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Abstract 

Saliency-based Explainable AI (XAI) methods have been 
commonly used for explaining computer vision models, but 
whether they could indeed enhance user understanding at 
different levels remains unclear. We showed that for object 
detection AI, presenting users with AI ’s output for a given 
input was sufficient for improving feature-level and some 
instance-level user understanding, particularly for false alarms, 
and providing saliency-based explanations did not have 
additional benefit. This was in contrast to previous research on 
image classification models where such explanations enhanced 
understanding. Analyses with human attention maps suggested 
that humans already attended to features important for AI’s 
output in object detection and thus could infer AI’s decision-
making processes without saliency-based explanations. 
However, it did not enhance users’ ability to distinguish AI’s 
misses and hits, or system-level understanding. Therefore, the 
effectiveness of saliency-based explanations is task-dependent, 
and alternative XAI methods are required for object detection 
models to better enhance understanding. 

Keywords: explainable AI; user understanding; object 
detection; saliency map; eye movements 

Introduction 

Recently the performance of artificial intelligence (AI) 

models has improved greatly due to the advance of deep 

learning methods and increased availability of large datasets. 

However, they have also become black boxes whose inner 

workings cannot be easily understood by their users or even 

creators (Lillicrap & Kording, 2019). Various explainable AI 

(XAI) methods have been developed to address this issue. For 

computer vision models, a common approach is to generate 

saliency maps that highlight pixels important to the model’s 

decision (Petsiuk et al., 2018; Selvaraju et al., 2017). Quality 

of saliency maps could be evaluated by their faithfulness to 

the model, i.e., whether the saliency map accurately 

highlights input features that can lead to changes in AI’s 

output (Samek et al., 2016). Nevertheless, computational 

metrics such as faithfulness alone cannot ensure that an XAI 

method can help users understand the AI model. Recent 

research has pointed out the importance of considering users’ 

cognitive states during the explanation process and proposed 

cognitive metrics (e.g., Hsiao, Ngai, et al., 2021).  

One potential cognitive metric is to assess user 

understanding of AI by simulatability, or how well the user 

can predict AI’s behavior on new inputs (Hase & Bansal, 

2020). Simulatability can be measured by two types of tasks: 

forward and counterfactual simulations (Doshi-Velez & Kim, 

2017). Forward simulation involves predicting the output 

given an input, while counterfactual simulation involves 

predicting the change to the output given a change to the input. 

Previous studies have used forward simulation tasks and 

found that saliency maps could improve user understanding 

for image classification models. For instance, Alqaraawi et al. 

(2020) found that saliency maps helped participants better 

predict the model’s output category on a new image. 

Similarly, Yang et al. (2022) found that participants typically 

expected AI to make similar classifications as themselves, 

and saliency map explanations helped them update this belief 

and predict AI’s output category more accurately. Previous 

studies have also revealed that explanations could affect 

different levels of understanding differently. Specifically, 

saliency map explanations helped users attend to specific 

features when asked to infer what the model was sensitive to, 

but this feature-level understanding had a limited facilitation 

effect on their performance in predicting the model’s general 

behavior on novel images as assessed in forward simulation 

(Alqaraawi et al., 2020). In addition, Kenny et al. (2021) 

found that instance-level understanding as the result of 

explanations did not necessarily aggregate into overall 

improvements at the system level. These findings raised the 

possibility that explanations may affect lower-level 

understanding more than higher-level understanding.  

Accordingly, here we aimed to investigate the effect of 

saliency-based explanations on the different levels of 

understanding, which we termed as feature-, instance-, and 

system-level understanding. We focused on object detection 

models because of their important role in critical AI systems 

such as autonomous driving and medical imaging. 

