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ABSTRACT
Reactive oxygen species, including hydroxyl radicals generated by particles, play a role in both
aerosol aging and PM2.5 mediated health effects. We assess the impacts of switching marine
vessels from conventional diesel to renewable fuel on the ability of particles to generate hydroxyl
radical when extracted in a simulated lung lining fluid or in water at pH 3.5, for samples of engine
emissions from a research vessel when operating on ultra-low sulfur diesel (ULSD) and
hydrogenation-derived renewable diesel (HDRD). Samples were collected during dedicated cruises
in 2014 and 2015, including aged samples collected by re-intercepting the ship plume. After
normalizing to particle mass, particles generated from HDRD combustion had slightly to
significantly (5–50%) higher OH generation activity than those from ULSD, a difference that was
statistically significant for some permutations of year/fuel/engine speed. Water soluble trace metal
concentrations and fuel metal concentrations were similar, and compared to urban Los Angeles
samples lower in soluble iron and manganese, but similar for most other trace metals. Because PM
mass emissions were higher for HDRD, normalizing to fuel increased this difference. Freshly emitted
PM had lower activity than the “plume chase” samples, and samples collected on the ship had lower
activity than the urban reference. The differences in OH production correlated reasonably well with
redox-active transition metals, most strongly with soluble manganese, with roles for vanadium and
likely copper and iron. The results also suggest that atmospheric processing of fresh combustion
particles rapidly increases metal solubility, which in turn increases OH production.

EDITOR
Matti Maricq

1. Introduction

To reduce carbon emissions and their effects on global
warming and ocean acidification, conversion of marine
vessels to fuels derived from renewable (plant-based)
sources could be a reasonable alternative to fossil fuel-
based diesels, such as ultra-low sulfur diesel or ULSD.
Hydrotreating of vegetable oil has been shown to pro-
duce a renewable biodiesel (hydrogenation-derived
renewable diesel or HDRD; also referred to as hydroge-
nated vegetable oil or HVO) that is more compatible
with many existing diesel engines than other untreated
biofuels (Aatola et al. 2008; Heikkil€a et al. 2012; West-
phal et al. 2013; Kim et al. 2014; Prokopowicz et al. 2015;
Bugarski et al. 2016). However, there is little information

on whether using HDRD instead of ULSD in marine ves-
sels would improve or exacerbate health effects in and
near port areas. Clearly both HDRD and ULSD are
improvements over the heavy fuel oil (HFO) currently in
wide use in ocean transport. While currently they com-
prise a small fraction of fuel used for ocean transport,
ULSD and similar cleaner fuels are currently required
inside the 200 mile zone around the coastal United
States, in major shipping lanes and ports throughout
Europe, and in other areas, HFO is scheduled for global
phase-out in 2020 (ICCT 2014). Shipping-related particle
emissions have been estimated to be responsible for
nearly 60,000 deaths annually (Corbett et al. 2007).
Although the mechanisms for most of these deaths is
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unknown, inhaled PM is thought to induce oxidative
stress via biochemical reactions mediated by reactive
oxygen species (ROS; Dellinger et al. 2001; Baulig et al.
2003), and oxidative stress is believed to underlie a num-
ber of diseases related to particulate matter (PM) inhala-
tion (Li et al. 2003; Diaz et al. 2013). ROS are a class of
reactive oxygen-bearing compounds that include the
hydroxyl radical (OH), hydrogen peroxide (H2O2) and
superoxide (O2

¡), and related species.
A handful of studies have examined the ability of die-

sel PM to produce ROS and pro-inflammatory responses
in both cellular and a-cellular assays (Baulig et al. 2003;
Cheung et al. 2009; Verma et al. 2010; Wang et al. 2012).
Baulig et al. (2003) showed that the pro-inflammatory
response of bronchial epithelial cells was induced by
polycyclic aromatic hydrocarbon (PAH)-related com-
pounds associated with the diesel exhaust particles. The
response was further shown to be reduced by the addi-
tion of antioxidants, suggesting that the response to the
PM is due to the presence of species in the particles that
produce ROS. Verma et al. (2010) assessed the contribu-
tion of water-soluble transition metals present in diesel
exhaust to the formation of reactive oxygen species
(ROS), using a macrophage-based in vitro assay to deter-
mine the ROS activity of collected particles. Results indi-
cated that soluble metals, especially Fe but also Cr, Co,
and Mn accounted for a significant fraction of the ROS
activity. Cheung et al. (2009) used the dithiothreitol
assay to examine ROS production from biodiesel and
conventional diesel particles, and found relationships
with organic carbon, including both water-soluble and
water-insoluble fractions. The biodiesel particles had sig-
nificantly more ROS formation activity than the diesel
particles. Wang et al. (2012) found that diesel and bio-
diesel particles from a diesel generator produced similar
H2O2 formation, in both cases at much higher levels
than urban ambient particles. H2O2 is one of the precur-
sors to OH formation, however it is measured in steady
state, rather than cumulatively as is OH, thus the H2O2

is more sensitive to species that can destroy it, such as
free iron.

