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Abstract

An important function of human visual perception is to
permit object classification at multiple levels of
specificity. For example, we can recognize an object as a
“car,” (the basic level) a “Ford Mustang” (subordinate
level), and "Joe's Mustang" (instance level). Although this
capacity is fundamental to human object perception, most
computational models of object recognition either focus
exclusively on basic-level classification (e.g., Biederman,
1987; Hummel & Biederman, 1992; Hummel &
Stankiewicz, 1996) or exclusively on instance-level
classification (e.g., Ullman & Basri, 1991; Edelman &
Poggio, 1990). A computational account that naturally
integrates both levels of classification remains elusive.
We describe a general approach to representing numerical
properties (e.g., those that characterize object shape) that
simultaneously supports both basic and
subordinate/instance-level recognition. The account is
based on a general nonlinear coding for numerical
quantities describing both featural variables (such as degree
of curvature and aspect ratio) and configural vanables (such
as relative position). Used as the input to a classifier with
Gaussian receptive fields, this representation supports
recognition at multiple levels of specificity, and suggests
an account of the role of attention and time in the
classification of objects at different levels of abstraction.

Introduction

One of the most notable properties of human visual
perception is our capacity to recognize objects despite
variations in the viewing conditions under which the image
is presented to the retina (e.g., viewing angle). Numerous
models have been proposed in the attempt to account for this
property of human object recognition. These models can be
divided into two broad classes according to the general
strategy they adopt to attack this problem (see Liu, Knill &
Kersten, 1995; Tarr, 1995). One class (typically associated
with structural description theories of recognition) exploits
categorical image properties as the primary basis for object
recognition (e.g., Biederman, 1987; Hummel & Biederman,
1992; Hummel & Stankiewicz, 1996). On this account,
objects are represented in terms of categorical features
(including the categorical relations among those features)
that remain unchanged as an object's distance or orientation
relative to the viewer varies: Because the features remain the
same in many views, recognition is unaffected by many
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changes in viewpoint. The other class of models uses
alignment (e.g., Ullman, 1989), view interpolation (e.g.,
Poggio & Edelman, 1990) or other normalizations (see
Hummel & Stankiewicz, 1995) to bring new object views
into correspondence with stored views: Here, the
normalization serves to correct for variations in the locations
of an object's features (in the image) that result from
variations in viewpoint.

One notable difference between these approaches is that
the former emphasizes the role of categorical image
properties (such as categorical features and relations),
whereas the latter emphasizes the role of holistic metric
properties (specifically, the numerical coordinates of object
features). In addition to supporting different algorithms for
discounting variations due to viewpoint, these differing
approaches to object representation also give rise to different
"expertise" at different levels of classification (Biilthoff &
Edelman, 1992): Categorical models may provide a better
account of recognition at the basic level (e.g., recognizing
an object as a "car"; Rosch, Mervis, Johnson, & Boyes-
Braem, 1976), while metric models may provide a better
account of recognition at the subordinate or instance level
(e.g., recognizing an object as a "Mustang" or "Joe's
Mustang").

The human is expert at both basic- and subordinate-level
classification. It is tempting to speculate that this dual
expertise reflects the simultaneous operation of both
approaches to recognition: Perhaps categorical features or
structural descriptions allow us to classify objects at the
basic level while metrically-specific holistic representations
allow us to classify objects at the subordinate or instance
level (Biilthoff & Edelman, 1992; Farah, 1992). While this
account is almost certainly correct for some cases of
subordinate-level recognition (e.g., face recognition), it is
likely inadequate as a complete account of human multi-
level classification. One problem with this account is that
it predicts that people will classify objects at the
subordinate-level faster than they classify objects at the
basic-level (holistic representations can be generated much
faster than categorical structural descriptions; see Hummel &
Stankiewicz, 1996), whereas people are fastest to classify
objects at the basic level (e.g., Rosch, et. al, 1976). A
second limitation of this account is that it predicts that
subordinate level recognition should be more holistic than
basic-level classification. While this is true for face
recognition (Tanaka & Farah, 1993), it is not true for all
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subordinate-level classification tasks (e.g., Biederman &
Schiffrar, 1987). Given these considerations, it seems likely
that the human visual system achieves multi-level
classification on the basis of something more sophisticated
than a simple hybrid holistic-categorical representation of
shape.

