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Blood Transcriptional Biomarkers for Active Tuberculosis among
Patients in the United States: a Case-Control Study with Systematic
Cross-Classifier Evaluation
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Amy M. Quinones,g Vanessa Rosselli,c Elizabeth Canono,h Christina Yoon,d Adithya Cattamanchi,d J. Lucian Davis,d* Tzu Phang,b

Robert S. Stearman,b* Gargi Datta,i Benjamin J. Garcia,i Charles L. Daley,j Michael Strong,i Katerina Kechris,c Tasha E. Fingerlin,c*
Randall Reves,c,f Mark W. Geracib*

Pulmonary Section, Veterans Administration Medical Center, Denver, Colorado, USAa; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado
Denver, Aurora, Colorado, USAb; Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, USAc; Division of Pulmonary and Critical Care
Medicine, University of California, San Francisco, California, USAd; Department of Medicine, Veterans Administration Medical Center, San Antonio, Texas, USAe; Denver
Metro Tuberculosis Control Program, Denver, Colorado, USAf; Denver Health Medical Center, Denver, Colorado, USAg; Clinical Translational Research Center, National
Jewish Health, Colorado, USAh; Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USAi; Division of Mycobacterial and Respiratory
Infections, National Jewish Health, Denver, Colorado, USAj

Blood transcriptional signatures are promising for tuberculosis (TB) diagnosis but have not been evaluated among U.S. patients.
To be used clinically, transcriptional classifiers need reproducible accuracy in diverse populations that vary in genetic composi-
tion, disease spectrum and severity, and comorbidities. In a prospective case-control study, we identified novel transcriptional
classifiers for active TB among U.S. patients and systematically compared their accuracy to classifiers from published studies.
Blood samples from HIV-uninfected U.S. adults with active TB, pneumonia, or latent TB infection underwent whole-transcrip-
tome microarray. We used support vector machines to classify disease state based on transcriptional patterns. We externally val-
idated our classifiers using data from sub-Saharan African cohorts and evaluated previously published transcriptional classifiers
in our population. Our classifier distinguishing active TB from pneumonia had an area under the concentration-time curve
(AUC) of 96.5% (95.4% to 97.6%) among U.S. patients, but the AUC was lower (90.6% [89.6% to 91.7%]) in HIV-uninfected Sub-
Saharan Africans. Previously published comparable classifiers had AUC values of 90.0% (87.7% to 92.3%) and 82.9% (80.8% to
85.1%) when tested in U.S. patients. Our classifier distinguishing active TB from latent TB had AUC values of 95.9% (95.2% to
96.6%) among U.S. patients and 95.3% (94.7% to 96.0%) among Sub-Saharan Africans. Previously published comparable classi-
fiers had AUC values of 98.0% (97.4% to 98.7%) and 94.8% (92.9% to 96.8%) when tested in U.S. patients. Blood transcriptional
classifiers accurately detected active TB among U.S. adults. The accuracy of classifiers for active TB versus that of other diseases
decreased when tested in new populations with different disease controls, suggesting additional studies are required to enhance
generalizability. Classifiers that distinguish active TB from latent TB are accurate and generalizable across populations and can
be explored as screening assays.

Early and accurate diagnosis of tuberculosis (TB) is critical for
control of the global TB epidemic. However, the sensitivity of

existing tests is inadequate (1). Most existing tests for active pul-
monary TB are based on the detection of Mycobacterium tubercu-
losis in sputum. However, the bacterium is not always detectable
in sputum, and sputum is not always obtainable. Since blood can
be obtained from nearly all patients undergoing evaluation for
pulmonary and/or extrapulmonary TB, a diagnostic test based on
human markers in blood would be optimal (1).

Human immune responses to M. tuberculosis may lead to tran-
scriptional patterns in blood that are not present in other condi-
tions (2–4). Selected sets of mRNA transcripts have been used in
prediction models to classify patient samples as having active TB
or not (5–11). In early phase studies (12), blood transcriptional
classifiers have shown promise for active TB diagnosis (3, 10, 11,
13, 14) and for monitoring treatment response (15).

