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NSF DARE—Transforming modeling 
in neurorehabilitation: Four threads 
for catalyzing progress
Francisco J. Valero‑Cuevas1,2,3*, James Finley2, Amy Orsborn4,5,6, Natalie Fung3, Jennifer L. Hicks7, 
He (Helen) Huang8,9, David Reinkensmeyer10, Nicolas Schweighofer1,2, Douglas Weber11 and 
Katherine M. Steele12 

Abstract 

We present an overview of the Conference on Transformative Opportunities for Modeling in Neurorehabilitation held 
in March 2023. It was supported by the Disability and Rehabilitation Engineering (DARE) program from the National 
Science Foundation’s Engineering Biology and Health Cluster. The conference brought together experts and trainees 
from around the world to discuss critical questions, challenges, and opportunities at the intersection of computa‑
tional modeling and neurorehabilitation to understand, optimize, and improve clinical translation of neurorehabilita‑
tion. We organized the conference around four key, relevant, and promising Focus Areas for modeling: Adaptation & 
Plasticity, Personalization, Human‑Device Interactions, and Modeling ‘In‑the‑Wild’. We identified four common threads 
across the Focus Areas that, if addressed, can catalyze progress in the short, medium, and long terms. These were: (i) 
the need to capture and curate appropriate and useful data necessary to develop, validate, and deploy useful com‑
putational models (ii) the need to create multi‑scale models that span the personalization spectrum from individuals 
to populations, and from cellular to behavioral levels (iii) the need for algorithms that extract as much information 
from available data, while requiring as little data as possible from each client (iv) the insistence on leveraging readily 
available sensors and data systems to push model‑driven treatments from the lab, and into the clinic, home, work‑
place, and community. The conference archive can be found at (dare2023.usc.edu). These topics are also extended 
by three perspective papers prepared by trainees and junior faculty, clinician researchers, and federal funding agency 
representatives who attended the conference.
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Introduction
Why do we create computational models? Simply put, 
to help us move from costly and inefficient trial-and-
error empiricism towards mechanistic, hypothesis-
driven, and evidence-based systematic processes to 
develop clinical treatments and products [1, 2]. Along 
these lines, computational modeling has had profound 
impacts on our scientific understanding. For example, 
computational models of sensorimotor control and 
plasticity underlie the design and application of neu-
romodulatory approaches to enhance motor function 
during development, aging, and following neurological 
injury or disease [3–11]. Additionally, computational 
musculoskeletal models have been used to inform treat-
ment decisions in orthopedics and sports medicine. 
Computational models describing the trajectories of 
development, disability, and recovery have the potential 
to help prioritize and focus treatment. Moreover, mod-
els of musculoskeletal dynamics and neural control are 
regularly used by researchers to design and implement 
control strategies of assistive technologies [12–18]. 
The impacts of computational modeling are only set to 
increase in the coming decades: the emergence of mul-
timodal remote sensors, machine learning, and multi-
scale datasets (from genomics to behavior) will enable 
a future in which personalized neurorehabilitation that 
adapts throughout the course of treatment becomes the 
norm. In fact, the interest in these areas continues to 
accelerate (Fig. 1).

As interest and potential impact in these areas acceler-
ates, we convened the NSF DARE Conference: Transform-
ative Opportunities for Modeling in Neurorehabilitation 
that brought together experts and trainees to discuss 
critical questions, challenges, and opportunities at the 
intersection of computational modeling and neurore-
habilitation. We identified four Focus Areas prior to the 
conference through discussions amongst the PI team, 
Advisory Board, and federal funding representatives. 
These areas were identified as areas of high growth and 
potential impact for computational modeling in rehabili-
tation research (Table  1). They represent—in our opin-
ion—pressing challenges and timely opportunities within 
neurorehabilitation where advances in science, compu-
tational methods, and implementation can converge for 
actionable change. These areas also exemplify the poten-
tial for innovation and impact when merging multiple 
modeling methods (e.g., machine learning and physics-
based models) with technology (e.g., exoskeletons or 
wearable sensors) to support scientific understanding, 
target neurorehabilitation outcomes, and improve qual-
ity of life. These areas are highly synergistic with NSF’s 
Disability and Rehabilitation Engineering Program and 
NIH’s 2021 Research Plan on Rehabilitation.

In this paper we summarize and comment on the 
perspective and insights from the expert community 
assembled to help establish a foundation by which com-
putational modeling can create the scientific directions, 
theories, and actionable platforms to improve the efficacy 
and personalization of neurorehabilitation. This is based 
upon discussions with participants during the meeting in 
general, and among the co-authors during the writing of 
this paper. Additional concluding remarks are included in 
the three other companion papers that reflect key take-
away points from other conference constituents (e.g., 
trainees, federal funding representatives, and clinician 
scientists). Mirroring the structure of the meeting, we 
now visit and comment on each focus area. It is impor-
tant to note that the main conclusions are summaries 
drawn by the authors. As such, they represent the view-
points of the authors, and not a consensus process of con-
ference attendees. The companion papers further clarify 
this distinction where each set of authors provides their 
point of view and provide further conclusions and key 
take-aways from other constituent groups who partici-
pated in the conference (e.g., trainees, clinician scientists, 
and federal funding representatives). Those additional 
three papers in this same issue are titled, respectively:

NSF DARE—Transforming Modeling in Neuroreha-
bilitation: A Patient-in-the-Loop Framework
NSF DARE—Transforming Modeling in Neuroreha-
bilitation: Clinical Insights for Personalized Rehabili-
tation
and
NSF DARE—Transforming Modeling in Neuroreha-
bilitation: Perspectives and Opportunities from US 
Funding Agencies

 Modeling adaptation and plasticity
Brief background
Adaptation and plasticity are central to our nervous 
system’s ability to acquire new abilities, adapt them to 
changing situations, and recover function after injury. 
The role of synaptic plasticity in sensorimotor learning 
and adaptation is the subject of much work described in 
several reviews [19–22]. Here, our main interest is the 
role of plasticity in the recovery of function after injury 
for neurorehabilitation. For example, after stroke, neu-
rons re-wire connections both immediately surround-
ing the injury and across distant brain areas [23–28], 
and these changes in connectivity are correlated with 
improvements in function with and without rehabilita-
tion [27, 28]. Critically, adaptation and plasticity are not 
guaranteed to be fast, well-guided, or beneficial (i.e., 
adaptive plasticity). Plasticity can also be maladaptive 
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[29, 30], a neurorehabilitation analog to focal dystonias 
[31, 32].

A key goal of neurorehabilitation therapies is to pro-
mote plasticity mechanisms that improve function while 
also mitigating maladaptive changes to neural circuits. 
Many therapeutic approaches have been proposed and 
attempted to achieve this goal—with varying degrees of 
success—ranging from targeted behavioral training to 
implantable devices that stimulate neural circuits.

Computational modeling of adaptation and plasticity 
can provide paths to maximize the impact of neurore-
habilitation therapies [3, 33]. The plasticity and adap-
tation that occurs after injury span many levels of the 
nervous system, from cellular processes (e.g., changes 
in ion channel expression) [34], to network interactions 
(e.g., changes in synaptic connections) [27], to behav-
ioral changes (e.g., compensatory strategies) [35]. As a 
result, a wide range of modeling methods have been used 
to describe plasticity at different levels [36]. In lieu of an 

exhaustive survey of existing models, we highlight some 
useful categories of model types. For a particular phe-
nomenon, such as synaptic plasticity, models may focus 
on different levels of abstraction. For example, phenom-
enological models like Hebb’s rule describe input-output 
relationships between the rate/timing of neural activ-
ity and connection changes, describing the computa-
tional principle without directly modeling the biological 
implementation [37]. Biophysical models of spike-timing 
dependent plasticity, in contrast, describe the physi-
ological changes within neurons that give rise to synaptic 
changes [38]. Data-driven models (i.e., machine learning) 
have also been employed for modeling a variety of plas-
ticity phenomena (e.g., [39]).

A variety of model types, spanning different levels of 
the nervous system, have been used to describe how the 
nervous system will respond to an intervention to inform 
rehabilitation therapies [3, 40]. Mechanistic models of 
how behavior evolves as we adapt to altered dynamics 
like a split-belt treadmill, for example, informed train-
ing interventions to improve gait post-stroke [41]. Phe-
nomenological Hebbian plasticity models informed 
stimulation protocols to increase the functional connec-
tions among regions in the brain [11, 42, 43], and from 
the brain to muscles or spinal circuits [44–47]. Models 
describing nervous system changes over time are also 
valuable for predicting outcomes and to guide clinical 
decision-making. Many examples of these models rely 
on data-driven discovery from large datasets. For exam-
ple, the increasing prevalence of neural imaging tech-
nologies in clinical practice have led to large datasets to 
develop algorithms that predict functional recovery after 
stroke [48]. Machine learning approaches have also been 
used to assess whether devices like non-invasive brain-
computer interfaces will be effective [49, 50] and optimal 
parameters for therapies like deep brain stimulation [51].

Fig. 1 The field of computational neurorehabilitation has grown 
tremendously over the preceding decades. Usage of the terms 
“computational” and “neurorehabilitation” in articles indexed 
by Pubmed. Data generated by Pubmed by Year (https:// esperr. 
github. io/ pubmed‑ by‑ year/)

Table 1 Focus areas for the DARE 2023 conference

Focus area Description

Modeling adaptation and plasticity How do we leverage modeling to understand neuroplasticity? How can the integration of novel imaging 
technologies, machine learning, and physiology‑based models be used to understand the complex processes 
underlying beneficial neuroplasticity and adaptation that support learning and recovery?