This paper presents our progress toward a model of multi-
level classification based on a different kind of hybrid metric-
categorical representation of object shape. Following the
structural approach of Hummel and Biederman (1992;
Hummel & Stankiewicz, 1996), we assume that independent
attributes are represented on independent units (i.e., rather
than representing attributes and their locations holistically as
complete "views"). But in contrast to these models, we
assume that shape attributes are not coded in a strictly
categorical fashion (e.g., "straight vs. curved", "parallel vs.
non-parallel,” etc.). Rather, we adopt a representation of
numerical quantities (such as degree of curvature and degree
of parallelism) that captures both the metric and categorical
aspects of those quantities. Like a categorical
representation, the proposed representation changes fastest
across categorical boundaries (such that the representation of
curvature 0.1 [slightly curved] differs more from curvature 0
[straight] than it differs from curvature 0.2 [more curved]).
But like a metric representation, it also captures differences
between numerical values on the same side of a categorical
boundary (e.g., between curvature 0.1 and curvature 0.2). In
combination with an architecture for classifying objects on
the basis of these metric-categorical (“MetriCat”)
representations, the result is a model that can classify
objects at multiple levels of abstraction simultaneously.
The model also suggests a natural account of the role of
attention and time in classification at different levels of
specificity, and the relationship between view specificity and
levels of classification.

The MetriCat Representation of Numerical
Values

As described here, the model is addressed only to the
representation of properties that can be characterized as real
values (or differences of real values) along a single
dimension. For example, local curvature can be
characterized in terms of a real number ranging from -o°
(infinitely curved in one direction) to O (straight) to ©°
(infinitely curved in the opposite direction). Similarly, the
expansion in the axis between two straight lines can be
described by a real number in the range -©°...09, where
negative values indicate that the axis narrows from end A to
end B, positive values indicate that it expands from end A to
end B, and zero indicates that the it remains a constant width
along its length (i.e., the lines are parallel). A strictly
categorical representation of these values might represent
curvature = 0 as "straight" and all curvatures # 0 as "curved";
likewise, the axes might be represented as simply "parallel”
(expansion = 0) or "non-parallel" (non-zero expansion).
Such codes change rapidly at a single point (the transition
point between adjacent values), and do not change at all in
between those values. This property is responsible for the
utility of categorical codes for class recognition and for
discounting variations in viewpoint (see, e.g., Biederman,
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1987), but it is a liability as a basis for instance-level
recognition: Two shapes that can only be distinguished by,
say, the degree of curvature on a given edge will be identical
in a strictly categorical code.

MetriCat represents numerical values in an intermediate
fashion, in that it emphasizes differences across categorical
boundaries (e.g., straight vs. curved.) without completely
discarding differences on the same side of a categorical
boundary (e.g., different degrees of curvature). Specifically,
we represent numerical variables as a logistic function of
their raw numerical value (see also Hummel & Stankiewicz,
1995):

1

C = ——s (l)
1+¢ RK
where C is the represented value, R is the raw numerical
value, and K is a constant. Like a categorical code, C(R) has
the property that it changes fastest across categorical
boundaries in R. For example, if R is local curvature, then
adding a small degree of curvature, say 1, to R =0 (a
straight line) has a greater impact on the value of C than
adding the same amount of curvature to R = 10 (a curved
line) (C(0) - C(1) = 0.5 0.731 = -0.231, whereas C(10) -
C(11) = 0.99954 - 0.9998 = -0.00044). Thus, like a
categorical variable, C changes fastest when the raw value,
R, crosses a categorical boundary; but unlike a purely
categorical variable, C continues to change even within
categorical boundaries of R.

