
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Generic architectures for efficient Hyper-Dimensional Computing

Permalink
https://escholarship.org/uc/item/85z9178d

Author
Datta, Sohum

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/85z9178d
https://escholarship.org
http://www.cdlib.org/

Generic architectures for efficient Hyper-Dimensional Computing

by

Sohum Datta

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Jan Rabaey, Chair
Professor John Wawrzynek
Professor Bruno Olshausen

Professor Sayeef Salahuddin

Summer 2022

Abstract

Generic architectures for efficient Hyper-Dimensional Computing

by

Sohum Datta

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jan Rabaey, Chair

The last decade has witnessed a slowdown in technology scaling. At the same time, the
emergence of machine learning has substantially increased computational demand. While these
trends have seriously challenged traditional paradigms for digital design, novel computing
methods based on randomness can be leveraged for continued increase in performance and
energy efficiency. Hyper-dimensional Computing (HDC), a brain-inspired paradigm using
high-dimensional random vectors as its fundamental data-type, shows promise. It is known to
provide competitive accuracy on sequential prediction tasks with far smaller model size and
training time compared to conventional machine learning, and is robust to representation errors.

This dissertation considers efficient architectures for real-time Hyper-dimensional
Computing on edge devices. After a study of implementations on classical compute platforms, a
highly-pipelined, data-flow architecture is developed from the first principles of HDC. A detailed
construction for a reasonably large HDC processor, capable of supporting a wide variety of
prominent body-sensing applications, forms the foundation of this work.

The basic architecture is extended to HDC processors requiring more than a single bit of
representation for vector elements. Using results from high-dimensional probability theory, a
numerical normalization is proposed and its effectiveness is proven for applications obeying
reasonable assumptions on vector elements’ distribution. Verification experiments indicate that
empirical performance of the proposed normalization is far better than the theoretical guarantee.

A 2048-bit wide HDC processor, designed using the architectural principles developed
here, was manufactured in a leading technology node. The chip reliably achieves an energy cost
of approximately 30 nanojoules per classification on a state-of-the-art body-sensing application –
the best when compared to all known previous hardware in the existing literature. Measurements
establish energy efficiency and robustness of the designed processor.

The architecture, arguments, experiments and measurements presented in this dissertation
confirm the great potential of Hyper-Dimensional Computing as a computing paradigm capable
of competitive performance in extremely energy-constrained environments.

1

Acknowledgements

This project would not be possible without the continuous support and encouragement
from my adviser, Prof. Jan M. Rabaey. While working with him, I have learned
the value of principled thinking, originality and perseverance. Although there have
been great highs and tremendous lows throughout this journey of about seven years,
Jan’s support was instrumental in eventually effecting progress every time. Indeed, it
has been a privilege to watch an excellent researcher think, brain-storm and make
decisions so closely in over two dozen presentations, more than eighty group meetings
and many more conversations – for which I am eternally grateful.

I have been very fortunate to have known Professors Bruno Olshausen, John
Wawrzynek and Sayeef Salahuddin. Their careful examination of this work’s ar-
guments, in-depth discussions and specific feedback has been essential for me to
successfully correct logical faults, improve my hypotheses and presentation of the ma-
terial. Pentti Kanerva and Bruno have been foundational in forming and maintaining
the Berkeley community interested in HDC, located at the Redwood institute. I’m
very grateful for Prof. Subhasish Mitra’s pithy comments and feedback on the subject
and allied fields. I’m also pleasantly reminded of the five continuous hours on a bright
afternoon at Stanford, where an extempore, free-for-all discussion had broken out in
Subhasish’s group – barely hinged to my presentation.

I am grateful for the outstanding teachers who have taught me during my stay at
Berkeley. Memorable experiences include Krste Asanovic’s and John Wawrzynek’s
expositions on classical architectural monuments and recent creativity, Jan’s renowned
sandbox for students to try their skills in imagining tiny processors (or its lack
thereof); Bin Yu’s brilliant and unbelievably informal course on statistics, augmented
with mathematical treatments by Martin Wainwright, William Fithian and Michael
Jordan (in the order of booming complexity), and the entirely new experience at Tom
Griffith’s seminars on cognition. I am especially grateful to Jonathan Shewchuk for
the memorable and unconventional introduction to machine learning in Spring 2016,
and for the wonderful opportunity to teach and influence that flagship undergraduate
and early-graduate course in Computer Science (with more than 650 completing
students). Jonathan also gave me the rare opportunity to write all questions for an
entire homework set and an essay-type written question for the final exam during
both semesters that I assisted in teaching. Teaching and interacting with such a large
and diverse group of students has been an incredible learning experience.

i

I have been fortunate to work with brilliant colleagues during this period. Abbas
Rahimi (IBM Zurich) and Mohsen Imani (UC Irvine) have been very helpful in guiding
me through the proverbial research thicket by sharing data sets, tips and producing a
stream of related research – guiding me to my destination. Andy Zhou, Ali Moin and
George Alexandrov’s splendid data set and paper on EMG hand-gesture recognition
provided a great final benchmark for comparison. Paxon Frady, Friedrich Sommer
and Denis Kleyko’s papers were the first theoretical works on the subject that I came
across after reading Pentti’s decades-old book. Finally, I especially appreciate Alisha
Menon, Youbin Kim, Laura Galindez, Denis Kleyko, Spencer Kent, Matthew Andersen
and Mohamed Ibrahim for their thoughtful comments on my work during the dozens
of group presentations over the years. During my research at Berkeley, I was fortunate
to work with visitors from University of the Philippines Diliman. Ryan A. G. Antonio
and Aldrin R. S. Ison were very helpful in modifying and deploying my source code on
an embedded GPU and CPU core. They were quick learners, and our collaboration
produced the first publication of this project. Denise Soriano, Alexis Czezar Cruz
Torreno and Bentz Del Mundo visited Berkeley in early 2020 – while the pandemic
was rapidly spreading in North America. Despite that, they collected a great amount
of useful data that helped me scope-out a successful idea later.

The chip taped-out during this project would not have been possible without Brian
Richards. Apart from his deep expertise, excellent design suggestions and incisive
questions during technical reviews, I will miss his usual cool-headed demeanor in the
presence of tape-out deadlines and him always cheering me up when I’m falling behind
or getting demotivated. Brian is a tremendous resource for all graduate students at
BWRC, and the generations of chip designers taping out and graduating from my lab
are privileged to have such excellent research staff to support them. The graduate
students who created the Hammer tape-out tool, especially Harrison Liew, were essential
for making physical design manageable. Harrison was available and super helpful
during the entire eight-months long physical design phase, slowly teaching me how to
use Hammer and providing guidance when I got stuck.

I’m thankful to Youbin Kim, Daniel Sun and Mohamed Ibrahim for lending me
a helping hand at times when the effort seemed unbearable. Youbin assisted me in
completing the chip’s Input/Output pad-frame, Daniel was instrumental in getting
a Hammer setup started for my chip, and Mohamed was very helpful in fixing a few
last-moment DRC errors in my design.

The enormous effort spent in designing and fabricating the chip would have been in
vain without a successful testing setup. Crucial to that is to design a Printed-Circuit
Board (PCB) that can properly support tests and measurements. My first PCB design
experience wouldn’t have been successful without the continuous advise of Brian
and James Dunn. They are experts in PCB design, and their periodic reviews were
essential for debugging within deadlines. James was generous with his time in helping
me with soldering certain components to the board. Anita Flynn and Robert Kondner
selflessly devoted their time to my project outside of normal working hours – helping
my board by designing PCB foot-prints for some non-standard package components.
Anita’s attention to detail and careful documentation stood out as great skills that I
should cultivate to become an excellent engineer.

ii

The Berkeley Wireless Research Center (BWRC) is lucky to have superb adminis-
trative staff such as Columba Candy Corpus-Steudeman, Mikaela Cavizo-Briggs and
Yessica Bravo. Candy, assisted by Yessica and Mikaela, has been extremely kind and
supportive throughout this journey – handling all research, financial and travel-related
paperwork with great organization. Jeffrey Anderson-Lee helped me stay connected
to the lab machines even while the pandemic was spreading and lock-downs were
being announced. Most importantly, I want thank Candy for greeting me with a smile
everyday at the reception area near the entrance all these years.