However, to move from proof of concept to an assay that is
useful for TB control, important practical questions must be con-
fronted. First, heterogeneity in diagnostic performance between
populations is a well-known barrier to the development of diag-
nostic tests (16). Many genetic, environmental, and technical fac-
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tors affect transcriptional biomarkers (3, 17). Would a transcrip-
tional classifier developed among sub-Saharan Africans (11) be
similarly accurate among ethnically diverse U.S. patients? Existing
blood transcriptional classifiers for active TB vary in the tran-
scripts included, the populations from which they were derived,
and the prediction models used to derive them (5–11). To develop
assays that can be implemented widely to improve TB control, it is
critical to ascertain whether there is a universal, generalizable
transcriptional pattern characteristic of active TB (3).

A second important practical question concerns the clinical
usefulness of different types of blood transcriptional classifiers
for active TB. Three distinct classifier types have been based on
different reference groups. The first type compared active TB
patients with systemically ill patients with other diseases (OD)
that may mimic active TB (7, 11). The second type compared
symptomatic TB patients with healthy subjects with latent TB
infection (LTBI) (7, 11). The third type compared active TB
patients with combined groups of systemically ill patients and
healthy persons (including individuals with LTBI) (5, 8, 11).
To develop transcriptional classifiers as a patient care and pub-
lic health tool, it is critical to evaluate the limitations and po-
tential clinical applications of each of these three classifier
types.

We sought to develop a minimally invasive blood test to accu-
rately diagnose active TB in racially and ethnically diverse popu-
lations. Therefore, we conducted a case-control study of blood
microarray data among U.S. adults with and without active TB
and compared the transcriptional classifiers we identified with
previously published classifiers. We identified and tested three
novel transcriptional classifiers that distinguish active TB from
pneumonia (type 1), LTBI (type 2), and a combined group of
LTBI or pneumonia (type 3). Additionally, to assess generalizabil-
ity, we validated our transcriptional classifiers in an externally
derived cohort of sub-Saharan Africans and systematically evalu-
ated the accuracy of previously published transcriptional classifi-
ers when tested in our U.S. patients. Finally, we assessed the lim-
itations and potential clinical applications of the three classifier
types.

MATERIALS AND METHODS
Study design. The expression in pneumonia and tuberculosis (ePAT)
study was a prospective case-control study of HIV-uninfected adults with
and without pulmonary TB in Colorado (Denver Health Medical Center)
and in TB control programs in Texas (see the supplemental material).
Three groups were enrolled. Adults with active TB were positive by spu-
tum acid-fast bacillus (AFB) smear and M. tuberculosis culture. Adults
with community-acquired pneumonia had cough or dyspnea, fever or
leukocytosis, an infiltrate on chest radiograph, and a negative Quanti-
FERON-TB Gold In-Tube (Cellestis) (QFT) result. Adults with LTBI had
a positive QFT result and no cough, fever, weight loss, or radiographic
evidence of active TB. All patients were enrolled as outpatients; some were
subsequently hospitalized. The Colorado Multiple Institutions Review
Board and the University of Texas Health Sciences Center, San Antonio
Institutional Review Board approved this project. All subjects provided
written informed consent.

Laboratory analysis and data preprocessing. Blood was drawn in
PAXgene Blood RNA tubes (Qiagen). RNA was extracted using the PAX-
gene Blood RNA kit (Qiagen). Specimens with an RNA integrity number
of �7 via Bioanalyzer (Agilent) were considered acceptable. We selected
109 of 136 acceptable samples for microarray at random with stratifica-
tion to achieve an approximate 1:1:1 ratio between groups. RNA was
hybridized to an Affymetrix GeneChip Human Gene 1.1 ST array. After

quality inspection, expression data were normalized via Robust Multichip
Average (10) and were log-transformed and adjusted for batch effect (11).
Differential expression between groups was estimated using the R limma
package (version 3.20.1) with a Benjamini-Hochberg correction for mul-
tiple comparisons. Transcripts with an adjusted P value of �0.01 and an
absolute fold change of �1.2 were considered significant.

Identification and evaluation of novel expression classifiers. We
identified three different classifiers that distinguish active TB from pneu-
monia (type 1), LTBI (type 2), and a combined group of pneumonia or
LTBI (type 3). Samples were randomly partitioned into training (2/3) and
test (1/3) sets. Transcript (feature) selection methods are detailed in the
supplemental material. Briefly, support vector machines with recursive
feature elimination (SVM-RFE) (18) were applied to training set samples
to identify the transcripts most predictive of active TB (e1071 package,
version 1.6.3). To determine the number of transcripts in each classifier,
we identified the point at which adding additional transcripts did not
substantially improve classification (see the supplemental material) (19,
20). Accuracy in the training set was estimated across 20 iterations of
6-fold cross-validation. After transcript selection, a new SVM was fit to the
training samples and was used to predict the class of test set samples (see
the supplemental material).