Specifically, we examined object detection tasks in driving 

scenarios using a widely used object detector with high real-

time performance, Yolo-v5s (Jocher, 2020). We used both 

forward and counterfactual simulation tasks to assess 

participants’ understanding of the object detector at the three 

levels before and after a training phase, where they saw its 

output on different images with or without the saliency map 

explanations. Forward simulation allowed us to examine 

instance- and system-level understanding separately, where 

1917
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



instance-level understanding could be measured by how well 

participants predicted AI model’s hits, misses, and false 

alarms, while system-level understanding could be quantified 

by summing over participants’ predicted performance of AI 

across instances. Counterfactual simulation assessed feature-

level understanding by asking participants to judge whether 

covering certain features could lead to changes in AI’s 

decisions. Previous studies found that explanations generally 

had greater impact on the understanding of AI’s mistakes 

than correct instances (Kenny et al., 2021; Yang et al., 2022). 

In addition, current saliency-based explanations typically do 

not highlight features for objects that were not detected by AI, 

including misses. Therefore, saliency maps may help users 

better predict false alarms than hits and misses. 

Previous research has reported an association between 

learners’ understanding or knowledge level of visual stimuli 

and their eye movement behavior (Gegenfurtner et al., 2011; 

Kruger and Steyn, 2014). For instance, Zheng et al. (2022) 

found that during multimedia learning, learners who used a 

more centralized eye movement pattern (i.e., focusing on the 

screen center) had better comprehension of the lessons. These 

findings suggested that we may use eye movement behavior 

as an objective measure to monitor users’ current 

understanding without interrupting their cognitive processes 

involved in the task by using subjective measures (Hsiao, 

Ngai, et al., 2021). Accordingly, here we performed eye 

tracking and used participants’ eye movements during 

simulation as an alternative measure of understanding. To 

better capture the substantial individual differences in both 

the spatial (where participants look) and temporal dimension 

of eye movements (the order of where they look) observed in 

visual tasks (Peterson & Eckstein, 2013), we analyzed the eye 

movement data with a data-driven approach, Eye Movement 

analysis with Hidden Markov Models (EMHMM; Chuk et al., 

2014) with co-clustering (Hsiao, Lan, et al., 2021). This 

approach allowed us to discover representative attention 

strategies among the participants and use them to quantify 

individual eye movement patterns. It also allowed us to 

quantify eye movement consistency using the entropy of the 

hidden Markov models (HMMs), with higher entropy 

indicating less consistent or more adaptive attention 

strategies. We hypothesized that saliency-based explanations 

would help enhance user understanding of an object detection 

model’s decision beyond presenting the model’s output alone, 

similar to what was found with image classification models. 

However, the effectiveness of such explanations might 

decrease at a higher level of understanding. At the instance 

level, saliency maps may be more helpful for predicting false 

alarms than hits and misses. Finally, participants’ attention 

strategies during simulation may become more consistent 

with features used by AI as a result of training, especially 

after training with saliency maps. 

Methods 

Participants 

We recruited 68 participants (43 females) aged between 18 to 

30 years (M = 21.7, SD = 2.9) from a local university. The 

participants all had normal or corrected-to-normal vision. 

Power analysis indicated that assuming medium effect sizes, 

34 participants were required to detect a within-between 

interaction for mixed ANOVA (α = .05, β = .08, f = .25) and 

that 55 participants were required to conduct linear regression 

analyses with one predictor (α = .05, β = .08, f2 = .15). 

Materials 

Three sets of images, each with 32 images, were randomly 

selected from the CODA dataset, a novel dataset of object-

level corner cases in real-world driving scenes (Li et al., 

2022). Each image set was selected such that the number of 

hits was roughly equal to the number of misses and false 

alarms and the number of misses was roughly equal to the 

number of false alarms (the difference was less than 10% of 

the total number of objects). 

Two image sets were used for the pre- and post-training 

simulation tasks, with the order counterbalanced across 

participants, and one set was used for training. For 

counterfactual simulation, we generated 20 perturbed images 

for each correctly detected target by adding blocks with 

randomly generated RGB values that cover different parts of 

the bounding box and randomly selected one perturbed image 

for each image. Specifically, we generated 20 distinct 

perturbation blocks for each bounding box, with central 

points evenly distributed across the bounding box in a 4 × 5 

grid. The dimensions of each perturbation block were one-

fourth of the bounding box’s width and one-fifth of its height. 