I’m indebted to the Taiwan Semiconductor Manufacturing Company, Limited
(TSMC) for funding my research, providing us with the physical design kit and man-
ufacturing my chip in an industry-leading technology node. I am thankful to the
Semiconductor Research Corporation (SRC), the Defense Advanced Research Project
Agency (DARPA), the National Science Foundation (NSF), TSMC and all sponsors
of the Berkeley Wireless Research Center (BWRC) at UC Berkeley for funding and
supporting my project.

Finally, I thank the wider community for expressing an interest in my research,
providing counter-arguments and sharing relevant information from their fields related
to my project. They include Jared Zerbe (Apple), Bryan Raines (Apple), Dana Massie
(Apple), William Athas (Apple), Julia Ng (NVIDIA), Jonathan Yedidia (Analog
Garage), Nicolas Le Dortz (Analog Garage), Phillip Nadeau (Analog Garage), Mehul
Tikekar (Waymo), Chiraag Juvekar (Apple), Tony Wu (Meta), Haitong Li (Purdue),
Geoffrey Burr (IBM), Matthew Ziegler (IBM), Krishnan Kailas (IBM), Mondira Pant
(Intel), Mike Davies (Intel), Christopher Hughes (Intel), Jinjun Xiong (IBM), Todd
Younkin (SRC), Ramesh Chauhan (Qualcomm), Cliff Young (Google) and Derrick
Aguren (AMD). Discussions with the larger community expanded my horizons and
allowed to gain a longer-term perspective on my work.

Berkeley, CA Sohum Datta

iii

This dissertation is dedicated to my father.

iv

Contents

1 Introduction 1

2 Hyper-Dimensional Computing (HDC): preliminaries and a survey 5
2.1 Orthogonality in high dimensions . 6
2.2 The Multiply-Add-Permute (MAP) paradigm 8
2.3 Examples of computing with hyper-vectors 9

2.3.1 Encoding semantics with random hyper-vectors 10
2.3.2 Language recognition . 11

2.4 A summary of HDC hardware literature 13

3 Principles of constructing an efficient architecture for HDC 15
3.1 Profiling HDC on embedded CPU and GPU 15

3.1.1 Benchmark applications for instrumentation 16
3.1.2 Hardware setup for instrumentation 17
3.1.3 Instrumentation results on eCPU 17
3.1.4 Instrumentation results on eGPU 20
3.1.5 Lessons learned . 22

3.2 Structure of HDC algorithms . 24
3.2.1 Value representation in HDC 24
3.2.2 Encoding stages . 24

3.3 The Generic architectural model for HDC 26
3.3.1 Common algorithmic kernels 26
3.3.2 The Generic abstraction . 27
3.3.3 Major components of the Generic architecture 28
3.3.4 Arguments for a data-flow architecture 29

4 Programmability, scalability and a hardware evaluation of the
Generic HDC architecture 30
4.1 Organization of the Encoder . 30

4.1.1 Hyper-dimensional Logic Unit (HLU) 31
4.1.2 Programming the Encoder . 34
4.1.3 The Valid Chain: a flow-based pipeline control 36
4.1.4 Considerations of sparsity and security 43

4.2 Extensions of the Generic architecture 45
4.2.1 Item Memory and its extensions 48
4.2.2 Associative Memory and its extensions 50

v

4.2.3 Multi-component extensions 52
4.3 Hardware evaluation of the Generic HDC architecture 54

4.3.1 Benchmark of supervised classification tasks 54
4.3.2 Energy efficiency on a synthesized 28nm processor 55

5 Architectural techniques for multi-bit HDC 58
5.1 Challenges in multi-bit HDC architectures 59

5.1.1 The need for multi-bit HDC 59
5.1.2 Logic complexity of integer Associative Memory 61
5.1.3 A literature review of multi-bit HDC 64

5.2 Relevant properties of the probability distribution of hyper-vector elements 65
5.2.1 Tails of probability density functions 66
5.2.2 Chi-squared concentration . 69
5.2.3 Normality assumption and the EUROPARL dataset 71

5.3 Transformations for precision reduction 74
5.3.1 Saturation . 75
5.3.2 Thresholding . 76
5.3.3 Putting it all together: Modified Thresholding 81

5.4 Preliminary estimates for hardware savings due to Modified Thresholding 84
5.4.1 Estimating number of sequential gates 86
5.4.2 Estimating logic complexity for the adder-tree 87
5.4.3 Estimating logic complexity for multipliers 89
5.4.4 Estimating logic complexity for the divider 93
5.4.5 Comparison of logic complexity estimates with and without

transformations for Integer HDC associative search 94

6 A 2048-dim generic Hyper-Dimensional Binary core 95
6.1 Physical characteristics and specifications 96

6.1.1 Physical design and implementation 98
6.1.2 Timing constraints and design convergence 99

6.2 Testing infrastructure and experiments 102
6.2.1 Printed Circuit Board and components for testing 102
6.2.2 Testing basic I/O and chip response 106
6.2.3 Testing Associative Memory functionality. 108
6.2.4 Testing ROM and Item Memory functionality. 110
6.2.5 Testing Encoder for on-chip benchmark applications 110

6.3 Inference energy measurements on chip 113
6.3.1 Measured inference energy for Language Recognition 116
6.3.2 Measured inference energy for EMG hand-gesture recognition 119
6.3.3 Robustness of classification accuracy with VDD over-scaling . 125

7 Conclusions 128

vi

List of Figures

1-1 Figure 1 of [3]: eras of transistor scaling. 1
1-2 Neural-sampling hypothesis and Hyper-Dimensional Computing. . . . 3
1-3 Research literature related to HDC is increasing rapidly with time. . 4
1-4 HDC is robust to representation errors and well-suited for in-memory

hardware implementations. 4

2-1 Orthogonality in High Dimensions. 6

3-1 Examples of measured power trace on eCPU and eGPU. 18
3-2 CPU Instrumentation Results. 19
3-3 Instrumentation Results on the CPU (host) – eGPU (device) system. 21
3-4 Energy/prediction summary across platforms. 23
3-5 The major components of a HDC processor. 28

4-1 Encoder organization. 32
4-2 Permutation leads to across-word dependency in the Encoder. 33
4-3 Examples of programming 3-gram in a HLU Network. 35
4-4 Flow-based pipeline control in HLU Layer Network. 37
4-5 State transition diagram for valid[𝑜𝑢𝑡] using the 5-signal pipeline control. 39
4-6 The basic 4-signal pipeline control is sufficient for forward progress and

pipeline flush in feed-forward networks. 40
4-7 The basic 4-signal pipeline control does not support data retention. . 41
4-8 5-signal pipeline control supports data retention for feed-forward networks. 42
4-9 Sparsity of 𝑛-gram with item sparsity. 43
4-10 Trade-off between sparsity and side-channel security for 3-gram. . . . 44
4-11 Two-stage encoder in a Generic HDC processor. 46
4-12 Valid signals and input scheme for two-stage encoding of EMG hand-

gesture data in a Generic HDC processor. 47
4-13 Valid signals and input scheme for two-stage encoding of physiological

data for Emotion recognition in a Generic HDC processor. 47
4-14 Item Memory with continuous-item generation logic for scalar values. 48
4-15 Figure 6 of [136]: Variation in cell delay is used to produce 27 items. 50
4-16 Associative Memory and its extensions. 51
4-17 A scaled up HDC processor with multiple components. 52
4-18 A common HLU Layer Network can be configured to simultaneously

encode multiple expression from a common input stream. 53
4-19 Post-synthesis energy per inference for benchmark applications. . . . 56

vii

4-20 Post-synthesis simulation traces for EUROPARL Language Recognition. 57

5-1 Integer models are uniformly more accurate than binary models. . . . 60
5-2 Figure 6b of [39]: training, updating hand-gestures and transitioning

to other gestures require intermediate storage of learned hyper-vectors. 61
5-3 Only the associative memories differ among HDC data-paths for the

binary and the integer model. 62
5-4 Costs of integer associative memory grows quicker than linearly with

increasing bits/element 𝑀 . 63
5-5 Properties of hyper-vector probability distribution. 67
5-6 Concentration of probability density around 𝑑 for 𝜒2