For external validation, we used publically available data from the
largest published whole-blood transcriptional classifier study by Kaforou
et al. (11). Briefly, Affymetrix probe set identifiers were converted to Illu-
mina transcript identifiers. Classification accuracy for an SVM using con-
verted transcripts was estimated in 20 iterations of 6-fold cross-validation.

Evaluation of previously published expression classifiers. We sys-
tematically reviewed the published literature for transcriptional classifiers
in adult human whole blood based on machine-learning classification of
whole-genome microarray data (see the supplemental material). To de-
termine if transcriptional patterns observed in previously published clas-
sifiers were also evident in our data, we compared the median expression
of transcripts from each published classifier with the median expression of
the same transcripts in our ePAT patients. To test previously published
classifiers in our cohort, we converted transcript identifiers to Affymetrix
probe set identifiers and estimated classification accuracy in cross-valida-
tion (6-fold, repeated 20 times) using the same classification method used
in respective original manuscripts.

Microarray data accession number. Data are available in NCBI’s
Gene Expression Omnibus (accession number GSE73408).

TABLE 1 Clinical and demographic characteristics of U.S. patients in
the ePAT study

Characteristic

No. (%)
active TB
(n � 35)

No. (%) LTBI
(n � 35) P valuea

No. (%)
pneumonia
(n � 39) P valuea

Male 25 (71) 18 (51) 0.08 23 (59) 0.3
Foreign-born 22 (63) 30 (86) 0.06 13 (33) 0.01

Race/ethnicity
Asian 6 (17) 14 (40) 0.06 2 (5) 0.1
Black 2 (6) 6 (17) 0.3 5 (13) 0.3
Latino 23 (66) 9 (26) �0.001 16 (41) 0.03
White 3 (9) 1 (3) 0.6 11 (28) 0.04
Other 1 (3) 5 (14) 0.2 5 (13) 0.02

Age
18–34 10 (29) 15 (43) 3 (8)
35–49 7 (20) 13 (37) 16 (41)
50–64 10 (29) 5 (14) 10 (26)
�65 8 (23) 2 (6) 10 (26)

Diabetes 12 (34) 3 (9) 0.02 9 (23) 0.3
Asthma or COPD 6 (17) 4 (11) 0.04 11 (28) 0.2
Current smoker 10 (29) 8 (23) 0.6 16 (41) 0.3

a �2 or Fisher’s exact P value relative to TB group.
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RESULTS
Enrollment. We screened 184 adults and enrolled 136, and we
conducted microarray for 109 samples identified via stratified
random selection (see Fig. S1 in the supplemental material). Sim-
ilar to the demographics of TB reported in the United States (21),
63% of TB patients were foreign-born, from Southeast Asia, Af-
rica, and Latin America (Table 1). Active TB patients more com-
monly reported diabetes (34%) than did patients with LTBI (9%;
P � 0.02). Active TB patients were more commonly foreign-born
(63%) than pneumonia patients (33%; P � 0.01).

Identification of novel ePAT transcriptional classifiers. (i)
ePAT TB versus pneumonia classifier. Using pneumonia as a
disease reference group, our novel ePAT type 1 classifier included 47
transcripts (see data set S1 in the supplemental material). Sensitivity
was 89.8% in the ePAT training set and 100% in the test set (95%
confidence intervals (CI) are presented in Table 2). Specificity was
87.9% in the training set and 80% in the test set. Figures 1A through
D show receiver operating characteristic (ROC) curves.

For external validation, we applied our type 1 ePAT classifier to
Sub-Saharan African subjects with and without HIV infection
(11). Among HIV-uninfected Africans, sensitivity of the ePAT
type 1 classifier was 90.2% and specificity was 77.7% (Table 2).
The area under the concentration-time curve (AUC) was signifi-
cantly lower among HIV-uninfected Sub-Saharan Africans
(90.6%) than that among subjects in the ePAT training set
(95.9%) (P � 0.001). Among Sub-Saharan Africans with HIV
infection, sensitivity was 84.8% and specificity was 76.3%. AUC
was 88.6%, which is significantly lower than that in the ePAT
training set (P � 0.001).