Modeling for personalization A central challenge in rehabilitation is that each individual’s developmental, injury, treatment response, 
and long‑term recovery trajectory is unique. However, it is necessary to first determine the degree of person‑
alization required to optimize and support development and recovery in practice. How can we leverage large, 
diverse, and real‑time datasets to support an appropriate and effective level of personalization to optimize 
outcomes?

Modeling human–device interactions Interconnected human‑centered technology has become a critical part of function and rehabilitation—includ‑
ing development, acute care, training, and activities of daily living. However, neurorehabilitation requires new 
engineering approaches to support the design, interaction, integration, and control of devices to support 
development and recovery. How can modeling inform and accelerate this development?

Modeling ‘in‑the‑wild’ Rehabilitation does not end at the clinic’s door – it extends into and is meant to serve our daily lives and prac‑
tices. How can modeling support rehabilitation in unstructured environments to offer actionable insights 
to support and promote recovery? How can modeling identify and help dismantle environmental and societal 
barriers that cause disability, as well as support and enhance activities of daily living?

https://esperr.github.io/pubmed-by-year/
https://esperr.github.io/pubmed-by-year/
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These examples highlight the diversity of plasticity 
models and applications in neurorehabilitation. As with 
any other computational modeling effort [2], decisions 
must be made about the level of abstraction and detail. 
The challenge of these decisions is acutely clear in the 
realm of adaptation and plasticity, where mechanisms 
span spatial scales from synapses to behavior, and time-
scales from milliseconds to months [20]. Many existing 
models used for neurorehabilitation focus on a single 
scale (e.g., describing behavioral changes). Models that 
bridge neurological mechanisms of plasticity to behavior 
will likely be needed to improve the precision of neurore-
habilitation therapies. Such models will require cross-dis-
ciplinary collaboration to develop and validate. Similarly, 
most existing models focus on describing a particular 
time-point, such as functional recovery after a certain 
time with a particular, static therapy. The many time-
scales of adaptation and plasticity present challenges for 
modeling overall trajectories, including the impact of 
interventions and changes in treatment over time [52].

Extending models of plasticity to span spatial and tem-
poral scales could open new ways to harness the power 
of computational methods in neurorehabilitation. The 
dynamic nature of the nervous system creates a variety 
of challenges for building therapies. Assuring an assistive 
device provides meaningful functionality for extended 
periods of time requires characterizing plasticity that 
may occur in response to the device and developing 
devices that can adapt accordingly [53]. Similar consid-
erations are needed for therapies where protocols may 
need to adapt over time as abilities change [54]—a form 
of meta-adaptation that mirrors meta-plasticity (i.e., 
‘plasticity of plasticity’ [36]). Achieving the goal of smart, 
personalized, and adaptive neurorehabilitation therapies 
will require models that can capture the dynamics of 
plasticity processes as well as human-device interactions 
that will influence those dynamics. This will require new 
approaches to bridge across models that predict how the 
nervous system will change in response to a given inter-
vention and those to describe how interventions inpact 
the trajectory of changes in the nervous system and 
changes in behavior over time.

Commentary
The DARE workshop highlighted many fundamental 
challenges and opportunities in modeling adaptation and 
plasticity for rehabilitation applications. Multiple pres-
entations (see Appendix for speaker summaries) speak 
to the promise of using computational models to disen-
tangle diverse learning mechanisms used by the nervous 
system (e.g., Roth, Mariscal). Mechanistic models such as 
those used by Roth shed light on the neurophysiological 
underpinnings of disorders. Their findings, for instance, 

suggest that Parkinson’s disease can lead to deficits in a 
single learning mechanism while leaving others intact. 
Similarly, data-driven methods to identify components 
of learning used by Mariscal allowed them to character-
ize how learning generalized to new contexts more pre-
cisely than past studies. A critical next step missing from 
most workshop submissions is using these model-derived 
insights to directly guide clinical therapies. Future work 
towards these efforts will have to contend with challenges 
closely related to those faced in personalization efforts 
(see below). For example, do models and their param-
eters need to be estimated on populations of people or 
individuals? Models may also require updating over time 
as learning proceeds, closely mirroring challenges faced 
in human-device interactions.

Multiple presentations (e.g., Liew, Orsborn, Hight, 
Schwock) aimed to characterize plasticity that occurs 
as the result of therapies and interventions or injuries. 
Schwock’s work highlights the potential benefits of com-
putational models to quantify changes between regions 
of the nervous system when they are embedded within 
a large network (see also [55]). This work highlights the 
challenge of identifying the most useful measures of 
nervous system plasticity, since nearly all metrics will be 
approximations. Data-driven studies probing how physi-
ological measurements relate to clinical outcomes will 
likely be critical to identify the most useful experimental 
and computational measures of plasticity for neuroreha-
bilitation. Collaborations between researchers develop-
ing novel assays of plasticity and those using large clinical 
datasets to predict clinical outcomes, such as discussed 
by Liew, will be invaluable for future research and trans-
lation. Though such collaborations will likely involve nav-
igating the challenges of measurement feasibility, such 
challenges highlight the potential promise of extending 
neurorehabilitation ‘in-the-wild’ (see below) and research 
into quantifying plasticity metrics.

Designing interventions that induce plasticity is central 
to any rehabilitation effort. Data-driven predictive mod-
els, such as those developed by Liew, provide methods 
for predicting how someone may respond to an interven-
tion dose. However, these models have largely been used 
to predict a single endpoint, which may miss dynamic 
interactions between plasticity and an intervention, as 
highlighted by other presentations (e.g., Orsborn, Hight). 
Research with brain-computer interfaces and cochlear 
implants demonstrate that even interventions that intend 
to replace a function (rather than rehabilitate) induce 
plasticity. This plasticity may be influenced by how the 
device is designed (e.g., Orsborn’s investigations into co-
adaptation with brain computer interfaces), and could 
be further manipulated by purposeful device interven-
tions (e.g., vagus nerve stimulation presented by Hight). 
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User-device interactions to shape plasticity open a huge 
opportunity to shape plasticity for rehabilitation. Capital-
izing on this opportunity, however, will require improv-
ing models of how devices induce plasticity. Translating 
methods to shape plasticity with devices into meaning-
ful clinical therapies will also require methods to predict 
functional outcomes.

Beyond these examples of scientific challenges, we 
also noticed important challenges and opportunities to 
create the scientific community needed to tackle these 
challenges. All talks focused on plasticity, but we were 
particularly struck by the topic diversity. For instance, 
the presentations spanned upper limb movements (Roth, 
Orsborn), locomotion (Mariscal), clinical sensorimo-
tor function assessments (Liew), and hearing/speech 
(Hight). There was also a diverse range of methods used 
to quantify plasticity, from behavior (Roth, Mariscal, 
Liew), clinical neuroimaging (Liew), and high-resolution 
electrophysiology (Orsborn, Schwock). This breadth fos-
tered rich discussions across sub-fields that do not reg-
ularly interact. Integrating the knowledge gained from 
this diversity of methods and applications and refining 
models of plasticity and adaptation for rehabilitation will 
require bridges across these communities and translating 
terminology between fields.

Modeling for personalization
Brief background
Computational models of neuromuscular function for 
neurorehabilitation can be used to aid the clinical (i) 
classification, (ii) explanation, and/or (iii) prediction at 
any or all of the stages of patient intake, treatment, or 
follow-up. While there are multiple computational mod-
eling approaches and techniques [2], they often fall into 
the two broad categories of statistical or descriptive vs. 
mechanistic models, both of which are, in George E.P. 
Box’s words, ‘useful fictions’ [56]. What is personalization 
in this context? Importantly, the degree of personaliza-
tion is in fact a spectrum of granularity: from a particu-
lar ion channel, cell or neuron, to a neural circuit, to an 
individual, to a subset of individuals, to a particular pop-
ulation (Fig. 2). As per Occam’s Razor, modelers should 
aim to model at the coarsest necessary level with the few-
est number of assumptions to ask and answer questions 
about function, recovery, or interventions in a useful and 
mechanistic manner.

There have been long standing debates on whether 
both statistical and mechanistic models could, or should, 
be generic (i.e., apply to the entire population) vs. 
patient-specific (i.e., apply to a single individual). From 
this perspective, the current discussion about personal-
ized models, ‘digital twins’, personalized medicine, etc. 
is simply the latest iteration of this long standing debate 

that can be traced back to the epistemological origins of 
clinical diagnosis (which assumes multiple patients can 
be thought of as having the same disease), clinical tri-
als (where all patients are expected to have an average 
response to a same treatment), and biomechanical mod-
eling (where a model can in principle represent a given 
population or individual well-enough). What is often 
not stated explicitly about digital twins is the degree to 
which they are aspirational, because they are, by con-
struction, difficult to develop and impossible to validate. 
They inhabit the bottom left corner of the personaliza-
tion spectrum as they should apply to a specific individ-
ual and be accurate to a sufficiently small scale to capture 
the physiological processes relevant to the clinical ques-
tion. To bring clarity to these longstanding questions and 
their recent iterations, without claiming to resolve them, 
it is important that we be clear on what a computational 
model is, and how this informs our efforts to achieve 
modeling for personalization.