𝑑. 70
5-7 Normality assumption for best fitting (Dutch) and least fitting (Esto-

nian) language hyper-vectors in the EUROPARL corpus. 72
5-8 Normality assumption for all except Dutch in the EUROPARL corpus. 73
5-9 The proposed transformations require elements’ standard deviation 𝜎. 74
5-10 Accuracy of saturated language hyper-vectors for EUROPARL. . . . 76
5-11 Thresholding leads to conservative upper bounds of error introduced in

cosine similarity. 79
5-12 Thresholding allows inner product instead of cosine similarity to be

compared for associative search. 80
5-13 Modified thresholding for the integer HDC Associative Memory. . . . 82
5-14 Accuracy of EUROPARL language recognition using modified thresh-

olding with increasing threshold 𝑇 = 𝐶𝜎. 83
5-15 Logic components of integer Associative Memory considered for a

preliminary estimate of hardware cost. 85
5-16 The 16-bit Kogge-Stone adder containing Half Adders (HAs), Carry

Lookahead Blocks (CLBs) and Full Adders (FAs). 87
5-17 A stage of reducing partial products for 𝑁 = 9-bit Wallace tree multi-

plier using Full Adders. 90

6-1 Chip micrograph of the 2048-dim binary HDC processor. 97
6-2 Heavy-tailed distribution of positive setup slack. 99
6-3 Standard cells annotated with setup and hold timing constraints. . . 101
6-4 Calibrating the sense-resistor for VDD current measurements. 103
6-5 The test Printed Circuit Board and components on board. 104
6-6 The test setup and equipments for experiments and measurements. . 105
6-7 Waveforms for the correct behavior when testing the ready output. . 106
6-8 Captured waveforms for testing ready output. 107
6-9 Testing GUI to load, read-out and associatively compare hyper-vectors

into the Associative Memory. 109
6-10 Item Memory tests: ROM and continous vectors are read and associa-

tively searched. 111
6-11 Encoder tests for Lanuage and EMG hand-gesture recognition 112
6-12 A measurement trace from PMIC . 113
6-13 Idle power measurements. 114

viii

6-14 Measurements of leakage power at various VDD voltages. 114
6-15 Using the linear model for power consumption leads to inaccurate

energy/predioction estimates at low frequencies. 115
6-16 Measured energy/prediction for 2048 random tests of EUROPARL

language recognition. 117
6-17 Measured test power for Language recognition and EMG hand-gesture

recognition at VDD ≈ 1V. 122
6-18 Measured energy/prediction for 512 random tests of EMG hand-gesture

recognition classified each 5-gram at a time. 123
6-19 Measured energy/prediction for 1893 random tests of EMG hand-gesture

recognition with samples streamed in continuously. 124
6-20 Measured robustness of classification accuracy with voltage over-scaling.127

7-1 HDC is suitable paradigm for human-centric computing. 130

ix

List of Tables

3.1 Inference accuracy of the instrumented algorithms. 16
3.2 Levels of parallelism present in instrumented algorithms. 22
3.3 Comparison of ASIC implementation of HDC with hand-optimized

FPGA implementation [103] for dimension 𝑑 ≈ 10000. 23

4.1 Benchmark for energy evaluation of the Generic HDC architecture. . 54
4.2 Quality of Results (QoR) report for the synthesized Generic processor. 55

5.1 Preliminary estimates for logic cost of associative search in Integer
Associative Memory with and without transformations. 94

6.1 Benchmark applications for on-chip measurements 95
6.2 Summary of technical specifications of the 2048-dim binary HDC pro-

cessor. 96
6.3 Comparison of measured energy per inference for Language Recognition.118
6.4 Comparison of measured energy per inference for EMG hand-gesture

recognition. 126

x

Chapter 1

Introduction

Two crucial events in the last decade determine the pace of technical innovation today.
The first is the gradual slowdown in relentless miniaturization of semiconductor devices,
known as Moore’s law [1]. Beginning in the late 1960s, the self-aligned, planar-gate
silicon metal-oxide transistor created the foundation for a three-decade period of
relentless and exponential progress in transistor miniaturization. Gordon Moore’s
prediction of transistor counts doubling every two years was remarkably prescient for
this era, aided by Robert Dennard’s scaling prescriptions for reliably manufacturing
faster and smaller transistors [2].

Figure 1-1: Figure 1 of [3]: eras of transistor scaling.

At turn of the millennium, this classical period of geometric scaling of transistors
gave way to various manufacturing innovations which equivalently produced the same
effect as the (slowing) rate of physical dimension scaling (see figure 1-1). It is believed
that the current period of equivalent scaling of transistors using novel gate materials

1

and geometries is likely to give way to hyper-scaling i.e. functionality-aware beyond-
Boltzmann transistors after 2025 [3]. And as transistor dimensions approach 10nm,
variability and reliability effects begin to dominate its deterministic behavior [4]. For
continued miniaturization, new avenues of research into materials, semiconductor
physics and organic chemistry for emerging devices have materialized [5].

Secondly, the rise of data-driven learning algorithms have completely changed the
way businesses function [6]. Due to the widespread proliferation of sensory devices and
improvements in connectivity, the huge amounts of data gathered must be processed
for ensuring quality of services. Furthermore, mobile devices (e.g. smartphones,
tablets, sensor-nodes in sensor networks) function under limited bandwidth, battery
and storage capacity, thereby requiring high energy efficiency in their computations
[7].

Clearly, one way to harness the two trends going forward is to perform machine
learning on emerging post-Moore devices with much lower energy footprints. This
is especially useful for edge-based Internet-of-Things (IoT), where data is partially
processed immediately after collection to reduce bandwidth usage and server workload.
Emerging devices allow such computations to meet the strict energy constraints
required. However, adapting emerging devices to the exact-computing paradigm is
difficult due to their inherent variability [8] . As energy efficiency no longer scales with
integration capacity, voltage reduction and near-threshold operation reduces power
consumption at the expense of favorable signal-to-noise ratio (SNR) [9]. Finally, for
conventional architectures such as CPUs and General-Purpose GPUs (GPGPUs), few
applications today (including data mining and classification) have enough parallelism
to completely utilize available hardware [10].

While challenges of using unreliable components have long been known [11], biology
offers the most concrete inspiration. For example, our brain processes massive data
(3.6× 1015 synaptic ops./s) with very slow and diverse neurons (typical firing rates
are 10 - 100 Hz) while exhibiting tremendous energy efficiency (total power is about
12 W) [12]. Consequently, brain-inspired computing could provide the required
robustness and scalability for continued improvements.

Hyper-Dimensional Computing (HDC) is one such nano-scalable paradigm [14],
and is known to excel in body-based sensing/IoT applications [15]. Also known as
Vector Symbolic Architectures (VSAs), it originated from a theoretical model of
cognitive reasoning [16, 17]. It is motivated by the model that brains compute by
transforming activation patterns of a large population of neurons (see figure 1-2 and
the adjoining explanation). Hence, tolerance to variability is inherent: changes in
activation of a few neurons do not affect the overall functionality. Its energy efficiency
and robustness to noise (introduced by reduced supply voltage VDD) in the data
path was demonstrated for language recognition [18, 19] and tested on fabricated
systems based on emerging devices: a hybrid of carbon nanotube field-effect transistors
(CNFETs) and resistive RAM (RRAM) memory in [20], and a CMOS/vertical-RRAM
(VRRAM) implementation in [21]. [21] also demonstrated the robustness of HDC
to inherent RRAM variability in endurance cycles and wafer-level device-to-device
characteristics. Buoyed by the potential benefits offered by HDC, research has grown
dramatically over the past few years (as shown in figure 1-3).

2

Figure 1-2: Neural-sampling hypothesis and Hyper-Dimensional Computing.
The neural sampling hypothesis [13] is a commonly-used model for neural com-

putation and human cognition. The brain is thought to perform computations using
probability distributions by transmitting neural activity samples between neurons,
whereby the activity of a large population of neurons directly represent samples from
the said distributions.

Consequently, even though two individuals may have completely different and
random neural activations (illustrated here as a display of random noise) to a common
stimulus (illustrated here as an image of a cat) due to the distinct ways in which their
nerves and sensory tissues are interconnected in the sensory organs, the subsequent
computations in their brains conducted by sampling, transforming and transmitting
these sensory activations still results in identical and predictable behaviour (i.e. both
identify the image as “a cat”).

Hyper-Dimensional Computing represents the sensory activations in individuals
as binary random vectors with large number of bits and abstracts the subsequent
transformations as a sequence of operations from a collection of operators defined on
large binary vectors.

3

Figure 1-3: Research literature related to HDC is increasing rapidly with time.
Plot produced using data retrieved from dimensions.ai.