Several studies have reported that HDRD combustion
results in lower PAH emissions than diesel fuel (Heikkil€a
et al. 2012; Jalava et al. 2012; Westphal et al. 2013). West-
phal et al. (2013) further accessed the potential toxicity of
diesel, hydrotreated vegetable oil, and other biodiesel
fuels using Salmonella typhimurium strains, which are
particularly sensitive to mutagens in organic extracts of
diesel exhaust particles. Results showed that the mutage-
nicity of the HDRD emissions was the lowest compared
to all other fuels tested. Furthermore, Jalava et al. (2012)
collected PM from a EURO IV automobile engine pow-
ered by different fuel and performed inflammation,

cytotoxicity and cell apoptosis analyses, and ROS pro-
duction using an intracellular dichlorofluorescein
(DCFH) assay. In most cases, HDRD showed lower toxic
potencies than conventional diesel fuel. While studies on
HFO particulate emissions are few, in a recent and thor-
ough study using lung epithelial cells and other analyses,
Oeder et al. (2015) found that HFO particulate emissions
had higher metal and organic content but lower black
carbon content in comparison to conventional diesel
emissions. Consistent with the relationships between
ROS production, inflammation, and transition metals,
Oeder et al. (2015) also found that HFO particles had
much higher inflammatory responses than conventional
diesel emissions.

ROS, and particularly the hydroxyl radical investi-
gated here, can also mediate particle aging processes in
ambient aerosols and cloud drops. Aerosol aging plays
an important role in modifying aerosol chemical
composition (Shrivastava et al. 2008; Sato et al. 2011;
Donahue et al. 2012), hygroscopicity (Zhang et al. 2008;
Buchholz et al. 2009), cloud condensation nuclei activity
(Shilling et al. 2007; Engelhart et al. 2008; Wang et al.
2010), and optical properties (Reid et al. 1999). While
much of the aerosol aging is likely mediated by heteroge-
nous reactions of OH radicals from the gas phase, the
contribution of reactions within the particles is not well
understood. Similar ROS-mediated oxidation chemistry
in cloud water may underlie some secondary organic
aerosol (SOA) formation associated with cloud process-
ing (Larsen et al. 2001; Zhang et al. 2010), some of this is
photochemical, but the (dark) ROS chemistry probed
here may be particularly important when photochemical
processes shut down (Graedel et al. 1986). While ROS
formation under physiological and environmental
conditions is related, because of the differences in pH
and concentrations of solutes, they are not necessarily
well correlated.

Currently there are several assays available to measure
ROS as a general class, as well as assays for specific ROS.
General acellular assays include dichlorofluorescein
(King and Weber 2013), dithiothreitol (Fang et al. 2014),
or antioxidant consumption (Godri et al. 2011). Each
has a different and largely uncharacterized response to
H2O2, OH, and O2

¡, etc. There are several assays for spe-
cific ROS assays such as OH (this work, DiStefano et al.
2009; Charrier and Anastasio 2011) and H2O2 (Arellanes
et al. 2006; Shen et al. 2011). Differences in the assays
and their sensitivities to specific ROS likely explain at
least some of the differences in conclusions about which
particulate matter components are responsible for ROS.
A series of studies by Charrier, Anastasio and co-workers
have provided many insights into the behavior of a series
of contributors to ROS by quantifying differences in
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responses to individual and pairs of transition metals and
quinones to several individual antioxidants (Charrier
and Anastasio 2011, 2012; Charrier et al. 2014), but there
is more work to be done to develop an understanding of
ambient aerosol behavior. Still uncertain are the roles of
other variables including particularly organic/brown car-
bon but also pH, other solutes, and black carbon, as well
as the concentrations of the reactants.

Here, we probe OH formation, which has been shown
to be mediated by transition metals, with contribution
from quinones (DiStefano et al. 2009; Charrier and
Anastasio 2011). Other aerosol components are expected
to influence OH formation by altering the activity of
transition metals (Gonzalez et al. submitted), or other
unknown mechanisms. We measure OH production and
trace metal content of particle samples collected both
from the engine stack and by intercepting the ship plume
alternately on HDRD and ULSD fuels in 2014 and 2015.
Samples were extracted either in simulated lung fluid
(SLF) containing three antioxidants present in lung lin-
ing fluid: ascorbate, glutathione, and uric acid (Kelly
et al. 1995; Charrier and Anastasio 2011), with citrate
added to mimic transition metal chelating ability of pro-
teins in lung fluid (Lund and Aust 1992; Smith and Aust
1997; Godri et al. 2011) or in water adjusted to pH 3.5 to
probe in situ reactivity of the PM in marine air. Samples
were analyzed for OH formation activity, water-soluble
elements, PM and black carbon mass concentrations
normalized to both particle mass and kg fuel burned.
The measurements provide an evaluation of the changes
in reactivity and soluble transition metals, under both
physiological and environmental conditions, associated
with switching fuels, and a measure of their reactivity
compared to urban and mixed marine particulate matter.