A computational model for neurorehabilitation is, at 
its best, a mathematical or numerical representation of 
hypotheses about function, dysfunction, and/or response 
to treatment. Thus, it is important to explicitly distin-
guish between a model’s topology vs. its parameter val-
ues [2, 40, 57]. The topology of a computational model is 
its structure (at the appropriate scale) explicitly defined 
by the type, number, and organization of the elementary 
‘building blocks’ and their interactions. The parameters 

Sc
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Number

System

Cell

PopulationIndividual

Fig. 2 The personalization spectrum for a particular population 
across physiological scales and numbers of individuals. Models 
at a given scale that are assumed to characterize a specific individual 
are often called ’patient‑specific’, and population models ‘generic’ 
as they are assumed to apply to many individuals. Free images 
adapted from Clipart Panda, Muscular Systems, and pngegg
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values are then the particulars associated with each build-
ing block and their interactions. The hypothesis can be 
cast in the form of patterns or associations (for statistical 
models) or principles at work (for mechanistic models).

In the case of the broad category of statistical mod-
els, a data set is used to tune the parameters of a given 
mathematical representation of relationships (e.g., linear 
regression, principal components analysis (PCA) , arti-
ficial neural networks (ANNs) via, respectively, slope 
and intercept, PC loadings and variance explained, and 
weights among nodes and layers). Statistical models are 
often called ‘black-box’ models, because the model topol-
ogy and its parameters have little or no direct physically 
or physiologically evident relationship between cause 
and effect. That is, they can be considered to be unen-
cumbered by a hypothesis—if by hypothesis we mean a 
mechanistic explanation of a phenomenon. While the 
term ‘prediction’ is often used in statistical models (e.g., 
a strong and significant linear regression allows feature x 
to ‘predict’ feature y in a given population), this does not 
imply causality. Nevertheless, statistical models are use-
ful, have their place, and are popular because they can 
be quite powerful in finding unplanned associations by 
using all features in large data sets.

The topology of mechanistic models, in contrast, is the 
unambiguous statement of the assumed physiological 
mechanisms and the causal relationships among them 
(i.e., a formal hypothesis). For example, computational 
models can be based upon modules simulating muscles, 
the spinal cord, and/or the control of movement. How-
ever, modelers very quickly find themselves having to 
make difficult decisions about modeling scope and level 
of detail—which are determined by the experience and 
skill of the modeler, the computational resources availa-
ble, and the clinical question being asked. These decisions 
also directly define and affect the ability of the mechanis-
tic model to be personalized. These modeling choices 
have naturally led to valuable debates about choosing 
‘simple’ vs. ‘complex’ models. The dilemma across lev-
els of complexity is that more detailed models are more 
personalizable (i.e., they have a greater number of free 
parameters to adjust to match a given individual), but 
require more and better knowledge of mechanisms—and 
experimental data to validate their more detailed topolo-
gies and greater number of parameters.

Commentary
Considering that ‘personalization’ is a spectrum across 
scales and numbers of individuals (Fig. 2) what we need 
are models within that spectrum that provide good-
enough assessments of impairment for a given patient (or 
population) to improve recovery [58–60]. From the lit-
erature and outstanding presentations at the conference 

(see Appendix), we were reminded that for successful 
personalization, one must be clear about the goal or tar-
geted level of function and follow through with appropri-
ate statistical or physics-based models with topology and 
parameters that suffice for a specific clinical need. For 
example, human-in-the-loop-optimization is a field that 
is becoming practical, as demonstrated by Collins’ work 
on adaptable exoskeletons. This allows guiding the inter-
actions among the optimization towards improving the 
client’s function by controlling the hardware-algorithm-
human dynamical system (which is often difficult to 
build). Saul made a clear case for the level of personaliza-
tion needed to achieve useful results. Patton reminded us 
that personalized assistive devices and approaches need 
not be complex actuated devices. Computational mode-
ling, which can be complex, can be used to create person-
alized devices that use simple, passive elastic elements. In 
fact, such devices are able to reach much greater num-
bers of users world-wide than powered, computer-con-
trolled versions. Lajoie underscored how the within- and 
inter-subject variability of response in neurostimulation 
(both in mapping stimulation location and parameters at 
a given location) continues to be a critical bottleneck that 
prevents effective personalization of neurorehabilitation. 
However, they demonstrated a framework requiring few 
data points (i.e., few-shot) to adapt the response to neu-
rostimulation that would enable effective personalized 
neurostimulation (a form of meta-learning, or learning 
to learn concepts quickly [36]). Allen presented evidence 
that computational methods to extract motor coordi-
nation strategies fare better at capturing the control of 
walking when they also include the control of whole-
body balance. Finally, Lin emphasized how critical it is 
to collect outcome measures at the point of care that are 
relevant to treatment. Moreover, carefully chosen out-
come measures available in the clinical setting can have 
meaningful and neurologic underpinnings that could 
enhance the utility of computational modeling in neuro-
logical conditions and stroke.

The amount of data needed to personalize a given ther-
apeutic approach is a common thread in all approaches 
presented. While the distinction between generic and 
patient-specific models can be seen as a dilemma in 
terms of the amount of data needed, one can argue it 
is, in fact, a false choice. One possible way out of this 
dilemma can be found by combining mechanistic and 
statistical approaches to create data-driven clusters of 
a finite number of models (i.e., stochastic models) [57] 
that allow a meta-learning few-shot framework. Simi-
larly, available data to fit models in the form of repeated 
clinical tests have been typically sparse, leading to models 
that were necessarily simple to avoid overfitting [8, 61] 
(see [40]). Compounding the problem is that parameter 
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estimates are often based on ‘point estimation’ methods 
such as least-squares to fit average or individual data. 
However, recent developments in Bayesian modeling, 
e.g., [52], seamlessly generate credible intervals for these 
predictions and can incorporate prior information (e.g., 
parameter mean and variance) from previous studies to 
further improve individual predictions. In addition, Hier-
archical Bayesian modeling, which involves simultane-
ous determination of the population parameters, as well 
as the individual-level parameters given the data from all 
participants, can improve predictions when little data is 
available for new patients by ‘borrowing’ knowledge from 
previous patients—see [52] for a recent example.

As a final comment, we would be remiss if we did not 
mention the undergoing revolution in machine learning 
that Transformers and their variants (e.g., Large Lan-
guage Models (LLMs) and Generative Pre-Trained Trans-
former (GPT)) that rose to prominence c. 2017 [62] and 
are now accelerating exponentially. There are exciting 
novel opportunities for this technology in all Focus Areas 
(Table  1). As a particular example, it is important to 
know what this technology has the very promising abil-
ity to bridge the gap between generic and patient specific 
computational models. An instant classic is the example 
of ChatGPT’s ability to ‘learn’ a language, and then tailor 
sentences to the style of writing of a given author [63], 
which is a form of transfer learning from generic to par-
ticular. Such approach is already being applied to, for 
example, training a transformer on numerous examples 
of brain structure to then detect a patient-specific anom-
aly (i.e., a tumor) in spite of inter-subject variability [64].

Modeling human–device interactions
Brief background
Devices are ubiquitous in our everyday lives. Since 
the advent of simple tools and machines such as the 
lever, wheel, and pulley (as well as assistive devices like 
canes, pouches, and wheelchairs) humankind has devel-
oped increasingly complex assistive devices to reduce 
the physical effort and time required to move and sup-
port ourselves and objects in our environment. Assis-
tive devices have a long history since prehistoric times, 
with Egyptian hieroglyphs showing the use of staffs and 
canes [65] through medieval innovations like Gottfried 
von Berlichingen’s development of the iron hand in 1504 
[66]. Since the middle of the past century, robotic devices 
have been formally proposed as potentially transforma-
tive therapeutic tools for physical rehabilitation [67–70].1 
Today, rehabilitation robotic devices can be configured to 
allow for precise control of the position and orientation 
of select body segments or the load applied to them, and 

this can be done over many repetitions without marked 
changes in the robot’s performance. As a result of these 
capabilities, rehabilitation roboticists and therapists rec-
ognized the opportunity by which devices could poten-
tially offload some of the physical demands that therapists 
encounter during taxing rehabilitation interventions 
such as body-weight supported treadmill training [71, 
72]. Robots can also facilitate the repetitive, task-specific 
practice necessary to provide the dose needed to drive 
motor learning via adaptation and plasticity and, if inte-
grated with game-based interfaces, also provide a means 
by which therapy can be made more engaging [73]. Out-
side the clinic, devices such as powered wheelchairs, exo-
skeletons, and prostheses can act as assistive devices that 
compensate for weakness and potentially increase overall 
activity levels [74]. Due to the large number of potential 
devices and parameters, there is an urgent need to use 
modeling, among other approaches, to move away from 
empiricism in the design and operation of such devices 
[1].