(a) Figure 5 of [18]: Energy savings in
Associative Memory by sampling and dis-
tributed VDD overscaling

(b) Figure 3(b) of [18]: resistive Content
Addressable Memory(CAM) arrays used
in HDC associative search

Figure 1-4: HDC is robust to representation errors and well-suited for in-memory
hardware implementations.
(a) As shown in [18], robustness can be utilized by trading off tolerable representation

errors for lower energy consumption. (b) Furthermore, the distributed and simple
nature of HDC computations (especially associative search) makes it ideal for

computing directly in or near memory cells.

However, as mentioned in section 2.4 in the next chapter, most research on HDC
hardware are limited to specific datasets or applications and often have low data-width
(eg. 32 bits on-chip to compute hyper-vectors containing thousands of bits in [20]),
requiring large amount of time-multiplexing to simulate the complete machine of full
width. Data-paths specific to applications other than language recognition have also
been proposed [22], but a general HDC system is yet to be developed.

A general and widely programmable HDC architecture, which can be easily pro-
grammed to perform a variety of applications on different datasets, is crucial for
evaluating HDC as a viable IoT and in-sensor computing paradigm [15]. This requires
developing the fundamental architectural blocks that are configured and interconnected
to produce a complete system. A comprehensive exploration of the above is the main
goal of this work.

4

Chapter 2

Hyper-Dimensional Computing :
preliminaries and a survey

Hyper-Dimensional Computing (HDC) emerged from a theoretical model of memory
and cognition [17]. It is based on the fact that human brains compute by transforming
activation patterns of a large mass of neurons. The set of activations are modeled
as points in very high dimensional spaces (𝑑 ≥ 1000), and neural processing as
transformations in this space. The central idea is that the mathematical properties of
high-dimensional metric spaces – which pose a challenge to common machine learning
algorithms [23] such as nearest-neighbor search [24], clustering [25] and regression [26]
– can be used to explain cognitive functions like association of concepts, learning and
recalling by analogy. Simple operations such as superposition, binding, permutation
and their inverses form an algebraic field, giving (in principle) the same universality
as algebra with numbers [27].

The HDC formalism can also be regarded as a mathematical abstraction of the
memory functions exhibited by the human brain, similar to McCullouch and Pitts’
artificial neurons formulated in 1943 [28]. There are numerous paradigms of similar
or directly related origin, such as Holographic Reduced Representation [27], Binary
Spatter Code [29] and Semantic Pointer Architecture [30]. Collectively, these models
of human cognition are referred to as Vector Symbolic Architectures (VSAs) in
the wider literature related to Psychology and Cognitive Neuro-science [31].

While there are several variants of HDC suited for different applications [14],
this chapter provides the necessary preliminaries for the Multiply-Add-Permute
(MAP) architecture most commonly used in the HDC hardware community [32]. The
MAP architecture is the only HDC variant studied in this dissertation. After a brief
introduction to the basic concepts and a demonstration of its use for two exemplar
applications, a survey of published literature related to hardware designs capable of
supporting multiple HDC algorithms concludes this chapter.

5

2.1 Orthogonality in high dimensions
Hyper-dimensional Computing defines random high-dimensional vectors (𝑑 > 1000) as
its fundamental data type [16, 14]. It is a holographic computing framework: unlike
arithmetic over numbers, no vector component contains more information than any
other. Although vectors with elements from any algebraic field can be used (see Table
I of [14]), we will consider only binary vectors as it results in the simplest hardware.

To compare vectors, a distance metric is required. Hamming distance (denoted by
𝑑𝐻(𝑎, 𝑏)) is the number of dissimilar elements between vectors 𝑎 and 𝑏. Two binary
vectors 𝑥 and 𝑦 of dimension 𝑑 are said to be orthogonal if 𝑑𝐻(𝑥, 𝑦) = 𝑑/2. This
definition is more familiar in bipolar code (0-valued elements replaced by integer −1):
orthogonal 𝑥 and 𝑦 have zero inner product, ⟨𝑥, 𝑦⟩ = 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized hamming distance

0

500

1000

1500

2000

2500

3000

3500

4000

N
u

m
b

e
r

o
f

s
a

m
p

le
s

D = 100 (pdf)

D = 100 (hist)

D = 500 (pdf)

D = 500 (hist)

D = 2,500 (pdf)

D = 2,500 (hist)

Figure 2-1: Orthogonality in High Dimensions.
Shown histogram (hist) and scaled probability density function (pdf) of normalized
hamming distances for 10, 000 pairs of random binary vectors with varying dimension

𝑑. For ease of plotting, the normal approximation of the binomial probability
distribution is used. All vectors are generated uniformly and distance is normalized

by 𝑑. Note the sharper concentration around 0.5 as vector dimension 𝑑 increases.

The underlying principle of HDC is almost certain orthogonality in high-dimensional
spaces. This is also called “almost-sure orthogonality”, “pseudo-orthogonality”, “near-
orthogonality” and “orthogonality in high dimensions” in the literature. For a rigorous
demonstration, see that if vectors 𝑥 and 𝑦 are chosen independently and uniformly
from {0, 1}𝑑 (i.e. probability of any bit being 1 is 𝑝 = 1/2), their hamming distance is
binomially distributed: 𝑑𝐻(𝑥, 𝑦) ∼ 𝐵𝑖𝑛(𝑑, 𝑝 = 1/2). Fig. 2-1 plots a histogram (hist) of

6

𝑑𝐻(𝑥, 𝑦) normalized by dimension 𝑑 for 10, 000 randomly-generated pairs (𝑥, 𝑦). It also
plots the density function (pdf) for Normal Approximation𝒩 (𝑑𝑝, 𝑑𝑝(1−𝑝)) of 𝐵𝑖𝑛(𝑑, 𝑝)
scaled to have an area equalling sample size 10, 000. The Normal Approximation helps
in plotting and is very accurate for high dimensions: using the Berry-Essen bound
(Theorem 10.4 in [33]) for 𝑋 ∼ 𝐵𝑖𝑛(𝑑, 𝑝), 𝑌 ∼ 𝒩 (𝑑𝑝, 𝑑𝑝(1 − 𝑝)), 𝑝 = 1/2 we have
that ∀𝑡 ∈ R:

|Pr(𝑋 ≤ 𝑡)− Pr(𝑌 ≤ 𝑡)| ≤ 4− 8𝑝(1− 𝑝)
5

√︁
𝑑𝑝(1− 𝑝)

Using 𝑝 = 1/2 and for dimension 𝑑 ≥ 1024, the maximum error in cumulative
distribution (𝑚𝑎𝑥0<𝑡<1|Pr(𝑋 ≤ 𝑡)− Pr(𝑌 ≤ 𝑡)|) is as most 0.025.

Given that the hamming distance between random vectors is binomially distributed,
it can be shown that (Theorem 1 of [34]):

Pr
⎡⎣⃒⃒⃒⃒

⃒⃒𝑑𝐻(𝑥, 𝑦)
𝑑

− 1
2

⃒⃒⃒⃒
⃒⃒ ≥ 𝜖

⎤⎦ < 2𝑒−2𝑑𝜖2 (2.1)

Only high dimensions (𝑑 > 1000) result in a meaningful right-hand side in equation
2.1 [35]. Then random vectors 𝑥 and 𝑦 have normalized distance very close to 0.5. The
exponential drop in probability beyond 𝜖-deviation from the mean is the crucial property
exploited in HDC algorithms. This phenomenon is a consequence of concentration
of functions in high-dimensional geometry. For the interested reader, [36] provides
an excellent treatment from a non-asymptotic viewpoint. Chapter 5 uses related
phenomena to develop efficient architectures for HDC.

All high-dimensional vectors used in a given computation will be called hyper-
vectors. When the context is obvious, hyper-vectors and vectors will be used inter-
changeably.

7

2.2 The Multiply-Add-Permute (MAP) paradigm
of Hyper-Dimensional Computing

To simplify the formulation of HDC operations, the following conventions will be
adopted throughout the dissertation:
∙ The starting hyper-vectors are binary and generated uniformly at random.
∙ Unless stated otherwise, bipolar hyper-vectors are adopted instead of binary

hyper-vectors, where −1 replaces 0 as the hyper-vector element. The main
advantage of this adoption is that superimposed bipolar hyper-vectors (defined
below) preserves the elements’ mean value of 0.