Simultaneous measurements of particle and gas mass
emission and chemical composition and concentrations
are reported in two companion papers (Betha et al. 2017;
Price et al. 2017). Betha et al. (2017) showed that emission
factors for CO and NOx were higher for ULSD than
HDRD, and EFs decreased with increasing engine speed.
Different trends were observed for black carbon and parti-
cle number, with higher number and mass emission fac-
tors for HDRD. The organic composition of particle-
phase ship emissions from both fuels consisted of two
types of hydrogen-like organic aerosol, one containing
more saturated alkane fragments (diesel type) and the
other more mono-unsaturated fragments (cooking type).
The latter was more abundant in PM from HDRD. The
ULSD aerosol emissions also contained significant oxi-
dized organic material, while HDRD emission did not,
although this result is based on a small number of samples
of ULSD-derived PM. The aged plumes consisted of a
larger contribution from sulfate (a major component of

the marine background), and contributions from oxygen-
ated and in some cases diesel-type hydrocarbon organic
aerosol. Cooking-type aerosol was completely reduced or
absent in HDRD aged plumes (Price et al. 2017).

2. Methods

During two dedicated sampling cruises in 2014 (29 Sep-
tember to 3 October) and 2015 (4 to 7 September and 26
to 28 September), the fuel tanks of the R/V Robert Gor-
don Sproul were filled with ultra-low sulfur diesel
(ULSD) and hydrogenation-derived renewable diesel
(HDRD), which were used alternately in the existing die-
sel engines. Properties of the HDRD and ULSD fuels
used in this study are shown in Table S1. Since the ship
was not equipped with an engine dynamometer, sam-
pling was conducted at four engine speeds (1600 rpm,
1300 rpm, 1000 rpm, 700 rpm). Nonetheless, emissions
at any engine speed did vary with sea state and other
conditions (Betha et al. 2017). Simultaneous measure-
ments of gas and particle emissions are described in
companion papers (Betha et al. 2017; Price et al. 2017).

2.1. Particle collection

All samples subjected to ROS and related analyses were
collected on pre-weighed, acid cleaned 47 mm Teflon fil-
ters (0.2 mm pore size, Pall Corp., Port Washington, NY,
USA; Paulson et al. 2016). Prior to collection of each sam-
ple, the collection flow rate was checked using a digital
mass flow meter (TSI). After collection, the filters were
transported and stored in individual Teflon petri dishes
sealed with Teflon tape and stored in a freezer at or below
0�C for later analysis. The mass of samples collected was
determined gravimetrically by weighing the filters before
and after sample collection using a micro-balance (1 mg
precision, ME 5, Sartorius) in a temperature (22–24�C)
and humidity (40–45%) controlled room, equipped with a
sodium lamp to avoid interactions with light.

For the 2014 cruise, fresh emissions were collected
directly from the ship stack using a Venturi probe
(Nigam 2007) followed by a PM2.5 cyclone operating at
16.05 LPM, for 15–20 min for each. A separate sampling
van located on the aft deck equipped with a PM2.5

cyclone (URG-2000-30ENB) operating at 92 LPM was
used to collect 2015 samples as well as the 2014 mixed
samples. Fresh emissions were collected as the vessel was
moving so the travel time from the stack to the van inlet
(a distance of approximately 20 m) was less than 30 s.
These samples were much more diluted and cooled com-
pared to the stack samples, and collection times were
about 60 min. Additional samples were collected from
re-intercepting the aged ship plume, and overnight
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samples captured a mixture of ship emissions and
marine background aerosols. Both types of samples are
classified as “mixed” in the following sections primarily
because there are too few to treat them separately.

To create full field blanks, able to detect contamination
from anywhere along the sample train, blanks were col-
lected in the same manner as the samples, by loading
blank filters into the filter holders for 30 s. Very minimal
to no detectable material was collected on the blank filters.

2.2. Analyses

2.2.1. Materials
Trifluoroethanol (TFE), sodium citrate tribasic dihydrate
(Cit), L-ascorbic acid (Asc), uric acid sodium salt (UA),
and L-glutathione reduced (GSH), 0.1 N sulfuric acid,
and Chelex 100 sodium form (50–100 dry mesh) were
purchased from Sigma Aldrich (St. Louis, MO, USA).
Sodium phosphate dibasic and potassium phosphate
monobasic were purchased from Acros Organics
(Thermo Fisher, Waltham, MA, USA). Nitric acid (70%
trace metal grade) was purchased from Fisher Scientific
(Pittsburg, PA, USA). All materials were used as received.

2.2.2. Extraction solutions
Simulated lung fluid (SLF) was prepared by adding four
antioxidants (Cit, Asc, UA, and GSH) at 100 mM UA
and GSH, 300 mM Cit and 200 mM Asc, to phosphate
buffer at pH 7.2–7.4. Phosphate buffer contained
114 mM of NaCl, 7.8 mM of sodium phosphate dibasic,
and 2.2 mM of potassium phosphate monobasic, and
was chelex-treated to remove trace metals prior adding
the antioxidants. The antioxidants were freshly prepared
in phosphate buffer for each experiment.

pH 3.5 solution was prepared by acidifying 18 MV

deionized (DI) water using 0.1N sulfuric acid. The pH
meter was calibrated prior to each use.