Saliency maps were generated using FullGrad-CAM++ (Liu 

et al., 2023a), an effective gradient-based XAI method 

designed for object detection models. Compared with 

traditional gradient-based XAI methods such as Grad-CAM 

(Selvaraju et al., 2017), it can generate instance-specific 

saliency maps with higher faithfulness and plausibility. All 

images were resized to 1024 × 576 pixels and displayed on a 

375mm × 300 mm monitor with a resolution of 1024 × 768 

pixels. Each image spanned 29.99° × 18.26° of visual angle 

at a viewing distance of 70 cm.  

Design 

The design consisted of a within-participant variable, time 

point (pre- vs. post-training), and a between-participant 

variable, training condition (with vs. without saliency maps). 

The dependent variables were participants’ performance and 

eye movement measures in the simulation tasks (see Data 

Analysis section). A 2 × 2 mixed ANOVA was used. We then 

examined whether training effects in eye movements could 

predict performance change through regression. 

In a separate analysis, we examined how well participants’ 

attention maps during the stimulation tasks reflected features 

important to AI’s output by calculating the faithfulness 

measure of the attention maps given the AI model (see Data 

Analysis section) as an alternative measure of user 

understanding. To do this, for each image we generated four 

human attention maps by aggregating participants’ eye 

movements for each time point and training condition 
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combination, and conducted a by-image 2 (pre-training vs. 

post-training) by 2 (with vs. without saliency maps) repeated-

measures ANOVA on the faithfulness of these attention maps. 

 
Figure 1: Example image stimuli. 

Procedures 

Participants first completed a vehicle detection task with 

stimuli from all image sets to measure baseline performance 

and eye movement behavior. They then completed the two 

pre-training simulation tasks, starting from forward 

simulation. Next, they went through the training phase with 

or without seeing saliency maps, depending on the condition 

to which they were randomly assigned. After training, they 

proceeded to the two post-training simulation tasks on a 

different set of images. Participants’ eye movements were 

tracked with an EyeLink Portable Duo eye tracker (SR 

Research). A nine-point calibration and validation procedure 

was performed at the beginning of the experiment, and re-

calibration took place whenever drift check error exceeded 1° 

of visual angle. Each trial started with a drift check at the 

center of the screen, and the stimulus appeared after a stable 

fixation at the center was observed. 

 

Detection Participants were presented with images of driving 

scenes one at a time (Figure 1a) and were asked to detect all 

vehicle targets, including cars, buses, and trucks, by placing 

a marker on each target with a mouse click. 

 

Forward Simulation Participants saw images with the 

ground truth bounding boxes marked (Figure 1b). They were 

asked to click on all the targets they thought AI model (Yolo-

v5s) could detect (hits) and all the non-targets that AI model 

would falsely detect (false alarms), while not clicking on the 

targets that they thought AI model would not detect (misses). 

 

Counterfactual Simulation Participants were presented 

with images where one correctly detected target was marked 

 
1  Cosine similarity is calculated as (A·B)/(||A||×||B||), 

where A and B are vectors containing measures of recall or 

(Figure 1c). They then saw a perturbed image where part of 

the marked target was covered by noise (Figure 1d) and were 

asked to judge whether the output of AI would change. They 

could freely switch between the two images.  

 

Training Participants saw images where AI model’s hits, 

misses, and false alarms were marked with color coded 

bounding boxes in green, blue, and red respectively (Figure 

1e). For participants in the “with saliency map” condition, 

they also saw the saliency maps (Figure 1f) and could freely 

switch between the two views. 

Data Analysis 

 

Behavioral Measures Detection performance was measured 

by recall (number of correctly detected targets divided by 

total number of targets), and precision (number of correctly 

detected targets divided by total number of objects clicked). 