In addition to high dimensionality, a set of operations are required that preserve
near orthogonality. Although there are many sets of operations with equivalent
performance (see Table I of [14]), the Multiply-Add-Permute (MAP) framework
is most suitable as it uses binary hyper-vectors – the easiest to implement in digital
logic. The following operations are fundamental to the MAP paradigm:
∙ Multiplication/Binding is useful for forming associations among related

hyper-vectors. 𝑋 and 𝑌 are bound together to form 𝐶 = 𝑋 ⊕ 𝑌 that is
nearly orthogonal to both its constituents. It is implemented as element-wise
XOR 𝑥𝑖

∧𝑦𝑖 of two binary hyper-vectors, and as the negative of the product −𝑥𝑖𝑦𝑖

of two bipolar hyper-vectors.
∙ Addition/Superposition is the primary conjunctive operation. Based on

Hebbian learning [27], the goal is to find a hyper-vector 𝑧 representing the set of
operand hyper-vectors {𝑥1, 𝑥2, ...𝑥𝑛}. It is denoted by 𝑧 = 𝑥1 + 𝑥2 + ... + 𝑥𝑛 and
implemented by performing element-wise integer sum of operand hyper-vectors.
∙ Thresholding each element of a hyper-vector 𝑋 at the element-wise mean (0

for bipolar) is denoted by 𝑧 = [𝑋]. An element of the thresholded hyper-vector
is +1 if the corresponding element of 𝑋 is non-negative; it is −1 otherwise. Note
that thresholding is idempotent i.e. [𝑋] = 𝑋 for all bipolar vectors 𝑋.
Thresholding is almost always performed after superposition of multiple bipolar
hyper-vectors [𝑥1 +𝑥2 + . . . 𝑥𝑛] so that the output hyper-vector is bipolar, formed
by element-wise majority of the superimposed hyper-vectors 𝑥1, 𝑥2 . . . 𝑥𝑛.
∙ Permutation is a unary operation such that the permuted hyper-vector denoted

by 𝜌(𝑥) is nearly orthogonal to its operand 𝑥. The choice of permutation does
not matter as long is it has no fixed points – so that the period is the largest
value possible: the HDC dimension 𝑑. Circular shift (in either direction) is a
widely adopted permutation. Hyper-vector 𝑥 permuted 𝑛 times is written 𝜌𝑛(𝑥).

Associative search. As Fig. 2-1 shows, it is very rare for random hyper-vectors
to deviate much from orthogonality. The addition operation generates non-orthogonal
hyper-vectors from random operand hyper-vectors. This allows one to capture seman-
tics between hyper-vectors as any significant deviation from orthogonality among two
hyper-vectors implies some dependency. In the final stage of all HDC algorithms, an
associative search is performed among all possible solution hyper-vectors to find the
closest match to the query hyper-vector calculated from input bipolar hyper-vectors
using MAP operations.

8

Following from their definitions [16], the four fundamental MAP operations in HDC
have the following laws governing the relationships among them:

1. Superposition and binding are commutative: for all vectors 𝐴, 𝐵 we have 𝐴+𝐵 =
𝐵 + 𝐴 and 𝐴⊕𝐵 = 𝐵 ⊕ 𝐴.

2. Superposition and binding are associative: for all vectors 𝐴, 𝐵, 𝐶 we have
(𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶) and (𝐴⊕𝐵)⊕ 𝐶 = 𝐴⊕ (𝐵 ⊕ 𝐶).

3. Binding can be inverted: for all vectors 𝐴 and 𝐵 we have 𝐴⊕ 𝐴⊕𝐵 = 𝐵
4. Permutation distributes over binding: for all integers 𝑛 ≥ 1, the following holds

true for all vectors 𝐴, 𝐵: 𝜌𝑛(𝐴⊕𝐵) = 𝜌𝑛(𝐴)⊕ 𝜌𝑛(𝐵).
5. Permutation distributes over superposition and thresholding: for all integers

𝑛 ≥ 1, the following holds true for all vectors 𝐴, 𝐵: 𝜌𝑛(𝐴 + 𝐵) = 𝜌𝑛(𝐴) + 𝜌𝑛(𝐵),
and for all vectors 𝐶 we have that 𝜌𝑛([𝐶]) = [𝜌𝑛(𝐶)].

6. Binding distributes over superposition and thresholding: For all vectors 𝐴, 𝐵, 𝐶
the following hold: 𝐴⊕ [𝐵 + 𝐶] = [(𝐴⊕𝐵) + (𝐴⊕ 𝐶)] and 𝐴⊕ [𝐶] = [𝐴⊕ 𝐶].

2.3 Examples of computing with hyper-vectors
HDC has been employed in a range of applications in supervised classification [37].
Prominent examples include human-sensing and biomedical signal processing [38,
39], classification using multimodal sensor fusion [40] and DNA pattern matching
[41, 42]. Other notable works in the wider application space include using hyper-
vectors to ensure trustable service discovery in highly decentralized and dynamic
networks [43], predicting onset of short-term [44] and long-term [45] seizures in
patients, performing factorization of integers using resonator networks [46], activity
recognition of subjects by classifying their radar images [47], characterization of
circuit reliability in state-of-the-art technology node [48], constructing a “proof-of-use”
blockchain [49], electrocardiogram-based emotion recognition when subjects are in
motion [50], guaranteeing privacy in distributed learning systems [51], using HDC and
feed-forward neural network to recognize driving style for Advanced Driver Assistance
Systems (ADAS) [52], building recommender systems [53], efficient communication
via noisy channels and near-channel classification [54], classification of massive DNA
methylation data for predicting cancer [55] and for dynamic vision sensing [56].

Several papers have proposed using principles of HDC such as orthogonality in
high dimensions in other fields of study. Most prominently, proposals of hybrid HDC-
neural network systems and machine learning algorithms with VSA-inspired learning
cost functions have received attention. For example, in [57], a hybrid HDC-neural
network system for storage and inference on knowledge graphs was proposed based
on concentration of measures in high dimensions. HDC was used to implement the
back-end processing pipeline in the vision engine for active perception in robots [58]
and training multiple neural networks simultaneously in a single model [59]. In [60],
a neuro-symbolic system constructed as a hybrid of neural networks and VSA was
used to solve Raven’s progressive matrices (a common exercise present in Intelligence
Quotient tests). Most recently, [61] used the orthogonality in high dimensions as

9

a training objective to train Convolutional Neural Networks (CNN) that can learn
hyper-vector representations of images and store it in a associative memory. The
memory-augment CNN supported by orthogonality can dynamically expand to learn
new image categories; experiments on large data sets of natural images show it
performs better than state-of-the-art CNN models. Use of reinforcement learning to
automatically search for the HDC algorithm that results in the best accuracy on a
given classification task has also been proposed [62].

All applications of HDC use the symbolic nature of its computations. The idea is
to use the 𝑒−Θ(𝑡2) drop in probability beyond a 𝑡-deviation from the mean normalized
distance between high-dimensional random vectors (as demonstrated in section 2.1)
to encode semantic relationships. The following sub-section illustrates this with a few
examples.

2.3.1 Encoding semantics with random hyper-vectors
Perhaps the foremost feature of HDC that distinguishes it from other algorithms is its
symbolic nature of processing. HDC is related to symbolic models of computation –
like connectionist models proposed and studied in late 1980s (the interested reader is
referred to chapters 1− 3 of [27] for a detailed survey). Symbolic computation begins
by defining symbols that represent entities from the universe where the reasoning is
to be conducted. For HDC, a randomly generated hyper-vector is assigned to each
such entity, and the collection of all entity-vector pairs is stored for the entire duration
of the computation.

Set membership. The most fundamental semantic relationship is membership of
entities in a collection. Using random hyper-vectors to represent entities and using su-
perposition to represent a collection of entities, HDC provides an easy algorithm to test
set membership. For example, suppose there are 26 entities which are represented by
random (bipolar) hyper-vectors 𝐴, 𝐵, . . . 𝑍. Then, to represent the set S = {𝐴, 𝐵, 𝐶}
one can simply superimpose the hyper-vectors of its members: 𝒮 = [𝐴 + 𝐵 + 𝐶].

