directions for

more general cases of data dependence.

In terms of the approximation extensions the obvious one is to iterate to many hidden

layers. However, it is not clear that doing so will result in an improvement for fully connected

networks without extending the underlying function space. It seems more useful to elaborate

on comments made in section 1.4.1 where each adaptive basis is a function of subsets of the

parameter space. This would allow more flexibility in the construction while decreasing the

entropy cost for adding layers.
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Chapter 2

Estimation of Panel Data with Neural

Networks

This chapter introduces a novel formulation of neural networks for estimation under panel

data structures. I propose an estimator consistent with a common cross-sectional index and

allow for unobserved heterogeneity to be correlated with this index in the form of cross-

sectional fixed effects. The inclusion of fixed effects results in a non-negligible asymptotic

bias in the limiting distribution of the index. I correct this bias by re-centering the scores

and demonstrate its effectiveness in finite samples. I apply the panel neural network to

the demand for cigarettes in the United States and compare the results to commonly used

alternative models. I find that own-price elasticity for cigarettes is more elastic than is

typically cited in the literature and argue this relationship is consistent with the curvature

of aggregate demand. In addition, I empirically verify the regressive nature of cigarette

taxes by examining the conditional average own-price elasticities with respect to varying

total expenditure quantiles.

40



2.1 Introduction

Neural networks and deep learning have had excellent empirical success in both time series

and cross-sectional settings. However, economic data is often available in a panel or pseudo-

panel format. The current literature on neural networks does not have much to say on how

to leverage panel structure in estimation. One may ignore the panel structure by slicing the

data in either cross-sectional or time dimensions and treating them as separate models. The

former estimator would be consistent with cross-sectional heterogeneity while the latter with

time heterogeneity. However, nonparametric estimation1 of individual time series or repeated

cross-sections is not possible when the number of observations, in the time or cross-sectional

dimension respectively, is small. This chapter fills this gap in the literature by introducing

the panel neural network. This estimator assumes a common index across both time and

cross-sectional units taking advantage of both T and n. I will focus on continuous outcomes

and the classical neural network2 as to avoid confounding the extension to panel data.

One of the most important benefits of panel data is the ability to incorporate unobserved

heterogeneity in some form. In economics this is typically through fixed effects or common

correlated effects. In this chapter, I focus on the former and allow for the inclusion of additive

cross-sectional effects. These parameters can be estimated directly alongside the common

index as cross-sectional specific intercepts. However, estimation of these effects induces

an additional bias term that does not vanish asymptotically. This bias is present due to

the dimension of the fixed effect parameters3 which grows linearly with the cross-sectional

dimension of the panel.

In the nonparametric panel data literature with continuous outcomes, the inclusion of fixed

effects is typically straightforward. In the linear sieve case, e.g., power series, the transfor-

1In addition, this choice should be informed by the underlying model and assumptions one is willing to
make rather than a gap in the literature.

2Neural networks with a single hidden layer
3The fixed effects are often referred to as incidental parameters in this context.
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mations are fixed in finite samples and standard transformations can eliminate the need to

estimate the fixed effects directly. The panel neural network, along with other nonlinear

sieves, does not admit such straightforward approach. However, taking inspiration from the

nonlinear panel literature this problem can be alleviated by correcting the first order con-

ditions of the objective with respect to the function estimates. This correction eliminates

the first order bias induced by estimating the fixed effects. I provide this correction and

demonstrate its effectiveness in finite samples.

In an application, I focus on cigarette demand in the United States using the Nielsen con-

sumer panel data spanning ten years from 2007-2017. To maximize the number of households

I break up the panel into eight overlapping four-year periods. I compare the panel neural

network to a power series and linear model all including household level fixed effects. The

primary object of interest is the average and conditional average own-price elasticity.

I find that own-price elasticity for cigarettes is slightly more elastic than is typically cited

in the literature, but argue this relationship is consistent with the curvature of aggregate

demand. In particular, the elasticities are larger in absolute value in the initial years when

substantial tax changes shifted consumers into a more elastic region of demand. As price

changes leveled out in subsequent years, the elasticities returned to levels more in line with

the literature. In addition, I empirically verify the regressive nature of cigarette taxes by ex-

amining the conditional average own-price elasticities by total expenditure quantiles. These

elasticities are monotonically decreasing in total expenditure suggesting a larger burden of

the tax falls on lower income households.

The remaining of the chapter proceeds as follows. The first section (2.2) gives a brief overview

of the relevant literature. The next section (2.3) presents the model and assumptions. Section

2.4 presents the consistency result for the panel neural network along with score corrections

for the incidental parameters problem. The finite sample performance of the estimator is

assessed in 2.6. I then focus on the application to cigarette demand in sections 2.7 through
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sections 2.7.4 and conclude in 2.8.

2.2 Literature Review

The relevant literature pertaining to neural networks is the same as in the previous chapter,

but with heavy emphasis on the consistency results from White (1990) and op(n
−1/4) con-

vergence rates in Chen and White (1999). I utilize these results but focus on panel structure

and allow for inclusion of incidental parameters.

The problem of incidental parameters was first examined by Neyman and Scott (1948),

who observed the inconsistency of the parameters of interest4 in the presence of incidental

parameters. Under fixed T asymptotics, common parameter estimation is typically restricted

to specific parametric models and even then, only a subset of these parameters can be

consistently estimated. For example, the conditional Logit model allows estimation of the

effects of an observable on the log odds, but average partial effects (APEs) are not available.

However, if one is willing to allow n, T → ∞ where n/T → κ for some 0 < κ < ∞, more

general results can be obtained. The nonparametric panel literature has examined continuous

outcome models with fixed effects5, but the solutions are not directly applicable to nonlinear

sieves. The primary complication is that the transformations of the covariates are not fixed,

but data dependent.

The most relevant literature for this chapter is that of nonlinear panels. Although I consider

only continuous outcomes, which would fall under the linear model in a fully parametric case,

the insights from the nonlinear panel literature can be extended to more general models. This

literature has developed a few alternative approaches to dealing with the bias6. The most

4These parameters are also referred to as common parameters in the literature.
5See Sun, Zhang, and Li (2015) for a recent review.
6A comprehensive historical review is available in Arellano, Hahn, et al. (2007) and more recent results

in Fernández-Val and Weidner (2018).
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pertinent for this chapter is the correction based on re-centering the score (Bester and Hansen

(2009), Fernández-Val and Weidner (2016)). Heuristically, the score for the neural network

parameters is adjusted to eliminate the first order impact of estimating the fixed effects.

The score is then invariant to small perturbations in the incidental parameter space. This

approach lends itself particularly well to neural networks as first order optimization methods

are almost exclusively used to estimate these models. At each iteration of the optimization

procedure, the score can be updated with a new correction based on the current solution.

The score correction terms are derived from a functional second order expansion but have

simple expressions when treating the models ‘as-if’ they were parametric as in Hahn, Liao,

and Ridder (2018).

It is worth noting there are other ways that may work equally well for eliminating the first or-

der bias in these models. Simulation based techniques like the jackknife in Hahn and Newey

(2004), Hahn and Kuersteiner (2002), Carro (2007), Fernández-Val (2009), Fernández-Val

and Vella (2011), and Fernández-Val and Weidner (2016) have been shown to work well in

parametric models.7 However, these procedures require repeated passes of the data, increas-

ing computational complexities, and are typically associated with a decrease in precision.

2.3 Model

I consider the nonparametric regression model where one observes n × T realizations from

the random vector
{
{zit}Tt=1

}n
i=1

where zit = (yit, x
′
it)
′. Each cross-sectional outcome yit is

sampled from:

yit = αi + g0(xit) + eit, E[eit|xit] = 0, E[e2
it|xit] = σ2(xit) (2.1)

7Some initial work suggests these can work in this setting as well, but with much higher computation
cost relative to the analytical correction.
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A2.3.1 For each t ∈ {1, 2, . . . , T}, the random vectors {zi}ni=1 = {yi, x′i}
n
i=1 are independent and

identically distributed conditional on αi. In addition, yit ∈ Y ⊂ R and xit ∈ X ⊂ Rp

where X and Y are compactly supported.

A2.3.2 The vectors {zt}Tt=1 are stationary φ-mixing sequences with φ(k) = φ0ζ
k, ζ ∈ (0, 1),

and k > 0 where:

φ(k) ≡ sup
t∈N

sup
Pr(G)>0,G∈{z}t−∞,H∈{z}

∞
t+k

|Pr(H|G)− Pr(H)| (2.2)

A2.3.3 The unknown index g0 ∈ Wq
2(X ) where W is a Sobelev space with q weak derivatives

and has a Fourier representation:

g0(xit) =

∫
exp(iδ′xit)dσg(δ) (2.3)

where σg is a complex measure on Rp satisfying:

∫
max {|δ|, 1}q+1 d |σg| (δ) <∞ (2.4)

A2.3.4 Let m = nT . The parameters of the sieve space Gm satisfy the following bounds:

||γ||1 ≤ ∆m,

dm∑
j=1

||δj||1 ≤ dm∆m (2.5)

where ∆m, dm →∞ slowly with m

Here I utilize common sampling assumptions in the panel literature where cross-sectional

units are independent across observations but temporally dependent. The assumptions on

functional form A2.3.3 and parameter restrictions A2.3.4 follow from White (1990) and

Chen and White (1999). I utilize these results rather than those established in the previous

chapter to avoid additional complications in deriving the score corrections.
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2.4 Asymptotic Theory

The consistency and convergence rates for neural networks under weakly dependent time

series is shown in White (1990) and Chen and White (1999) respectively. In this chapter

I extend these results to a panel data setting. In addition, the probability limit of the

panel estimator is not centered at the correct value and will be asymptotically biased. This

bias occurs when one has to estimate the fixed effects, inducing the incidental parameter

bias discussed in 2.1. Fortunately, this bias can be analytically corrected by examining the

discrepancy between the score of the infeasible and plug-in estimators.

I make the following assumptions on the stochastic error term eit and properties of the

objective:

A2.4.1 The second unconditional moment of the error term exists and is finite E[e2
it] <∞.

A2.4.2 The sieve spaces Gm are compact.

A2.4.3 The population objective Q(g, αi) is continuous at g0 and for any ε > 0:

Q(g0, αi)− sup
g∈Gm:||g,g0||>ε

Q(g, αi, zi) > 0

As mentioned in chapter 1 section 1.5, the first condition is quite weak, ruling out only

pathological examples like the Cauchy and is made in the vast majority of both parametric

and nonparametric literature. The latter conditions are also the same as the previous chapter

and are standard in the nonparametric literature, e.g., Chen and Shen (1998), Shen and

Wong (1994), or Chen (2007). Compactness follows directly from the definition of the neural

network spaces Gm. The identification condition, A2.4.3 is a standard regularity condition

and ensures a first order condition identifies an optimal parameter conditional on the value

of αi. This assumption is critical as it allows us to utilize the score corrections provided in
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the subsequent section 2.4.2.

2.4.1 Consistency

Consider the sieve least squares problem:

sup
g∈Gm

Qm(g, αi) = sup
g∈Gm

− 1

m

n∑
i=1

T∑
t=1

`it(g, αi, zit) (2.6)

where m = nT and `it(g, αi, zit) = (yit − αi − g(xit))
2. The sieve space I consider is the

classical neural network defined as:

gm(xit) =
d∑
j=1

s(x̃′itδj)γj (2.7)

where x̃it = (1, x′it)
′ as in chapter 1. The first key result is to establish uniform consistency

of the objective for a fixed αi. This consistency result for panel neural networks is new as it

pertains to a panel data setting rather than cross-sectional or time series.

Theorem 2.1. If the sampling and function form assumptions from section 2.4 hold along

with A2.4.1, A2.4.2, A2.4.3, ∆m = o(m1/4) and dm∆2
m log ∆mdm = o(m1/2) then:

lim
m→∞

sup
g∈Gm

|Qm(g, α̂i)−Q(g, α̂i)| = 0

and g(α̂i)m
p→ g0(α̂i)

Proof. Using boundedness and the sampling assumptions from A2.3.1 and A2.3.2 one can

stack the time series vectors and use the fact that independence implies φ-mixing. The

resulting vector `m is a bounded stationary φ-mixing sequence. It suffices to verify the

conditions from theorem 2.5 in White and Wooldridge (1991).

47



First note that one can use Bernstein’s Inequality for φ-mixing data to bound deviations

from the expectation of the objective function:

Pr

[∣∣∣∣∣∑
i,t

`(gm, zit, α̂i)− E [`(gm, zit, α̂i)]

∣∣∣∣∣ > ε

]
≤ c1 exp

[
−c2εm

−1/2

2∆2
m

]
(2.8)

where c1, c2 ∈ (0,∞). In addition, one can use the Lipschitz property of `m to define a bound

on differences between the objective for any gm ∈ Gm:

|`m(gm)− `m(g0)| ≤ sup
g∈Gm

|yit − g − α̂i| = ˜̀
m (2.9)

Using 2.9 and Bernstein’s Inequality one can bound deviations of this difference from its

expectation:

Pr

[∣∣∣∣∣∑
i,t

˜̀(gm, zit, α̂i)− E
[
˜̀(gm, zit, α̂i)

]∣∣∣∣∣ > ε

]
≤ c3 exp

[
−c4εm

−1/2

2∆m

]
(2.10)

where, as before, c3, c4 ∈ (0,∞). Putting these bounds together one has the desired maximal

inequality:

Pr

[
sup
g∈Gm

∣∣∣∣∣m−1

n∑
i=1

T∑
t=1

[`(gm, zit, α̂i)− E (`(gm, zit, α̂i))]

∣∣∣∣∣ > ε

]
(2.11)

≤ C1 expHm

([
mε

6Wm

]
,Gm, ||·||∞

)[
exp

[
−c2εWmm

−1/2

∆m

]
+ exp

[
−c4εm

1/2

6∆2
m

]]
(2.12)

where C1 = max{c1, c3}, Wm ≥ supgm∈Gm

∑
i,t E˜̀

m, and Hm is the metric entropy. Now note

that Wm can be taken to be 2m∆m such that the second term is dominant as ∆m →∞ with

m. It suffices to show ∆2
m/
√
m→ 0 as m→∞ and ∀ε > 0

Hm (ε/ (12∆m) ,Gm, ||·||∞)
[
∆2
m/
√
m
]
→ 0 as m→∞ (2.13)

The first condition is satisfied with ∆n = o(m1/4). In addition, the metric entropy of Gm can
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be shown to be:

Hm(ε,Gm, ||·||∞) ≤ ωm

[
log

8

ε
+ log

(
∆m + p∆2

m

)
+ log dm

]
(2.14)

where ωm = dm(p + 2) is the number of parameters to characterize gm. Plugging in 2.14 to

the entropy component of 2.13:

Hm(ε/12∆m,Gm, ||·||∞) ≤ ωm log
96∆m

ε
+ ωm log

(
∆m + p∆2

m

)
+ ωm log dm (2.15)

Then ∃ an m ∈ N s.th. ∀ε > 0 ∆m ≥ 96/ε and ∆2
n ≥ ∆n.

Hm(ε/12∆m,Gm, ||·||∞) ≤ ωm log ∆2
m + ωm log ∆2

m(p+ 1) + ωm log dm

≤ ωn4 log ∆n(p+ 1)dn

Plugging this result into the full equation 2.13:

Hm (ε/ (12∆m) ,Gm, ||·||∞)
[
∆2
m/
√
m
]
≤ m−1/216∆2

mωm log ∆m(p+ 1)dm

Also note that ωm = O(dm) therefore dm∆2
m log ∆mdm = o(m1/2) is sufficient.