For forward simulation, we evaluated instance-level 

understanding using three measures: (1) Discrimination 

sensitivity of AI’s hits and misses as measured in D’, i.e., how 

well participants could judge whether a ground truth 

bounding box was a hit or a miss. It was calculated as 

z(Number of Correctly Predicted Hits/Total Number of Hits) 

– z(Number of Incorrectly Clicked Miss/Total Number of 

Misses), where z indicates z-transformation. (2) Number of 

AI’s false alarms guessed. (3) Accuracy of predicting AI’s 

false alarms, i.e., the number of correctly predicted false 

alarms divided by the total number of false alarms. In 

addition, we examined system-level understanding first by 

the similarity between participants’ performance in the 

baseline object detection task (recall and precision) and their 

predicted performance of the AI model across images using 

cosine similarity1 as a measure of the similarity between their 

own mental model of the task and their mental model of how 

AI performed the task. A decrease in this measure could 

indicate that participants updated their mental models about 

AI, instead of merely assuming that AI would behave like 

themselves. Another measure of system-level understanding 

was the similarity between participants’ mental models of 

how AI performed the task and AI’s actual performance by 

calculating the cosine similarity between their predicted 

recall/precision of AI and AI’s actual recall/precision across 

images. An increase in this measure could indicate that 

participants’ mental models of AI had become more accurate. 

For counterfactual simulation, we measured performance 

by accuracy to assess feature-level understanding. 

 

Eye Movement Measures EMHMM (Chuk et al., 2014) 

with co-clustering (Hsiao, Lan, et al., 2021) was used to 

analyze participants’ eye movement patterns during the 

baseline detection task. Each participant’s eye movements on 

each image were summarized with one HMM, which 

contained person-specific regions of interest (ROIs) and 

precision across images. A·B is the dot product and ||A|| and 

||B|| are the Euclidean norms of the two vectors. 
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transition probabilities among these ROIs. The optimal 

number of ROIs for each individual HMM was determined 

using a variational Bayesian approach from a preset range of 

1 to 10. Each individual HMM was trained 200 times, and the 

HMM with the highest log-likelihood was chosen. 

Participants were then clustered into two pattern groups using 

the co-clustering method, which put participants who shared 

similar eye movement patterns across the stimuli into the 

same group. A representative HMM was generated for each 

pattern group and each image, with the number of ROIs set 

to be the median number of the group members’ individual 

HMMs. The co-clustering procedure was repeated for 200 

times; the result with the highest log-likelihood was selected. 

Following previous studies (e.g., Hsiao, Chan, et al., 2021; 

Qi et al., 2023), each participant’s eye movement patterns 

could be quantified using the A-B scale, which was defined 

as (LA – LB)/(|LA| + |LB|). LA and LB were the log-likelihoods 

of a participant’s eye movement data being assigned to 

Pattern Group A and B, respectively, and a more positive A-

B scale indicated higher similarity to Pattern Group A. We 

also calculated each participant’s eye movement entropy to 

measure eye movement consistency by summing the 

entropies of their individual HMMs across the stimuli. 

For eye movement data during simulation and training, the 

same methods were used to generate the individual HMMs 

and to calculate the entropy. To make the eye movement 

pattern measure (A-B scale) comparable across time points, 

we used the two representative pattern groups discovered 

from the baseline detection task to quantify the A-B scale in 

both the stimulation tasks and training. Counterfactual 

simulation involved looking at only one target, so the eye 

movement patterns would not be comparable to those during 

detection. Thus, we focused our analysis on entropy.  

 

Faithfulness We generated human attention maps by 

applying a Gaussian kernel with a standard deviation of 30 

pixels (approximately 1° of visual angle) to smooth the eye 

fixations. We then computed faithfulness of the human 

attention maps and XAI saliency map for the AI model on 

each image using the deletion approach, which deleted salient 

areas step-by-step according to the saliency scores and filled 

the deleted regions with random noise. 100 steps were 

conducted with 1% of the total area deleted in each step and 

the confidence changes were recorded (Chattopadhay et al., 

2018, Liu et al., 2023a). The area under the deletion curve 

was used as the faithfulness measure. 

Results 

Effect of Training on the Understanding of AI 

 

Forward Simulation For instance-level understanding, after 

training participants guessed more AI’s false alarms, F(1, 66) 

= 29.35, p < .001, η2
p = .308, and had higher accuracy for 

predicting its false alarms, F(1, 66) = 14.59, p < .001, η2
p 

= .181. However, they did not become better at distinguishing 

AI’s hits and misses, F(1, 66) = 1.38, p = .244, η2
p = .020. 