We assume that objects are visually represented in terms
of the MetriCat values of each of several numerical
quantities (such as the aspect ratio and cross-section
curvature of each of their parts; see Biederman, 1987). The
value of each variable, C, is coded as a vector ¢!, where the
J th element of ¢! is a unit, c¢'j, with receptive field in C!
that has a specific center, pi'j, and a specific width, w!j. In
the current model, the widths and centers were set to random
values in the ranges 0 < w < 0.5 and 0 < u < 1.0,
respectively.
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Figure 1: Illustration of the MetriCat representation of a
specific value of R. C is a logistic function of R and units
(right side) respond to specific values of C.

The bottom-up input to unit c’; at time ¢ is:

i _ i i
Ij’t G(‘C ujl,wj), (2)



where G is the Gaussian, C! is the input real value input on
dimension i, yj is the center of receptive field j, and w‘j is
the width (standard deviation) of receptive field j. For the
purposes of the simulations reported here, we assume that
every object is represented by two MetriCat vectors, ¢! and
c“, where each vector encodes the MetriCat representation of
one numerical variable. For our current purposes, the
precise meanings of these vectors (e.g., el codes
curvature”, etc.) is unimportant. Rather, we are interested in
the properties of the collection of vectors as a basis for
classifying arbitrary objects whose similarity relations are
defined to correspond to different basic-level classes (i.e.,
low similarity, or very different vector representations) and
different members of those classes (i.e., high similarity, or
similar but non identical vector representations): Will the
model treat different members of the same “class" as similar
but not identical?

Classification Based on MetriCat Values

To answer this question, it is first necessary to specify an
appropriate algorithm to perform classification on the basis
of the vectors generated by any given object. For this
purpose, the model uses Gaussian radial basis functions
(e.g., Poggio & Girosi, 1990; Poggio & Edelman, 1990) in
the 50 dimensional space given by the two MetriCat vectors
(cl and cz), each with 25 units, c‘j (j = 1..25). Every
object is coded in the model's memory as a collection
classifier units with Gaussian receptive fields in this 50
dimensional space. The center of a given unit's receptive
field corresponds to the “preferred" pattern for the
corresponding object. Each object, k, is coded by 3
classifier units with the same center but with different
standard deviations, o (0 take values of 0.02, 0.01 and
0.0066). Small o allow units to tolerate only small
deviations from their preferred patterns; such units thus
perform instance-level classification. Larger o permit larger
deviations from the preferred pattern, and permit a unit to
perform class recognition (responding to multiple, similar
patterns). The input value, Ik, of classifier unit k in
response to the vector representation, s, of a given stimulus
is given by:

I = G(lpy ~ s} o).
where G is the Gaussian, and pk is k's preferred vector.

The activation of a given classifier unit k at time ¢
changes as:

(3)

1-Af

AA}{ = 0.9( .

t t
)Ik ~0.254L @

Algorithm

In addition to its bottom-up input (Eq. 1), each MetriCat
unit, c‘j. also receives lateral excitation from other units in
cl. Unit j excites unit i to the extent that its center lies
within i's receptive field. The input from j to i is:

LE =4, G{J}Ai -1 )

wl. j
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where G is the Gaussian, and y; and y; are the centers of
receptive fields i and j and Aj is the activation of unit j.
Broad units, which will tend to have many other units in
their receptive fields, will tend to receive more lateral
excitation than narrow units, which will have fewer other
units in their receptive fields. As a result, MetriCat units
with broad receptive fields tend to become active faster than
units with narrow receptive fields: Coarse information about
an object's shape becomes available earlier than information
about its fine metric details. The utility of this property is
that the coarse information is more robust to noise than is
fine information. Noise may originate in both the stimulus
and the system. Stimulus-induced noise may result from
changes in viewpoint (i.e., producing slight deviations from
the expected values of an object's metric properties); system-
induced noise may result from random variations in the
magnitude of neural impulses (or myriad other sources). At
the MetriCat level of representation, lateral excitation makes
coarse noise-tolerant information available rapidly; at the
classifier level, the initial absence of fine metric information
has a greater adverse impact on classifier units with narrow
receptive fields than it has on units with wide receptive
fields. As a result, class recognition precedes instance
recognition. This property is apparent in the simulation
results.