2.2.3. Trace metal cleaning and particle extraction
A rigorous cleaning process was followed for all glass and
Teflon containers. After each use, each vessel was washed
with warm water and soap, and then rinsed in deionized
(18 MV-cm DI) water (3x), ethanol (3x), and finally DI
water (3x). The vessels were then soaked in 1 M nitric acid
bath overnight, rinsed with DI water, and air dried. Nitric
acid baths were replaced after being used twice and kept
covered to avoid dust deposition. All analytical solutions
were prepared with 18 MV-cm DI water that had been
passed through a chelex column to remove trace metals.

Filters were cut in half using a cleaned ceramic blade.
Half filters were extracted in 6 mL SLF or pH 3.5 solution
in Teflon petri dishes with gentle agitation. To increase

particle solubility, the filters were wetted first with 50 mL
of trifluoroethanol.

2.2.4. Hydroxyl radical quantification
OH formation by PM was monitored by adding excess
(10 mM) sodium terephthalate (TA) to extraction solu-
tions and allowing it to react for 2 h. 2-hydroxytereph-
thalic acid (TAOH), a strongly fluorescent product, is
produced from the OH reaction with TA with 33% yield
at pH 7.2 and 31% at pH 3.5 (Matthews 1980). TAOH is
detected at excitation/emission wavelength (λex/λem) of
320/420 nm using a fluorometer (Lumina, Thermo Sci-
entific), resulting in a detection limit of about 10¡10 M.
The microcuvettes were cleaned with water and ethanol
and dried between each sample measurement. Calibra-
tions were performed daily. To verify the PM did not
interfere with our assay, extracts of PM and fuel samples
were scanned and observed to have no native fluores-
cence over any wavelengths of interest.

Many ROS assays have unequal sensitivities to differ-
ent sources and types of ROS. In some cases, the probe
interacts directly with one or more of the metals, poten-
tially changing its redox activity, as in the case for benzo-
ate and Mn (Charrier and Anastasio 2011). We have
carefully examined the terephthalate assay for iron and
copper; its response to iron is in excellent agreement
with well-known Fenton and related chemistry for iron
(Gonzalez et al. submitted), and we additionally verified
that the interactions between copper observed at high
concentrations and terephthalic acid (Cardarelli et al.
1979) do not take place at the lower concentrations
observed here (Kuang et al. in preparation).

2.2.5. Water-soluble metals
Due to limited numbers of samples, soluble element anal-
ysis was only performed on samples extracted in SLF. Ali-
quots from extraction solutions after 2 h were filtered
through 0.2 um polypropylene syringe filters (VRW Inter-
national) and then acidified to 2% (by weight) with
HNO3, and stored in 15 mL Falcon conical centrifuge
tubes. An Agilent 8800 Triple Quadrupole ICP-MS was
used to measure the following elements and transition
metals in the MS/MS mode: Mg, S, K, Ca, V, Cr, Mn, Fe,
Co, Ni, Cu, Zn, Se, Cd, La, Pb. Calibration curves were
made from a 10 ppm 33 multi-element standard (SCP Sci-
ence), using 89Y as an internal standard (Inorganic Ven-
tures MSY-100PPM) to correct for matrix effects. Five
replicate measurements were averaged for each individual
sample. All reported metals were well above their detec-
tion limits. The average variation between replicate meas-
urements of the same sample was 1.3%, and it never
exceeded 5% for any individual sample.
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Fuel samples were collected from the tank truck as the
fuel was pumped into the research vessel. A micro-emul-
sion technique following the ICP manufacturer’s proto-
col was used to dissolve crude oil into a water matrix. 1%
of crude oil was mixed with 1% of the surfactant TRI-
TON-X100 (Electrophoresis Grade, International Bio-
technologies Inc.) and sonicated for 60 min, and then
analyzed for metals following the above procedures.

2.2.6. Black carbon quantification
Black carbon was quantified using an OT21 duel wave-
length optical transmissometer (Magee Scientific Corpora-
tion). A quartz diffuser backing (Pallflex Fiberfilm) was
placed under each 47 mm Teflon filter to provide an even
distribution of light to the detector. Absorption at 880 nm
is proportional to the concentration of black carbon (Han-
sen et al. 1984) expressed by the following equation:

BC½ �D bATN
s λð ÞATN

; ½1�

where bATN is the attenuation coefficient and s(λ)ATN
(m2/g) is the specific attenuation cross section. The EPA
empirically determined s(λ)ATN value of 16.6 m2g¡1,
suggested by the manufacturer for engine derived BC,
was used for this calculation.

3. Results

3.1. OH formation in SLF

The number of samples analyzed for each fuel and year,
together with the numbers of samples analyzed for solu-
ble elements is summarized in Table 1. Figure 1a shows
the averages, medians, and standard errors (1s) for OH
production in SLF, normalized to aerosol mass, by year
and fuel. Most of the sample sets included one or two
samples with much higher activity than the others,

resulting in a high degree of sample variability, thus
medians may be a better metric than averages.