Although the type 1 classifier was designed to distinguish active
TB from pneumonia, we additionally tested how it would classify
LTBI samples. It distinguished active TB from LTBI with 100%
(95% CI, 85.5% to 100%) sensitivity but with only 40% (95% CI,
23.9% to 57.9%) specificity. AUC was 86.0% (95% CI, 76.5% to
95.5%).

(ii) ePAT active TB versus LTBI classifier. Our novel ePAT

TABLE 2 Accuracy of three types of whole-blood transcriptional classifiers for active TBa

Classifier/Set

No. of samples
Sensitivity, %
(95% CI)

Specificity, %
(95% CI)

AUC, %
(95% CI)TB Other diseases

Type 1: Active TB versus pneumonia classifier
ePAT type 1 classifier in ePAT patients

Training set 24 24 (pneumonia) 89.8 (87.5–92.1) 87.9 (85.7–90.1) 96.5 (95.3–97.7)
Test set 11 15 (pneumonia) 100 (61.5–100) 80.0 (51.9–95.7) 90.1 (78.8–100)

External validation in African patients
HIV negative 97 83 (OD) 90.2 (89.5–90.9) 77.7 (76.9–78.4) 90.6 (90.4–90.9)
HIV positive 102 88 (OD) 84.8 (84.0–85.7) 76.3 (75.3–77.3) 88.6 (88.1–89.1)

Previously published type 1 classifiers in
ePAT patients

Kaforou 35 39 (pneumonia) 69.7 (69.0–7–0.4) 79.1 (78.7–79.5) 82.9 (82.3–83.6)
Berry 35 39 (pneumonia) 91.3 (90.4–92.2) 73.7 (72.1–75.3) 90.0 (89.2–90.8)

Type 2: Active TB versus LTBI classifier
ePAT type 2 classifier in ePAT patients

Training set 24 24 (LTBI) 90.8 (90.0–91.6) 90.4 (88,4–92.4) 95.9 (95.2–96.6)
Test set 11 11 (LTBI) 100 (61.5–100) 81.8 (48.2–97.7) 98.4 (94.5–100)

External validation in African patients
HIV negative 97 83 (LTBI) 90.4 (90.0–90.9) 86.4 (85.9–86.8) 95.3 (95.1–95.6)
HIV positive 100 82 (LTBI) 80.0 (79.2–80.8) 77.1 (76.4–77.8) 89.9 (89.6–90.2)

Previously published type 2 classifiers in
ePAT patients

Kafrorou 35 35 (LTBI) 93.9 (93.4–94.3) 92.4 (91.6–93.2) 98.0 (97.8–98.3)
Berry 35 35 (LTBI) 89.7 (88.9–90.5) 94.3 (94.3–94.3) 94.8 (94.3–95.4)

Type 3: Active TB versus LTBI or pneumonia
classifier

ePAT type 3 classifier in ePAT patients
Training set 24 48 (LTBI or pneumonia) 81.9 (80.3–83.5) 79.0 (77.2–80.7) 85.9 (84.7–87.0)
Test set 11 26 (LTBI or pneumonia) 90.9 (58.7–99.8) 76.9 (56.4–91.0) 94.1 (86.5–100)

External validation in African patients
HIV negative 117 146 (LTBI or OD) 87.7 (86.9–88.6) 80.3 (79.3–81.4) 91.1 (90.7–91.5)
HIV positive 121 153 (LTBI or OD) 79.6 (78.3–81.0) 74.0 (73.1–74.9) 85.4 (84.6–86.1)

Previously published type 3 classifiers in
ePAT patients

Kaforou 35 74 (LTBI or pneumonia) 77.4 (76.6–78.3) 75.7 (75.2–76.3) 82.8 (82.4–83.2)
Bloom 35 74 (LTBI or pneumonia) 85.7 (84.7–86.8) 76.8 (75.5–78.0) 90.5 (89.9–91.1)
Maertzdorf 35 74 (LTBI or pneumonia) 84.9 (83.6–86.1) 86.8 (85.9–87.6) 90.4 (89.8–90.9)

a For each classifier type, results are shown for ePAT training and test sets and external validation in Sub-Saharan African patients with and without HIV infection. Additionally,
results are shown for previously published classifiers when tested in ePAT patients.
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active TB versus LTBI classifier included 51 transcripts (see data
set S1 in the supplemental material). Sensitivity was 90.8% in the
ePAT training set and 100% in the test set. Specificity was 90.4% in
the training set and 81.8% in the test set. AUC was 95.9% in the
training set and 98.4% in the test set. Figures 1E through H show
ROC curves.