To test membership of 𝐴, 𝐵, . . . 𝑍 in S, check whether the hamming distance
between their representation hyper-vectors dH is smaller than 𝑑/2 by a significant
margin. Thus for non-members such as 𝑋, we have that dH(𝑋,𝒮) ≈ 𝑑/2 with very
high probability because of orthogonality of random hyper-vectors in high dimen-
sions. For members like 𝐴, we have dH(𝐴,𝒮) = dH(𝐴, [𝐴 + 𝐵 + 𝐶]) which is close to
dH(𝐴, 𝐴) = 0 (see [16] for a demonstration).

Analogical reasoning. Using hyper-vectors as symbols also allows representing
analogical structures and reasoning about them. For example, consider a system
capable of answering “What is the Dollar of Mexico?”. In order to get a reply to this
question, it is necessary to infer the entity that bears the same relation to “Mexico” as
“Dollar” does to “United States”. If “United States” and “Mexico” are represented by
random hyper-vectors US and MEXICO and their respective currencies by hyper-vectors
DOLLAR and PESO, then the hyper-vector CURRENCY , [US⊕ DOLLAR + MEXICO⊕ PESO]
represents the collection of country-currency analogies for “United States” and “Mexico”
[63]. In other words, the hyper-vector CURRENCY encodes the set of (unordered) pairs

10

formed from the four entities “United States”, “Dollar”, “Mexico” and “Peso”:

“Currency” , {(“United States”, “Dollar”), (“Mexico”, “Peso”)} (2.2)

One may now compute the “Dollar” of “Mexico” by seeking entity 𝑋 such that
(“Mexico”, 𝑋) ∈ “Currency” in equation 2.2. This can be solved as follows:

dH(𝑋 ⊕ MEXICO, CURRENCY) ≈ 0
=⇒ dH(𝑋 ⊕ MEXICO⊕ MEXICO, CURRENCY⊕ MEXICO) = dH(𝑋, CURRENCY⊕ MEXICO) ≈ 0
=⇒ 𝑋 = arg min

𝑥∈{US,MEXICO,DOLLAR,PESO}
dH(𝑥, MEXICO⊕ CURRENCY)

(2.3)
Of the four entities defined so far, following from the properties of HDC operations in
section 2.2 one can conclude that 𝑋 = PESO. This deduction is shown below:

dH(𝑋, MEXICO⊕ CURRENCY) ≈ 0
=⇒ dH(𝑋, MEXICO⊕ [US⊕ DOLLAR + MEXICO⊕ PESO]) ≈ 0
=⇒ dH(𝑋, [PESO + MEXICO⊕ US⊕ DOLLAR]) ≈ 0
=⇒ dH(𝑋, [PESO + (random hyper-vector)]) ≈ 0
=⇒ 𝑋 = PESO

(2.4)

The final step in equation 2.4 above determines which of the four defined entities that
are assigned random hyper-vectors in this problem (i.e. “United States”, “Dollar”,
“Mexico” and “Peso”) is a member of the transformed set

{“Peso”, (“Mexico”, “United States”, “Dollar”)}

Since triples are not a part of the four defined entities, “Peso” is the final solution.
Hyper-Dimensional Computing has been used to represent a variety of data

structures such as lists, sequences, trees and Turing machines [27, 64]. The method of
solving for the solution 𝑋 consists of systematically transforming the set “Currency”
to a new set of symbols by applying MAP operations from section 2.2 so that only
the correct solution among all the recognized entities is its member. Maintaining
the collection of assigned hyper-vectors representing all the defined entities, and
associatively searching the transformed vector (like MEXICO⊕CURRENCY) for the closest
entity hyper-vector are common features of all HDC algorithms.

The next sub-section introduces language recognition using HDC operations and
orthogonality among random hyper-vectors.

2.3.2 Language Recognition using HDC

Language recognition using HDC was a seminal work [65] that inspired a subsequent
wave of research on using HDC for supervised classification tasks. This application
also illustrates how the symbolic nature of HDC and orthogonality in high dimensions
may be employed for a supervised classification task.

11

HDC language recognition was first performed on the EUROPARL corpus of 21
European languages transliterated in the Latin alphabet [19, 65]. The EUROPARL
corpus was extracted from the proceedings of the European parliament. Due to its
diplomatic nature, the sentences are longer and use larger vocabulary than in everyday
use. Therefore, the EUROPARL corpus is considered to be a difficult dataset for
language recognition and translation.

The 𝑛-gram baseline model. The goal is to recognize the language from a
short sentence of text transliterated in the Latin alphabet. Written languages can be
modeled as a probability distribution on character sequences or word sequences of finite
length 𝑛, called 𝑛-grams [66]. While more sophisticated models such as dictionary
of words, phrases, etc. can be used, studies indicate they increase model complexity
with negligible gains [67, 68]. Since the language recognition algorithm is likely to
be a front-end of a complex language-processing pipeline, having a complicated and
large recognition model effectively nullifies the advantages of a simple and lightweight
front-end. While training a language, raw 𝑛-gram frequency counts are generated from
a large corpus from that language and iteratively smoothened [69] to remove outlier
artifacts. The resulting 𝑛-gram distribution is the trained language model. The steps
are repeated for a test query, and the trained model with the closest distribution is
the language prediction.

HDC algorithm for 𝑛-grams. The first step is to assign random hyper-vectors
to all meaningful entities in this task. Assigning hyper-vectors for each character of
the Latin alphabet and a few punctuation marks should suffice. In [19] and [65], HDC
dimension 𝑑 = 10000 was used. Using smaller hyper-vectors with 𝑑 = 2048 produces
reasonable accuracy [32]. The HDC algorithm uses the assigned character hyper-
vectors to encode the training text of a language and generate a single hyper-vector
for each language.

A direct equivalent of frequency counting is the superposition of hyper-vectors
representing each occurring 𝑛-gram in the text. Permutation and binding are used
to generate an 𝑛-gram vector from constituent character hyper-vectors. For example,
the 3-gram “abc” is encoded as 𝑉𝑎𝑏𝑐 , 𝜌2(𝑉𝑎)⊕ 𝜌(𝑉𝑏)⊕ 𝑉𝑐, where 𝑉𝑧 is hyper-vector
representing character or character sequence 𝑧. From properties of binding and
permutation in section 2.2, deduce that all distinct 𝑛-gram and character hyper-
vectors are nearly orthogonal to each other.

Hence, the language hyper-vector is the thresholded superposition of all 𝑛-gram
hyper-vectors from the training text. The test hyper-vector is computed similarly,
and the language with closest hyper-vector (i.e. the smallest hamming distance) is
returned as the prediction. Since the superimposed language vector is in the linear
space spanned by the set of all 𝑛-gram vectors, the class with the closest 𝑛-gram
distribution from baseline equivalently has the smallest distance in HDC.

HDC has an accuracy of 96.7 % against a baseline of 97.1 % [19] for 𝑛 = 4 and HDC
dimension 𝑑 = 10000. However, it is an online algorithm requiring a single iteration
though the entire training text. The deviations from orthogonality in high dimensions
(in fig. 2-1) automatically smoothen the superimposed multi-set of 𝑛-grams, obviating
the need for iterations over a possibly large training corpus. Finally, the HDC model

12

size (1 vector/class) is fixed with 𝑛-gram size but grows exponentially in the baseline.
Indeed, for 𝑛 = 4, the HDC model is 20X smaller than the baseline model.

2.4 A summary of hardware designs for Hyper-
Dimensional Computing

Several hardware designs have been proposed in the Hyper-Dimensional Computing
community. Following the demonstration of associative memory’s robustness to
noise (introduced by reduced VDD) in the HDC data path for language recognition
[18, 19], a hybrid design of Carbon Nanotube Field-Effect Transistors (CNFETs) and
Resistive RAM (RRAM) memory in [20] was fabricated and tested for EUROPARL
language recognition. A CMOS/vertical-RRAM (VRRAM) implementation in [21]
demonstrated the robustness of HDC to inherent RRAM variability in endurance cycles
and wafer-level device-to-device characteristics. In [70], a Phase-Change Memory
(PCM) based Associative Memory and Encoding module with digital CMOS peripherals
was simulated for EUROPARL language recognition.

However, all HDC hardware designs fabricated and measured so far are tailor-made
for a specific application or data set. Both [21] and [20] are hard-wired to perform
only language recognition on a specific dataset; these chips cannot be used for other
datasets and applications. The data path simulated in [70] and the chip illustrated
in [71] can only perform a 2-min-term approximation of the complete 𝑛-gram in
language recognition, and can only compute 𝑛-grams from a single data stream such
as characters in a single text. Furthermore, its encoder contains CMOS digital logic
which was simulated in software – only the PCM memory blocks were measured in
hardware. Designs [21, 20] also have low data-width (32 bits), requiring large amount
of time-multiplexing to simulate the complete hyper-vector in full width (> 1000 bits).
Data paths specific to applications other than language recognition have also been
proposed for future fabrication [22].