This result is useful by itself for the cases where α̂i can be absorbed into the stochastic

error component, often referred to as a random effects model. However, in the fixed effects

framework theorem 2.1 is not enough. It will be the case that gm(α̂i)
p→ g0(α̂i), but unless

there is either no estimation error for α̂i, one has access to the true values, or estimation of

α̂i has no impact on estimation of gm, the estimates will be biased. Furthermore, this bias

does not vanish asymptotically as the number of parameters to be estimated grows linearly

with n.
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2.4.2 Score Corrections

Determining the order of the bias depends on the second directional derivative of the loss

function with respect to g0 followed by an expansion around the incidental parameters. The

pathwise derivative of `it in the direction of vg is defined as ∆`[vg]. The most convenient

way to approach this expansion is to first consider the orthogonal reparameterization as in

Fernández-Val and Weidner (2018):

α?i = αi −

(
ET

[
1

m

∑
i,t

∂`it
∂αi∂α′i

])−1(
ET

[
1

m

∑
i,t

∂∆`(g, α̂i, zit)[vg]

∂αi

])′
g0 (2.16)

with the corresponding modified objective `?it = `it(g, α
?
i , zit) where αi is replaced by α?i . The

supremum of `it and `?it with respect to g are identical but this modification induces infor-

mation orthogonality between the incidental parameters and the estimates of the unknown

function. A first order approximation of the modified score in the direction of vg and around

αi:

∆`?(g, α̂i, zit)[vg] = ∆`?(g, αi, zit)[vg] +
∂∆`?(g, αi, zit)[vg]

∂αi
(α̂?i − αi) (2.17)

= ∆`?(g, αi, zit)[vg] +
∂∆`?(g, αi, zit)[vg]

∂αi

1

T

T∑
t=1

ψit (2.18)

The second line follows8 from substituting α̂?i − αi with the first order approximation ψit =

ET
[

∂2`?it
∂αi∂α′i

]−1
∂`?it
∂αi

. The first term is the score, which identifies the population parameter,

and the second represents the asymptotic bias. Utilizing the specific form of the objective

8This expansion has no higher order terms as the form of `it admits no higher order derivatives with
respect to αi.
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and collecting the orthogonalization coefficients of g into g?, the second term is:

∂∆?
`(g0, αi, zit)[vg]

∂αi
=

∂

∂αi

[
lim
t→0

(
yit − αi − g?0 − τ [v?g ]

)2 − (yit − αi − g?0)2

τ

]
(2.19)

= −
∂2 (yit − αi − g?0) [v?g ]

∂αi
(2.20)

= 2 (vg − Ξitvg) (2.21)

where Ξit =
(
ET
[

1
m

∑
i,t

∂`it
∂αi∂α′i

])−1 (
ET
[

1
m

∑
i,t

∂∆`(g,α̂i,zit)[vg ]

∂αi

])′
and v?g = vg − Ξitvg. This

component can be viewed as the residual from a projection of vg onto the space spanned by

the incidental parameters. Finally, adding the influence function term and taking expecta-

tions, the bias in the score can be characterized by:

E [∆`(g, α̂i, zit)[vg]] = E [2 (vg − Ξitvg)ψit] (2.22)

It is possible to utilize a higher order expansion for α?i − α0. Doing so illuminates a further

source of bias as outlined in Hahn and Newey (2004). The source of the additional bias is

related to correlation induced by estimating αi and gm on the same data. However, this

source of bias can be eliminated by leave-t-out estimators of the fixed effects. Construction

of such an estimator is outlined in algorithm 2.

2.5 Estimation

In practice one needs plug-in estimates for the bias. The estimate for vg has two distinct

components as the form of gm has two distinct sets of parameters, δ and γ. The remaining

components are standard as they consist of a projection and well-known estimates of the

influence function. Let eit be estimated residuals and sβ be the derivative of the activation
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function s(·) with respect to β. The plug-in corrections to the scores for δj and γj are:

B(δj) =
1

nT

∑
i=1

∑
t=1

eit(x̃itsβ(x′itδj)γj − α?i (δj)) (2.23)

B(γj) =
1

nT

∑
i=1

∑
t=1

eit(s(x̃
′
itδj)− α?i (γj)) (2.24)

where α?i is the solution to a least squares regression of the scores on the space spanned by

the incidental parameters.

The neural network parameters are updated with first order methods while the incidental

parameters have closed form solutions conditional on the current values of ĝm. At each

iteration the scores for δ and γ are corrected by the current values of B(δj) and B(γj). If

elimination of the own-observation bias is desired one can utilize leave-t-out estimates for

α̂i and α̂?i . The number of observations that is left out will be dependent on the mixing

properties of the time series and will be a tuning parameter in practice9. The complete

updating scheme is outlined in algorithm 2.

9It is likely possible to determine an optimal bandwidth using ideas from Politis and White (2004).

52



Algorithm 2 Split Score Corrections

1: Set the desired tolerance (tol) for convergence.
2: Let θ(k) = (δ(k), γ(k)) and B(k) =

(
B(δ(k)), B(γ(k))

)
be the estimates and score corrections

respectively at iteration k.
3: The function estimate gm and residuals for iteration k are defined as:

gm(θ(k), xit) =

d∑
j=1

s(x̃′itδ
(k)
j )γ

(k)
j

eit = yit − α̂(k)
i − gm(θ(k), xit)

4: Construct the binary bandwidth matrix W = [w1, w2, . . . , wT ] where the vectors wj ∈ W have

elements wjt = min
{

1,
⌊
|j−t|
h

⌋}
for some bandwidth parameter h ∈ N.

5: while ε > tol do

6: Given current values of θ(k), α̂
(k)
i , and residuals set α̂

(k+1)
i =

∑T
j=1 eijwjt∑T
j=1 wjt

.

7: Construct the score ∆
(k)
θ and B(k) using the new values α̂

(k+1)
i .

8: Given an update rule m(·) the new value is: θ(k+1) = θ(k) +m(∆
(k)
` −B

(k))
9: update ε based on the desired convergence criterion.

10: end while
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2.6 Monte Carlo

To assess the finite sample performance of the estimator and score corrections I consider a

simulation exercise designed to mimic demand estimation for a product that depends only

on its own price p1 and the price of a substitute p2. In the simulation the covariates are

exogenous, but pre-determined and correlated with unobserved cross-sectional effects. To

maintain monotonicity and convexity10 I focus on relatively simple functional forms that

nevertheless allow for interesting substitution patterns.

Let the data be generated from:

αi, εit
iid∼ N(0, 1) (2.25)

ν1it, ν2it,
iid∼ U [0, 1] (2.26)

p1it = βp1αi + ρp1p1i,t−1 + ν1it (2.27)

p2it = βp1αi + ρp1p1i,t−1 + ν2it (2.28)

qit = αi + f(p1,it, p2,it) + εit (2.29)

f(p1,it, p2,it) = exp {cos(0.5p1,itp2,it} (2.30)

I set βp1 = βp2 = 0.2 and ρp1 = ρp2 = 0.5.

I will focus on estimation of the demand function and the own-price elasticity. The latter will

be the primary object of interest in the empirical application. In this design the analytical

partial effects with respect to p1,it is:

∂qit
∂p1,it

= −0.5p2,it sin(0.5p1,itp2,it)f(p1,it, p2,it) (2.31)

which is estimated by the derivative of the neural network estimator with respect to the first

10This conditions hold locally for the support I simulate, but are not global properties of this function.

54



p 1

0.00
0.25

0.50
0.75

1.00
1.25

1.50
1.75

2.00
p2

0.000.250.500.751.001.251.501.752.00

q
1

0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

Demand Surface

p1

0.000.250.500.751.001.251.501.75
2.00 p2

0.000.250.500.751.001.251.501.752.00

q 1 p 1

0.8

0.6

0.4

0.2

0.0

Partial Effect Surface

Figure 2.1: Visualization of the simulated demand and own-price partial effect surface.
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price:

∂f(p1,it, p2,it)

∂p1,it

=
K∑
j=1

δj1sp1,it(x̃
′
itδj)γj (2.32)

Function Estimation Partial Effects

n d RMSE Bias % Bias ISD RMSE Bias SD

100

8
0.5702 0.4722 0.2293 0.3126 0.2112 0.0076 0.1399
0.1621 -0.0798 -0.0289 0.0948 0.2527 0.0029 0.1792

10
0.5574 0.4497 0.2185 0.3228 0.2056 0.0094 0.1331
0.1669 -0.0824 -0.0301 0.0998 0.2606 0.0031 0.1890

12
0.5465 0.4322 0.2100 0.3285 0.1986 0.0082 0.1273
0.1614 -0.0816 -0.0302 0.0970 0.2545 0.0043 0.1862

200

8
0.6026 0.5170 0.2664 0.3010 0.2020 0.0103 0.1205
0.1526 -0.0350 -0.0015 0.0945 0.2514 0.0085 0.1713

10
0.5665 0.4792 0.2472 0.2940 0.1923 0.0120 0.1087
0.1485 -0.0385 -0.0048 0.0903 0.2474 0.0036 0.1701

12
0.5356 0.4293 0.2222 0.3128 0.1890 0.0121 0.1055
0.1502 -0.0358 -0.0024 0.0918 0.2482 0.0067 0.1676

300

8
0.5804 0.4980 0.2537 0.2883 0.2013 0.0166 0.1097
0.1471 -0.0363 -0.0032 0.0885 0.2494 0.0103 0.1643

10
0.5414 0.4514 0.2305 0.2896 0.1948 0.0160 0.1027
0.1463 -0.0422 -0.0063 0.0858 0.2451 0.0104 0.1631

12
0.5193 0.4199 0.2150 0.2964 0.1923 0.0161 0.0984
0.1466 -0.0378 -0.0038 0.0861 0.2486 0.0119 0.1669

400

8
0.6021 0.5238 0.2686 0.2865 0.1984 0.0127 0.1067
0.1484 -0.0309 -0.0000 0.0870 0.2488 0.0103 0.1625

10
0.5735 0.4905 0.2521 0.2869 0.1942 0.0145 0.1003
0.1520 -0.0315 0.0001 0.0914 0.2481 0.0121 0.1614

12
0.5489 0.4653 0.2394 0.2812 0.1890 0.0142 0.0938
0.1562 -0.0280 0.0021 0.0922 0.2573 0.0098 0.1655

Table 2.1: Estimation of demand function and average partial effects across various network
dimensions and sample sizes for t = 50 over 500 replications.

As expected, the bias is quite substantial for function estimates without the score correction.

This bias does not vanish with larger T . The corrected scores eliminate nearly all the bias,

particularly for larger sample sizes. The choice of width d for the neural networks does not
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Function Estimation Partial Effects

n d RMSE Bias % Bias ISD RMSE Bias SD

100

8
0.5906 0.5008 0.2423 0.3057 0.1969 0.0165 0.1161
0.1589 -0.0790 -0.0280 0.0906 0.2502 0.0099 0.1729

10
0.5542 0.4499 0.2182 0.3169 0.1901 0.0175 0.1110
0.1572 -0.0802 -0.0284 0.0863 0.2510 0.0111 0.1736

12
0.5042 0.3935 0.1918 0.3083 0.1862 0.0182 0.1047
0.1609 -0.0812 -0.0287 0.0886 0.2526 0.0110 0.1720

200

8
0.5721 0.4943 0.2556 0.2780 0.1924 0.0120 0.1017
0.1529 -0.0332 0.0007 0.0872 0.2526 0.0109 0.1641

10
0.5602 0.4725 0.2447 0.2913 0.1915 0.0127 0.0986
0.1501 -0.0339 -0.0007 0.0875 0.2455 0.0101 0.1604

12
0.5179 0.4227 0.2196 0.2901 0.1866 0.0134 0.0931
0.1494 -0.0362 -0.0014 0.0836 0.2484 0.0098 0.1612

300

8
0.5819 0.5112 0.2603 0.2663 0.2003 0.0143 0.1011
0.1477 -0.0348 -0.0020 0.0846 0.2494 0.0134 0.1591

10
0.5325 0.4568 0.2334 0.2625 0.1940 0.0160 0.0952
0.1482 -0.0350 -0.0022 0.0850 0.2495 0.0124 0.1575

12
0.5272 0.4198 0.2150 0.3098 0.1899 0.0159 0.0898
0.1454 -0.0354 -0.0025 0.0834 0.2447 0.0130 0.1572

400

8
0.6109 0.5280 0.2707 0.2974 0.1936 0.0141 0.0990
0.1468 -0.0304 0.0003 0.0849 0.2431 0.0128 0.1558

10
0.5734 0.4871 0.2504 0.2927 0.1893 0.0158 0.0937
0.1459 -0.0308 0.0000 0.0866 0.2411 0.0135 0.1572

12
0.5184 0.4264 0.2199 0.2859 0.1809 0.0160 0.0872
0.1507 -0.0275 0.0031 0.0842 0.2522 0.0150 0.1582

Table 2.2: Estimation of demand function and average partial effects across various network
dimensions and sample sizes for t = 100 over 500 replications.

appear to matter much for the chosen values of {8, 10, 12}. In terms of the average partial

effects the bias is negligible as has been well documented in the literature for fully parametric

models (Fernández-Val, 2009). The bias is slightly lower for the corrected estimator at the

cost of a variance increase.
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2.7 Application: Cigarette Demand

Cigarettes are one of the most heavily taxed products in the United States. The revenue

from tobacco taxes averaged 13.8 billion between 2007 and 2017, accounting for 17.4 percent

of all excise tax revenue over that period, the third largest source behind highway and avia-

tion11. This policy choice has been cited for unintended externalities related to the negative

correlation between smoking and income, i.e., cigarette taxes are highly regressive (Harding,

Leibtag, and Lovenheim, 2012). A rigorous empirical estimate of this phenomenon should

allow for a flexible specification with respect to income and cigarette prices. This is an ideal

setting for the panel neural network as the functional form can be left unspecified without

the need to impose additive separability. I will focus my analysis on average and condi-

tional average own-price elasticities, where the latter will be averages over total expenditure

groups12. The focus on own-price elasticity is important as it is the primary component in

getting at welfare estimates of these taxes (Hausman and Newey, 2017).

2.7.1 Data

I utilize the Nielsen consumer panel and scanner data spanning a ten-year period from 2007-

2017. This source is collected by the Nielsen marketing group and managed by the Kilts

Center for Marketing at the University of Chicago13. The consumer panel consists of 162,767

unique households over this period. On average a household will stay in the panel for four

years. The scanner data comes from approximately 35,000 stores across 55 (Metropolitan

11Source: The Office of Management and Budget historical tables
12I work with total expenditure as a proxy for income as income is based on coarse survey data and does

not vary within a year. Appendix B.2 shows these are highly correlated. In addition, there is the additional
benefit of working with revealed rather than stated income levels.

13“Researcher(s) own analyses calculated (or derived) based in part on data from The Nielsen Company
(US), LLC and marketing databases provided through the Nielsen Datasets at the Kilts Center for Marketing
Data Center at The University of Chicago Booth School of Business. The conclusions drawn from the Nielsen
data are those of the researcher(s) and do not reflect the views of Nielsen. Nielsen is not responsible for, had
no role in, and was not involved in analyzing and preparing the results reported herein.”
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Statistical Areas) MSAs in the U.S. The combination of scanner and consumer panel data

contains over 3.2 million unique UPC codes.