When considering the design and ultimate real-world 
use cases of devices in rehabilitation, one must deter-
mine an appropriate engineering control strategy that 
aligns with the theoretical and physiological basis for 
a given therapeutic intervention. Early rehabilitation 
robots relied on ‘position control’ to guide the user’s 
limbs through prescribed trajectories [72] based, in part, 
on animal studies which showed that passive movement 
could engage spinal circuits involved in behaviors such as 
walking [75]. While there may still be select applications 
in which this control strategy is appropriate, it is often 
inadequate because patients need to be actively involved 
in rehabilitation, but naturally ‘slack’ if a robotic device is 
allowed to do all the work of moving the limb for them 
[76]. Assist-as-needed algorithms partially address this 
concern by only providing assistance if the client also 
exerts a given level of effort and does not become a free-
rider [77]. A key element that is often overlooked when 
designing and evaluating devices for rehabilitation is 
how sensory deficits, which are particularly common but 
often difficult to assess, impact the efficacy of training. 
Additionally, we still lack a strong theoretical basis upon 
which we can personalize the dose of robotic rehabilita-
tion interventions, though Schweighofer and others are 
actively developing statistical modeling approaches to 
forecast long-term recovery patterns [52].

1 RESNA was started in August 1979 at a meeting of the Inter-Agency Con-
ference on Rehabilitation Engineering when participants Douglas Hobson, 
Colin McLaurin, James Reswick, Anthony Staros, and Joseph Traub offered 
a resolution to form the ‘Rehabilitation Engineering Society of North Amer-
ica’ first housed at Rancho Los Amigos Medical Center in Los Angeles, CA.
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Devices used to facilitate rehabilitation are, of course, 
not only confined to robotics. Both passive and active 
implantable devices are also critical elements of the reha-
bilitation continuum and present unique challenges not 
present with devices that are picked up and used, or worn 
such as exoskeletons that can be donned and doffed. 
Implanted joint replacements and osseointegrated 
prostheses rely on a semi-permanent or permanent 
physical interface between a synthetic device and the 
musculoskeletal system [78]. To be successful, surgeons 
must choose the correct implant for a patient’s unique 
anatomical structure, and once the device is implanted, 
they often rely on past experience to estimate the level of 
function and quality of life after surgery [79]. Traditional 
imaging methods such as X-ray and MRI can be used 
to create digital, anatomical models to improve the fit 
of implantable devices, but these methods are currently 
unable to determine how the surgery and subsequent 
recovery will affect the afferent feedback from the joint 
or the joint’s mechanical properties. Thus, computational 
models that integrate a finite element representation 
of the device along with dynamic models of local tissue 
properties and their changes over the course of recovery 
could potentially transform the field.

Neuromodulatory devices have become a critical tool 
for both assessing neuromotor function and deliver-
ing neurorehabilitation interventions. These devices can 
stimulate regions of the central and peripheral nervous 
system using either direct current or by generating mag-
netic fields to induce current in underlying neurons. Non-
invasive transcutaneous stimulation of peripheral nerves 
is often used to measure nerve conduction velocity and 
test for the presence of peripheral neuropathies [80]. 
Similarly, transcranial magnetic stimulation has been 
used to estimate the functional integrity of corticospinal 
tract [81], and these measures of integrity, as measured 
by the size of stimulation-evoked electromyographic 
responses, form a central element of the PREP algorithm 
for predicting motor recovery in people post-stroke [82]. 
Invasive techniques such as deep brain stimulation have 
become indispensable elements of neurorehabilitation 
for people with Parkinson’s disease as these devices help 
alleviate motor symptoms such as tremors and bradyki-
nesia [83]. More recently, stimulation of the vagus nerve 
via implanted electrodes has shown promise for improv-
ing upper limb function in people post-stroke [84], pre-
sumably via mechanisms that include reduced systemic 
inflammation, heightened angiogenesis, and improve-
ments in axonal regeneration [85]. Together, this broad 
spectrum of devices that support neurorehabilitation and 
daily function represent an area of high need and impact 
for computational modeling.

Commentary
One of the central themes that emerged during the DARE 
Conference was the need for both basic scientific stud-
ies and computational models to augment sensation for 
prosthesis users and other assistive technology. Com-
mercial prostheses typically lack a means by which users 
can accurately perceive tactile information about the 
physical interaction between the device and the external 
world. If this information could be provided to the user 
through appropriate afferent channels, it may be pos-
sible to dramatically improve their ability to manipulate 
objects with an upper limb prosthesis or improve balance 
control when this information is integrated into lower 
limb prostheses. However, the speakers at the meeting 
(see Appendix) noted two key areas of opportunity in 
this space. First, they acknowledged the need for precise 
computational models capable of encoding information 
about the mechanical interaction between the prosthe-
sis and the external world. Second, they highlighted the 
need for computational models to inform decisions about 
how and through which afferent channels this informa-
tion should be transmitted to the user.

The long-term effectiveness of devices for neurore-
habilitation relies on the assumption that humans can 
adapt their sensorimotor control strategies to acquire the 
potential benefits of a given device-driven intervention. 
For decades, neuroscientists and engineers have focused 
on developing mathematical representations of the learn-
ing processes (see section on Adaptation and Plasticity) 
at play during human-device interactions [86–88], and 
this knowledge has been used to design control strategies 
for rehabilitation robots [89]. However, while models of 
sensorimotor learning often focus on aspects of learn-
ing thought to be mediated by supraspinal structures 
and cortico-spinal pathways, many neuromotor impair-
ments result in hyperexcitability (and/or inhibition) of 
subcortical structures and brainstem and proprio-spinal 
projections to α and gamma motoneuron pools, result-
ing in incorrect voluntary and/or undesirable involun-
tary responses when reacting to imposed movement or 
loads from robotic and wearable devices [90, 91]. Com-
putational models will be indispensable for understand-
ing how distributed networks throughout the central and 
peripheral nervous system influence performance and 
learning in health and disease.

Another major challenge that remains for develop-
ing computational models of human-device interactions 
is that one would often like to know what objective(s) 
drives an individual’s behavior as they interact with a 
device, but this is an ill-posed, inverse problem, as a given 
behavior could be ‘best’ for an infinite number of poten-
tial objective functions. There remains a need to develop 
new approaches to estimate the objectives that drive our 
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behavior beyond work that focuses on minimizing energy 
cost or performance errors so that rehabilitation inter-
ventions can be better aligned with the patient’s explicit 
(e.g., walking faster) and implicit (minimize the likeli-
hood of a fall resulting from a slip or trip) goals. Efforts 
to infer objectives from observed behavior inevitably 
require computational models. These models are used to 
simulate the behavior that is optimal for a given objective 
function, and both the structure of the objective function 
and the corresponding costs are varied until one finds a 
function that produces a reasonable estimate of observed 
behavior [92–94]. However, these methods often con-
sider only a limited set of potential costs and assume that 
humans can find optimal actions for a given cost func-
tion. We need to understand when these theories fail to 
predict behavior accurately and identify alternative theo-
ries that better capture the human side of human-device 
interactions. For reviews on habitual, feasible, good-
enough, sub-optimal, and optimal motor learning and 
performance, see [59, 60, 95].

The promise of wearable robotic devices requires that 
these devices be untethered from bulky power supplies 
and autonomously adaptable to the varying demands 
faced in the real world. One of the major recent innova-
tions in the control of wearable exoskeletons is the devel-
opment of online control optimization strategies that 
work when walking in the real world [96]. While these 
strategies have yielded promising reductions in metabolic 
cost in young adults, it remains to be seen if these strate-
gies work in populations with neuromotor impairments, 
such as people post-stroke. In addition, there is a need 
for continued innovation in device design to improve the 
likelihood that potential end-users will use these devices 
regularly. Computational methods can be used as part 
of a model-based design optimization to reduce weight 
and cost and potentially increase the accessibility of these 
innovations to diverse communities.

Similarly, ‘where’ computation happens is critical to the 
deployment and use of ‘smart’ assistive and rehabilita-
tion devices. One option is the traditional von Neumann 
architecture, requiring a central processor and memory 
that takes inputs and produces outputs. Nature, in con-
trast, has evolved hierarchical distributed sensorimo-
tor neural architectures, where computation happens 
throughout (centrally, in middleware, and ‘the edge’). This 
form of biological edge computing happens at subcorti-
cal, spinal, and even anatomical levels [97–99]. Therefore, 
successful smart neuro-assistive or neuro-rehabilitation 
devices (which are, in fact, a hybrid human+robot system 
engaged in a game-theoretic dance) would, like robots 
in general, do well to learn from such forms of biological 
edge computing for physical action.

Improving the quality of life for people with disabilities 
also requires that we develop more effective means by 
which people can navigate the digital world. The digital 
revolution has given us a range of powerful and relatively 
inexpensive devices we use to communicate with people 
worldwide. Although many of these devices have only 
existed for a short time, innovations driven by experts 
in human-computer interaction have resulted in intui-
tive user interfaces to control these devices. However, 
many neuromotor disorders, such as stroke, spinal cord 
injury, and amputation, reduce the number of options 
with which people can interact with the physical world. 
Rehabilitation engineers need to devote effort to improv-
ing accessibility to people with different levels of ability, 
and computational models provide a valuable means by 
which interfaces can be designed for efficient and inclu-
sive use.

Modeling ‘in‑the‑wild’
Brief background
Extending impact outside of the clinic or laboratory (i.e., 
truly improving activities of daily living) is an essential 
element for effective, reliable, and personalized neu-
rorehabilitation. Behavior ‘in the wild’ was the crucible 
in which evolution occurred. Thus it is ironic that, from 
the perspective of scientific inquiry and clinical applica-
tions, it is work and research ‘in the wild’ which has taken 
the longest to develop. It is only now that, for exam-
ple, at-home clinical and rehabilitation applications are 
becoming affordable, possible, and even reimbursable 
in the United States via remote therapeutic monitoring 
mechanisms.