In external validation among Sub-Saharan African subjects
without HIV infection (11), sensitivity of the ePAT type 2 classifier
was 90.4% and specificity was 86.4% (Table 2). AUC was 95.3%
and was not significantly different from the accuracy observed in
U.S. ePAT subjects (P � 0.2) (Table 2). Among African subjects
with HIV infection, AUC was 89.9%, which is significantly lower
than that among U.S. ePAT subjects (P � 0.001).

To test the specificity of the type 2 classifier (designed to dis-

tinguish active TB from LTBI), we applied it to pneumonia and
LTBI patients. The ePAT type 2 classifier categorized 35 (90%) of
39 pneumonia patients as active TB, suggesting that it detects the
presence of systemic illness rather than a signature unique to ac-
tive TB. When the ePAT type 2 classifier was applied to active TB
and pneumonia patients, 34 (87%) of 39 pneumonia patients were
classified as active TB. The transcripts differentially expressed in
active TB relative to LTBI are highly overlapping with the tran-
scripts altered in pneumonia relative to LTBI (Fig. 2). Of the 1,611
transcripts with higher expression in active TB than that in LTBI,
1,279 (79%) were also upregulated in pneumonia relative to LTBI.

(iii) ePAT active TB versus LTBI or pneumonia classifier.
Our final classifier included 119 transcripts (see data set S1 in the
supplemental material) that distinguished active TB from a com-

FIG 1 ROC curves for three different transcriptional classifier types. Active TB versus pneumonia classifier in (A) ePAT training set, (B) ePAT test set, (C)
external validation in HIV-uninfected Sub-Saharan Africans, and (D) HIV-infected Sub-Saharan Africans. Active TB versus LTBI classifier in (E) ePAT training
set, (F) ePAT test set, (G) external validation in HIV-uninfected Sub-Saharan Africans, and (H) HIV-infected Sub-Saharan Africans. Active TB versus pneu-
monia or LTBI in (I) ePAT training set, (J) ePAT test set, (K) external validation in HIV-uninfected Sub-Saharan Africans, and (L) HIV-infected Sub-Saharan
Africans.
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bined group of pneumonia or LTBI in ePAT samples. Sensitivity
was 81.9% in the ePAT training set and 90.9% in the test set.
Specificity was 79.0% in the training set and 76.9% in the test set
(Table 2). The AUC was 85.6%, which is significantly lower than
the AUC for classifier type 1 (P � 0.001) or type 2 (P � 0.0001).

In external validation, the type 3 ePAT classifier had higher
accuracy among HIV-uninfected Sub-Saharan Africans than that
among the U.S. ePAT subjects used for classifier development
(AUC, 91.1% and 85.6%, respectively; P � 0.001) Among Sub-
Saharan Africans with HIV infection, the AUC was 85.4%, which
is not significantly different than that of the ePAT type 3 classifier
in ePAT patients.

Evaluation of previously published transcriptional classifi-
ers. A systematic literature review identified four published arti-

cles that developed classifiers for active TB based on adult human
whole-blood microarray data (5, 7–9, 11) (see Table S1 and data
set S2 in the supplemental material).

These articles included two type 1 classifiers. Kaforou et al. (11)
compared active TB with a heterogeneous group of infections and
neoplasms of the respiratory, genitourinary, and gastrointestinal
tracts. When tested in U.S. ePAT patients, the Kaforou classifier
had an AUC of 82.9%, which is significantly lower than that of the
ePAT TB versus pneumonia classifier (P � 0.001) (Table 2). Berry
et al. (7) compared active TB with various infectious and rheuma-
tologic diseases. The Berry classifier had an AUC of 90.0%, which
is also significantly lower than that of the ePAT active TB versus
pneumonia classifier (P � 0.001).

There was little overlap (4.5%) in the transcripts included in

FIG 2 Venn diagram of transcripts differentially expressed in active TB relative to LTBI and pneumonia relative to LTBI. (A) Transcripts with significantly lower
expression in active TB and pneumonia than that in LTBI (Benjamini-Hochberg adjusted P value of �0.01 and fold change of �1.2). (B) Transcripts with
significantly higher expression in active TB and pneumonia than that in LTBI.