Meanwhile, none of training effects interacted with training 

condition (ps = .288, .845, .533, respectively), indicating that 

training had similar effects on instance-level understanding 

regardless of whether saliency maps were included. 

For system-level understanding, participants’ mental 

model of AI’s performance became less similar to their own 

detection performance after training, both in terms of recall, 

F(1, 66) = 6.87, p = .011, η2
p = .094, and precision, F(1, 66) 

= 19.47, p < .001, η2
p = .228. These results indicated that 

participants no longer assumed that AI performed similarly 

to themselves after they updated their mental models of AI’s 

performance as a result of training. However, their prediction 

of AI’s performance did not become more similar to AI’s 

actual performance, both for recall, F(1, 66) = 0.61, p = .439, 

η2
p = .009, and for precision, F(1, 66) = 0.86, p = .375, η2

p 

= .013, suggesting that their mental models of AI did not 

become more accurate. Similarly, none of the effects 

interacted with training condition (ps = .300, .851, .798, .158, 

respectively), suggesting that saliency maps did not enhance 

system-level understanding either. 

 

Counterfactual Simulation After training, participants had 

improved counterfactual simulation accuracy, F(1, 66) = 7.17, 

p = .009, η2
p = .098, indicating that participants had better 

understanding about which features could affect AI’s output. 

However, similar to forward simulation, this effect did not 

interact with training condition, F(1, 66) = 0.14, p = .713, η2
p 

= .002, indicating that saliency maps also could not enhance 

feature-level understanding. 

 
Figure 2: Example representative HMMs for the explorative 

and focused pattern groups during detection. ROIs as 2-D 

Gaussian emissions are represented by the ellipses and raw 

fixations are represented by the dots. Priors reflect the 

probability for the first fixation to be on a certain ROI, 

while the transition matrices show the transition 

probabilities among the ROIs. 

Eye Movement Pattern and Entropy During the 

Detection, Training, and Simulation 

 

Detection Using EMHMM with co-clustering, we 

discovered the explorative and focused eye movement 

pattern groups, consistent with a previous study (Yang et al., 

2023; Figure 2). Explorative participants scanned a wider 

region around the center of the image, while focused 

participants mainly scanned along the horizon, where 
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vehicles were most likely to appear. Therefore, the A-B scale 

was referred to as the Explorative-Focused (EF) scale. KL 

divergence estimation showed that the two groups differed 

significantly, F(1, 66) = 170.01, p < .001, η2
p = .720. 

 

Training Participants’ eye movement patterns, as quantified 

by the EF scale, did not differ across the two training 

conditions, t(66) = 0.10, p = .921, d = 0.02 (Figure 3a). This 

finding indicated that participants attended to similar places 

during training regardless of whether they saw saliency maps 

or not. However, participants who saw saliency maps had 

marginally lower entropy, t(66) = –1.97, p = .053, d = –0.48 

(Figure 3b), indicating that their eye movements during 

training were more consistent and predictable. 

 
Figure 3: Difference in (a) EF scale and (b) entropy of 

participants’ eye movements during training between the 

two training conditions. 

 

Forward Simulation Participants’ eye movement patterns, 

as quantified by the EF scale, did not change after training, 

F(1, 66) = 0.01, p = .917, η2
p < .001, and there was no 

interaction effect between time and training condition, F(1, 

66) = 1.04, p = .312, η2
p = .016, indicating that participants 

attended to similar places when predicting AI’s output before 

and after training for both training conditions. In contrast, 

participants’ eye movement entropy significantly increased 

after training, F(1, 66) = 9.70, p = .003, η2
p = .128. However, 

this effect again did not interact with training condition, F(1, 

66) = 1.20, p = .278, η2
p = .018, indicating that their eye 

movement strategies became less consistent, or more 

adaptive, after training, regardless of the training condition. 

In addition, this change in entropy was associated with 

change in the performance measures related to false alarms. 