In contrast, clinics and laboratories have been the 
default controlled environments where patients can be 
asked to conduct standardized assessments to evaluate 
function and recovery. In these environments, we aim 
to use highly repeatable and informative assessments 
that can provide actionable clinical insight to guide and 
inform neurorehabilitation. However, once we move 
outside of these environments into—‘the wild’—we lose 
many of the pillars, processes, and attitudes that sup-
port traditional clinical and scientific inquiry. Executing 
specific motions or having highly-trained clinical hands 
guide an action is no longer possible nor desirable, and 
we must treat, control, monitor, learn, and infer from 
noisy data collected during variable real-work actions 
in non-idealized environments. Yet, being able to assess 
and extend neurorehabilitation into these environments 
is essential to support long-term function and quality of 
life—and the true need of our clients.

Beyond the scientific utility of in-the-wild research, 
we also have the social imperative of expanding services 
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into-the-wild to increase access, including delivery of 
essential services to under-served populations. Trans-
portation to/from clinic visits remains one of the larg-
est barriers to rehabilitation care [100–103]. During the 
pandemic, the growth and impact of telerehabilitation 
demonstrated the feasibility and potential of remote 
assessment and monitoring to improve health outcomes 
[104–107].

How we got to the current model of limited in-patient 
and out-patient options for rehabilitation at a clinic is 
a function of historical, social, economic, and politi-
cal influences. But we are seeing a paradigm shift, made 
possible by innovations in internet connectivity, wear-
able and ubiquitous sensors, cloud storage/analytics, and, 
most importantly, social and economic changes in the 
reimbursement landscape due to the COVID-19 pan-
demic that make ‘telemedicine,’ and by extension, remote 
therapeutic monitoring, possible and even desirable [108, 
109]. In the traditional practice of out-patient neurore-
habilitation, the client must travel to the clinic where 
they may receive one to four hours of physical or occu-
pational therapy each week for assessment and focused 
training. Outside of these few hours, they may need fur-
ther supports for at-home exercise programs, translating 
new motion patterns to activities of daily living, identi-
fying unsafe (e.g., fall risk) scenarios, monitoring func-
tion, and guiding future in-clinic therapy sessions. There 
are immense opportunities for computational modeling 
to support and optimize neurorehabilitation in each of 
these scenarios—both in the clinic and at home.

New technology, like wearable sensors and environ-
mental monitoring (e.g., via video, voice, typing, or 
space) can now be used to monitor and assess function 
in-the-wild, yet there are a dearth of tools available to 
leverage this data for clinical assessment or recommen-
dations [110–113]. In the last decades, advances in wear-
able and ubiquitous sensing have led to extensive growth 
in the availability and amount of data available from daily 
life to potentially inform and enhance rehabilitation. This 
was not necessarily by design or intent. The market for 
devices designed exclusively for rehabilitation has often 
been viewed as ‘too small’ to attract serious industrial or 
financial investment. As a result, many neurorehabilita-
tion systems for clinic and home use struggle to become 
affordable, widely used products, such as several types of 
rehabilitative electrical stimulators (e.g., Freehand Sys-
tem, BIONs, Second Sight) and exoskeletons and reha-
bilitation robots (ZeroG, Lokomat, Manus, Kinarm). 
Rather, the larger markets for military and industrial sys-
tems, and consumer products led to large-scale design 
and production that provided affordable, miniaturized, 
and widely available technologies that rehabilitation 
communities then adapted and adopted. A few examples 

(from many) are the computer mouse; graphical user 
interfaces; the 3D gaming wands; VR gaming goggles; 
global positioning system locations (GPS, Department of 
Defense); accelerometers (e.g,. for airbags in the automo-
tive industry); and ultra-fast graphical processing units. 
This entirely non-medical and non-research ecosystem 
now provides sensors, communication infrastructure, 
algorithms, hardware, and software that can be, and has 
been, brought to bear on enhancing neurorehabilitation 
in-the-wild.

As a result, the large majority of adults in the United 
States and the industrialized world can afford a 
smartphone+smartwatch combination with accelerom-
eters, inclinometers, GPS, cameras, heart-rate moni-
tors, blood-oxygen saturation sensors, fast processors, 
and sufficient memory with sufficiently high bandwidth 
to monitor metrics of health and performance (e.g., step 
count and walking speed) or provide app-based guidance 
on rehabilitation exercises [114]. Recent studies have 
demonstrated that video-based techniques and wearables 
can be used to perform standardized clinical assessments 
[115]. For example, in Parkinson’s Disease finger tapping 
tasks or passive monitoring of movement characteristics 
can be used to tune medication dose/timing and monitor 
disease progression [116, 117]. Advances in robotic and 
haptic technology that can provide assistance or resist-
ance, as well as virtual and augmented reality provide 
additional tools to develop and deploy novel neuroreha-
bilitation approaches in the home and community [118, 
119]. Computational modeling is an essential component 
to enable and leverage these new tools and data to guide 
neurorehabilitation. Machine learning often underlies 
these modeling methods, whether using large training 
datasets to prospectively monitor new patients or using 
unsupervised learning to identify deviations from typical 
or desired patterns of activity [120–122]. Physics-based 
modeling, such as musculoskeletal modeling and simu-
lation, can complement and improve the accuracy of 
movement or exercises captured with wearable sensors 
[123–125]. For example, using musculoskeletal mod-
eling and dynamic simulation can improve the accuracy 
of video-based techniques that estimate joint positions 
and movement patterns. At the population level, these 
techniques can evaluate the impact of novel rehabilita-
tion techniques, differences in recovery responses, and 
expected trajectories of recovery or disease progression. 
On an individual level, personalized models can use data 
collected in-the-wild to customize exercise programs 
(e.g., adjusting challenge level), monitor daily activi-
ties (e.g., fall risk or medication responses), and provide 
quantitative feedback to the clinical team. The intersec-
tion of computational modeling with neurorehabilitation 
in-the-wild represents an exciting and high-potential 
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area for understanding and improving outcomes, manag-
ing disease progression, and accelerating recovery.

Commentary
The potential applications and impact of computational 
modeling in-the-wild to support neurorehabilitation 
make this an area of high priority to expand access and 
improve outcomes. Given the importance of expanding 
access and reducing burdens of rehabilitation, we were 
surprised and disappointed that only 15% of submis-
sions focused on applications in-the-wild. Further, most 
studies focused on the sensing technologies to monitor 
movement and not the methods to translate results into 
actionable clinical insight nor tools to implement reha-
bilitation outside the clinic. While there is often great 
enthusiasm about being able to monitor and measure 
outside the clinic, figuring out how to bridge the gap 
between technology (sensors, robotics, augmented real-
ity) and integration with rehabilitation practices is a 
persistent challenge. This gap contributes to continuing 
inequities in care.

If appropriately deployed, computational modeling can 
be a bridge between data, insight, and access. McGinn-
is’s examples of deploying multimodal sensing to collect 
the large datasets necessary to guide population-based 
and individualized insights for rehabilitation provide a 
compelling model for other clinics to follow and part-
ner (see Appendix). Ideally, systems that could capture, 
share, and integrate data with electronic medical records 
across institutions would be available to create large 
datasets to guide future practice. Similarly, McGinnis and 
Scheidt provided examples of how unobtrusive sensing 
can extend measurements outside the clinic to monitor 
falls, disease progression, and mental health. Song and 
Collier demonstrated how complementing these sens-
ing techniques with cloud computing, theoretical mod-
els, and neuromechanical simulations can deepen our 
understanding of the mechanisms driving rehabilita-
tion responses. Integration of complex systems will be 
required to leverage these advances towards personal-
ized and optimized neurorehabilitation. Ultimately, we 
would envision a system that could quantify the specific 
mechanisms contributing to an individual’s functional 
capacity, use that insight to develop a personalized neu-
rorehabilitation plan that minimizes patient, caregiver, 
and clinician burden, repeatedly monitor relevant digital 
biomarkers outside of the clinic, integrate information 
into clinically meaningful and interpretable charts in a 
patient’s electronic medical record, and use this monitor-
ing to continuously adapt and optimize rehabilitation and 
predict long-term outcomes.

Moving towards this level of personalization and preci-
sion will require development of new methods to induce 
neuroplasticity, personalize care, and improve human-
device interaction to support rehabilitation goals—the 
other focus areas of this conference. We recognize that 
these advancements also are in opposition to realities of 
reimbursement and provision in the American healthcare 
system. At the most basic level, we need to determine the 
methods to reimburse and capture the new sources of 
data that will be essential to drive rehabilitation. While 
we can schedule and reimburse for a session of physi-
cal therapy or an MRI, how and when to reimburse for 
the use of a wearable sensor or robotic device deployed 
in the home, and how to provide the technical and ana-
lytical expertise to integrate the data from these sensors 
into the clinical routine remain open challenges. Beyond 
implementation and reimbursement, the more complex 
challenges will require figuring out how to ensure patient 
privacy, develop equitable and inclusive algorithms, and 
responsibly monitor individuals in-the-wild. New stand-
ards need to be developed alongside technology to enable 
safe and effective neurorehabilitation that leverages com-
putational modeling for deployment in-the-wild.

Conclusions
Key insights
The conference brought concrete, cutting-edge exam-
ples of how computational modeling can provide foun-
dational insights about data that cannot be obtained 
experimentally, and support the formulation of useful 
hypotheses and the design of assistive technology and 
other innovative technology that can accelerate and opti-
mize neurorehabilitation.