I focus my analysis on a subset of the consumer panel consisting of ‘active’ panelists who

smoke cigarettes. The definition of ‘active’ is important as it defines which households can be

considered for estimation and ultimately defines a sample for which the estimated elasticities

are valid. I define ‘active’ as the set of households that do not fail to report cigarette pur-

chases in consecutive months. Therefore an ‘active’ household may miss reporting cigarette

purchases in June and September of 2007, but not June and July. This definition is justified

by the well-known addictive property of cigarettes. It seems extremely unlikely that a smok-

ing household would go two consecutive months without any purchases. Therefore, the lack

of purchases likely reflects an omission of reporting rather than the absence of purchases.

There are two plausible cases where this may not be true. The first is that households may

stockpile cigarettes as is the case for other durable goods (Hendel and Nevo, 2002). However,

the patterns do not suggest this behavior in the active cigarette sample14. Another possible

explanation is that the household may be attempting to or has quit smoking. I posit these

households have fundamentally different behavior, and likewise different elasticities, than

those without intent to quit and should be omitted from the analysis.

To maximize the number of households available for estimation I focus on a rolling window

of panels. Each sub-panel consists of four years, e.g., 2007-2010 and 2008-2011, measured

in monthly increments. The number of available users is tabulated in table 2.3. This ta-

ble reports the full Nielsen sample for these years along with cigarette users15 and ‘active’

cigarette users. Unfortunately, the ‘active’ set is much smaller than the total sample or

cigarette sample. In order to check the representativeness of this sample I conduct chi-

squared tests across various demographics and report the most relevant in table (2.4). I find

these tests fail to reject differences for household income, race, or education levels. The main

14A further discussion is in appendix B.3
15I limit this to users who purchase cigarettes in at least 50% of months with non-zero expenditure.
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differences appear to be in household composition. The ‘active’ sample tends to have older

heads of household with no children or children over eighteen years of age16. Tables 2.5 and

2.6 report Kolmogorov-Smirnov tests of empirical distribution equality and various sample

moments. Average expenditure across these samples is comparable and the K-S test fails

to reject equality. However, the sample mean of average quantity purchased in the ‘active’

set is considerably larger, closer to one pack per day, than the overall cigarette user set.

The other moments are generally different and the K-S test rejects across all panel blocks.

If one believes this data is reported accurately then the larger sample average suggests the

following analysis is more relevant to heavy, rather than casual, cigarette users.

The greatest challenge with utilizing this data for estimation is the presence of missing

purchases and prices, even when aggregated to the monthly level. The lack of reported

prices is straightforward to deal with by augmenting the consumer panel data with the

scanner data and matching the missing prices at the month, zip code or DMA level. The

issue of missing purchases is much more problematic. In a general demand estimation setting

one typically considers the ‘zero’ problem as a censoring issue. There is a myriad of solutions

to this problem that can tied back to Heckman (1976) and Heckman (1979), e.g., Lewbel and

Pendakur (2009). However, in the case of cigarettes it is not reasonable to believe missing

purchases are zero. I conjecture the missing quantities are failures to report rather than

16Additional summary statistics and tabulations are available in appendix B.1

Years Full Sample Cigarette Sample Cigarette Sub-Sample

07-10 97,305 9,270 950
08-11 97,919 8,482 873
09-12 94,682 7,544 831
10-13 92,044 6,848 842
11-14 91,008 6,377 902
12-15 90,634 5,986 835
13-16 92,070 5,725 796
14-17 92,756 5,374 725

Table 2.3: Sample sizes of Nielsen and cigarette user subpanels for each rolling window.
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zero. However, this assumption does not lend itself well to a selection model as it is unclear

what the mechanism behind failure to report is. Instead I make a stronger assumption and

follow Chernozhukov, Hausman, and Newey (2019) in assuming these purchases are missing

at random. Under this assumption the estimates are unaffected by various lengths of Ti.

This assumption is not directly testable, but one can attempt to falsify this claim through

various regressions of missingness on observed covariates. Overall, there are no demographic

observables that have significant correlation with missingness across all panel block, a further

discussion is available in appendix B.3.

Household Income

Panel Years χ2 p-value

07-10 4.34 0.36
08-11 3.17 0.53
09-12 2.48 0.65
10-13 2.77 0.60
11-14 8.29 0.08
12-15 6.54 0.16
13-16 6.73 0.15
14-17 4.22 0.38

Head of Household Race

Panel Years χ2 p-value

07-10 7.78 0.05
08-11 3.87 0.28
09-12 9.40 0.02
10-13 4.56 0.21
11-14 4.90 0.18
12-15 3.13 0.37
13-16 7.43 0.06
14-17 4.06 0.26

Highest Education Level

Panel Years χ2 p-value

07-10 6.75 0.24
08-11 2.34 0.80
09-12 3.59 0.61
10-13 4.94 0.42
11-14 3.87 0.57
12-15 4.87 0.43
13-16 0.25 1.00
14-17 2.81 0.73

Household Composition

Panel Years χ2 p-value

07-10 37.44 0.00
08-11 23.45 0.00
09-12 25.67 0.00
10-13 26.39 0.00
11-14 23.37 0.00
12-15 25.77 0.00
13-16 19.07 0.00
14-17 17.08 0.01

Table 2.4: χ2 tests of independence for various household characteristics across the sample
of cigarette users and the ‘active’ subsample.
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Panel Years K-S Test Mean StD Skew Kurtosis

07-10 0.2761 (0.0)
Cigarettes 25.47 22.10 2.05 7.06
Active 37.60 25.01 1.73 5.71

08-11 0.2619 (0.0)
Cigarettes 25.06 23.32 3.40 28.77
Active 36.29 23.67 1.47 3.94

09-12 0.2468 (0.0)
Cigarettes 24.28 23.21 3.39 25.22
Active 35.48 26.20 2.71 15.65

10-13 0.2571 (0.0)
Cigarettes 23.76 24.18 4.05 34.28
Active 34.59 25.44 2.70 17.56

11-14 0.2630 (0.0)
Cigarettes 23.20 24.34 4.28 38.16
Active 35.06 28.73 3.57 25.63

12-15 0.2853 (0.0)
Cigarettes 22.04 23.35 3.76 26.29
Active 34.81 28.52 3.41 20.91

13-16 0.3060 (0.0)
Cigarettes 21.43 23.75 4.96 52.82
Active 35.14 28.76 3.97 34.76

14-17 0.3115 (0.0)
Cigarettes 20.79 22.51 4.36 39.42
Active 34.85 29.85 4.34 35.32

Table 2.5: Comparing observed household average monthly purchases of cigarette packs
across samples. I report Kolmogorov-Smirnov (K-S) tests and various sample moments for
the set of cigarette users and the ‘active’ set across panel year blocks.

Panel Years K-S Test Mean StD Skew Kurtosis

07-10 0.0438 (1.0)
Cigarettes 10193.17 9786.03 3.21 20.01
Active 9375.24 9043.62 3.53 23.42

08-11 0.0378 (1.0)
Cigarettes 10438.97 10126.01 3.25 20.01
Active 10164.67 10643.38 3.47 19.42

09-12 0.0347 (1.0)
Cigarettes 10760.56 10610.79 3.29 19.63
Active 10484.32 11010.05 3.53 19.69

10-13 0.0235 (1.0)
Cigarettes 11029.55 10831.04 3.28 19.54
Active 11121.98 11986.56 3.72 20.41

11-14 0.0338 (1.0)
Cigarettes 11319.04 11408.10 3.74 27.54
Active 11995.27 12388.61 3.75 23.79

12-15 0.0210 (1.0)
Cigarettes 11612.64 12110.95 4.55 47.37
Active 11876.87 12792.24 4.54 34.67

13-16 0.0210 (0.92)
Cigarettes 11677.12 12656.17 5.92 85.39
Active 11674.30 12737.35 4.77 41.28

14-17 0.0240 (0.86)
Cigarettes 11525.89 13077.52 9.59 232.15
Active 11996.69 19899.51 13.94 271.27

Table 2.6: Comparing observed household average monthly expenditure across samples. I
report Kolmogorov-Smirnov (K-S) tests and various sample moments for the set of cigarette
users and the ‘active’ set across panel year blocks.
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2.7.2 Demand Estimation

One has many choices when estimating demand as the econometric community has been

investigating this problem for many decades. In more recent years there has been a push to

estimating flexible reduced form models of quantity on prices, total expenditure, and other,

potentially high-dimensional, controls, e.g., Chernozhukov, Goldman, Semenova, and Taddy

(2017) and Bajari, Nekipelov, Ryan, and Yang (2015). I follow this strand of the literature

and focus on estimating demand and own-price elasticity for cigarettes where the demand is

modeled:

ln qit = αi + g(pit, yit) + εit (2.33)

where pit and yit are the price of a pack of cigarettes and total expenditure for household i

at time t. It is likely the case that prices and total expenditure are endogenous and must

be instrumented for. I utilize a control function approach and compare the neural network

estimator to a series estimator as well as a fully linear specification.

2.7.3 Control Functions

The most common approach to dealing with endogeneity in the nonparametric literature is

through control functions Newey and Powell (2003). This approach is equivalent to instru-

mental variables estimation under linearity, but will also hold in more general settings.17.

The instruments for cigarette prices and total expenditure are their own lags18. The control

17See Blundell and Matzkin (2010) for conditions on the existence of control functions in nonseparable
models

18I use four month lags as in Chernozhukov, Hausman, and Newey (2019)
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function for prices solve the first stage problem:

ĥm = sup
hm∈Hm

− 1

n

n∑
i=1

1

Ti

Ti∑
t=1

(pit − hm (pi,t−m, Xit))
2 (2.34)

νit = pit − ĥm (pi,t−m, Xit) (2.35)

The control function for expenditure is the same, but replaces pi,t−m with yi,t−m. The vector

Xit are the other included exogeneous covariates. The residuals νit from these regressions are

included in the second stage and account for the potential endogeneity of cigarette prices.

2.7.4 Results

All specifications include cigarette prices, total expenditure, and cross-sectional fixed effects.

The models are specified as in equation 2.33 where g is specified in the following three ways:

g1(pit, yit) = β ln pit + λ ln yit + ν ′itγ (2.36)

g2(pit, yit) =
K∑
k=1

βk ln pkit +
K∑
k=1

λk ln ykit + ν ′itγ (2.37)

g3(pit, yit) = gnn(pit, ln yit) + ν ′itγ (2.38)

where the elements of γ are set to zero when the respective control function(s) is(are) not

included19. The choice of ĥm in 2.34 is taken to be linear such that the first stage is completely

parametric. The neural network includes prices in levels and log total expenditure as inputs.

In addition, the estimates for the neural network models are the median solutions over 50

randomly initialized models to avoid problems associated with poor optimization.

19The control function enters additively as in Newey, Powell, and Vella (1999), Newey and Powell (2003).
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Cigarette Own Price Elasticity

07-10

NN -0.7779 -0.7981 -0.7005 -0.6566
Series -0.6247 -0.6216 -0.6242 -0.6217

(0.066) (0.0706) (0.0658) (0.0706)
Linear -0.519 -0.5527 -0.518 -0.5526

(0.0401) (0.0505) (0.0402) (0.0505)

08-11

NN -0.7414 -0.7114 -0.6204 -0.4132
Series -0.5252 -0.5148 -0.5253 -0.5145

(0.0781) (0.0827) (0.078) (0.0827)
Linear -0.384 -0.4155 -0.3836 -0.4154

(0.0448) (0.0511) (0.0449) (0.0511)

09-12

NN -0.9088 -1.2011 -0.5881 -0.4700
Series -0.653 -0.7038 -0.6525 -0.7047

(0.1148) (0.1318) (0.1147) (0.1313)
Linear -0.3917 -0.4682 -0.3921 -0.4681

(0.0729) (0.0938) (0.0725) (0.0946)

10-13

NN -0.9213 -0.9108 -0.4872 -0.5500
Series -0.5854 -0.7792 -0.5834 -0.7772

(0.1171) (0.1508) (0.1174) (0.1499)
Linear -0.4488 -0.6215 -0.4474 -0.6198

(0.0624) (0.0894) (0.0627) (0.0886)

Ctrl. Prices No Yes No Yes
Ctrl. Expend No No Yes Yes

Table 2.7: Own-price elasticities for the three specifications. The neural network results are
medians associated with fifty randomly initialized networks.
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Cigarette Own Price Elasticity

11-14

NN -0.8146 -0.9094 -0.6621 -0.4320
Series -0.5793 -0.7349 -0.5828 -0.7353

(0.1031) (0.1447) (0.1029) (0.1443)
Linear -0.4894 -0.6815 -0.4915 -0.6818

(0.0609) (0.0645) (0.061) (0.0643)

12-15

NN -0.8640 -0.8289 -0.5685 -0.6206
Series -0.5776 -0.6075 -0.5785 -0.6079

(0.0969) (0.1104) (0.0966) (0.1083)
Linear -0.4852 -0.654 -0.4856 -0.6541

(0.057) (0.0892) (0.0573) (0.09)

13-16

NN -0.6042 -0.8934 -0.3827 -0.4385
Series -0.4387 -0.4842 -0.4389 -0.4814

(0.0988) (0.115) (0.099) (0.1129)
Linear -0.3732 -0.508 -0.3754 -0.5097

(0.0631) (0.1087) (0.063) (0.1079)

14-17

NN -0.6067 -0.5285 -0.4910 -0.3319
Series -0.3926 -0.5038 -0.3885 -0.5407

(0.0924) (0.1232) (0.0918) (0.1125)
Linear -0.3178 -0.4565 -0.3184 -0.4909

(0.0557) (0.0924) (0.0552) (0.076)

Ctrl. Prices No Yes No Yes
Ctrl. Expend No No Yes Yes

Table 2.8: Own-price elasticities for the three specifications. The neural network results are
medians associated with fifty randomly initialized networks.

The elasticities across all estimators are similar in magnitude for all panel blocks. The direc-

tion of the endogeneity bias, for the neural network estimator, is in line with the literature

which typically suggests prices are negatively correlated with preferences. Controlling for the

price endogeneity reduces the elasticity magnitudes in the neural network estimator across

all year blocks. In addition, there is a noticeable downward, towards zero, trend in elasticity

estimates over time. This phenomenon is consistent with the sharp increase in prices ob-

served in the first panel block which stabilizes over time as seen in 2.2. This is the case for

both the level prices and the relative prices.20. I conjecture that the federal tax hike in 2009

20I construct the relative price as the price of a pack of cigarettes divided by a weighted average of all
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Figure 2.2: Averages for annual cigarette price time series compared with averages in each
panel block. The figure on the left depicts prices in levels while the right depicts relative
prices.

contributed to a temporary increase in own price elasticities that returned to more ‘normal’

levels as households adjusted to the new, higher, prices.

To assess the sensitivity of elasticities to various income levels I consider conditional average

elasticities grouped by total expenditure quartiles. These results are reported in table 2.9

and are in line with the literature on the regressive nature of cigarette taxes. Higher total

expenditure households in the sample are much less sensitive to price changes relative to the

lower expenditure groups. These elasticities decrease in overall magnitude over time, but

the strict ordering across expenditure groups remains.