Specifically, participants who showed a greater increase in 

eye movement entropy after training had larger improvement 

in accuracy in predicting AI’s false alarms, R2 = .07, F(1, 66) 

= 4.62, β = .26, p = .035, and predicted a marginally greater 

number of false alarms, R2 = .05, F(1, 66) = 3.34, β = .22, p 

= .072. They also updated their mental models about Yolo-

v5s’s precision more after training (i.e., becoming less similar 

to their own detection precision), R2 = .08, F(1, 66) = 6.05, β 

= –.29, p = .017, but their beliefs also tended to deviate even 

more from Yolo-v5s’s actual precision, R2 = .09, F(1, 66) = 

6.83, β = –.31, p = .011. 

 

Counterfactual Simulation Participants’ eye movement 

entropy during counterfactual simulation did not change after 

training, F(1, 66) = 0.12, p = .735, η2
p = .002, and there was 

no interaction between time and training condition, F(1, 66) 

= 1.83, p = .180, η2
p = .027. However, at individual level, 

participants who showed a greater increase in entropy had 

marginally greater improvement in accuracy, R2 = .04, F(1, 

66) = 2.87, β = .20, p = .095. 

Faithfulness of Human Attention Maps 

The faithfulness of participants’ attention maps for the AI 

model did not differ between pre- and post-training in 

forward simulation, F(1, 59) = 1.12, p = .294, η2
p = .019, or 

counterfactual simulation, F(1, 59) = 0.66, p = .420, η2
p 

= .011. There was also no interaction between time point and 

training condition in either task (ps = .113, .238). These 

results indicated that when predicting AI’s behavior, 

participants did not attend more to the features important to 

AI after training, either with or without saliency maps. 

Discussion 

Here we investigated the effect of providing saliency-based 

explanations on different aspects of user understanding of 

object detection AI models. We found that presenting users 

with AI’s decisions given an input image, regardless of 

whether saliency maps were provided or not, enhanced 

feature-level and some instance-level user understanding, 

including better performance in predicting AI’s decision 

change when certain features were perturbed (counterfactual 

simulation) and in predicting AI’s false alarms in forward 

simulation. However, these learning effects were obtained 

regardless of the availability of saliency-based explanations, 

suggesting that such explanations did not provide additional 

benefits. This result was in contrast to previous research on 

image classification models, where enhancement at the 

feature and instance level due to saliency map explanations 

has been reported (Alqaraawi et al., 2021). Our analyses on 

participants’ attention strategies during forward simulation 

showed that their eye movement pattern did not change after 

training. In contrast, training (in either condition) increased 

eye movement entropy, suggesting more adaptive attention 

strategies. The increase in eye movement entropy was 

associated with better performance in predicting AI’s false 

alarms and a larger change in the mental model of AI’s 

precision. These findings suggested that although training 

helped users engage in a more adaptive attention strategy, 

saliency maps provided limited benefits beyond presenting 

AI’s decisions alone. 

This limited facilitation effect from saliency-map 

explanations on user understanding of object detection 

models may be because participants already attended to the 

features used by AI and thus could not gain any additional 

information from the features highlighted by the saliency 

maps. This speculation was consistent with our finding that 

participants looked at similar places during training 

regardless of whether saliency maps were provided. Also, the 

faithfulness of participants’ attention maps during simulation 

in explaining the AI model did not differ across different time 

points or training conditions. Thus, training (with or without 
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saliency maps) did not make them attend more or less to 

features important to AI’s decisions. Indeed, Liu et al. (2023b) 

has recently suggested that current object detection AI 

models may attend to similar features as humans, but this 

phenomenon may not apply to image classification models. 

More specifically, they found that for explaining object 

detection AI models, increasing the similarity of XAI 

saliency maps to human attention maps when performing the 

same task increased their faithfulness, but the same procedure 

decreased the faithfulness of XAI saliency maps for image 

classification models. To examine whether our participants 

indeed attended to features important to AI’s output, we 

performed exploratory analyses and found that the 

faithfulness of participants’ overall attention maps did not 

differ significantly from the faithfulness of XAI saliency 

maps in either forward, t(59) = 0.05, p = .960, d = 0.01, or 

counterfactual simulation, t(55) = 0.07, p = .942, d = 0.01. In 

addition, this faithfulness was highly correlated with that of 

XAI saliency maps across images in both forward, r(58) 

= .787, p < .001 (Figure 4a), and counterfactual simulation, 

r(54) = .531, p < .001 (Figure 4b). These results indicated that 

participants’ attention during simulation indeed matched well 

with features important for AI’s output. Since humans 

already attend to similar features as AI models in object 

detection, human users could use their own mental model of 

the task to infer AI models’ decision-making processes. As a 

result, giving an input image, presenting AI’s decisions alone 

could already enhance user understanding and saliency-based 

explanations did not provide additional benefit, in contrast to 

the case of image classification. 