Computational models are, after all, hypotheses for-
mulated as mathematical constructs—be they statistical 
black or gray boxes, or mechanistic paradigms. As per 
the scientific method, observations and experiments (two 
forms of data) are crucial for proper hypothesis devel-
opment and testing. Furthermore, in the clinical realm, 
computational models are a means to transform informa-
tion into actionable insights and therapeutic decisions. 
There were four common threads across the Focus Areas 
that underpin future needs to create useful data and 
models for neurorehabilitation: 

 (i) The need to capture and curate appropriate and 
useful data necessary to develop, validate, and 
deploy useful computational models. This step is 
critical to models for applications that span from 
classification of clients (as with the ENIGMA 
Stroke Recovery Working Group to use struc-
tural neuroimaging to classify clients), to real-time 
online use of data (as in human-in-the-loop sys-
tems).
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 (ii) The need to create multi-scale models that span 
the personalization spectrum from individuals to 
populations, and from cellular to behavioral levels. 
Figure 2 emphasizes this point as most of the work 
presented can be placed on this two-dimensional 
spectrum to clearly identify the types of questions 
a model is addressing, and the generalizability of 
its findings. This was particularly critical for mod-
els related to adaptation and plasticity, which can 
occur across all ranges of scale and number.

 (iii) A strong case was made to pursue means to extract 
as much information from available data (meta-
learning), while requiring as little data as possible 
from each client. This is because there are impor-
tant ethical, practical, and algorithmic limitations 
on just how much, and what kind of, data a given 
individual can contribute to the development or 
tuning of a model or a human-in-the-loop system.

 (iv) The insistence on leveraging readily available sen-
sors and data systems to push model-driven treat-
ments away from the lab, and into the clinic, home, 
and workplace. However, translating knowledge 
into action is a longstanding and difficult chal-
lenge in medical research [126, 127]. The era of 
the Internet-of-Things and the Internet-of-Medi-
cal-Things, nevertheless, is here to stay—even if it 
faces skepticism and resistance [128]. We should 
embrace it. In addition to the traditional need to 
translate research into action in the form of devices 
and methods, we now also have the robust public 
debate about the costs and dangers of bringing a 
relative newcomer, Artificial Intelligence (AI) into 
clinical practice. The conference, however, brought 
into clear focus the costs of not using data-driven 
computational modeling for healthcare. Simply 
put, there is ample opportunity to personalize care 
by using existent technologies ‘in-the-wild’ based 
on consumer products that can have real positive 
and ethical impact to neurorehabilitation at low 
cost, deployable at scale, and without compro-
mising privacy. But these efforts need to be done 
in close collaboration with clinicians and clients, 
while avoiding the temptation to decouple data 
from physiology.

The way forward
In addition to the Commentary made for each sec-
tion above, it is important to reiterate that very recent 
developments in transformers and their variants (when 
feasible) will provide exciting novel opportunities in all 
Focus Areas (Table  1) and across scales (Fig.  2) that we 
can scarcely imagine at this point. Notwithstanding that 

transformers are hugely ‘data-hungry’ and require large 
training times, they can find applications in neurorehabil-
itation. In ‘Modeling for Personalization’ applications, we 
mentioned the example where they can help us bridge the 
gap between generic and patient-specific computational 
models for, say, tumor detection in a given patient based 
on thousands of structural MR images [64]. Transform-
ers and their foundation on the ‘attention mechanism’ 
are also finding traction in other relevant applications 
where large datasets are available. For example, ‘Mode-
ling human-device interactions’ provides a fertile ground 
where transformers can learn from large sets of EEG or 
ElectroCorticoGraphy (ECoG) signals [129, 130] col-
lected over days of recordings in patients interacting 
with neuroprosthetics or neuromodulation systems like 
deep brain stimulation (DBS). Similarly, wherever weara-
bles or markerless video provide large sets of movement 
data. Thus ‘Modeling ‘in-the-wild” will be able to provide 
generic and personalized movement patterns and syntax 
that can be readily used to track adaptation and plasticity 
in human environments [131, 132].

It is our firm belief that the open, sincere, and robust 
discussion at the conference, and the resulting videos, 
journal articles, and ideas sparked from collaborative 
conversations serve as strong medicine against these 
maladies. The conference enabled and forced us to exam-
ine the nature and appropriate uses of existing compu-
tational techniques to now refine them or develop new 
ones. And they confronted us with the need for a tight 
closed-loop interaction with the functional and clini-
cal reality of our health care professionals and clients to 
focus our computational neurorehabilitation work on 
useful, urgent, and relevant problems and solutions. We 
look forward to the next few years to reconvene the next 
iteration of this conference to re-assess the progress in 
these critical Focus Areas and bring to fruition the many 
opportunities to catalyze progress in neurorehabilitation. 
We stand on the shoulders of giants, and the best is yet to 
come.

Appendix: overview of key insights made 
in presentations by the speakers
Modeling adaptation and plasticity
Sook-Lei Liew: using large heterogenous neuroimaging 
datasets to model stroke rehabilitation outcomes Recov-
ery after stroke is highly variable due to heterogeneity 
in direct stroke damage (e.g., lesion size, location), and 
resulting secondary neural damage, as well as due to dif-
ferences in how these neurologic changes translate into 
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behavioral consequences. Large, diverse datasets are thus 
important to provide sufficient data to allow for greater 
generalizability of computational models in stroke. 
Addressing this need, the ENIGMA Stroke Recovery 
Working Group harmonizes neuroimaging and behav-
ioral data from research groups worldwide to generate 
large, heterogeneous datasets of structural neuroimag-
ing for computational modeling approaches, resulting in 
well-powered and generalizable findings about the rela-
tionship between post-stroke sensorimotor outcomes 
and brain characteristics, such as lesion size, location, 
brain age, atrophy, and connectivity.

Amy Orsborn: co-adaptive therapies to shape user learn-
ing via plasticity-aware decoding Technologies that inter-
face with the nervous system produce plasticity. For 
example, how neural activity relates to limb movement—
the brain’s encoding of it—can change as someone prac-
tices with a brain-computer interface (BCI). We find that 
changes in the brain’s encoder are strongly influenced by 
the decoding algorithm used in a BCI. These interactions 
create complex bi-directional dynamics (e.g., closed-loop, 
dynamical coupling, and game-theoretic interactions 
such as predator-prey). Thus uni-directional computa-
tional methods that ignore plasticity may improve short-
term BCI performance at the potential cost of long-term 
performance. Yet, these bi-directional interactions also 
open new opportunities to shape the nervous system 
for rehabilitation applications. Achieving this goal will 
require new computational approaches capable of cap-
turing dynamic and non-stationary interactions between 
the nervous system and a device, such as those in the 
field of game theory. [133]

Adam Roth: the role of reinforcement-based and error-
based processes on exploratory motor behavior in neu-
rologically intact and Parkinson’s disease Exploration is 
critical when attempting to re-learn functional motor 
skills following a neurological disorder. Yet we know lit-
tle on how error-based and reinforcement-based pro-
cesses interact to influence motor behavior. Here, Roth 
and colleagues designed three experiments and a com-
putational model to investigate the unique and interact-
ing roles of reinforcement feedback and error feedback 
on motor exploration. Reinforcement-based and error-
based feedback respectively boost and suppress explo-
ration, while when together they oppose one another 
to result in moderate exploratory motor behavior. In 
contrast, participants with Parkinson’s disease, who 
have known deficits to reinforcement-based neural cir-
cuits—on account of disruption of dopamine-dependent 
neural circuitry—showed less exploration with reinforce-
ment feedback compared to neurologically intact age-
matched controls; but similar levels of exploration when 
given error feedback or both reinforcement and error 

feedback simultaneously. Such neural circuitry involved 
in error-based feedback could, therefore, be exploited for 
neurorehabilitation to improve outcomes in Parkinson’s 
disease.

Dulce Mariscal: characterization of locomotor adapta-
tion and generalization dynamics from high-dimensional 
neuromuscular data Humans can adapt their gait to 
compensate for changes in environmental demands, 
and generalize learned movements from one situation 
to another. One way to study locomotor adaptation is 
by exposing participants to split-belt treadmill walking 
and contrasting the adaptation effects (i.e., after-effects) 
that participants exhibit in the same (treadmill) or differ-
ent (overground) contexts from the adaptation. We used 
a data-driven approach to determine the processes that 
underlie the adaptation of muscle activity. Our results 
suggest that reactive and contextual patterns contrib-
ute to the evolution of neuromuscular patterns during 
split-belt walking. However, the generalization of these 
patterns to walking without the training device is much 
smaller, contributing to the smaller kinematic after-
effects previously reported while walking overground. 
These analyses provide insights into locomotor adapta-
tion features beyond those drawn from traditional kinetic 
or kinematic analyses [134–136].