[q.00, q.25) [q.25, q.50) [q.50, q.75) [q.75, q1.00]

07-10 -0.7393 -0.6828 -0.6370 -0.5699
08-11 -0.4642 -0.4285 -0.3998 -0.3615
09-12 -0.5093 -0.4813 -0.4670 -0.4225
10-13 -0.6196 -0.5828 -0.5685 -0.4307
11-14 -0.4678 -0.4509 -0.4373 -0.3723
12-15 -0.6934 -0.6325 -0.6194 -0.5359
13-16 -0.4799 -0.4287 -0.4353 -0.4099
14-17 -0.3700 -0.3451 -0.3315 -0.2851

Table 2.9: Conditional average elasticities over total expenditure quantiles.

other prices in the scanner data.
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Figure 2.3: Demand surface estimated by the panel neural network for the first panel block
2007-2010 over a grid of log expenditure and prices.

2.8 Conclusion and Future Work

I provide a new estimator for panel data utilizing a neural network that is consistent with

a common index and heterogeneity in the form of cross-sectional fixed effects. I provide

corrections for the incidental parameter bias induced by the presence of the fixed effects and

show its effectiveness in finite samples. In an application I examine demand for cigarettes in

the United States using the Nielsen consumer panel data. I empirically verify the regressive

nature of cigarette taxes through a fully flexible specification with respect to prices and total

expenditure.

There are several clear extensions to the theoretical analysis in this chapter. The consistency

result does not take advantage the independence between cross-sections. The conditions on

the parameter magnitude can likely be weakened by utilizing a tighter bound on the large

deviation inequality. It is also possible to extend the results from the previous chapter to
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be used here albeit with additional bias corrections and the inclusion of only one-way fixed

effects could be extended to two-way as in Fernández-Val and Weidner (2018) with some

additional modifications.
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Chapter 3

Informative Dimensionality Reduction

Using a Deep Autoencoder

This chapter investigates the potential of a deep neural network to perform informative

non-linear dimensionality reduction of high-dimensional binary data. I show that the au-

toencoder, a type of neural network, learns a representation of the data on a low-dimensional

manifold while simultaneously learning an inverse transformation back to the original space.

This dual formulation, learning an encoding and decoding, distinguishes the autoencoder

from other non-linear dimensionality reduction methods as it allows the researcher to take

any point on the low-dimensional surface and map it back to the original space. I explore

the performance of the deep autoencoder in a series of simulation experiments to recover the

data generating process and learn the number of clusters from the data. I then apply the

deep autoencoder to analysis consumer preference clusters in a dataset of purchase receipts.
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3.1 Introduction

This chapter introduces a new non-linear dimensionality reduction technique with the dual

aims of outperforming existing linear and nonlinear methods while aiding the interpretability

of the resulting low-dimensional embedding. There are many dimensionality reduction tech-

niques to choose from. However, the majority fail to provide an informative low-dimensional

embedding of the original high-dimensional features. This deficiency means that researchers

often struggle to interpret what can be learned from the low-dimensional representation. I

demonstrate that the use of a specific neural network, an autoencoder, holds great promise

in this area. The autoencoder can uncover latent features of the original data more effec-

tively than other more traditional approaches. In addition, each point in the latent space

can be characterized in terms of a probability distribution over the original high-dimensional

input space. This can be used to improve our understanding of heterogeneous consumer

preferences by inferring the latent structure from observed purchase behavior.

The availability of Big Data generates new and unprecedented challenges, for a recent review

see Fan, Han, and Liu (2014). An increasingly common problem is how to take a “first look”

at prohibitively large and previously unseen datasets. This first step at examining the data

occurs in exploratory settings, but also when a research question is firmly established. In ei-

ther case, the high-dimensional nature of the data makes traditional visualization impossible

and summary statistics become overwhelming. In an exploratory setting the problem is fur-

ther confounded as it is unclear how one might develop hypotheses from underlying patterns

and trends. If left unaided by statistical tools and machine learning algorithms, humans have

difficulty comprehending high-dimensional data and often reach misleading conclusions when

attempting to do so. However, the curse of dimensionality prevents clustering algorithms

like k-means or gaussian mixture models (GMM) from providing meaningful results.

An important strategy for engaging with high-dimensional datasets is to reduce their di-
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mension by projecting the data onto a lower dimensional space (Carreira-Perpinán, 1997).

Dimensionality reduction is a tool to convert high-dimensional data into lower dimensions,

while preserving intrinsic properties of the data, e.g., connectivity and continuity. Tech-

niques of dimensionality reduction can be grouped into two categories, linear and nonlinear

methods. Linear dimensionality reduction methods, as the name implies, involve only linear

transformations in the conversion; among them, the best-known are PCA (Pearson (1901),

Hotelling (1933), Jolliffe (2002) and Independent Component Analysis (ICA) (Hyvärinen

and Oja, 2000). In contrast, non-linear dimensionality reduction relaxes the linearity of the

transformation. The objective becomes finding a low-dimensional manifold that the original

high-dimensional data resides on. Over the last twenty years, many non-linear dimension-

ality reduction methods have been developed, including Isomap (Tenenbaum, De Silva, and

Langford, 2000) and Locally Linear Embedding (LLE) (Roweis and Saul, 2000). Non-linear

dimensionality reduction methods generally outperform linear methods when applied to com-

plex, real-world datasets. This paper introduces a neural network strategy for performing

non-linear dimensionality reduction. In a neural network the input data is transformed re-

peatedly through several layers and a non-linear function is applied at each layer of the

data.

After the data have been mapped onto a low-dimensional space, one can readily perform other

tasks on the data, e.g., visualization, clustering, or classification. These tasks are important

for exploring the structure of the data and for developing new hypotheses. For example, a

common challenge in economics and marketing involves “customer segmentation”, cluster-

ing consumers into distinct groups using a variety of socio-demographic and transactional

information on them. These customer segments are widely used in determining a range of

economic decisions from marketing expenditures to direct mail targeting.

Once the data has been projected onto a lower dimensional space another crucial challenge

emerges. If the latent space uncovered by the dimensionality reduction technique is not

72



interpretable then tools like clustering provide little meaning. When using linear methods,

the outcomes can be interpreted as linear combinations1 of the original variables. However,

once linearity is relaxed this interpretation no longer holds. Furthermore, non-linear methods

often outperform linear methods. Therefore, one is typically forced into a trade-off between

performance and interpretability.

The autoencoder provides a solution to this lack of interpretability by explicitly modeling the

inverse transformation between the lower dimensional space and the original data space. This

mapping provides a connection between any point, including out-of-sample, in the embedding

space and the original input space. This kind of inverse-mapping information is extremely

valuable to social scientists. Patterns in the embedding space should be comprehensible;

for example, if the original feature space represents customer features, differences between

customers in different segments are relevant.

In this chapter I provide the first econometric use of the deep autoencoder neural net-

work (Hinton and Salakhutdinov, 2006) architecture as a non-linear dimensionality reduction

method for high-dimensional binary input data. It is a neural network with an input layer,

an output layer and one or more hidden layers. The network is trained with conventional

backpropagation but paired with a layer-by-layer pre-training procedure. The optimization

objective is to minimize the difference between the input and the output, and therefore the

output is often seen as a reconstruction of the input data. While projecting the data to

a low dimensional manifold, it can learn an inverse transformation which allows us to in-

terpret every point in the embedding space in terms of a probability distribution over the

original feature space of the data. The reconstruction functionality of the deep autoencoder

is useful for analyzing the embedded data. Because it is trained with the entire dataset, the

reconstruction recovers the underlying data generating model.

1It is often not obvious how to interpret the results of PCA in an insightful fashion, something that
practitioners are often painfully aware of.
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The remaining of the chapter proceeds as follows. The first section (3.2) presents the autoen-

coder and its construction. Section 3.3 discusses an interpretation of the low dimensional

representation generated by the model. I discuss some computational difficulties in 3.4 and

assess the model performance in 3.5. I present an application of the autoencoder to consumer

segmentation in 3.6 and conclude in 3.7.

3.2 Model

I consider n iid realizations from the binary random vector yi ∈
{
{0, 1}J

}n
i=1

. The observable

outcomes yi are governed by a latent process:

yi =


1 g0(Fi) + ei > 0

0 g0(Fi) + ei ≤ 0

(3.1)

where Fi ∈ Rd is a latent vector associated with yi. The autoencoder seeks construction

of the dual maps Fi : {0, 1}J → Rd and g0 : Rd → [0, 1]J . The autoencoder achieves this

by finding a function that maps yi onto itself. In most commonly used autoencoders, the

dimension of the model is restricted, e.g. d � J , “encoding” the input into Fi and then

“reconstructing” back to [0, 1]J . This approach is typically referred to as a contractive2

autoencoder as the width of each successive layer is reduced until the encoding portion is

complete. The heuristic for why this works lies in the so-called “information bottleneck”,

the important characteristics of yi are preserved while eliminating superfluous artifacts or

noise.

Autoencoders and their deep counterparts are trained to reconstruct the input data at the

top layer, after a series of non-linear transformations. Therefore, the optimization objective

2There are alternative specifications of autoencoders, e.g., overcomplete or sparse, which do not follow
this pattern.
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is to minimize the error between the input and the output. Let the number of total layers in

the network be 2k+1 with corresponding width dk. The middle layer represents a projection

of the input data onto a lower-dimensional embedding space. The sample objective is:

Ln(p, y) =
1

n

n∑
i=1

`i(pi, yi) =
1

n

n∑
i=1

d∑
j=1

yij ln(pij) + (1− yij) ln(1− pij) (3.2)

where pij is parameterized by the autoencoder. For clarity it is useful to first define the

“decoder” and “encoder” portions of the network separately. Consider the case where each

object has two hidden layers. The encoder and decoder are defined respectively:

Fi(yi) =
d∑
j=1

s

(
K∑
k=1

s(ỹ′iβk)γkj

)
ωd (3.3)

gn(Fi) = Λ

(
K∑
k=1

s

(
d∑
j=1

s(F̃ ′iωj)γjk

)
βk

)
(3.4)

where Λ is the logistic function and s(·) is a suitable ‘activation’ function. Putting these

together the autoencoder objective becomes:

ĝn, F̂i ∈ arg max
gn∈Gn,Fi∈Fn

n∑
i=1

d∑
j=1

yij ln gn (Fi) + (1− yij) ln (1− gn (Fi)) (3.5)

I shall refer to the coordinates Fi as factors and suppress dependence on yi for convenience.

3.3 Embedding Space

The ability to interpret autoencoders comes primarily from the construction of Fi. This

vector, often referred to as the ‘embedding space’, projects a nonlinear transformation of the

input data onto a lower-dimensional space Rd. In this exposition I consider an application

where the input data is household grocery-purchase records over a certain period. A house-
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hold’s monthly purchases are organized into a binary vector, with each element indicating

whether a certain type of product has been bought or not. If one restricts d to be two

or three, then one can visualize the households in a two or three-dimensional space. This

representation has the potential to uncover clusters of ‘like” consumers or notice temporal

changes in some household’s purchases over the months. One potential goal is to understand

what sort of shopping behaviors those patterns reflect.

Among non-linear dimensionality reduction methods, autoencoders are unique in that they

provide, by construction, an “inverse-mapping”. One has for any Fi ∈ Fi a reconstruction

of the input. This reconstruction produces the set of potential outcomes g0(Fi), e.g., how

would the probabilities of purchasing good j change if Fi is perturbed by a random vector

εi ∈ Rd.

3.4 Computational Considerations

Training autoencoders, particularly large ones, is a highly non-convex optimization problem.

One way of avoiding poor local minima is to initialize the weights of the network to be within

some neighborhood of an optimal minima. To address this issue, Hinton and Salakhutdi-

nov (2006) propose the use of an undirected graphical model in the form of a Restricted

Boltzmann Machine (RBM) to initialize the weights.

To understand why this works, it is informative to first discuss the properties of undirected

graphical models or Markov Random Fields (MRF). Firstly, the probability distribution

Pr(x) of any MRF can be characterized by the Boltzmann distribution: Pr(x) ∝ exp {−ε(x)}

where ε(x) is referred to as the energy function containing connectivity information about

the graph. In the case of the RBM one decomposes the observed outcomes yi into latent or

hidden units h and visible units v. This structure allows for complex distributions over the
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observables while maintaining mutual independence of the visible units conditional on h.

Consider a RBM with m visible nodes and k hidden nodes, all of which are stochastic, binary

units. Then v = {(vj)mj=1 : vj ∈ {0, 1} ∀j} and h = {(hl)kl=1 : hl ∈ {0, 1} ∀l}. Let edges

between hl and vj for any pair (l, j) have a corresponding weight wlj ∈ R as well as intercept

terms bj ∈ R and cl ∈ R associated with each visible and hidden unit respectively. Then the

energy function is:

−ε(v, h) =
n∑
i=1

m∑
j=1

wijhivj −
m∑
j=1

bjvj −
n∑
i=1

cihi (3.6)

In general, for any MRF with known graph structure and parametric family, one can estimate

the parameters of the energy function through maximum likelihood:

ln p(v, θ) = ln
∑
h

exp{−ε(v, h)} − ln
∑
v,h

exp{−ε(v, h)} (3.7)

Plugging in the energy function for the RBM one can write down the gradients with respect

to each parameter wij, bj, and ci:

∂ ln p(θ, v)

∂wij
= p(hi = 1|v)vj −

∑
v

p(v)p(hi = 1|v)vj (3.8)

∂ ln p(θ, v)

∂bj
= vj −

∑
v

p(v)vj (3.9)

∂ ln p(θ, v)

∂bj
= p(hi = 1|v)−

∑
v

p(v)p(hi = 1|v) (3.10)

Furthermore, under further parametric assumptions the conditional distributions of v and h
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are symmetric and equal to:

Pr(vj = 1|h) = Λ(bj +
∑
i

wijhi) (3.11)

Pr(hi = 1|v) = Λ(ci +
∑
j

wijvj) (3.12)

where Λ(·) is the logistic function. However, the second term in each of the gradients is not

analytically available. One can approximate the expectation by sampling from the model

distribution. In practice, the sampling procedure is often approximated with a single Gibbs

step. The so called contrastive-divergence algorithm (Hinton, 2002), works remarkably well

in practice.

The advantage of training the RBM and its application to deep Neural Networks lies in the

ability to vertically stack them. The general idea is that once the parameters of the RBM

are found one can treat the hidden units as visible and train a new RBM in the same way as

the original one. Stacking the RBMs in this way can then be viewed as training a stochastic

Neural Network.

The full procedure can then be characterized in two stages of training. The pre-training

stage consists of training and stacking RBMs with layer dimension corresponding to the

desired neural network structure. At the fine-tuning stage, the autoencoder is trained with

the standard backpropagation algorithm, as described in the last section. However, the

parameters are set to the RBM parameters learned at the pre-training stage.

It is important to note that for the final embedding layer the autoencoder is linear. Here

the pre-training stage utilizes a Gaussian energy function:

−ε(v, h) =
n∑
i=1

m∑
j=1

wijhi
vj
σ2
j

−
m∑
j=1

(vj − bj)2

2σ2
j

+
n∑
j=1

cihi (3.13)

where σ2
i is the variance of Gaussian noise applied to visible unit j.
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3.5 Monte Carlo

In these simulations I demonstrate the potential of autoencoders as informative dimension-

ality reduction tools in high-dimensional discrete choice data. In the first set I focus on

recovery of the latent signals pi and in the latter the ability to cluster patterns of choice

behavior.