A great majority of HDC hardware literature do not perform the complete HDC
algorithm on manufactured Application-Specific Integrated Circuits (ASICs) designed
specifically for HDC. For example, [72] implements a neural network in software
augmented by a key-value Associative Memory in PCM Content-Addressable Memory
(CAM) on chip. Ferro-Electric Field Effect Transistors’ (FEFET) measured perfor-
mance characteristics were used to simulate the efficiency of a FEFET-based CAM
cell to implement an Associative Memory for HDC in [73]. While [74] has wide
applicability due to its instruction-based architecture, its results are simulation-only:
it performs simulations on a placed and routed design for 3 applications. However, it
is unclear that the routed design is ready for manufacturing as the reported core-area
utilization of 70% is extremely high for most technology nodes. The paper [74] does
not provide results of manufacturing Design Rule and Electrical Rule checks that can
ascertain its manufacturability.

In some papers such as [39, 75], direct measurements on a Field-Programmable
Gate Array (FPGA) programmed with the HDC algorithm, instead of a manufactured

13

ASIC implementing it, are reported. While FPGAs are a great resource for prototyping
an application-specific hardware design before manufacturing, its measured energy
and performance characteristics often differ from that of ASICs by a factor of 10−50×
(for example, see table 3.1.5 discussed in the next chapter).

Most hardware papers study specialized designs synthesized into a circuit of
logic gates from a standard library. Performance and energy estimates are reported
after profiling an application on a compiled program that simulates the synthesized
circuit. For example, in [32] a complete and widely-programmable HDC data path was
synthesized and profiled by performing simulations of several supervised classification
tasks. Similarly, [76, 42, 77] used simulations on synthesized circuits for specialized
HDC hardware designs performing supervised classifications on public data sets.

A few papers report measurements of HDC algorithms programmed and run on
classical architectures such as CPUs [78, 79] (including on ultra-low-power CPU cores
[80, 81, 82]) and general-purpose GPUs [83, 45, 84, 85]. However, as described in
section 3.1.5 later on, classical architectures have orders of magnitude higher delay
and energy costs than ASICs implementing the same circuit.

A general HDC system capable of supporting multiple applications and HDC
algorithms is yet to be architected, designed, fabricated and measured. Such a general
HDC architecture, which can be easily programmed to perform a variety of applications
on different datasets, is crucial for evaluating HDC’s potential as a viable paradigm
for energy-constrained environments [15]. This requires developing the fundamental
architectural blocks that are configured and interconnected to produce a complete
system. Furthermore, actual measurements from a digital CMOS chip in a leading
technology node is necessary to establish the anticipated benefits and provide a
foundational hardware benchmark for comparing performance benefits of future chips
using emerging non-volatile memory such as RRAMs, PCMs, etc.

A comprehensive exploration of such generally-programmable and efficient architec-
tures for HDC is the object of study in this dissertation. The next chapter compares
efficiency of HDC on conventional architectures to deduce the likely macroscopic
properties of the most suitable architectural family for HDC.

14

Chapter 3

Principles of constructing an
efficient architecture for
Hyper-Dimensional Computing

This chapter develops of an efficient and programmable architecture for implementing
Hyper-Dimensional Computing in custom silicon. The objective is to make the archi-
tecture as energy-efficient as possible without sacrificing reasonable programmability.
An instrumentation study of HDC and conventional algorithms on embedded CPU and
GPU reveals sources of inefficiency when deploying HDC on conventional hardware.
Guided by these results and a careful analysis of the structure of HDC algorithms,
the prominent macro-properties and most appropriate architectural style are deduced.

The core motif of this chapter is the definition of the Generic class of HDC
algorithms, and the consequential properties of an efficient architecture supporting
it. The idea is that although this class is smaller than the class of all possible HDC
algorithms, it contains all known HDC algorithms and is rich enough to likely contain
future expert-designed algorithms (discussed further in section 3.3.2). Furthermore,
the architecture developed for the Generic class can be easily extended to support
more complicated HDC algorithms. After an exposition on the Generic architecture,
these extensions are discussed in section 4.2.3 of the next chapter.

3.1 Profiling HDC on embedded CPU and GPU

As noted in section 2.4, a few papers measure the energy and performance of HDC
algorithms on CPUs, GPUs and FPGAs. However, no detailed instrumentation on
classical architectures, particularly embedded CPU cores (eCPUs) and embedded
general-purpose GPUs (eGPUs), has been conducted to date. Instrumenting the
execution of a competitive HDC model and comparing with conventional algorithms
for the same task will reveal inadequacies of classical architectures for performing
efficient HDC. For this comparison, the first step was to decide a set of benchmarks.

15

3.1.1 Benchmark applications for instrumentation
Since HDC has been widely used for supervised classification [37], 3 popular datasets
for supervised classification were chosen for the instrumentation study. Listed in table
3.1.1, these algorithms differ in the amount of available parallelism and belong to
different tiers of success by best-known HDC algorithms.

Application ML algorithm HDC (𝑑 = 2048)
EMG Hand-gesture Recognition (EMG) 95.32% (SVM) 95.13 %

Language Recognition (LANG) 97.40% (𝑘NN) 90.82 %
Hand-written digit recognition (MNIST) 99.13% (CNN) 80.28 %

Table 3.1: Inference accuracy of the instrumented algorithms.

1. EMG hand-gesture recognition (EMG) classifies electromyography signals
sampled from an electrode array attached to the skin of a subject into a set
of hand-gestures. The variations in electric and magnetic fields caused due
to flexion and relaxation of muscle to produce a gesture changes the electric
potential of the electrodes, which are used to recognize hand gestures.
Support Vector Machines (SVM) are typically used for the EMG by the machine
learning (ML) community: more capable algorithms such as Multi-Layer Percep-
trons and Convolutional Neural Networks are expensive to train with negligible
accuracy gains [86]. A multi-class SVM was profiled for EMG hand-gesture
recognition using the dataset of [38].
EMG has been the most successful application of HDC till date [87, 38]: HDC
has higher accuracy and energy efficient than ML algorithms [86] and allows
online learning and adaptability to different subjects [88, 39]:

2. Language recognition (LANG) was performed on the EUROPARL corpus 1

of 21 Indo-European languages transliterated in the Latin alphabet [19] (as
explained in section 2.3.2).
LANG was one of the first applications of HDC to supervised classification and
has been widely used as a benchmark in a majority of subsequent work [65].

3. Hand-written digit recognition (MNIST). The MNIST dataset of hand-
drawn digits is a popular dataset used for evaluating ML algorithms, where
28× 28 greyscale pixel-array are used to recognise the drawn digit.

1 The EUROPARL corpus was extracted from the proceedings of the European Parliament. Due
to its diplomatic nature, the sentences are longer and use larger vocabulary than normally used.
Thus, EUROPARL is believed to be a difficult dataset for language recognition and translation.

This instrumentation study used a beta release [89], containing 23 languages for training but 21
languages for testing. The 2 additional trained languages Afrikaans and Norwegian are absent from
the most recent version [90]. Since Afrikaans is derived from Dutch and Norwegian is similar to
Danish and Swedish, their presence as 2 additional trained classes reduces testing accuracy from
93.6% to 90.8% of table 3.1.1. However, since only inference was instrumented, updating the training
EUROPARL dataset to the most recent version would negligibly affect results presented here.

16

MNIST is an elementary dataset in computer vision. It was chosen to represent
the fact that known HDC algorithms do not perform well on computer vision
applications, especially when using raw pixel values. To evaluate HDC on
MNIST, a feature-value superposition (see section 3.3.1) was used on the gray-
scale frames [91]. Since the pixel values are bimodal, its values are thresholded
first to a 0 or 1 before mapping to 2 random hyper-vectors.
A large number of ML models exist with testing accuracy > 99.5% on MNIST.
Usually a committee of a few dozen deep Convolutional Neural Networks (CNNs)
are required to achieve such low error rates. However, in this experiment, a
single and shallow CNN was profiled for MNIST since instrumenting dozens
of state-of-the-art deep CNNs requires access to supercomputing facilities or
prohibitively high compute time on commodity processors. The profiled CNN has
2 convolutional layers with 32 kernels of dimensions 3× 3 and ReLU activation,
followed by 2× 2 max-pooling layer and finally a 128-node dense layer (about
half a million learned parameters). This CNN is much smaller than the best
MNIST classifier but has comparable accuracy (99.13% vs 99.77% for [92]).