FIG 3 Overlap in the transcripts included in seven previously published classifiers and the three novel transcriptional classifiers developed in this study. Gray cells
represent the number of unique transcripts in each classifier after conversion to Affymetrix probe identifiers. Yellow shading indicates between-study overlap in classifiers
for active TB versus those for LTBI. Pink shading indicates between-study overlap in classifiers for active TB versus those for other diseases (OD) or pneumonia (PNA).
Blue shading indicates overlap in classifiers for active TB versus those for the combination of LTBI and other diseases.
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different type 1 classifiers (Fig. 3). To determine whether these
different transcripts might nonetheless reflect the same biologic
processes, we used DAVID Bioinformatics Resources (22) to
quantify the enrichment of gene ontology (GO) terms BP_Fat,
CC_Fat, and MF_Fat in the classifier transcript lists. This did not
reveal shared GO terms (see data set S3 in the supplemental ma-
terial). Finally, side-by-side tornado plots provide visualization of
global differences between studies in the expression of transcripts
included in classifiers. Figure 4A displays the mean fold change for
transcripts in the Kaforou type 1 classifier in Kaforou data. Figure
4B displays change in the same transcripts in ePAT data. The tran-
scriptional change that distinguishes active TB from OD in Afri-
cans is not clearly discernible among ePAT patients. Side-by-side
tornado plots for the Berry classifier are included in Fig. S2A and B
in the supplemental material.

Our systematic review identified two type 2 classifiers (7, 11)
that compared active TB to healthy controls with or without LTBI.
When applied to ePAT data, the sensitivity and specificity of Berry
(7) and Kaforou (11) type 2 classifiers were similar to that of the
ePAT type 2 classifier (Table 2). The AUC for the Kaforou type 1
classifier in our ePAT data was 98.0%, which is significantly higher
than that of the ePAT classifier in ePAT data (P � 0.001). The
AUC for the Berry type 1 classifier was 94.8%, which is signifi-
cantly lower than that of the ePAT classifier (P � 0.001).

The average overlap in the list of transcripts included in type 2
classifiers was 33%, which is higher than that for type 1 classifiers.
Data set S3 in the supplemental material shows that type 2 tran-
script lists are enriched for similar GO terms, including “innate
immune response,” “response to wounding,” and “defense re-
sponse.” In contrast to the type 1 classifiers, side-by-side tornado
plots showed that the transcriptional changes that distinguished
active TB from LTBI among Sub-Saharan African subjects in the
Kaforou study were clearly observable among ePAT patients (Fig.
4C and D). Similarly, the transcriptional changes observed in the
Berry data set were also evident in ePAT subjects (see Fig. S2C and
D in the supplemental material).

Finally, to determine whether misclassification of LTBI pa-
tients as active TB is random or whether the same individual sub-
jects are consistently misclassified by different classifiers, we eval-
uated the frequency with which each subject was misclassified in
repeated cross-validation. In Fig. 5, the colored vertical bars indi-
cate that 2 of 35 LTBI patients were consistently misclassified by all
classifiers, suggesting that misclassification may result from an
intrinsic difference in the patient sample rather than from random
error.

Systematic review identified three previous type 3 classifiers (5,
8, 11) that compared active TB to a combined group with healthy/
LTBI and other diseases. When tested in U.S. ePAT patients, the
Kaforou type 3 classifier had an AUC of 82.8%, which is signifi-
cantly lower than that of the ePAT type 3 classifier (P � 0.001).
Bloom et al. (5) compared a group of patients with active TB with
a combined group of healthy persons and pneumonia, cancer, and
sarcoidosis patients. When tested in U.S. ePAT patients, the
Bloom classifier had significantly higher AUC than that of the
ePAT type 3 classifier (90.5% versus 85.6%; P � 0.001). Maertz-
dorf et al. (8) compared patients with active TB and sarcoidosis.
When tested in ePAT patients, the AUC was 90.4%, which is also
significantly higher than that of the ePAT type 3 classifier (P �
0.001).