Consider the following data generating process for choice behavior xi:

{yij}ni=1 ∼ B(n, pjl), j = 1, 2, . . . , J (3.14)

plj ∼ Claw(Ml) =

(
1 + exp

{
−
[

1

2
φ(z) +

5∑
j=1

1

10
φ

(
z +mjl

0.1

)]})−1

(3.15)

Each individual purchases
∑

j xij goods from a fixed number of choices J . To simulate

heterogeneity, I randomly assign the simulated consumers to a preference group l. Within

a group the purchase probability pjl is fixed but varies across groups. The probabilities are

drawn from scaled claw functions, Marron and Wand (1992) with varying modes: Ml =

{m1,l, m2,l, . . . ,m5,l}.

I examine the case where the number of partitions l = 4 for various modes. The dataset is

used to train a deep autoencoder with each hidden layer having 100, 50, 2, 50, 100 nodes.

Figure 3.1 shows the true distribution is recovered with a high degree of accuracy.

One may also want to examine whether the embedding space separates individuals with

different underlying distributions. Linear methods like PCA work well when individuals have

either homogeneous or sufficiently heterogeneous distributions. I consider the case where the

underlying probability of individual i purchasing good j is very similar to the probability

of individual r purchasing the same good. A visualization of such a case is shown in figure

3.2. The deep Autoencoder can disentangle the choice probabilities even when underlying
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distributions have a high degree of overlap. For the following simulations, each partition is

governed by an underlying DGP such that:

{yij}ni=1 ∼ B(n, pjl), j = 1, 2, . . . , J (3.16)

pjl ∼ Beta(αl, βl) (3.17)

I consider four cases, all of which follow the same underlying distribution, but differ in

parameters α and β as well as the number of partitions l. To gauge relative performance, I

compare the embedding space of the Autoencoder to PCA and Isomap.

For the first simulation consider l = 8 where:

(α1, β1) =
{

(6, 6), (6, 5), (5, 6), (5, 5), (5, 4), (4, 5), (2, 3), (3, 2)
}

(3.18)

It is clear from figure 3.3 that nonlinear methods do a better job at disentangling the un-

derlying distributions. PCA struggles to separate the six heavily overlapping distributions.

Isomap does reasonably well, but I observe much more well-defined clusters with the Au-

toencoder.
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Figure 3.1: Recovery of the underlying probability distribution. Results are from the centroid
corresponding to the standard claw parameterization with location parameters M4.
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Figure 3.2: PDF of the Beta distributions in the first simulation. Most parameterizations
overlap heavily.

Figure 3.3: Embedding space from Autoencoder, PCA, and Isomap from left to right re-
spectively. Figures are from the first simulation (n = 20, 000) and colors respond to true
labels.
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I further consider the case where l = 10 and l = 20 such that:

{α2, β2} = {{α1, β1}, (4, 3), (3, 4)} (3.19)

{α3, β3} = {{α2, β2}, {α2 +
1

2
, β2 +

1

2
}} (3.20)

The last case reflects a common scenario observed in real shopping data. One often observes

the number of items available to be very large, but the actual number of purchases for any

given shopping trip is a small subset. To reflect this scenario consider l = 10, α4 = 1, and

β4 = {30, 29, . . . , 22}.

Table(3.1) displays metrics evaluating clustering in the embedding space. I use two measures

of cluster separation, the Davies-Bouldin (DB) index and Silhouette. The former measures an

average of similarity measures between clusters, while the later measures pairwise distances

between and within clusters. Formally DB and Silhouette are respectively defined:

DB(k) =
1

K

K∑
i=1

max
i 6=j

{
∆(ci) + ∆(cj)

δ(ci, cj)

}
(3.21)

S(k) =
1

K

K∑
i=1

∑
j∈k

(
bj − aj

max{aj, bj}

)
(3.22)

where ∆(ci) is the intra-cluster distance for i and δ(ci, cj) is the inter-cluster distance between

i and j. Further, aj is the average distance within a cluster and bj is the average distance

between each element in the cluster and elements in the closest neighboring cluster. A

smaller value of DB indicates less similarity between clusters and a Silhouette value closer

to one indicates separation.

In addition to cluster tightness and separation one may want to see how well each method is

discriminating between the partitions. I report a measure of classification error: 1− 1
n

∑
k ck,

where ck is the number of individuals within a cluster that belong to the majority partition.
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From the results one observes Isomap and the Autoencoder do well in classification error and

cluster tightness, with a slight edge given to the deep Autoencoder when n is small and the

data is not sparse. However, as the sample size increases the deep Autoencoder outshines

Isomap in all four simulations across metrics. I further note, in the presence of sparsity,

Isomap performs very poorly regardless of the sample size.

(α1, β1) (α2,β2)
n Metric AE PCA Isomap AE PCA Isomap

1, 000

Davies–Bouldin 0.3749 1.1418 0.8535 1.0309 1.1689 0.8682
Silhouette 0.7196 0.3399 0.6885 0.3639 0.2467 0.3220
Classification Error 0.0070 0.2640 0.0440 0.2460 0.4170 0.1830

5, 000

Davies–Bouldin 0.3050 1.2196 0.2719 0.8852 1.2093 1.1879
Silhouette 0.7732 0.3582 0.8126 0.5032 0.2524 0.3694
Classification Error 0.0000 0.2928 0.0008 0.1758 0.4052 0.2028

10, 000

Davies–Bouldin 0.3264 1.2155 0.2755 0.5631 3.5007 1.3308
Silhouette 0.7586 0.4307 0.8059 0.6233 0.2247 0.3402
Classification Error 0.0001 0.2398 0.0013 0.0302 0.3998 0.3173

20, 000

Davies–Bouldin 0.2970 1.1418 1.1071 0.4795 1.3397 0.9942
Silhouette 0.7804 0.4648 0.5120 0.6588 0.3314 0.4415
Classification Error 0.0000 0.2685 0.1775 0.0306 0.4985 0.1320

(α3,β3) (α4, β4)
n Metric AE PCA Isomap AE PCA Isomap

1, 000

Davies–Bouldin 1.0309 1.1689 0.8682 0.8483 3.7612 0.7407
Silhouette 0.3639 0.2467 0.3220 0.3698 0.1373 0.4514
Classification Error 0.2460 0.4170 0.1830 0.1550 0.4850 0.7290

5, 000

Davies–Bouldin 0.8852 1.2093 1.1879 0.5802 2.3971 0.7849
Silhouette 0.5032 0.2524 0.3694 0.5308 0.2968 0.3552
Classification Error 0.1758 0.4052 0.2028 0.0304 0.4666 0.7968

10, 000

Davies–Bouldin 0.5631 3.5007 1.3308 0.5627 1.5323 0.6401
Silhouette 0.6233 0.2247 0.3402 0.5231 0.3025 0.6247
Classification Error 0.0302 0.3998 0.3173 0.0336 0.4777 0.8114

20, 000

Davies–Bouldin 0.4795 1.3397 0.9942 0.5682 1.9291 1.4965
Silhouette 0.6588 0.3314 0.4415 0.5110 0.2818 0.4551
Classification Error 0.0306 0.4985 0.1320 0.0457 0.4543 0.7052

Table 3.1: Gaussian mixture model (GMM) clustering on embedding space.
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3.6 Application

3.6.1 Data Description

The data includes about 240 million grocery transactions that involved 307, 365 households

distributed across the US between 2015 and 2017. Purchases are collected directly from

consumers via receipt images. This method makes the process much easier on the user end

in addition to eliminating user input error. Additional incentives to report as often and

as accurately as possible are provided through a rewards system. In addition, this source

gathers household demographic information. This allows the panel makeup to mirror U.S.

Census data. All household characteristics are weighted and balanced to provide an accurate

sample of shopping behavior in the U.S.

Since this is a voluntary program and the participants can leave the panel without restric-

tions, households have various length of appearance. To remove the noise introduced by

short-term, spontaneous participants, I use only a relatively stable subset of the households.

I will refer to this sample as the “static” sample, which consists of households who have been

in the panel for twelve or more consecutive months. The static sample accounts for 134,869

households.

3.6.2 Customer Segmentation Analysis

I will focus the analysis on household purchases of “snacks“ (Chips, Trail Mix, Candy, etc).

I examine whether households can be grouped based on preferences for particular brands

in this category. I examine household purchases among the top 200 snack brands in 2016.

The data matrix is of the same form as in the simulations. In this case for any element yij

household i either purchases a snack within a brand j or they do not. I do not consider the
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Figure 3.4: Embedding space of consumer types generated by the Autoencoder and PCA
respectively.

number of products purchased, only whether a household purchased a brand at any point in

2016.

I maintain the network structure and specifications used during the simulations. The input

and output layers have dimension J which is equal to the total number of brands.

I apply GMM to the embedding space for both PCA and the Deep Autoencoder, shown in

figure 3.4. The number of clusters is based on visual evidence, which in this case is very clear.

One can immediately see PCA has no ability to distinguish between household preferences

in this category. However, the Autoencoder picks out four distinct clusters. Since this is an

unsupervised learning task, the natural question to ask is whether these clusters have any

interpretable meaning? Fortunately, the ability to reconstruct the embedding space gives us

insight into the algorithm’s process.

3.6.3 Cluster Analysis

Consider the stochastic shopping basket for each cluster centroid. From the reconstruction of

these coordinates one can observe the underlying probability that households in each cluster

purchase a particular brand. For visualization purposes, figure 3.5 shows the stochastic
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shopping basket of the centroid households for the top twenty brands.

Figure 3.5: Reconstruction for cluster centroids corresponding to the top 20 brands.

One can see each cluster’s preferences are well ordered in terms of purchasing probability

for any particular brand. Households in Cluster B generally have a higher probability of

purchasing these brands relative to the others. Interestingly, households in Cluster D have

a very high probability of purchasing a ‘Great Value’ product, while falling below Cluster B

and Cluster C for the remaining brands. This is largely indicative of where these households

shop for snacks.

3.6.4 Expenditure and Counts

A further question of interest might be whether the deep Autoencoder picks up on infor-

mation it does not directly observe. The algorithm is only trained on whether individuals
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Multinomial Logistic Regression: Base is Cluster A
Cluster B Cluster C Cluster D

log(Total Purchases) 1.5292 (0.0185) 0.8849 (0.0204) 0.6974 (0.0155)
log(Total Expenditure) 0.3648 (0.0142) 0.0810 (0.0161) 0.1312 (0.0124)
Income (< $50K) -10.7875 (0.1026) -5.9020 (0.1092) -4.4888 (0.0784)
Income ($50K − $100K) -11.4621 (0.1051) -6.2528 (0.1117) -4.7955 (0.0804)
Income (> $100K) -12.3825 (0.1090) -6.6852 (0.1154) -5.4014 (0.0837)
Household Size (1) -0.2966 (0.3711) -0.1182 (0.3776) -0.3964 (0.3045)
Household Size (2− 4) -0.0519 (0.3700) 0.1564 (0.3760) -0.3089 (0.3035)
Household Size (> 4) 0.0987 (0.3703) 0.3524 (0.3765) -0.2770 (0.3039)
Asian -0.5946 (0.3672) -0.5808 (0.3715) 0.0316 (0.3007)
Black 1.0809 (0.3666) 0.8291 (0.3711) 0.5374 (0.3016)
Hispanic 0.3931 (0.3663) 0.1512 (0.3710) 0.5151 (0.3008)
White 0.6969 (0.3651) 0.2925 (0.3695) 0.5594 (0.2998)
Other Ethnicity 0.2905 (0.3677) 0.0517 (0.3728) 0.3886 (0.3020)
Unknown Demographics -11.4291 (0.1015) -6.2776 (0.1071) -4.7964 (0.0765)

Notes: Coefficient and standard errors (in parentheses)

Table 3.2: Cluster assignment as a function of household characteristics and demographics.

purchased a snack brand during 2016, but perhaps clusters represent a household’s expen-

diture on snacks, or the actual number of snacks purchased over the course of the year.

To this end consider a multinomial logistic regression with the cluster assignment as the

dependent variable. The probability any household i is assigned to cluster j is estimated as:

pij =
exp{z′iβj}∑
l∈m exp{z′iβl}

where zi is a vector of observables containing indicators for race, household size, and income

in addition to the variables of interest, total expenditure on snacks and total number of items

purchased in the snack category. The results are summarized in 3.2.

I conduct pairwise tests for combining alternatives via Wald and Likelihood-Ratio tests. In

both cases I strongly reject the null that alternatives can be collapsed. This is reassuring, as

it implies, the clusters are informative, conditional on this model specification. These results

corroborate this estimator’s ability to cluster individual preferences based only on observing
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purchasing decisions.

3.7 Conclusions and Future Work

In settings of high dimensionality, it is often convenient and necessary to examine underlying

structures of the data. Dimensionality reduction is an obvious means of accomplishing

this task. However, I have shown that linear methods like PCA and even more complex

methods like Isomap fail when the underlying DGP is sufficiently entangled. In this setting

autoencoders, particularly deep autoencoders can be leveraged to great success.

There are many avenues for future work with autoencoders. The most useful for both theo-

retical and empirical work would be a rigorous identification result for the embedding space.

This is incredibly difficult due to the geometry of lower dimensional manifolds and nonlinear

dimensionality reduction. In appendix C, I discuss a simplification to the autoencoder which

may reduce the complexity of the identification problem in addition to resolving some of the

difficulties with optimization.
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Appendix A

This appendix provides a supplement to chapter 1. I provide the complete entropy calcu-

lations used for the consistency and convergence rate results (section 1.5) below in section

A.1. In addition I discuss an interpretation of ReLU networks in section A.2. The latter is

an interesting aside and may be considered for future research.

A.1 Entropy Calculations

I suppress the dependence on i and define zj ≡ (1, s(x̃′δj))
′ and ζj ≡ (1, s(x̃′dj))

′.

Let η > 0 be given such that Bη, Gη, and Dη are η-nets for B = {β : ||β|| ≤ ∆} ⊂ RK+1,

Γ = {γ : ||γ|| ≤ K∆} ⊂ R(d+1)K , and D = {δ : ||δ|| ≤ d∆} ⊂ R(p+1)d.