OH production normalized to kilograms of fuel burned
is shown in Figure 1b. Values are shown only for 2015, as
in 2014 stack sample CO2 measurements were not avail-
able due to instrument problems (Betha et al. 2017). Con-
sistent with the observation that PM mass emissions were
higher for HDRD than ULSD (Betha et al. 2017), once nor-
malized to fuel burned, the differences between 2015
ULSD and HDRD OH generation activity is larger than
the PM-mass normalized data.

For both fuels, the 2015 samples had higher activity
than the 2014 samples. The averages of the HDRD sam-
ples were higher than the ULSD samples for both years
(Figure 1a, Table S2), and medians were higher for 2014

Figure 1. (a) Average (color bar), median (black horizontal bar),
and standard errors (vertical error bars) of OH (ng/mg PM) pro-
duction by year and fuel (1a) and average and standard error of
OH (mg/kg�fuel) in (b). ULSD and HDRD are the samples from
engine cycle tests, with all of the engine speed combined.

Table 1. Number of samples analyzed for ULSD and HDRD in 2014 and 2015 cruises. Numbers in parentheses indicate the number of
metal samples analyzed and bolded values indicate average aerosol mass in mg.

2014 Cruise 1600 rpm 1300 rpm 1000 rpm 700 rpm Total

ULSD SLF 4 (2) 0.69 3 (1) 0.26 1 0.18 2 (1) 0.25 10 0.42
pH3.5 2 0.82 2 0.24 1 0.18 2 0.25 7 0.40

HDRD SLF 2 (1) 1.00 2 (1) 0.32 2 (2) 0.10 2 (1) 0.15 8 0.39
pH3.5 1 1.63 1 0.40 1 0.18 3 0.74

Mixed SLF 3 (2) ULSD 0.51 5 (2) HDRD 0.61 8 0.57
pH3.5 2 0.18 1

2015 Cruise 1600 rpm 1300 rpm 1000 rpm 700 rpm Total

ULSD SLF 2 (1) 0.09 2 (1) 0.11 2 (1) 0.11 3 (2) 0.09 9 0.10
pH3.5 1 0.04 1 0.03 1 0.04 1 0.06 4 0.04

HDRD SLF 6 (5) 0.05 6 (5) 0.06 7 (6) 0.10 7 (6) 0.09 26 0.08
pH3.5 1 0.03 1 0.05 1 0.08 1 0.12 4 0.07

Mixed SLF 3 (3) ULSD 0.03 11(9) HDRD 0.07 14
pH3.5 1 0.09
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but almost identical for 2015. Differences were signifi-
cant (p < 0.05) for 2014 averages and medians on a PM
mass basis (Figure 1a), and 2015 averages on a per kg
fuel basis (Figure 1b). OH production from PM in
mixed/aged ship samples was much higher than the fresh
samples, and all samples in this study were significantly
lower than average OH formation for Los Angeles urban
air samples analyzed with the same techniques (Paulson
et al. 2016). Relationships with chemical composition of
the particle are presented below.

Figure S1a shows OH production in SLF separated
by fuel, year, and engine speed. While most engine
condition and fuels were tightly clustered, frequently
a single sample from a set was higher by a factor of 3
or more than the comparison samples. Thus, when
separated by engine speed, none of the conditions are
different at the 95% confidence level. For HDRD, OH
generation increased at lower engine speed, while for
ULSD there was a slight decrease as engine speed was
lowered.

3.2. Relationship between OH formation and PM
mass

For combined 2014 and 2015 data, OH formation by par-
ticles was not correlated to mass. However, for the ULSD,
HDRD, and mixed subsets of the 2014 data, OH formation
was strongly correlated with mass (Figure S2). The 2015
data (which hadmuch lowermasses) still showed little or no
correlation with mass when separated by sample type
(Figure S2). 2014 fuel-specific slopes were 1.4, 2.7, and 5.5,
for ULSD, HDRD, and mixed samples, respectively
(adjusted r2 of 0.34 to 0.96, Figure S2). Similar trends were
observed for OH activity vs. absorbance at 880 nm (a proxy
for black carbon) for the 2014 samples (Figure S3),measured
on the filters by transmissometer; 2015 filters had too little
absorbance for accuratemeasurement of BC. The clearly dif-
ferentiated behavior of different sets of samples indicates
that components (such as transition metals) other than total
mass, BC, and/or associated organics are driving factors in
OHproduction, consistent with results presented below.