Simulations

Simulations were run with four one-part objects, Al, A2,
B1, and B2. Each object was defined by real values on two
dimensions, C! and C2. Objects were created in pairs (A
and B) such that members of the same pair were more
similar to one another than to either member of the other
pair. Object Al had values [0.25, 0.1] (on C! and C2,
respectively), A2 had [0.25, 0.3], B1 had [0.75, 0.1], and B2
had [0.75, 0.3]. Note that members of the same pair have
identical values on Cl1 and, and each member of one pair
shares the same value of C2 with one member of the other
pair. But overall, objects are more similar within than
between pairs. This arrangement permitted us to observe
three properties of the model: (1) Can it distinguish highly
similar objects? (2) Will classifier units with broad receptive
fields respond to both members of a class? and (3) What is
the time course of the model's ability to make within- vs.
between-class distinctions?

Simulations were run in two phases: 2000 (unsupervised)
learning iterations followed by 1000 test iterations. Objects
were presented to the model by means of oscillatory gates
(Hummel & Stankiewicz, 1996) that controlled the input to
the MetriCat units. Each gate was associated with one
object (i.e., part), with the result that (a) the properties of
one object "fired" (were passed to MetriCat) out of
synchrony with the properties of other objects, and (b) there
was random noise in inputs to the MetriCat units, especially
during transitions between different objects (see Figure 3,
lower frame). During learning, new classifier units were
recruited whenever (i) the average AA; over all of MetriCat
units, /, was less than 0.03, and (ii) the Euclidean distance
between the current MetriCat pattern of activation and that
of all preferred classifier patterns was greater than 0.1.
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Figure 2: Model responses (over time) on a
representative test run. Upper: Activation of three
classifier units (one wide, one medium, and one
narrow). Lower: Activation of the corresponding
oscillator.
Three different classifier units were recruited in response to
each learned MetriCat pattern. The three units for a pattern
have the same p (preferred pattern) but different o (receptive
field width). Test iterations were run in the same manner as
the training iterations except that no learning took place.
Figures 2 and 3 show activation as a function of time for
three classifier units with the same preferred pattern but
different o (top row) and the corresponding oscillator
activations (bottom row). The temporal ordering of
classifier responses is apparent in Figure 2. Note that the
classifier with the widest receptive field reaches asymptote
first, followed by the medium unit and finally the narrow
units.

The coarse classification behavior of the wide units is
apparent in Figure 3. The wide classifier shown in the
figure was recruited to respond primarily to A2. Note that
this classifier responds most strongly to A2 but also
responds to Al. Although it does not appear in the figure,
the wide unit recruited for Al showed the complementary
response pattern. Neither unit responded to B1 or B2. The
medium and narrow units responded very little to non-
preferred inputs (e.g., the narrow units for Al did not
respond at all to A2). As apparent in Figures 2 and 3, the
model classifies its inputs at a coarsest level first and later at
finer level: Those units that become active rapidly (Figure 2)
are the same as those that respond to patterns that deviate
from their preferred patterns (Figure 3).
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Figure 3: Model responses (over time) on a
representative test run. Upper: Activation of three
classifier units that respond preferentially to A2.
Lower: Activation of the Al and A2 oscillators.