Further the feasible parameter space can be written as: Hη = Bη × Γη × Dη. Let f(x) be

an arbitrary two-layer neural network with parameters (β, γ, δ). There exists corresponding
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parameters % = (b, c, d) ∈ Hη that satisfy ||β − b|| ≤ η, ||γ − c|| ≤ η, and ||δ − d|| ≤ η.

|f(x)− t(x)| =

∣∣∣∣∣β0 +
K∑
j=1

βjs(z
′
jγj)− b0 −

K∑
j=1

bjs(ζ
′
jcj)

∣∣∣∣∣ (A.1)

≤

∣∣∣∣∣β0 − b0 +
K∑
j=1

(βj − bj)s(z′jγj)

∣∣∣∣∣+

∣∣∣∣∣
K∑
j=1

bj
(
s(z′jγj)− s(ζ ′jcj)

)∣∣∣∣∣ (A.2)

The first term is bounded by ||β − b|| ≤ η by the choice of b and using the fact that

supx∈X |s(t)| = 1. For the second term:

∣∣∣∣∣
K∑
j=1

bj
(
s(z′jγj)− s(ζ ′jcj)

)∣∣∣∣∣ ≤
K∑
j=1

|bj|
K∑
j=1

∣∣s(z′jγj)− s(ζ ′jcj)∣∣ (A.3)

The magnitude of the b vector is restricted by ∆ and by the Lipschitz condition on s(·):

K∑
j=1

|bj|
K∑
j=1

∣∣s(z′jγj)− s(ζ ′jcj)∣∣ ≤ ∆
K∑
j=1

∣∣z′jγj − ζ ′jcj∣∣ (A.4)

This would be complete in the single layer case. However, since I have an additional layer,

I plug-in the definition of zj and ζj:

∆
K∑
j=1

|z′γj − ζ ′cj| ≤ ∆
K∑
j=1

∣∣∣∣∣γ0j +
d∑
`=1

γj`s(x̃
′δ`)− c0j −

d∑
`=1

cj`s(x̃
′d`)

∣∣∣∣∣ (A.5)

One will notice that to bound the remaining components the procedure is identical to above.
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Examining each component of the sum individually:

∣∣∣∣∣γ0` +
d∑
`=1

γj`s(x̃
′δ`)− c0` −

d∑
`=1

cj`s(x̃
′d`)

∣∣∣∣∣ (A.6)

≤
d∑
`=0

|γj` − cj`|+ ∆
d∑
`=1

|x̃′δ` − x̃′d`| (A.7)

≤
d∑
`=0

|γj` − cj`|+ ∆
d∑
`=1

[(
p∑

m=0

|xm|

)
p∑

m=0

|δm` − dm`|

]
(A.8)

=
d∑
`=0

|γj` − cj`|+ +∆p
d∑
`=1

[
p∑

m=0

|δm` − dm`|

]
(A.9)

Substituting back:

∆
K∑
j=1

(
d∑
`=0

|γj` − cj`|+ ∆p
d∑
`=1

[
p∑

m=0

|δm` − dm`|

])
(A.10)

= ∆
K∑
j=1

d∑
`=0

|γj` − cj`|+ ∆2p
K∑
j=1

d∑
`=1

[
p∑

m=0

|δm` − dm`|

]
(A.11)

≤ ∆η + ∆2pη (A.12)

Since this holds for any x ∈ X :

sup
x∈X
|f(x)− t(x)| ≤ η(1 + ∆ + ∆2p) = ε

Let # denote the cardinality operator. Then: #T = (#B)(#G)(#D). Each of which can

be bounded by results in Kolmogorov and Tikhomirov (1959).

#B ≤ 2(2∆/η)K+1 (A.13)

#G ≤ 2(2K∆/η)(d+1)K (A.14)

#D ≤ 2(2d∆/η)(p+1)d (A.15)
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With η = ε/ (1 + ∆ + ∆2p)) and let ω = 1 +K(d+ 2) + d(p+ 1)

log #T ≤ log 8 + (K + 1) log
2∆

η
+K(d+ 1) log

2K∆

η
+ (p+ 1)d log

2d∆

η
(A.16)

= log 8 + ω log
2∆

η
+K(d+ 1) logK + (p+ 1)d log d (A.17)

≤ ω

[
log

16

ε
+ log

(
∆(1 + ∆ + p∆2)

)
+ log dK

]
(A.18)

A.2 ReLU Networks

A natural question that may arise is how to generalize the results of chapter 1 to deeper

architectures? In the case of smooth activation functions, it does not seem reasonable to

continue to stack layers without explicitly restricting connections to reduce the entropy. In

the approximation results from 1.4 I argue that an additional layer reduces the burden placed

on each ‘basis’ (defined by ψk) by approximating only pieces of the underlying function rather

than the whole. This could be argued to hold iteratively, each subsequent layer reducing the

complexity necessary for the previous layer to estimate the underlying function. However, it

is not immediately clear how one would show this rigorously. Interestingly, stacking layers

in practice is not typically done with smooth activation functions, but rather the ReLU

(s(t) = 1 {t > 0} t) function mentioned in 1.3. This section presents a case for why these

activation functions are useful, but also why they are fundamentally different from neural

networks with smooth activation functions.

Consider the following illustration. Let xi ∈ X = [0, 1]2 and y ∈ [0, 1]. I claim that for any

fixed value of zi one can embed a deep ReLU network into a local linear model.

Suppose without loss of generality the network has two hidden layers as in equation 1.4

where s0 and s1 are ReLU functions denoted 1+ for simplicity. Then consider any pair

xi1 = x1, xi2 = x2 with outcome yi = y. The network can be visually represented as:
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Consider the output of each hidden node:

gn

x1

x2

s1
1

s1
2

s2
1

s2
2

s1
1 = 1+ {x1γ11 + x2γ21 + γ01}

s1
2 = 1+ {x1γ12 + x2γ22 + γ02}

s2
1 = 1+

{
s0

1ω11 + s0
2ω21 + ω01

}
s2

2 = 1+

{
s0

1ω12 + s0
2ω22 + ω02

}

Then given model parameters γ and ω the network estimates y = c0 + c1x1 + c2x2. In this

simple example there are (22 − 1)2 = 9 possible (non-degenerate) submodels. However, it is

important to note that when z is fixed only one of these models is realized. For example if

z, γ, ω are such that all skj > 0 for j, k ∈ {1, 2}

y = β1 [(x1γ11 + x2γ21 + γ01)ω11 + (x1γ12 + x2γ22 + γ02)ω21 + ω01]

+ β2 [(x1γ11 + x2γ21 + γ01)ω12 + (x1γ12 + x2γ22 + γ02)ω22 + ω02]

c0 = β1 (ω01 + γ02ω21 + γ01ω11) + β2 (ω02 + γ02ω22 + γ01ω12)

c1 = β1 (ω11γ11 + ω21γ12) + β2 (ω12γ11 + ω22γ12)

c2 = β1 (ω11γ21 + ω21γ22) + β2 (ω12γ21 + ω22γ22)

Therefore, deep neural networks with ReLU activation functions are local linear models with

data driven partitions. This is in sharp contrast to neural networks with smooth activation

functions which construct approximations to the underlying function using all of the data.

Given the empirical success of linear models and even those of local linear models it is

unsurprising that ReLU networks have had such great success in practice. However, this
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does give us some insight as to why copious amounts of data is vital to the success of these

networks. The estimate for each partition will depend on how many observations lie in that

subset.

A potential area for further research is to prepend a ReLU network to the classical (smooth

single layer) neural network. This would result in a local neural network where all the

theoretical results for classical networks would follow conditional on the subset selection

defined in the ReLU portion.

A.3 Inference Supplemental

This section presents the conditions for asymptotic normality to hold for the evaluation

functional of extended or classical neural network estimator. In section 1.6 I take these as

given and leave verification to future work.

AA.3.1 Suppose g0,n = arg ming∈Gn
||g − g0||. The approximation error of the sieve functional

satisfies:∣∣∣∂h(g0)
∂g

[g0,n − g0]
∣∣∣

||v?n||`
= o(n−1/2) (A.19)

and ||v?n|| / ||v?n|| = O(1).

AA.3.2 Let εn = op(n
−1/2). Then the following stochastic equicontinuity conditions hold:

sup
g∈Gn

µn {`(g ± εnu?n, zi)− `(g, zi)−∆(g0, zi)[±εnu?n]} = Op(ε
2
n) (A.20)

sup
g∈Gn

∣∣∣∣∣E [`(g, zi)− `(g ± εnu?n, zi)]−
||g ± εnu?n − g0||2 − ||g − g0||2

2

∣∣∣∣∣ = Op(ε
2
n)

(A.21)
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AA.3.3 The following central limit theorem holds:

√
nµn[∆(g0, zi)[u

?
n]]

d→ N(0, 1) (A.22)
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Appendix B

This appendix provides a supplement to chapter 2. In section B.1 I provide additional

tables describing the various samples discussed in 2.7.1. I examine a map between total

expenditure observed in the data and the reported income levels from the consumer panel

data in section B.2. The issue of missing at random is further discussed in section B.3 and

first stage relevance is examine in section B.4.

B.1 Descriptive Statistics

The following tables compare the full Nielsen sample for each panel block with the sample of

users who purchase cigarettes and the ‘active’ user group. The samples for the latter two are

similar across income, education, and race, but tend to differ across household composition.

In general, the ‘active’ sample tends to have a higher proportion with no children under 18

and tends towards older (50+) heads of household.
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Panel Years Household Income Full Sample Cigarette Sample Cigarette Sub-Sample

07-10

<$10,000 2.77 4.78 4.84
$10,000-$24,999 13.15 18.63 18.63
$25,000-$49,999 31.93 38.55 41.37
$50,000-$99,999 38.87 31.77 30.00
$100,000+ 13.27 6.27 5.16

08-11

<$10,000 2.72 4.57 3.78
$10,000-$24,999 12.75 19.35 18.67
$25,000-$49,999 31.15 37.41 39.98
$50,000-$99,999 39.12 31.76 31.27
$100,000+ 14.26 6.91 6.30

09-12

<$10,000 2.81 4.83 4.45
$10,000-$24,999 12.84 19.46 17.57
$25,000-$49,999 30.50 36.13 38.03
$50,000-$99,999 39.17 32.13 32.73
$100,000+ 14.68 7.45 7.22

10-13

<$10,000 2.97 5.24 4.51
$10,000-$24,999 13.15 20.15 18.76
$25,000-$49,999 30.62 35.76 35.99
$50,000-$99,999 39.00 31.63 33.85
$100,000+ 14.25 7.21 6.89

11-14

<$10,000 3.17 5.77 4.21
$10,000-$24,999 13.59 21.70 19.18
$25,000-$49,999 30.68 36.00 37.03
$50,000-$99,999 38.26 29.78 32.71
$100,000+ 14.30 6.74 6.87

12-15

<$10,000 3.21 5.75 4.31
$10,000-$24,999 13.40 21.48 19.28
$25,000-$49,999 30.65 36.52 37.49
$50,000-$99,999 38.06 29.40 32.22
$100,000+ 14.69 6.85 6.71

13-16

<$10,000 3.11 5.57 4.52
$10,000-$24,999 12.70 21.01 19.10
$25,000-$49,999 30.12 36.38 40.45
$50,000-$99,999 38.54 29.80 28.14
$100,000+ 15.53 7.23 7.79

14-17

<$10,000 2.93 5.36 3.86
$10,000-$24,999 12.05 20.92 20.00
$25,000-$49,999 29.41 36.17 36.97
$50,000-$99,999 39.00 29.51 31.59
$100,000+ 16.61 8.04 7.59

Table B.1: Sample proportions for reported income brackets.
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Panel Years Head of Household Race Full Sample Cigarette Sample Cigarette Sub-Sample

07-10

Asian 2.51 0.83 0.53
Black 9.11 8.26 10.42
Other 4.65 4.71 3.68
White 83.73 86.19 85.37

08-11

Asian 2.65 0.91 0.80
Black 9.32 8.74 10.54
Other 4.43 4.56 3.89
White 83.60 85.79 84.77

09-12

Asian 2.80 0.99 1.08
Black 9.47 9.19 12.15
Other 4.51 4.60 3.49
White 83.22 85.22 83.27

10-13

Asian 2.91 0.98 0.83
Black 9.85 9.77 11.52
Other 4.65 4.82 3.68
White 82.59 84.43 83.97

11-14

Asian 3.00 1.10 1.11
Black 10.15 9.91 11.09
Other 4.64 4.69 3.22
White 82.21 84.30 84.59

12-15

Asian 3.16 1.27 0.96
Black 10.56 10.39 10.90
Other 4.93 4.66 3.47
White 81.35 83.68 84.67

13-16

Asian 3.27 1.31 0.75
Black 10.63 9.97 11.43
Other 5.05 4.65 3.02
White 81.05 84.07 84.80

14-17

Asian 3.50 1.34 0.97
Black 10.58 9.68 11.31
Other 5.15 4.82 3.72
White 80.76 84.16 84.00

Table B.2: Sample proportions for reported race indicators.
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Panel Years Age of Children Full Sample Cigarette Sample Cigarette Sub-Sample

07-10

13-17 only 7.99 8.32 5.26
6-12 and 13-17 4.32 3.37 1.79
6-12 only 6.63 6.06 3.37
No Children under 18 70.86 75.15 86.11
Under 6 and 13-17 0.69 0.82 0.63
Under 6 and 6-12 3.75 2.16 1.05
Under 6 and 6-12 and 13-17 0.82 0.78 0.11
Under 6 only 4.94 3.35 1.68

08-11

13-17 only 7.79 7.95 5.15
6-12 and 13-17 4.14 3.09 1.60
6-12 only 6.40 5.77 3.21
No Children under 18 72.31 76.80 86.03
Under 6 and 13-17 0.62 0.68 0.57
Under 6 and 6-12 3.52 2.09 1.03
Under 6 and 6-12 and 13-17 0.78 0.71 0.23
Under 6 only 4.45 2.92 2.18

09-12

13-17 only 7.53 7.17 4.69
6-12 and 13-17 4.17 2.92 1.20
6-12 only 6.21 5.32 3.25
No Children under 18 72.87 78.96 87.73
Under 6 and 13-17 0.57 0.54 0.48
Under 6 and 6-12 3.62 1.88 1.08
Under 6 and 6-12 and 13-17 0.77 0.56 0.12
Under 6 only 4.26 2.65 1.44

10-13

13-17 only 7.42 6.95 4.63
6-12 and 13-17 4.13 2.83 1.43
6-12 only 6.33 5.20 3.80
No Children under 18 73.34 79.73 88.24
Under 6 and 13-17 0.57 0.51 0.36
Under 6 and 6-12 3.49 1.68 0.48
Under 6 and 6-12 and 13-17 0.75 0.53 0.00
Under 6 only 3.97 2.57 1.07

Table B.3: Sample proportions for reported presence and ages of children in the household.
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Panel Years Age of Children Full Sample Cigarette Sample Cigarette Sub-Sample

11-14

13-17 only 7.37 6.40 5.10
6-12 and 13-17 4.01 2.45 1.88
6-12 only 6.32 4.99 3.33
No Children under 18 73.44 81.01 88.14
Under 6 and 13-17 0.59 0.53 0.22
Under 6 and 6-12 3.56 1.71 0.11
Under 6 and 6-12 and 13-17 0.75 0.47 0.00
Under 6 only 3.97 2.45 1.22

12-15

13-17 only 7.37 6.60 4.91
6-12 and 13-17 4.02 2.49 1.20
6-12 only 6.44 5.25 2.63
No Children under 18 72.81 80.10 89.82
Under 6 and 13-17 0.60 0.58 0.12
Under 6 and 6-12 3.68 1.87 0.24
Under 6 and 6-12 and 13-17 0.82 0.50 0.24
Under 6 only 4.27 2.61 0.84

13-16

13-17 only 7.34 6.64 4.90
6-12 and 13-17 4.12 2.83 1.38
6-12 only 6.58 5.36 2.14
No Children under 18 71.57 79.53 89.95
Under 6 and 13-17 0.65 0.56 0.13
Under 6 and 6-12 4.05 1.92 0.75
Under 6 and 6-12 and 13-17 0.88 0.42 0.13
Under 6 only 4.82 2.74 0.63

14-17

13-17 only 7.40 6.85 3.45
6-12 and 13-17 4.24 3.16 2.07
6-12 only 6.64 5.23 2.62
No Children under 18 70.38 78.25 89.66
Under 6 and 13-17 0.68 0.69 0.41
Under 6 and 6-12 4.35 2.23 0.41
Under 6 and 6-12 and 13-17 0.95 0.50 0.00
Under 6 only 5.36 3.09 1.38

Table B.4: Sample proportions for reported presence and ages of children in the household.
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Panel Years Max Household Age Full Sample Cigarette Sample Cigarette Sub-Sample

07-10

Under 25 0.29 0.17 0.00
25-34 7.28 4.47 0.63
35-49 32.59 33.10 24.21
50-64 40.20 49.01 58.00
65+ 19.64 13.26 17.16

08-11

Under 25 0.23 0.13 0.00
25-34 6.56 3.84 0.69
35-49 30.60 30.18 20.96
50-64 41.70 51.33 59.68
65+ 20.91 14.51 18.67

09-12

Under 25 0.27 0.15 0.24
25-34 6.63 3.78 0.72
35-49 29.46 28.08 19.01
50-64 41.96 52.47 59.69
65+ 21.67 15.54 20.34

10-13

Under 25 0.30 0.10 0.12
25-34 6.55 3.27 0.48
35-49 28.26 25.80 16.63
50-64 42.67 54.59 61.28
65+ 22.23 16.24 21.50

11-14

Under 25 0.36 0.11 0.00
25-34 6.94 3.50 0.67
35-49 27.51 23.99 15.74
50-64 42.64 54.60 58.98
65+ 22.55 17.80 24.61

12-15

Under 25 0.44 0.13 0.12
25-34 7.77 3.94 0.60
35-49 27.24 23.19 14.13
50-64 41.51 53.66 58.08
65+ 23.04 19.08 27.07

13-16

Under 25 0.52 0.23 0.13
25-34 9.10 4.70 0.50
35-49 27.61 22.83 12.31
50-64 39.75 52.21 59.05
65+ 23.02 20.03 28.02

14-17

Under 25 0.58 0.28 0.00
25-34 10.04 5.12 0.41
35-49 28.13 23.32 10.48
50-64 38.40 50.84 59.31
65+ 22.85 20.45 29.79

Table B.5: Sample proportions for reported ages pertaining to the head of household.