The average overlap in the list of transcripts included in type 3

FIG 4 Comparison of transcriptional changes in Kaforou classifiers in the
Kaforou study and ePAT. (A) Mean fold change (log2 scale) of 44 transcripts in
the Kaforou active TB versus other diseases classifier in the original Kaforou
study. Rows represent individual transcript identifiers. Blue bars indicate tran-
scripts with increased expression in active TB in the original manuscript and
red represents decreased expression in active TB in the original manuscript.
(B) Mean fold change for the same 44 transcripts among ePAT patients with
active TB and pneumonia. (C) Mean fold change for 27 transcripts in the
Kaforou active TB versus LTBI classifier in the original Kaforou study. (D)
Mean fold change for the same 27 transcripts among ePAT patients. (E) Mean
fold change for 53 transcripts in the Kaforou active TB versus LTBI or other
diseases classifier in the original Kaforou study. (F) Mean fold change for the
same 53 transcripts among ePAT patients.
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classifiers was 4.1%. As was the case for type 1 classifiers, side-by-
side tornado plots indicated that the transcriptional change ob-
served in previous studies was not clearly discernible among ePAT
patients (Fig. 4A and B; see also Fig. S4A and B in the supplemental
material).

DISCUSSION

We found that blood transcriptional classifiers accurately detected
active TB among ethnically/racially diverse U.S. adults. Our type 1
classifier was highly accurate in a common clinical challenge of
distinguishing active TB from pneumonia. However, the accuracy
of classifiers for active TB versus that for other diseases decreased
when applied to new populations with different combinations of
other diseases. Type 2 classifiers that distinguish active TB from
LTBI were highly accurate and generalizable across diverse popu-
lations. However, type 2 classifiers do not distinguish between
active TB and pneumonia. They are nonspecific markers for sys-
temic illness rather than signatures that are unique to active TB.
Transcriptional classifiers have the potential to improve TB care
and control, but additional discovery and validation studies in
diverse populations with different disease references are needed to
identify the most predictive transcripts and generalizable signa-
tures.

Biomarker development is a multiphase process, starting with
preclinical exploratory studies, expanding to case-control and co-
hort studies, and optimally culminating in randomized trials that
demonstrate public health impact (12). It is essential to determine
early in this process whether transcriptional classifiers are gener-
alizable beyond the studies in which they were developed (12). In
this study, we not only independently developed novel transcrip-
tional classifiers in a previously unstudied population, but we also
systematically evaluated the generalizability of our classifiers and
previously published classifiers.

Type 1 classifiers address the high-priority clinical need of dis-
tinguishing active TB from other diseases that may mimic TB. We
addressed the common clinical challenge of determining whether
a patient with lower respiratory tract infection has active TB. Our
classifier was highly accurate among U.S. patients. Accuracy di-
minished modestly (from an AUC of 96.5% to an AUC of 90.6%)
when applied to Sub-Saharan African patients with different dis-
ease reference groups. Previously published classifiers were also
less than optimally generalizable; accuracy was lower in ePAT pa-
tients than that reported in original manuscripts. Type 1 classifiers
developed in different studies (with different “other disease” ref-
erence groups) had very little overlap in transcript sets. Analysis of
GO terms did not identify shared biological processes in different
classifier transcript sets.

The suboptimal generalizability represents a key challenge for
identifying a robust and universal transcriptional signature for
active TB versus other diseases (3). Unlike type 2 classifiers that
compare active TB with a single reference condition (LTBI), a
useful type 1 classifier would need to distinguish active TB from
the protean range of infectious, neoplastic, and rheumatologic
conditions that can mimic active TB. A classifier optimized to
distinguish active TB from a single disease reference (such as lung
cancer) may be less accurate in a different comparison (such as
pneumonia). An essential next step will be identifying specific
transcripts that are consistently predictive of active TB versus the
range of clinical mimics across different populations. This will
require additional independent whole-transcriptome classifier
development in additional settings with additional disease com-
parison groups.

Type 2 classifiers distinguish active TB from LTBI. Symptom-
atic active TB is associated with a massive change in the blood
transcriptome relative to healthy persons with LTBI, enabling ac-
curate classification despite racial/ethnic diversity and medical co-
morbidities. Type 2 classifiers are remarkably accurate and gener-
alizable across populations. When tested across different African,
European, and U.S. settings, the AUC was consistently �95% or
higher. Studies conducted independently in different populations
identified similar transcripts, representing similar immune and
inflammatory processes. Tornado plots showed that the transcrip-
tional patterns distinguishing active TB from LTBI were remark-
ably consistent across studies.