Figure 2. (a) ICP-MS/MS concentrations of water-soluble transition metals in the exhaust PM (in ng metal or element/mg PM), S and Se
in the ship samples, an urban data set (Paulson et al. 2016) and in diesel engine exhaust (Verma et al. 2010). All samples were extracted
in SLF solution (see the text) except Verma et al. (2010), who used water. Note that there are somewhat fewer samples with metal anal-
ysis than OH (Table 1), thus the average OH generation for the corresponding sample set is included here. (b) Concentrations of water-
soluble transition metals in the ship exhaust (mg metal per kg of fuel burned) and in the fuels (mg metal per kg of fuel).
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3.3. Water-soluble trace metals

Median concentrations and standard errors for transi-
tion metals, sulfur, and selenium in the ship samples
extracted in SLF are shown in Figure 2a. 68% of SLF-
extracted samples were analyzed for trace metals, thus
corresponding OH production for this subset of sam-
ples, with slightly different values from Figure 1a, is
also shown in Figure 2a. The metal concentrations
for a Los Angeles urban data set, analyzed with the
same methods (Paulson et al. 2016) are also included
for reference, as well as metal concentrations for fresh
diesel PM collected from a school bus and extracted
in water by Verma et al. (2010).

All soluble PM metal concentrations in the ship
samples were in the same range as the urban and bus
emission PM concentrations (Figure 2a). Compared to
the urban concentrations, ship PM had similar V, sim-
ilar or slightly higher Ni, Cr, and Se, and lower Mn
and Fe. Cu and Pb were lower in the ship PM except
in the case of 2015 HDRD, which had markedly higher
Cu and Pb than the other ship samples. Concentra-
tions of V, Cr, and Mn in the ULSD ship emissions
were similar to those observed by Verma et al. (2010)
for conventional diesel emissions while Cu, Fe, and Pb
were much lower. For all ship samples except 2015
ULSD, sulfur was much higher than the bus emissions.
The 2014 stack samples generally had lower soluble
metal concentrations than the 2015 samples. While the
reasons for this are not clear, it may be related to the
lack of even minimal atmospheric processing of the
particles in the stack samples, differences in OM con-
tent (unfortunately the OM content was not measured
in the 2014 stack samples due to an instrument issue).
It could also possibly stem from an artifact from the
stack dilution system, such as size-dependent sampling
losses in the Venturi inlet.

Few other reports of soluble transition metals in
related samples are available. Jalava et al. (2012) reported
trace metal concentrations, in PM from a heavy-duty
Euro IV engine on a chassis dynamometer burning
HDRD and ULSD (En590) extracted in aqueous 0.08N
HNO3. Compared to our 2015 HDRD values, they
observed lower Cu, V, Ni, and Pb (4–23% of our values),
and Cr at 124%, Mn at 54%, and Fe at 232% (not shown
in Figure 2 for clarity). For reference, the Jalava et al.
(2012) ULSD trace metal concentrations were 55–243%
of the values reported by Verma et al. (2010) except V
and Pb, which were 21 and 6%, respectively. Jalava et al.
(2012) found slightly lower intercellular ROS activity for
HDRD in comparison to ULSD PM, consistent with the
slightly lower transition metals in the HDRD compared
to the ULSD PM.

Figure 2b shows the 2015 mass of soluble metals
per kg of fuel, as well as the mass of metals per kg of
fuel for three of the fuels used in this study, 2014
and 2015 ULSD and 2015 HDRD. Generally, the trace
metal PM concentrations shown in Figure 2b (Cr, Cu,
Fe, Mn, Pb, Se, and V) are in reasonably good agree-
ment with the corresponding fuel values, averaging
146 and 242% for ULSD and HDRD, respectively. V
is much higher in the PM for both fuels, Mn and Cu
are somewhat higher in the PM, and Fe is much
lower, Ni and Pb are lower in PM than the fuels,
while Cr for both fuels and Se in ULSD are similar
(Figure 2b and Table S3), although none of the differ-
ences are significant given the variability in the meas-
urements. If V is excluded, the PM from ULSD and
HDRD average 79 and 131% of the fuel values. Over-
all however, given the scatter in the data, too much
should not be made of the differences. There are sev-
eral potential sources of differences between fuel and
PM metal concentrations, including engine wear
(Agarwal et al. 2003), lubricating oil, and deposition
within the engine (Wang et al. 2003). We were not
able to measure metals in the lube oil as part of the
study. Metals in lube oil have been reported to be
dominated by non-redox active oil additives such as
Ca, Zn, and P (Agarwal et al. 2010) and to account
for <1% of the resulting total PM mass (Storey et al.
2015). The lower concentrations of Fe in the fuel and
PM may be due to losses of Fe in the engine, but
they may also be explained by a significant portion of
the Fe in the PM being in an insoluble form. Fe
forms many complexes and tends to be less soluble
especially at higher pHs than many other transition
metals (Deguillaume et al. 2005).

In comparison to fresher PM, trace element concen-
trations in plume chase and nighttime samples (labeled
“mixed,” Figure 2) were higher for 2015 V, Mn, Fe, Se,
and Cu and in 2014 for Cu; other elements were similar
except 2014 Fe, which was lower. OH formation in the
mixed samples was higher than the corresponding fresh
samples, consistent with the higher concentrations of
soluble redox active metals, and suggesting metal solubil-
ity increases rapidly as aerosols are aged. Evidence for
increasing ROS production as fresh combustion aerosols
are aged, although not necessarily directly linked to
metal solubility, has also been provided by McWhinney
et al. (2013), Li et al. (2009), and Rattanavaraha et al.
(2011).