106



Panel Years Max Education Attained Full Sample Cigarette Sample Cigarette Sub-Sample

07-10

Grade School 0.16 0.17 0.11
Graduated College 34.56 25.60 23.68
Graduated High School 17.08 25.30 27.79
Post College Grad 16.18 5.57 6.74
Some College 30.84 41.01 39.05
Some High School 1.18 2.35 2.63

08-11

Grade School 0.18 0.21 0.23
Graduated College 35.12 26.13 26.69
Graduated High School 16.66 24.75 24.40
Post College Grad 16.62 5.93 7.10
Some College 30.34 40.64 39.40
Some High School 1.09 2.35 2.18

09-12

Grade School 0.16 0.17 0.00
Graduated College 35.68 26.91 27.32
Graduated High School 16.45 23.70 23.71
Post College Grad 16.77 6.15 7.34
Some College 29.86 40.72 39.23
Some High School 1.07 2.35 2.41

10-13

Grade School 0.16 0.20 0.00
Graduated College 36.16 26.81 29.45
Graduated High School 16.22 23.98 23.28
Post College Grad 16.73 6.16 6.53
Some College 29.68 40.61 38.84
Some High School 1.05 2.23 1.90

11-14

Grade School 0.17 0.24 0.00
Graduated College 36.23 26.86 27.05
Graduated High School 16.00 23.91 22.73
Post College Grad 16.85 6.10 7.10
Some College 29.71 40.44 40.69
Some High School 1.04 2.45 2.44

Table B.6: Sample proportions for reported maximum education obtained in a household.
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Panel Years Max Education Attained Full Sample Cigarette Sample Cigarette Sub-Sample

12-15

Grade School 0.16 0.18 0.00
Graduated College 36.54 26.56 27.66
Graduated High School 15.60 23.82 24.55
Post College Grad 16.92 5.88 6.71
Some College 29.69 40.98 38.08
Some High School 1.09 2.57 2.99

13-16

Grade School 0.17 0.24 0.25
Graduated College 37.31 27.48 27.01
Graduated High School 15.07 23.41 23.62
Post College Grad 17.52 6.18 6.53
Some College 28.95 40.44 40.45
Some High School 0.98 2.25 2.14

14-17

Grade School 0.13 0.20 0.14
Graduated College 36.01 25.94 24.00
Graduated High School 16.25 25.92 28.41
Post College Grad 18.24 6.29 6.62
Some College 28.39 39.37 38.62
Some High School 0.97 2.27 2.21

Table B.7: Sample proportions for reported maximum education obtained in a household.

B.2 Income and Total Expenditure

This section discusses the mapping between total expenditure yit =
∑

j pijtqijt and income.

This is a useful digression as one may want to know how elasticities vary across income

levels. However, the results from section 2.7 apply only to total expenditure. To tease out

how these are related I examine a regression of total expenditure on the reported income

brackets in the consumer panel, i.e.:

yit = α + γt + z′iβ + εit (B.1)

where zi is the binary vector indicating whether household i belongs to each income bracket.

The income brackets are the same as in table B.1 with the exclusion of the lowest bracket

(< $10, 000) which is left out and absorbed into α. I include time effects to capture seasonal

or other unobserved shocks. The results are summarized in table B.8.
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Coefficients 07-10 08-11 09-12 10-13 11-14 12-15 13-16 14-17

α̂ 8.0380 8.0681 8.1463 8.1585 8.2177 8.2975 8.2772 8.3579
(0.0343) (0.0349) (0.0362) (0.0374) (0.0377) (0.0394) (0.0402) (0.0414)

$10, 000− $24, 999 0.2319 0.2052 0.1866 0.1849 0.1480 0.1194 0.1052 0.0585
(0.0356) (0.0362) (0.0372) (0.0385) (0.0389) (0.0405) (0.0416) (0.0429)

$25, 000− $49, 999 0.5372 0.4948 0.4574 0.4526 0.4225 0.4038 0.4041 0.3631
(0.0349) (0.0355) (0.0367) (0.0379) (0.0384) (0.0399) (0.0408) (0.0420)

$50, 000− $99, 999 0.7566 0.7064 0.6588 0.6416 0.6161 0.5992 0.5992 0.5541
(0.0350) (0.0355) (0.0367) (0.0379) (0.0384) (0.0399) (0.0410) (0.0422)

$100, 000+ 0.8610 0.8036 0.7572 0.7092 0.6585 0.6398 0.6428 0.6132
(0.0395) (0.0401) (0.0413) (0.0428) (0.0434) (0.0447) (0.0456) (0.0469)

Table B.8: Regression output from B.1. Standard errors in parentheses.

Total expenditure does monotonically increase with income brackets and these brackets are

typically informative. Most of the indicators are significant at the 5% level except for the

lower income bracket $10, 000 − $24, 999 in the final two panel blocks. If one takes these

results seriously it would then be possible to estimate elasticities conditional on income

bracket using the same approach as in table 2.9, but with cutoffs determined by table B.8.

B.3 Missing Quantities

As discussed in section 2.7.1, I assume that missing purchases of cigarettes for any given

month are missing at random (MAR). While this assumption is untestable in general, one

can attempt to falsify it by examining the conditional distributions of the missing outcomes

as well as the outcomes themselves. In the former case the unconditional distribution is

summarized in table B.9. I report the frequency of missing cigarette purchases in each

sub-panel for the ‘active’ cigarette user sample. Across all panels most households miss

reporting one or fewer months, but still a non-negligible (slightly less than ten percent)

amount have greater than four missing months. I check for potential correlation between

missing values and past purchases to determine if the source of missingness is related to

stockpiling. One might imagine a situation where a household buys many cigarettes every

other month. However, these kinds of patterns are not supported by the data as can be
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seen in B.10. A large majority of the patterns are unique. There are no consistent recurring

patterns observed in the data in any of the panel blocks.

Another approach to check for stockpiling is to estimate the probability of observing a

missing observation Pr(qit = 0) as a function of past quantities in levels or logs. Under

stockpiling behavior, one would expect a positive coefficient on last period’s quantities.

To allow households specific fixed effects, I use additional lags as instruments for lagged

quantities. The model is run as a linear probability model where the second and first stages

are respectively:

Pr(qit = 0) = αi + ρqi,t−1 + εit (B.2)

qi,t−1 = γi + δqi,t−1−m + ηit (B.3)

for some m ∈ {2, 3, . . . , T − 2}. It is possible to utilize additional moment conditions to

identify this model as in Arellano and Bond (1991) However, I focus on the case with only

one instrument and set m equal to four as this is consistent with the lag choices used in the

main specification.

It is clear from table B.11 that lagged quantities do have significant correlation with the

missing values, but in the opposite direction that would be explained by stockpiling. This

effect remains when including contemporaneous expenditure, which is insignificant when

controlling for household fixed effects and using the instruments as shown in tables B.12 and

Missing periods 07-10 08-11 09-12 10-13 11-14 12-15 13-16 14-17

0 0.4200 0.4307 0.4308 0.4477 0.4401 0.4539 0.4749 0.4869
1 0.2442 0.2440 0.2298 0.2257 0.2361 0.2275 0.2098 0.2193
2 0.1305 0.1203 0.1288 0.1306 0.1308 0.1114 0.1193 0.1172
3 0.0800 0.0710 0.0782 0.0689 0.0698 0.0790 0.0678 0.0579
4 0.0474 0.0527 0.0542 0.0499 0.0299 0.0551 0.0528 0.0414
>4 0.0779 0.0813 0.0782 0.0772 0.0931 0.0731 0.0754 0.0772

Table B.9: Number of missing time periods for each household as a percentage of the total.
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num. households 07-10 08-11 09-12 10-13 11-14 12-15 13-16 14-17

1 307 272 276 266 272 267 256 213
2 13 17 14 17 14 10 11 9
3 8 11 9 9 9 5 9 15
4 8 3 9 8 10 13 8 5
5 5 6 6 7 9 9 3 7
6 5 6 5 1 7 3 3 4
7 7 6 2 3 3 2 3 0
8 2 1 1 3 0 2 1 1
9 1 0 0 0 1 1 1 1
10 2 0 0 2 1 0 1 0
11 0 0 0 0 1 0 0 0
12 0 0 2 0 0 0 0 0
13 1 0 0 0 0 0 0 0
14 0 1 0 0 0 0 0 0
16 0 1 0 0 0 0 0 0
total 359 324 324 316 327 312 296 255

Table B.10: The number of households belonging to a distinct pattern of missingness.

B.13. It may be the case that it becomes ‘worth it’ in some sense to report when quantities

are larger. However, the effect is small, and more investigation is needed to tease out the

exact mechanism.

The fixed effects absorb all the household specific characteristics in the previous regressions.

However, it may be useful to determine if any of these observed attributes play a role in the

missing purchases. I check this using another linear probability model:

Pr(qit = 0) = α + x′iβ + γt + εit (B.4)

where xi are household specific characteristics and γt are time fixed effects. Table B.14

reports the joint significance tests for each demographic variable with p-values in parentheses.

None of the demographic variables is jointly significant in all panel blocks, but all are signif-

icant in at least one block at the 5% level. I would argue that these tests are inconclusive in

the direction for or against MAR. It suggests there is some non-stochastic behavior in the
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Panel Block OLS IV OLS IV

07-10

ρ̂ -0.0195 -0.0166 -0.0241 -0.0253
(0.0009) (0.0013) (0.0014) (0.0068)

Hausman Test 10.3338 0.0363
(0.0013) (0.8490)

08-11

ρ̂ -0.0168 -0.0157 -0.0218 -0.0345
(0.0009) (0.0013) (0.0015) (0.0064)

Hausman Test 1.4257 4.1612
(0.2325) (0.0414)

09-12

ρ̂ -0.0167 -0.0156 -0.0207 -0.0362
(0.0009) (0.0013) (0.0015) (0.0073)

Hausman Test 1.4502 4.7092
(0.2285) (0.0300)

10-13

ρ̂ -0.0124 -0.0113 -0.0154 -0.0183
(0.0009) (0.0013) (0.0015) (0.0077)

Hausman Test 1.8820 0.1535
(0.1701) (0.6952)

11-14

ρ̂ -0.0151 -0.0134 -0.0166 -0.0221
(0.0009) (0.0012) (0.0015) (0.0069)

Hausman Test 4.5848 0.6650
0.0323 0.4148

12-15

ρ̂ -0.0135 -0.0128 -0.0142 -0.0272
(0.0009) (0.0012) (0.0015) (0.0069)

Hausman Test 0.7754 3.7060
0.3785 0.0542

13-16

ρ̂ -0.0122 -0.0099 -0.0152 -0.0159
(0.0010) (0.0013) (0.0016) (0.0070)

Hausman Test 7.5257 0.0097
0.0061 0.9215

14-17

ρ̂ -0.0141 -0.0146 -0.0147 -0.0296
(0.0009) (0.0013) (0.0016) (0.0070)

Hausman Test 0.2581 4.8667
0.6114 0.0274

Fixed Effects False True

Table B.11: Results from estimating equation B.2. Pooled OLS and fixed effects models are
reported with and without IV along with corresponding Hausman tests. Standard errors in
parentheses for coefficient estimates and p-values for Hausman tests.

patterns of missingness, but the exact mechanism remains unclear.
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Panel Block OLS IV OLS IV

07-10

ρ̂ -0.0162 -0.0181 -0.0189 -0.0375
(0.0008) (0.0013) (0.0013) (0.0080)

β̂exp -0.0101 0.0004 -0.0286 0.0173
(0.0007) (0.0010) (0.0012) (0.0135)

Hausman Test 209.6263 13.0831
(0.0000) (0.0014)

08-11

ρ̂ -0.0137 -0.0156 -0.0169 -0.0387
(0.0009) (0.0012) (0.0013) (0.0073)

β̂exp -0.0086 0.0022 -0.0270 0.0306
(0.0007) (0.0010) (0.0012) (0.0126)

Hausman Test 243.0150 24.0499
(0.0000) (0.0000)

09-12

ρ̂ -0.0134 -0.0158 -0.0148 -0.0320
(0.0009) (0.0013) (0.0014) (0.0087)

β̂exp -0.0070 0.0029 -0.0242 0.0193
(0.0007) (0.0010) (0.0012) (0.0112)

Hausman Test 191.7854 15.5963
(0.0000) (0.0004)

10-13

ρ̂ -0.0096 -0.0130 -0.0098 -0.0326
(0.0008) (0.0012) (0.0014) (0.0101)

β̂exp -0.0073 0.0042 -0.0281 0.0197
(0.0007) (0.0010) (0.0012) (0.0101)

Hausman Test 287.8669 22.7686
(0.0000) (0.0000)

Fixed Effects False True

Table B.12: Results from estimating equation B.2 adding the additional control total expen-
diture. Pooled OLS and fixed effects models are reported with and without IV along with
corresponding Hausman tests. Standard errors in parentheses for coefficient estimates and
p-values for Hausman tests.
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Panel Block OLS IV OLS IV

11-14

ρ̂ -0.0125 -0.0171 -0.0123 -0.0539
(0.0008) (0.0012) (0.0014) (0.0094)

β̂exp -0.0076 0.0045 -0.0287 0.0468
(0.0007) (0.0010) (0.0012) (0.0125)