Discussion

The MetriCat model represents numerical values at multiple
levels of specificity and combines the properties of both
categorical and metric representations of numerical variables.
Coupled with an appropriate classifying routine (e.g.,
Gaussian basis functions), this approach to the
representation of numerical values has a number of desirable
properties as a basis for multi-level classification. The
preliminary simulations reported here are consistent with
this claim. First, information about the general properties
of a stimulus are made available faster than specific
information. The utility of this property is that coarse
information, which becomes available first, is also more
robust to noise (e.g., resulting from changes in viewpoint;
Biederman, 1987) than is metrically precise information,
This property permits rapid recognition that is robust to
noise in the input (e.g., as a result of variations in
viewpoint) and noise in the system (e.g., as a result of the
oscillators). The rapid availability of coarse information
also suggests an account of our ability to categorize an
object at the basic-level (e.g., "car") faster than we can
classify it at the subordinate-level (e.g., "Mustang").

A second important property of this architecture is its
ability to capture the hierarchical similarity relations among
different stimuli. In some ways this capacity is property of
any vector coding of a population of stimuli. However, the
architecture here takes this capacity one step further and (by
the activity of the classifier at different scales) explicitly tags
the level at which to stimuli are similar or different. It is in



this respect that the model performs multi-level
classification. As visible in Figure 3, the broad classifier
responsive to A2 responds to both Al and A2, but more
strongly to A2. Such broad units may be useful for general
(e.g., basic level) classification. However, the medium and
narrow classifiers responsive to A2 respond only to A2.
Such units may be useful for subordinate- and instance-level
classification.

In answer to the questions posed above: (1) The model can
distinguish highly similar objects on the basis of the
classifier units with narrow receptive fields (A1 from A2 and
B1 from B2; see Figure 3). (2) Classifier units with broad
receptive fields respond to both members of a class. And (3)
as illustrated in Figure 2, the model categorizes objects at a
general level (via units with wide receptive fields) before it
classifies them at the subordinate or instance level (units
with medium and narrow receptive fields). Using a unified
representation of numerical variables at different levels of
specificity (e.g., "categorical" and "metric"), the model
suggests an account of why basic-level classification is
faster than subordinate- or instance-level classification
(Rosch et. al., 1976).

The model's account of this finding relates to the role of
noise in the stimulus and in the classifying system. Coarse
MetriCat units are both faster to respond and more robust to
deviations from their preferred inputs (e.g., as resulting from
noise) than are fine units. As a result, coarse (roughly
categorical) information becomes available earlier than fine
(more metric) information. The classifier units exploit this
difference: Because broad classifiers are more robust to
deviations from their preferred patterns than narrow
classifiers, they are less sensitive to the initial absence of
activity in the fine MetriCat units. Broad classifiers
therefore respond earlier in processing than narrow
classifiers. As processing proceeds, the fine MetriCat units
begin to respond, so the resulting pattern better fits any
narrow classifier units that are tuned to respond to it. Noise
is inevitable under realistic assumptions about the world and
neural information processing. The current approach
provides a basis for rapid general classification and
subsequent detailed classification even in the presence of
such noise.

The model also suggests an account of the role of
attention in subordinate-level classification. More time is
required to activate fine MetriCat units than coarse MetriCat
units. Attention may serve in part to devote the necessary
processing time to diagnostic elements of an object's shape.
Thus rather than generating a holistic representation of an
object for the purposes of subordinate-level classification,
the current model suggests that attention may instead direct
processing to diagnostic elements. Although this idea is
intuitive, the current model provides the first computational
account of the representations that may serve as the basis for
this selective processing, and the classification routines that
may exploit it.

The simplified simulations reported here were run with
MetriCat as a stand-alone system. However, the utility of
the MetriCat approach lies in its properties as a component
of a more general object recognition system. In particular,
MetriCat can easily be incorporated as a component of a
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more complete model of object recognition. The problem of
object recognition can be broken down into two questions:
What general properties does the visual system make
explicit an object's image? and How does it represent those
properties and match them to memory for the purposes of
recognition? The MetriCat model is addressed to the second
question. MetriCat differs from other general classification
systems (such as Poggio's GRBFs) in that it is addressed not
only to the problem of how to classify a stimulus given a
particular numerical input (a task for which GRBFs are
extremely well suited) but also to the question of how to
represent that numerical input,
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