We were unfortunately not able to collect pure marine
background filter samples, however online measure-
ments indicated very low PM mass concentrations in the
marine boundary layer, less than about 0.5 mg/m3 (Price
et al. 2017), compared to average mass concentrations in
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the mixed samples above 15 mg/m3. Metals in marine
aerosols have been reported in a few instances (Baker
et al. 2013; Chance et al. 2015) but these studies did not
report aerosol mass, and extracted in organic solvent, so
it is difficult to compare with these measurements.

For the whole dataset, some soluble elements were
fairly strongly correlated with one another (Table 2),
including Cr and Co (R2 D 0.57), Mn and Fe (R2 D
0.47), Mn and Cu (R2 D 0.61), and Cu and Pb (R2 D
0.50). Additionally, Mn, Fe, Cu, and Pb were all cross-
correlated with one another at the p< 0.05 level. Divided
by fuel, there are a handful of strong correlations, but no
consistent patterns for ULSD or HDRD between the
2 years (not shown). S and V are commonly used as trac-
ers of ships burning high sulfur fuels such as bunker fuel
(BluewaterNetwork 2000; Lin et al. 2005; Arhami et al.
2009). The much cleaner ULSD and HDRD used here
did not consistently produce high S and produced little
V emissions. Further, the ratio of V/Ni was less than
one, similar to on-road diesel engine exhaust (Lin et al.
2005) rather than above 1.5, the expected value for heavy
oil marine fuels (Arhami et al. 2009).

3.4. Relationships between OH generation and
transition metals

Overall, OH has reasonably strong single variable corre-
lations with transition metals, after controlling for mass
(Table 3); mass normalization is necessary for this data-
set because the 2014 ship stack samples had much higher
masses than the 2015 van samples (Table 1). The correla-
tions were strongest for Mn (R2 D 0.52) followed by Co,

Cu, and V all (R2 D 0.37–0.41), and significant (p <

0.05) for Fe and Se, as well as Pb, Ni, and Mg. Mn, Cu,
Fe, and V have all been shown to produce OH in SLF in
other studies (DiStefano et al. 2009; Charrier and Anas-
tasio 2011; Gonzalez et al. submitted; Paulson et al.
2016); cobalt and the other elements are not expected to
be redox active under our conditions (Table 2). The cor-
relation analyses are confounded by significant co-linear-
ities, as well as large differences in other components in
the particles, including BC and organic material (Figure 3
and Price et al. 2017).

Multivariate analysis of all data resulted in the correla-
tion shown in Figure S4; the only combination for which
the independent variables were all significant (at p <

0.05; here p < 10¡3 for both Mn and V) includes only
Mn and V. Co-linearity tends to reduce the apparent sig-
nificance of other variables, thus this result should not be
interpreted as ruling out a role for other trace metals.
Based on the single variable correlations combined with
results from other studies (DiStefano et al. 2009; Charrier
and Anastasio 2011; Gonzalez et al. submitted; Paulson
et al. 2016) and many others, it is likely that iron and
copper also contribute to OH formation here.

3.5. Relationships between OH and other chemical
components

Figure 3 shows overall chemical composition of the par-
ticles using all data measured in all samples. “Metals” is
dominated by Ca, followed by Mg and Zn (Table S2),
none of which are included in Figure 2, as these are not
expected to be redox active. While soluble trace metal

Table 2. Cross correlations between elements (r2 values), mass normalized in ng/mg. Significant correlations (p < 0.05) are in bold; italic
values indicate a group of metals that all have significant correlations with one another. n indicates the number of samples.

All Fuels, R2 S V Cr Mn Fe Cu Se Pb Co Ni n

S 1 0.04 0.01 0.05 0.04 0.10 0.002 0.005 0.001 0.30 44
V 1 0.04 0.07 0.01 0.11 0.07 0.06 0.007 0.16 57
Cr 1 0.2 0.10 0.11 0.10 0.02 0.570 0.18 57
Mn 1 0.47 0.61 0.22 0.29 0.070 0.47 58
Fe 1 0.11 0.16 0.15 0.010 0.17 56
Cu 1 0.09 0.50 0.020 0.49 57
Se 1 0.04 0.010 0.12 51
Pb 1 0.010 0.14 55
Co 1 0.04 58
Ni 1 57

Table 3. Correlations between OH and metals mass normalized in ng/mg. Bolded values indicate the significant correlations with p val-
ues < 0.05. Italic values indicate that outliers (one for Fe, two each for Ca and Co) were removed. Outliers are defined as the values at
least three times higher than the next highest value.