Hausman Test 319.2842 40.0402
(0.0000) (0.0000)

12-15

ρ̂ -0.0113 -0.0131 -0.0102 -0.0149
(0.0009) (0.0012) (0.0014) (0.0089)

β̂exp -0.0073 0.0026 -0.0265 0.0218
(0.0007) (0.0010) (0.0013) (0.0122)

Hausman Test 211.4071 18.1614
(0.0000) (0.0001)

13-16

ρ̂ -0.0103 -0.0125 -0.0113 -0.0174
(0.0009) (0.0013) (0.0015) (0.0085)

β̂exp -0.0069 0.0040 -0.0272 0.0164
(0.0008) (0.0011) (0.0012) (0.0110)

Hausman Test 219.1828 17.0904
(0.0000) (0.0002)

14-17

ρ̂ -0.0114 -0.0141 -0.0112 -0.0159
(0.0009) (0.0013) (0.0015) (0.0083)

β̂exp -0.0078 0.0022 -0.0266 0.0092
(0.0008) (0.0011) (0.0013) (0.0115)

Hausman Test 165.0210 10.6476
(0.0000) (0.0049)

Fixed Effects False True

Table B.13: Results from estimating equation B.2 adding the additional control total expen-
diture. Pooled OLS and fixed effects models are reported with and without IV along with
corresponding Hausman tests. Standard errors in parentheses for coefficient estimates and
p-values for Hausman tests.
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Panel Years 07-10 08-11 09-12 10-13 11-14 12-15 13-16 14-17

Head of HH 1.2817 0.6077 0.8856 1.2201 10.6716 6.9937 3.5671 3.2077
Race (0.7335) (0.8947) (0.8289) (0.7482) (0.0136) (0.0721) (0.3122) (0.3607)
HH Income 23.0539 37.8186 44.9954 13.6896 16.4379 17.4067 17.8177 16.5554

(0.1885) (0.0041) (0.0004) (0.5492) (0.3536) (0.2951) (0.2724) (0.3461)
HH Composition 10.1446 9.5890 12.3486 11.5413 7.9888 8.6485 9.7176 5.3914

(0.1187) (0.1431) (0.0546) (0.0730) (0.2389) (0.1943) (0.1371) (0.4947)
Age of Children 23.0661 7.0022 9.9737 8.3762 24.9862 14.2617 5.6444 18.9357

(0.0017) (0.4287) (0.1258) (0.2118) (0.0003) (0.0268) (0.5818) (0.0043)
Male Head 9.1844 23.0395 5.1902 30.4200 6.3522 8.0613 9.0735 11.2868
HH Age (0.2397) (0.0017) (0.5197) (0.0001) (0.3849) (0.1529) (0.1695) (0.1266)
Female Head 20.9249 25.0065 21.0374 21.7656 12.5053 4.9862 10.0039 11.2077
HH Age (0.0073) (0.0016) (0.0070) (0.0097) (0.1300) (0.7591) (0.1884) (0.1902)
Male Head 9.0480 19.4187 5.9902 2.6564 7.2260 8.2144 18.5083 5.6416
HH Education (0.1072) (0.0016) (0.3072) (0.7528) (0.2044) (0.1448) (0.0024) (0.3427)
Female Head 2.9533 3.6780 1.1681 2.6606 1.8271 4.7591 9.0413 23.2008
HH Education (0.7072) (0.5966) (0.9479) (0.7521) (0.8725) (0.4460) (0.0601) (0.0003)

Table B.14: Joint tests of significance for household demographics on missing indicators from
the model in B.4. p-values in parentheses.
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B.4 Control Function: First Stage

In this section I report the first stage results for the control functions discussed in section

2.7.3. The first stage for total expenditure and prices are respectively:

yit = αi + ρyi,t−4 +X ′itβ + εit (B.5)

pit = γi + ρpi,t−4 + Z ′itδ + νit (B.6)

While the weak instrument literature is quite extensive in the single endogenous variable

case, it is somewhat sparse when there are multiple endogenous regressors. I utilize the test

developed in Sanderson and Windmeijer (2016) which is a rigorous adjustment to a test

proposed in Angrist and Pischke (2008). Table B.15 reports the results. All test statistics

are well above the relevant critical values found in Stock and Yogo (2002).

Panel Years 07-10 08-11 09-12 10-13 11-14 12-15 13-16 14-17

Expenditure 62.6548 43.4053 56.3685 51.2558 46.7733 59.4386 67.6067 53.5080
Prices 1069.00 899.479 359.319 48.6041 23.4240 52.0349 50.4284 97.7365

Table B.15: First stage conditional F statistics as a test for instrument relevance.
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Appendix C

This appendix focuses on a modification of the autoencoder in chapter 3 and its application

to nonlinear factor models. The motivation for the sliced autoencoder is to simplify the

structure of the autoencoder while leveraging new results in approximately sparse models to

automatically learn nonlinear factor representations. In chapter 3 I demonstrated the power

of autoencoders as tools for dimensionality reduction. However, these models are difficult to

work with from a theoretical perspective, outside of the single linear layer, which spans the

same space as principle components analysis (PCA) Baldi and Hornik (1989). In addition,

one is typically forced to utilize a sophisticated procedure, the restricted boltzmann machine

(RBM), to initialize the parameters as shown in the previous chapter. In contrast, the sliced

autoencoder combines ideas from the panel neural network, found in the second chapter,

with autoencoders to generate a common factor structure that has cross-sectional specific

slopes.

This approach simplifies the structure of the autoencoder by removing most of the recon-

struction, which is forced to be a linear function. However, the approximation power of the

estimator is maintained through the embedding. The embedding is itself extended from the

previous chapter by allowing for a panel structure.
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C.1 Model

I consider n iid realizations from the random vector {yit}Tt=1. Each cross-sectional unit is

sampled from:

yi = g0(Ft)γi + ei, E[ei|xi] = 0, E[e2
i |xi] = σ2(xi) (C.1)

where Ft, γi, and g0(·) are unobserved.

AC.1.1 For each t ∈ {1, 2, . . . , T}, the random vectors {zit}ni=1 = {yit, x′it}
n
i=1 are independent.

In addition, yit ∈ Y ⊂ R and xit ∈ X ⊂ Rp where X and Y are compactly supported.

AC.1.2 For each i ∈ {1, 2, . . . , n} the vectors {zit}Tt=1 are stationary φ-mixing sequences with

φ(k) = φ0ζ
k, ζ ∈ (0, 1), and k > 0 where:

φ(k) ≡ sup
t∈N

sup
Pr(G)>0,G∈{z}t−∞,H∈{z}

∞
t+k

|Pr(H|G)− Pr(H)| (C.2)

AC.1.3 The unknown index g0 ∈ Wq
2(X ) where W is a Sobelev space with q weak derivatives

and has a Fourier representation:

g0(xit) =

∫
exp(iδ′xit)dσg(δ)

where σg is a complex measure on Rp satisfying:

∫
max {|δ|, 1}q+1 d |σg| (δ) <∞
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AC.1.4 Let m = nT . The parameters of the sieve space Gm satisfy the following bounds:

||δ||1 ≤ ∆m,

dm∑
j=1

||δj||1 ≤ dm∆m

where ∆m, dm →∞ slowly with m

Here I utilize the same assumptions from A2.3.3 which largely follow from White (1990)

and Chen and White (1999).

C.2 Estimation

I consider a penalized sieve least squares framework where the objective function is:

Qn(yit, δ, γ;λ) =
n∑
i=1

T∑
t=1

`it +
K∑
j=1

λj|ψ−1
j δj|1 (C.3)

`it =

(
yit −

K∑
j=1

s(y′(−i),tδj)γij

)2

(C.4)

There are two key elements to consider in this estimation framework. The first is the presence

of y(−i),t as regressors. These are the contemporaneous outcomes for each cross-sectional unit

other than i. The inclusion of these as regressors is justified by the independence assumption

AC.1.1 along with the existence of the common component g0(Ft).

The construction here differs from the autoencoder found in the previous by excluding the

yi as a regressor and restricting the reconstruction to be a linear function. The second key

element are the penalty terms λj and ψ−1
j . Each element λj governs the magnitude of |δj|1

while ψ−1
j rescales the individual components.
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Figure C.1: The sliced autoencoder depicted for i = 1. The diagonal lines represent potential
connections in the network which are fixed across i ∈ [1, 2, . . . , n]. The solid lines are specific
to i and represent γ.

C.2.1 Penalty Choice

One of the primary difficulties with deep learning and neural network estimation is the

inclusion of hyperparameters. These models are difficult to optimize without additional

complications, typically utilizing only first order methods and requiring many iterations.

If one adds grid searches for hyperparameters the cost of estimation becomes prohibitively

large. To alleviate the computational burden of such searches I consider a ‘rigorous’ result

for the choice of λj and ψj based on ideas from Bickel, Ritov, Tsybakov, et al. (2009) and

Belloni, Chernozhukov, and Wang (2011). The idea is to choose the penalty λj to be larger

than the noise in estimation:

λj/n ≥ cmax
k

1

n

n∑
i=1

sn(δj) (C.5)

for some c > 1 where sn(δj) is the score function with respect to the index parameters δj.

This result has an intuitive interpretation in the pure noise setting, i.e., yit = eit. In this

case λ must be large enough to drive all the coefficients to zero. Interestingly in a pure noise
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setting, the score function for the neural network parameters δ, sn(δj) is:

lim
δj→0

sn(δj) = γijx
′
i (eit + rit) (C.6)

where rit is the approximation error of the estimator. This score is almost identical to the

score one would work with in the Lasso model. The reason for this simplification is that

the derivative of the activation function we choose s(·) with respect to the parameters δ

approaches 1 as δj → 0. The primary complication here then is the presence of γij and the

approximation error rit.

Automatic Penalty Choice

1: Set the desired tolerance (tol) for convergence.

2: Let θ
(k)
j = (δ

(k)
j , γ

(k)
ij ) be the estimates at iteration k for each j ∈ {1, 2, . . . ,K}.

3: while ε > tol do
4: Given current values of δ

(k)
j estimate the score s

(k)
itj and scale parameters ψ

(k)
itj

5: Set λj = 1.05 max
{

1
nT

∑
i,t s

(k)
it,j/ψ

(k)
it,j

}
6: Given an update rule m(·) the new value is: θ(k+1) = θ(k) +m(∆

(k)
` )

7: Threshold the new values of δj(k) using: δj = δ
(k+1)
j 1

{
|δ(k+1)
j |ψj > λj

}
8: end while

C.3 Monte Carlo

In this section I use a simulation setting that is consistent with much of the literature

including Bai and Ng (2002), Onatski (2010), Ahn and Horenstein (2013) and Onatski (2015).

I deviate by adding an additional nonlinear component to the model and add sparsity to the

factor loadings λi. The data follows the following process:

yit = Cit +
√
θeit (C.7)
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where Cit is independent from the stochastic error eit and θ governs the inverse signal-to-noise

ratio.

Cit = g(Ft1) +
r∑
j=1

λijFtj/
√
r (C.8)

g(xi) = sin(3πFt1/2)(1 + 18x2[sgn(Ft1) + 1])−1 (C.9)

eit = ρei,t−1 + νit +
J∑

j 6=0,j=−J

βνi−j,t (C.10)

The common component is given a factor structure while the error term eit is autoregressive

of order one. In addition one can allow for cross-sectional correlation through the coefficient

β and J , which determines the breadth of the correlation. Following Onatski (2015) let

νit
iid∼ (0, σ2

ν) where σ2
ν = (1− ρ2)/(1 + 2Jβ2) for J = min {n/20, 10}.

C.3.1 Model A

In the first simulation I set β = 0 and ρ = 0.5. In this case all values of y−i are valid

regressors to identify g0(Ft). The true number of factors r = 3 and the distribution of eit, νit

are normal.
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PCA Sliced Autoencoder

n r RMSE abs. Bias rel. Bias ise k RMSE abs. Bias rel. Bias ISE

100

3 0.4766 0.1216 0.0027 0.2651 10 0.3587 0.0613 0.0067 0.3176
4 0.2950 0.0157 0.0007 0.2860 11 0.3589 0.0618 0.0065 0.3194
5 0.3508 0.0187 0.0008 0.3451 12 0.3578 0.0625 0.0074 0.3202
6 0.3955 0.0207 0.0009 0.3910 13 0.3579 0.0621 0.0072 0.3212
7 0.4335 0.0222 0.0011 0.4296 14 0.3575 0.0624 0.0057 0.3217
8 0.4666 0.0237 0.0010 0.4632 15 0.3588 0.0637 0.0068 0.3229

150

3 0.4725 0.1379 0.0030 0.2492 10 0.3346 0.0560 0.0030 0.2947
4 0.2695 0.0151 0.0004 0.2617 11 0.3311 0.0551 0.0030 0.2945
5 0.3216 0.0176 0.0005 0.3164 12 0.3293 0.0553 0.0027 0.2941
6 0.3635 0.0194 0.0005 0.3594 13 0.3295 0.0551 0.0030 0.2959
7 0.3992 0.0210 0.0005 0.3956 14 0.3293 0.0547 0.0028 0.2975
8 0.4305 0.0227 0.0006 0.4273 15 0.3292 0.0552 0.0029 0.2979

Table C.1: PCA vs Sliced autoencoder for t = 200.

C.3.2 Model B

In the second simulation I set β = 0.2 and ρ = 0.5. In this case values many values of y−i are

endogenous and would ideally be removed from the valid instrument set. This is a violation

of A1.3.1 and is useful to determine how much this matters in practice.

n r RMSE abs. Bias rel. Bias ise k RMSE abs. Bias rel. Bias ISE

100

3 0.5321 0.1218 0.0048 0.3550 10 0.4536 0.0598 0.0037 0.4276
4 0.3877 0.0368 0.0017 0.3784 11 0.4584 0.0577 0.0037 0.4349
5 0.4760 0.0373 0.0014 0.4696 12 0.4700 0.0569 0.0033 0.4492
6 0.5408 0.0371 0.0015 0.5352 13 0.4778 0.0550 0.0036 0.4591
7 0.5923 0.0373 0.0015 0.5873 14 0.4896 0.0543 0.0031 0.4726
8 0.6347 0.0365 0.0015 0.6301 15 0.5006 0.0531 0.0032 0.4858

150

3 0.5452 0.1393 0.0032 0.3697 10 0.4609 0.0527 0.0018 0.4395
4 0.3928 0.0387 0.0009 0.3840 11 0.4652 0.0521 0.0021 0.4454
5 0.4856 0.0379 0.0011 0.4794 12 0.4717 0.0515 0.0019 0.4535
6 0.5527 0.0377 0.0010 0.5473 13 0.4800 0.0497 0.0019 0.4636
7 0.6059 0.0364 0.0010 0.6010 14 0.4891 0.0494 0.0016 0.4741
8 0.6496 0.0357 0.0010 0.6450 15 0.5023 0.0487 0.0020 0.4890

Table C.2: PCA vs Sliced autoencoder for t = 200.
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C.4 Conclusion

The sliced autoencoder has great potential as an extension to linear factor models. In

simulations it is shown that the performance, measured in RMSE, is largely invariant to

k and outperforms PCA across most specifications. However, the PCA estimator is not

uniformly dominated in either simulation design as r = 4 is the best performing model. The

optimal selection informed by the score criterion and continuous updating is also shown to

be incredibly effective for practical implementation of this algorithm.
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