 
Figure 4: Correlations between the faithfulness of human 

attention maps and XAI saliency maps across images for (a) 

forward simulation and (b) counterfactual simulation. 

 

Although presenting AI’s decisions alone was sufficient to 

enhance user understanding for object detection, our current 

results suggested that the training effect was limited to some 

feature- and instance-level understanding. Specifically, 

training improved participants’ knowledge about which 

features would affect AI’s output. At the instance level, 

training helped participants better predict false alarms, but 

not hits and misses. At the system level, participants first 

assumed that AI would behave similarly as themselves and 

then updated their mental models of AI’s performance with 

increased dissimilarity to themselves, consistent with 

previous findings (Yang et al., 2022). However, their mental 

models of AI’s performance did not become more consistent 

with AI’s actual performance. These results suggested an 

illusive sense of system-level understanding. A similar 

finding was observed in a previous study, which found that 

participants tended to overestimate the system-level 

understanding gained from instance-level explanations and 

explained this phenomenon with a cognitive bias known as 

the illusion of explanatory depth (Chromik et al., 2021).  

Since presenting users with object detection AI’s decisions 

given an input had limited effects on user understanding and 

saliency-based explanations could not provide additional 

benefit, better XAI methods are required to enhance user 

understanding for object detection models. It is particularly 

important for system-level understanding, which can be 

prone to the cognitive bias of illusion of explanatory depth, 

and the understanding of misses, which can lead to severe 

consequences in critical systems (e.g., missing a vehicle in 

autonomous driving or missing a tumor in medical 

diagnosis). One possible future direction is to consider 

human explanation processes where the explainer possesses 

the ability to infer the learner’s mental states (i.e., the theory 

of mind ability) so that they can recognize and reduce the 

knowledge gap between the explainer and the learner (Olson 

& Bruner, 1996; Strauss & Shilony, 1994). Accordingly, we 

may equip XAI with such ability to ensure that the 

explanations are accessible to human users. Indeed, it has 

been suggested that XAI methods should monitor users’ 

mental model of AI and adjust the explanations accordingly 

(Rutjes et al., 2019). Hsiao and Chan (2023) further proposed 

a theory-of-mind-based XAI framework, which posits that an 

effective XAI method should be able to infer users’ strategy 

and performance of the given task as well as users’ current 

understanding of AI’s strategy and trust towards AI, so that it 

can provide user-centered explanations through comparing 

users’ and AI’s mental models of the task and estimating 

current user understanding, similar to real-life teachers. 

In conclusion, here we showed that presenting AI’s 

decisions for a given input alone is sufficient to enhance 

users’ understanding of AI’s decision processes for object 

detection, and providing saliency-based explanations to 

highlight important features used by AI did not provide 

additional benefit, in contrast to the case of image 

classification AI models where such explanations were 

reported to enhance user understanding. This result may be 

because humans and AI attended to similar features when 

performing object detection, and thus humans could infer 

AI’s decision-making processes without saliency-based 

explanations. Nevertheless, the observed effect in user 

understanding was limited to feature-level and some 

instance-level understanding, particularly in predicting AI’s 

false alarms, but did not enhance users’ ability to distinguish 

AI’s misses and hits, or the understanding at the system level. 

Our findings thus demonstrated that the effectiveness of 

saliency-based explanations is task-dependent and call for 

alternative XAI methods for object detection models to better 

enhance user understanding and induce an appropriate level 

of user trust, especially for those in critical systems such as 

autonomous driving and medical image analysis.  
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