Unfortunately, type 2 classifiers do not represent a signature
that is unique to active TB. The transcriptional changes observed
in active TB relative to LTBI overlap nearly entirely with those
observed in pneumonia relative to LTBI. It is therefore unsurpris-
ing that our type 2 classifier categorized nearly all pneumonia
patients as having active TB. Type 2 classifiers essentially distin-
guish sick from healthy. Therefore, type 2 classifiers are not useful
in evaluation of systemically ill patients; for sick patients, the rel-
evant question is not whether the patient is sick or healthy but
whether the patient has active TB or an alternative disease process
(i.e., the task of type 1 classifiers).

Can the type 2 classifier be used to identify individuals with
incipient, subclinical active TB? We found that several LTBI pa-
tients were consistently misclassified as TB in all type 2 models. It
has been proposed that LTBI patients who are misclassified as
having active TB may be at a transitional point between LTBI and
active TB (7, 23). If a molecular signature of illness precedes the
development of TB symptoms (24), type 2 classifiers might have
value as a screening test for incipient active TB among persons
such as household contacts of TB patients, health care workers in

FIG 5 Consistency of misclassification of active TB and LTBI patients by previously published TB/LTBI classifiers and our ePAT classifiers. Columns represent
individual subjects. Colored headers indicate the subjects’ true class: blue, active TB; gray, LTBI. Green cells represent instances in which the classifier assigned
the correct class with a high degree of certainty (probability of the correct class estimated as �0.66). Yellow cells represent instances in which the classifier did not
have high certainty (probability of correct class estimated as between 0.33 and 0.66). Red cells represent instances in which the classifier assigned the incorrect
class (misclassification) with a high degree of certainty (probability of correct class estimated as �0.33). The presence of columns of red and yellow suggest that
different classifiers consistently misclassify certain individuals.
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high TB incidence settings, or HIV-infected persons. Since the
type 2 classifier appears to be a nonspecific marker of illness, pos-
itive screening results would lead to more intensive TB evaluation.
This important potential application has yet to be tested.

The third classifier type is an “all purpose” classifier designed to
identify active TB among patients that are either healthy or sys-
temically ill. As a composite of the previous two classifier types,
type 3 classifiers combine but do not resolve the challenges out-
lined above. As was observed in the Kaforou study (11), our type 3
classifier was less accurate than our type 1 or type 2 classifier.

This study has several limitations. First, the limited sample size
led to wide uncertainty intervals in the test set. Second, compari-
son between studies required conversion between microarray
platforms, a methodological difference that tends to reduce gen-
eralizability (17). However, the use of different platforms makes
the between-study consistency we observed in TB-LTBI classifiers
an even stronger finding. Some transcript identifiers may not be
converted because they have been retired from current annota-
tion. Our conversion process therefore likely eliminated noise.
Third, we did not enroll active TB patients that were sputum AFB
smear-negative. Future studies should evaluate the accuracy of
classifiers in this important population. Fourth, diabetes was
more common among patients with active TB than it was among
those with LTBI, potentially confounding the type 2 TB versus
LTBI classifier. However, for 37 (73%) of the 51 transcripts in the
type 2 classifier, adding diabetes as a covariate in limma models
resulted in a �10% change in the TB/LTBI parameter, indicating
no discernible confounding. Adding diabetes changed the TB/
LTBI parameter by �25% for only one transcript, indicating that
confounding was modest and present for only a subset of tran-
scripts in the classifier. Finally, an obvious practical limitation is
that there is currently no diagnostic platform that would make
assays of blood transcriptional patterns feasible in settings with
high TB incidence. Identification of an accurate, generalizable
transcriptional classifier with a clear clinical application can mo-
tivate novel platform development.

In conclusion, blood transcriptional classifiers are capable of
accurately identifying active TB. A remaining challenge for classi-
fiers designed to detect TB among systematically ill patients is the
breadth and heterogeneity of diseases that may mimic TB. Addi-
tional studies of systemically ill patients in diverse settings with
systematic assessment of generalizability are needed. Classifiers
comparing active TB and LTBI do not identify a signature that is
unique to active TB but nonetheless should be explored as screen-
ing tools in high-risk asymptomatic or minimally symptomatic
persons. Blood transcriptional assays that enable early accurate TB
diagnosis may have an important impact on control of the global
TB epidemic.
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