Felix Schwock: a novel graph diffusion framework for esti-
mating neural communication towards personalized neu-
rorehabilitation Most neurological diseases are associated 
with altered patterns of neural communication; how-
ever, their specific changes due to disease or subsequent 
rehabilitative treatments could be better understood. As 
a step towards that, we propose a new computational 
framework for estimating dynamic network level neu-
ral communication by modeling the evolution of neural 
activity as a parameterized graph diffusion process [137]. 
To demonstrate the utility of our framework for neurore-
habilitative applications, we have applied it to electrocor-
ticography recordings from the sensorimotor cortex of a 
macaque monkey that underwent focal ischemic lesion-
ing and acute electrical stimulation in the ipsilesional 
hemisphere [138]. We found that stimulation in the acute 
phase after lesioning caused an increase in neural com-
munication near the stimulation location in both hemi-
spheres that was not observed when analyzing classical 
measures of neural communication such as coherence or 
Granger causality. This framework opens opportunities 
for studying network level neural communication with 
different experimental setups on various spatiotemporal 
scales, thus, supporting the development of personalized 
and adaptive treatments for various neurological disor-
ders by tailoring treatment protocols to an individual’s 
network dynamics.
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Ariel Edward Hight: neuroplasticity and improved 
speech perception in cochlear implant users Cochlear 
implants are auditory prostheses that restore hearing and 
speech perception to humans with severe to profound 
hearing loss. These devices work by inserting as many 
as 22 electrodes into the cochlea, where sound is nor-
mally transduced into neural activity. Patterned electrical 
stimulation of the auditory nerve by implanted electrodes 
induces significant remapping of sensory codes for hear-
ing [139], and attaining significant speech perception 
(without lip-reading) can occur over weeks, months, and 
in some cases years [140–142]. Our results indicate that 
discriminating spectro-temporal cues in human coch-
lear implant users improves over initial implant use, 
paralleling periods of rapid improvement in speech per-
ception. Furthermore, we have developed a system for 
behavioral and physiological studies of cochlear implants 
in deafened rats [143], and are studying mechanisms of 
neuromodulation and plasticity for hearing restoration, 
including new experiments asking if and how vagus nerve 
stimulation might help improve perceptual learning with 
cochlear implants[144].

Modeling for personalization
Steve Collins: personalizing exoskeleton assistance in the 
real world: learning models of human–device interaction 
to leave the lab behind Human-in-the-loop-optimization 
is a technique for personalizing assistive device charac-
teristics based on rapidly generated, local models of user 
response. The approach has been successful at augment-
ing mobility for healthy adults using exoskeletons, lead-
ing to the largest improvements in speed and energy 
economy to date under real-world conditions [96]. It 
is critical to extend these techniques to new outcomes, 
such as balance and pain, and populations with mobility 
loss, including older adults and individuals with chronic 
stroke.

Katherine Saul: integrating medical imaging and itera-
tive modeling approaches for personalized simulation 
Although we have unprecedented computing power to 
personalize musculoskeletal models, data to inform mod-
els are limited. It is difficult or impossible to directly and 
noninvasively measure many of the numerous muscu-
loskeletal parameters; instead we are currently limited 
to measurements in cadaveric specimens, small popula-
tions, or small numbers of muscles that do not span the 
diversity of the population or physiology. Judicious per-
sonalization approaches require one to think strategically 
about the desired scientific outcome: is it necessary to 
understand the underlying mechanics and parameters, 
or is it necessary to predict the desired behavior most 
accurately? Detailed personalization schemes that seek 
to personalize all parameters may obscure fundamental 

biomechanics in the same way clinical measures can, 
and thus sensitivity analyses may be more appropriate 
[145–147]. For intuitive control approaches for human-
machine interfaces, personalized physics-based models 
that tune parameters to best control intended function 
may be most appropriate [148, 149], but these may not 
directly elucidate the underlying parameters or biome-
chanics. When choosing a personalization approach, 
researchers are encouraged to engage clinicians early in 
the design of the research question, choose a personaliza-
tion scheme carefully to capture major clinical features, 
and choose simulation outcomes that are parallel to clini-
cal assessments to enhance interpretation, translation, 
and validation.

James Patton: optimal personalized designs of spring-net-
work devices Exoskeletal devices have demonstrated their 
potential for assistance, therapy, and even prosthetic 
applications. Importantly, much can be accomplished 
with passive structures using a network of impedance 
elements that can approximate nearly any desired fields. 
For example, a leg exoskeleton with the right number and 
placement of layered linear spring elements can approxi-
mate the required torques otherwise provided by muscle, 
and structural optimization methods can personalize the 
design of exoskeletons for neurorehabilitation. In fact, it 
is possible to optimize the design of a wearable device, 
the ExoNET, which uses elastic elements to provide 
assistive torques to individuals with motor deficits dur-
ing gait. Potential benefits of this approach are reducing 
muscle engagement and metabolic cost of walking while 
using optimization algorithms and sensitivity analysis 
to improve the device’s performance. We also explore 
how computational modeling can facilitate the custom-
design optimization for individuals post neurological 
impairments. Such optimization algorithms can be used 
to design this network of multijoint tension elements for 
gait and balance, in individuals with neurological or mus-
culoskeletal conditions. Sensitivity analysis with co-vary-
ing parameters can identify the parameter subspace that 
is most influential on the torque. These methods map 
high-dimensional spaces to lower dimensional manifolds 
of the parameter space, resulting in a subspace manifold 
to allow rapid human-in-the-loop optimization (HIL) 
for a personalized, safe, and easy-to-use device that can 
assist with movement and improve gait and balance.

Guillaume Lajoie: rapidly personalizing models of stimu-
lation-evoked neural responses with meta-learning Due to 
variability arising from placement of stimulation devices, 
underlying neuroanatomy and physiological responses 
to stimulation, it is essential that neurostimulation pro-
tocols are personalized to maximize efficacy and safety. 
Building such personalized protocols would benefit from 
accumulated information in increasingly large datasets 
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of other individuals’ responses. To address that need, a 
meta-learning family of algorithms can be used to con-
duct few-shot optimization of key fitting parameters of 
physiological responses in new individuals [150]. This 
meta-learning framework is general and can be adapted 
to any input-response neurostimulation mapping 
problem.

Jessica Allen: age- and stroke-related impairments in the 
neuromuscular control of dynamic balance during walk-
ing Falls due to a loss of balance during walking are a pri-
mary cause of injury in older adults and individuals with 
neurological deficits [151, 152]. Recent work implicates 
an innovative mechanism of neuromuscular control that 
may be critical for successful walking function [153–155]. 
Specifically, embedding the control of balance into the 
muscle coordination for walking is associated with better 
walking function. Moreover, this relationship was found 
in both neurologically impaired and intact individuals, 
suggesting that it may represent a general neuromuscular 
strategy contributing to the maintenance of balance while 
walking and may serve as an effective target for individu-
alized neurorehabilitation design and prescription.

David Lin: modeling brain-behavior relationships after 
stroke to advance neurorehabilitation A series of clinical 
research projects derived from a natural history study of 
upper extremity motor recovery after stroke, features the 
prospective collection of data at the point of care (in-hos-
pital, in outpatient clinics) across the stroke continuum 
of care (Stroke Motor Rehabilitation and recovery Study, 
NCT03485040). Findings from that data collection effort 
have revealed that (1) the corticospinal tract derived 
from clinical imaging can be used to predict upper 
extremity motor recovery after stroke [156]; (2) cognitive 
demands influence upper extremity motor performance 
after stroke [157]; (3) broad, disability focused outcomes 
(i.e. the modified Rankin scale) do not necessarily capture 
changes in impairment or function in the first 90 days 
after stroke [158]; (4) patient-reported and performance-
based outcomes have distinct neuroanatomic correlates 
(manuscript in preparation); and (5) there are distinct 
neural circuits for proximal versus distal upper extremity 
motor control [159]. Importantly, these projects have all 
featured critical interdisciplinary collaborations between 
neurologists, neuroscientists, therapists, and engineers. 
Overall, those findings highlight the value of outcome 
measure collection at the clinical point-of-care, providing 
fundamental insights that can guide research trials and 
clinical rehabilitation. Outcome measures in neuroreha-
bilitation have distinct meanings and neurologic under-
pinnings that need to be thought about carefully in the 
context of computational modeling.

Modeling human–device interactions
Jeremy D. Brown: understanding the utility of haptic feed-
back in teleoperated and assistive robots For assistive 
robotic devices such as prosthetic limbs, the absence 
of haptic information leads to a decrease in task per-
formance and an increase in cognitive load [160]. This 
knowledge provides useful insight into the possible con-
sequences of impaired haptic sensation in the biological 
limb. Yet, our current understanding of sensory impair-
ment and sensory recovery is limited. Robotic technolo-
gies are well-poised to help fill this knowledge gap by 
providing robust and reliable assessments of sensory 
function [161].

Michelle Johnson: toward automated assessment of 
human–human and human–robot interaction for neurore-
habilitation There is an increased need for rehabilitation 
to occur outside traditional settings and in real-world 
environments. Fundamental to successful neurorehabili-
tation are effective human–human interactions between 
the patient and therapists in clinical and non-clinical 
settings. Often these interactions are done within bill-
able rehabilitation tasks and are embedded with a clini-
cal need for in-person or remote automated assessment 
of persons (adult, child or infant) with motor and/or 
cognitive disabilities. There are several efforts to develop 
algorithms to objectively measure motor and cognitive 
behaviors while people perform tasks with an affordable 
haptic therapy robot, a mobile social robot with telep-
resence, and a toy robot. This allows the development 
of computational models to study both human–human 
interactions and human–robot interactions to automati-
cally assess motor delay in infants, automatically clas-
sify interaction behaviors and enable more personalized 
use of robots in rehabilitation. Importantly, there are key 
opportunities and needs to advance these computational 
models.