Ca Mg S V Cr Mn Fe Cu Se Pb Co Ag Ni

N 57 59 44 57 57 58 56 57 51 55 58 45 58
R2 0.12 0.25 0.03 0.37 0.40 0.52 0.23 0.40 0.23 0.32 0.41 0.08 0.28
Slope 0.002 0.01 - 2.93 5.75 3.42 0.37 0.13 4.98 2.16 44.3 - 1.95
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concentrations (Figures 2 and 3) can explain a reasonable
amount of the observed variability in OH formation
among sample types, the data imply other components
are also important. By sample type, OH production gener-
ally increases with increasing redox active transition met-
als, e.g., the sum of Mn, Cu, Fe, and V (Figure 2a).
However, close examination of the data in Figure S4
shows differences in slopes between sample types; the
ULSD slopes are both lower than other data, especially for
2015. These differences may be related to the marked dif-
ferences in BC content (Figure 3) and in the composition
of the organic fraction. In both years, HDRD samples had
a smaller fraction of BC in comparison to the ULSD sam-
ples. The organic material in the ULSD and HDRD PM
was also different; the ULSD particles contained more die-
sel-type hydrocarbon-like organic aerosol (HOA), while
HDRD had more cooking-type HOA (Price et al. 2017).
Mixed samples (aged in Price et al. 2017) were more
depleted in cooking-type HOA. Organic interactions with
metals have been shown repeatedly to be capable of
enhancing transition metal solubility (Sun and Pignatello
1992; Weng et al. 2002; Paris and Desboeufs 2013), and
differences in organics may be responsible for the higher
concentrations of soluble metals and higher OH produc-
tion in the HDRD and mixed samples, although lower BC
could also play a role. The only organic characteristics for

which we had sufficient data to perform a regression, the
O/C and H/C ratio, were not correlated with OH forma-
tion. However, the strong correlations of OH with the sev-
eral of the metals, may mask more moderate relationships
with other characteristics. The sample set (and subsets)
for which we have complete data for OH, elements, O/C
and H/C, and BC are unfortunately not sufficiently over-
lapping to perform a multivariate analysis that includes
transition metals together with any of the carbon-based
variables, thus further testing of this hypothesis is not pos-
sible with this dataset.

3.6. pH 3.5: OH production under atmospherically
relevant conditions

OH production by ULSD and HDRD PM emissions was
also measured by extracting particles in water at pH 3.5,
to mimic acidic aerosol liquid water and nascent cloud
water particles (Figure 4). In all cases, activity of the fresh
emission samples and the plume chasing samples was
substantially smaller than the urban reference data by a
factor of 8 § 4. Similar to SLF extraction, the most active
samples were the 2015 HDRD emissions, however in
contrast to SLF the pH 3.5 2014 HDRD had slightly
lower activity than the ULSD.

OH production averaged 4 § 2 times lower in pH 3.5
compared to SLF extraction solution. The differences
between OH production in SLF and pH 3.5 solutions are
likely largely driven by two factors: the pH dependence
of metal solubility, and the availability of antioxidants to
chelate metals and/or act as electron donors. Metals such
as manganese and copper are already fairly soluble at
high pH, while iron solubility increases dramatically
between pH 7.2 and 3.5 (Deguillaume et al. 2005). Char-
rier and Anastasio (2011) showed that in simplified solu-
tions, one of the antioxidants, ascorbate, can enhance
OH formation by more than two orders of magnitude
for some metals (particularly Fe, Cu, and V). This
enhancement was strongly moderated by glutathione
and citrate in the solution for Cu and V, but further
enhanced for iron. Benzoate, the OH probe used in that
study interacts with manganese, so the effect of SLF sol-
utes is not well understood for Mn. These aerosols also
contain substantial amounts of black and organic carbon,
and this material is also expected to influence OH forma-
tion in ways that are pH dependent. For example, the
chelation activity of carboxylic acid groups present in
complex organic molecules is pH dependent (Tan 2014).

4. Discussion and conclusions

The results indicate a large fraction of OH generation
is controlled by soluble redox-active transition metals,

Figure 4. Average and standard error of OH production divided
by fuel and year in pH 3.5. The 2015 mixed bar contains only one
data point, and 2014 contains two.

Figure 3. Median chemical composition of different sample
types. Total “Metals” includes 13 metals and Se, but was domi-
nated by Mg, Ca, and Zn (Table S2). BC mass concentrations in all
2014 samples were measured with an Aethalometer (Paulson
et al. 2016) and BC mass concentrations in 2015 samples were
measured with an SP2 (Betha et al. 2017).
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and are further consistent with the notion that metal
solubility increases rapidly as freshly emitted particles
are released into the marine boundary layer, which in
turn increases OH formation. Concentrations of trace
metals in the PM emissions appear to be largely due
to trace metals in the fuels, although there may also
be a significant contribution from lubricating oil or
from the engine itself. OH formation and soluble
metals were as high or higher in HDRD compared to
ULSD emissions.

Simultaneous measurements of particle chemical
composition and concentrations show that the mass
and number of particles also increase in HDRD com-
pared to ULSD engine emissions (Betha et al. 2017;
Price et al. 2017). Taken together, these measure-
ments indicate that switching fuels may result in par-
ticles that are as or more harmful to human health.
However, due to the variability of the results between
samples and engine conditions, these results should
be verified with additional sampling under a variety
of sea and ship conditions.
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