Kayla Pariser: computational treatment design of adap-
tive treadmill controllers Computational design of treat-
ments using predictive simulations may allow for more 
efficient selection of optimal rehabilitation compared to 
fatiguing trial-and-error experiments. Thus it is impor-
tant to develop and evaluate a predictive simulation 
framework to estimate changes in gait with various novel 
adaptive treadmill controllers and to determine who 
will benefit from which controller. The adaptive tread-
mill simulation framework successfully predicted similar 
changes in walking speed, propulsive mechanics, kine-
matics, and spatiotemporal parameters that we observed 
experimentally with the different treadmill controllers. 
This lays the foundation for how computational modeling 
can inform design of rehabilitation protocols and esti-
mate cause-and-effect for how individuals will respond to 
novel therapeutic interventions.
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Zachary Lerner: modeling human-exoskeleton interac-
tions to predict neuromuscular engagement during walk-
ing with targeted resistance Step-by-step assessment of 
muscle recruitment during walking with resistive exo-
skeletons would allow for the development of automated 
biofeedback systems aimed at incentivizing user engage-
ment during gait training [162]. Supervised machine 
learning techniques may be used to predict neuromus-
cular engagement of the ankle plantar flexors muscles in 
real-time during walking with ankle exoskeleton resist-
ance in individuals with cerebral palsy . A recent pilot 
study deploying the real-time predictions during gait 
training demonstrate that data-driven artificial neural 
networks can be used to improve the efficacy of robot-
aided rehabilitation [163].

Brandon Peterson: a design-optimization framework for 
compliant implanted prostheses that restore joint func-
tion When human joints are damaged due to injury or 
disease, mobility can become severely limited and pain-
ful [164]. While most major joints can be reconstructed, 
conventional implants do not last forever—typically due 
to failure mechanisms involving aseptic loosening and 
mechanical instability. Thus, there is need for, and oppor-
tunity in, a fundamental shift in the design framework 
for joint-replacing implants, centered around compliant 
mechanisms. These mechanisms guide motion through 
the elastic deformation of flexible elements, and can be 
designed to be both frictionless and inherently stable 
[165].

Natalija Katic Secerovic: modeling afferent tactile 
responses from the sole of the foot Cutaneous feedback 
from the foot sole is crucial for gait and balance control 
[166]. Electrophysiological recordings provide insights 
into how afferent populations encode tactile information 
[167]. However acquiring such recordings is challeng-
ing and restricted to stationary conditions. A promising 
approach to this challenge is the FootSim model that sim-
ulates neural spiking responses to arbitrary mechanical 
stimuli from the combined population of all four types of 
mechanoreceptors innervating the foot sole [168]. From 
neuroscientific perspective, it can be exploited for unveil-
ing the afferent activation in dynamic situations, over-
coming the limitations of currently available recording 
techniques, while from the neurotechnological point of 
view the model can be used for neuroprosthetic applica-
tions as in-silico tool for designing biomimetic stimula-
tion paradigms.

Modeling ‘in‑the‑wild’
James Cotton: portable, in-clinic, video-based analysis 
of gait impairments Numerous methods have recently 
emerged for monitoring gait in the clinic and community, 
including fixed and wearable sensors, markerless motion 

capture and video-based analysis. Processing, analyz-
ing, interpreting and using these data presents numerous 
challenges, including limited generalization of pretrained 
models like keypoint detectors and activity recognition 
algorithms to people with disabilities, whose limbs and 
movements may look different than able-bodied indi-
viduals in the training data [169]. In-the-wild record-
ings also raise important ethical issues of AI fairness for 
people with disabilities and highlight the technical need 
to robustly validate these systems on clinical popula-
tions. After addressing these challenges, we show that it 
should be possible to routinely and quantitatively analyze 
the gait of many people seen in rehabilitation clinics and 
performing in-home therapy. The resulting large datasets 
also present a new set of challenges for identifying phe-
notypes and subgroups who would benefit from different 
treatment plans under a precision-rehabilitation frame-
work, and the opportunities to incorporate causal infer-
ence in our computational models to bridge across levels 
within the International Classification of Function (ICF) 
framework, and across time between providing rehabili-
tation interventions and long-term functional outcomes 
and quality of life.

Ryan McGinnis: modeling to enable personalized and 
preventative digital medicine in-the-wild The advent of 
conformal, skin worn sensors has enabled unobtrusive 
continuous monitoring of patients outside of traditional 
laboratory or clinical environments. These emerging sen-
sors with advanced data analysis pipelines form a digital 
biomarker discovery platform [170, 171]. Such platforms 
detect activities of daily living, quantify how patients 
engage in those activities, and identify potential biomark-
ers of symptoms or disease that can then be monitored 
over time to inform assessment and efficacy of inter-
ventions. We have shown this platform can be used for 
studying biomarkers of fall risk in persons with multi-
ple sclerosis that can be extracted from everyday walk-
ing, postural transitions, and standing [170, 171]. This 
allows identifying several key areas of consideration for 
advancing remote patient monitoring, including select-
ing appropriate approaches for data aggregation (e.g., 
averages alone are probably not sufficient), considering 
appropriate monitoring periods (e.g., period depends 
on population and parameter), and the need for careful 
validation to ensure these technologies are fit for purpose 
[172].

Robert Scheidt and Kim Bassindale: Souvenir: a case 
study of challenges and opportunities in the integration of 
computational intelligence with wearable rehabilitation 
technology in acute care and at-home settings Exercise 
is medicine in physical rehabilitation [173]. Motivating 
patients to actually do prescribed exercises on their own 
is a practical challenge facing all practicing clinicians. We 
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propose that low-cost wearable mobile health (mHealth) 
systems have potential to encourage increased use of the 
more-affected arm throughout all phases of recovery 
after stroke—without significantly increasing caregiver 
burden. To test this idea, we developed a system (called 
Souvenir) to provide salient cues periodically remind-
ing stroke survivors to perform their prescribed exer-
cises. The system comprises two off-the-shelf wrist-worn 
motion trackers, a smart phone, an easy-to-use custom 
app, and a set of three ‘progressive challenge’ exercises 
developed by practicing clinicians. The system also offers 
the possibility for increased clinician access to motion 
data throughout the day to assess exercise adherence and 
performance. Preliminary testing shows that the progres-
sive exercises had the intended effect as stroke survivors 
used their more-affected arm most when cued to move it 
independently, and least when instructed to simply tap it 
with their less affected arm. Although that study was not 
designed to test efficacy, this pattern of arm use appeared 
to generalize to non-cued, silent monitoring periods, 
suggesting that the effect of the cued exercises on the 
more-affected arm use may bleed over into increased 
spontaneous performance of everyday activities. As cur-
rently implemented, Souvenir’s reliance on manual pro-
gression through the exercise challenge levels may not 
yield optimal transfer of increasing hemiparetic arm use 
from cued exercise intervals to periods without cues. This 
limitation poses an opportunity for algorithmic intel-
ligence to model the user’s state and adjust the exercise 
challenge on the fly to maximize beneficial transfer. How 
best to model user state and motivate behavioral change 
remains an open question because exercise compliance 
is dependent on complex and interrelated psychologi-
cal factors including depression, motivation, fatigue, and 
perceptions of self-efficacy.

George Collier: using big data and a variety of modeling 
approaches to advance rehabilitation care We leveraged a 
modern multiparadigm, big data analytics platform built 
on Azure component systems to analyze very large data 
sets. A diverse set of data sources was integrated into the 
platform. This allowed us to build highly successful math-
ematical, machine learning and theoritical models of 
human behavior and physiology while performing reha-
bilitation focused exercises.

Seungmoon Song: modeling in-the-wild effects of gait 
assistive devices through neuromechanical simulations and 
deep reinforcement learning Over the past years, we have 
developed neuromechanical simulations that capture 
various aspects of human locomotion [174, 175]. Our 
ultimate aim is to create digital motor clones that can 
supplement human subject experiments in the develop-
ment and testing of assistive devices and rehabilitation 
treatments. To achieve this goal, our ongoing research 

focuses on two main areas: personalizing musculoskeletal 
and motor control models to individual human subjects, 
and utilizing deep reinforcement learning techniques to 
devise methods for developing physiologically plausible 
controllers capable of managing a wide array of move-
ments in rehabilitation-related settings [176].

Haylie Miller: measurement of neurodivergent visuomo-
tor skills in-the-wild Measurement of human visuomotor 
behavior in-the-wild requires integration and interpre-
tation of multimodal data during naturalistic tasks. Our 
team uses a novel visuomotor assessment protocol and 
our VMIntegration algorithm (NSF SMA-1514495; NIH 
K01-MH107774) to precisely measure postural control 
problems and their relation to sensory processing in 
neurodivergence (e.g., autism, ADHD, dyspraxia) [177, 
178]. Our visuomotor assessment paradigm yields multi-
modal data that is fed back into both hypothesis-driven 
and data-driven computational models of visuomotor 
integration and postural control to identify clinically-sig-
nificant problems, phenotypes within and between diag-
nostic conditions, and high-yield intervention targets. 
Our approach can be used in community settings with 
neurotypical and neurodivergent children, adolescents, 
and adults across a wide range of abilities [179], reduc-
ing barriers to identification of visuomotor problems that 
can negatively impact daily living skills and quality of life 
[180, 181].
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