Unlike HDC algorithms which need a single pass for training; SVM, 𝑘NN and
CNNs require multiple iterations – the total number of which depends on initial values
of parameters and hyper-parameters. Therefore, only inference accuracy on the test
dataset after loading a pre-trained model was profiled.

3.1.2 Hardware setup for instrumentation
The NVIDIA Jetson TX2 embedded platform [93] was used to instrument the compiled
codes for HDC and its ML counterparts. The Jetson TX2 platform contains a 256-core
NVIDIA Pascal eGPU, an ARM Cortex A57 eCPU with 4 cores and 2 megabyte (L2)
cache, and 8 gigabytes of 128-bit DRAM (DDR).

Jetson TX2 has an on-board power monitor INA226 [94] used for energy and
power measurements. The INA226 power monitor measures power drawn from the
separate voltage supplies of CPU, GPU and DDR. This makes it possible to quantify
the contribution of each component to the total measured energy/prediction of the
profiled algorithm. Power traces are collected from a few seconds before the actual
execution of test code begins, so that the start and end time on the traces are clearly
visible. Estimates of energy/prediction do not include the initial standby energy. Fig.
3-1 shows an example of power measurement trace for eCPU and eGPU. The eCPU
trace (fig. 3-1(a)) illustrates that the power consumption profile is similar to charging
and discharging a large capacitor. For the eGPU trace (fig. 3-1(b)), the initial burst
of CPU-only activity is followed by a long duration where all 3 components are active
– this was observed in all measured traces for eGPU experiments.

3.1.3 Instrumentation results on eCPU
The main goal here to gain a preliminary understanding of bottlenecks in classical
archictectures for doing HDC, by comparing HDC codebase’s instrumentation results

17

(a) The power trace for running SVM for EMG on
ARM Cortex A57.

(b) The power trace for running CNN for MNIST
on ARM Cortex A57 & Pascal GPU system.

Figure 3-1: Examples of measured power trace on eCPU and eGPU.

with that of conventional ML algorithms.
Target code: For LANG, HDC and 𝑘NN algorithms were written in C [19]. The

text-histograms for kNN was generated using a standard C hash function [95]. For
EMG, the HDC algorithm [87] was written in C. SVM was implemented in Python
using the LIBSVM library [96]. For MNIST, both HDC and CNN algorithms were
written in C. CNN’s C code and the pre-trained model were obtained from [97].

The following quantities were estimated at runtime:
∙ CPU instruction count: the total number of instructions retired by the

program during execution. Hardware performance counters were sampled using
the perf-stat program [98] at about 1000 samples/s. Estimates from 10
independent runs were averaged to reduce empirical variance and the impact of
interference by other processes and the operating system.
∙ CPU memory footprint: the maximum page size (including dynamic heap)

allocated by the operating system to the program. The massif utility of the
Valgrind framework [99] was used to track pages allocated during execution.
∙ Energy/prediction: average energy cost for each inference by the target code

was measured using on-board INA226 power monitor.
All results of CPU profiling are summarized in figure 3-2. The complete data is

available in table II of [32]. The ratio of CPU instructions, memory footprint and
energy/prediction for the HDC algorithm and ML algorithm is annotated on the figure
– a ratio larger than 1 indicates HDC is more efficient.

Some pertinent observations:
∙ 𝑘NN and CNN are inefficient compared to HDC (𝑑 = 2048), even though hyper-

vectors in C used int32 to store a bit. 𝑘NN is especially inefficient as it compares
histograms with 284 ≈ 5.31× 105 dimensions vs 𝑑 = 2048 for HDC.
∙ SVM is more efficient than HDC (𝑑 = 2048) on ARM Cortex A57, though it uses

a larger DRAM footprint. The lack of bit-level implementation for HDC and

18

(a) CPU instrumentation results for LANG. HDC dimension 𝑑 = 2048.

(b) CPU instrumentation results for EMG. HDC dimension 𝑑 = 2048.

(c) CPU instrumentation results for MNIST. HDC dimension 𝑑 = 2048.

Figure 3-2: CPU Instrumentation Results.

comparatively smaller dimensions of support-vectors (64 dimensions for SVM vs.
2048 for HDC) may help explain this observation.
∙ The total power consumption from CPU and DDR voltage supplies for HDC

19

and its ML counterpart are in the same ballpark. In all 3 applications profiled,
HDC algorithms spend half to a third of its energy moving data to/from CPU.

3.1.4 Instrumentation results on eGPU

In this experiment, the ARM Cortex A57 CPU (host) and the 256-core NVIDIA
Pascal GPU (peripheral device) system on-board Jetson TX was configured to work
in tandem: data-parallel kernels (code and data) are transferred from eCPU to eGPU,
executed on the eGPU, and results transferred back to the eCPU host.

Target code: HDC code for algorithms used in CPU instrumention in section
3.1.3 were re-written in TensorFlow [100] and Python. This required developing graphs
for HDC opearations, creation of data-tensors and execution graphs for computing
dependant tensors for the final inference accuracy. All HDC tensors use int32 arrays
to store binary hyper-vectors. 𝑘NN for LANG was implemented in Python/Tensorflow
with hash-map dictionaries from the standard distribution. SVM for EMG was
implemented in Python/TensorFlow using the ThunderSVM library [101]. CNN for
MNIST was implemented in Python/TensorFlow and standard CNN libraries.

The following quantities were estimated at runtime:
∙ GPU instruction count the number of GPU instructions retired by all kernels

in the compiled the program in the execution trace. NVIDIA’s proprietary
nvprof utility was used.
∙ Memory (bytes) transferred: the total memory transfer from host to device

and from device to host during execution. NVIDIA’s proprietary nvprof utility
was used: its API-trace log contained data used to calculate the total data (in
bytes) transferred between eCPU (host) and eGPU (device).
∙ Energy/prediction: average energy cost for each inference by the target code

was measured using on-board INA226 power monitor.
Results are summarized in figure 3-3; the complete data is available in tables III and
IV of [32]. The ratio of GPU instructions, bytes transferred and energy/prediction for
the HDC algorithm and ML algorithm is annotated in the figure – a ratio larger than
1 indicates HDC is more efficient.

Some pertinent observations from this experiment are:
∙ 𝑘NN doesn’t have enough data-parallelism to efficiently utilize eGPU. It transfers

a huge amount of data from eCPU to eGPU before the computation can begin,
thereby executing a large number of loads and instructions on the eGPU. Hence,
it is highly inefficient.
∙ As in section 3.1.3, the SVM algorithm for EMG is more efficient than HDC

but transfers many times more bytes.
∙ A downside of using float32 to store single bits of a hyper-vector in HDC

algorithms is the use energy-intensive floating-point ALUs. A hand-optimized
GPU kernel code using bit-operations supported by NVIDIA’s Pascal architecture
could greatly improve HDC performance on eGPU.
∙ CNN is about 10× more efficient than HDC. This is partially explained by

the highly-optimized code for CNN available in TensorFlow’s standard library.

20

(a) eGPU instrumentation results for LANG. HDC dimension 𝑑 = 2048.

(b) eGPU instrumentation results for EMG. HDC dimension 𝑑 = 2048.

(c) eGPU instrumentation results for MNIST. HDC dimension 𝑑 = 2048.

Figure 3-3: Instrumentation Results on the CPU (host) – eGPU (device) system.

However, the fact that far more instructions are executed for CNN than HDC
for MNIST indicates its actual computation cost is likely to be small.

21

Algorithm Bit-level (BLP) Ins.-level (ILP) Thread-level (TLP) Data-level (DLP)
Hyper-Dim. Computing (HDC) High Medium Low High
𝑘-Nearest Neighbors (𝑘NN) Low Low Low Medium
Support Vector Machines (SVM) Medium Medium Medium Medium
Conv. Neural Nets. (CNN) High Medium Medium High

Table 3.2: Levels of parallelism present in instrumented algorithms.

3.1.5 Lessons learned

To organize results from sections 3.1.3 and 3.1.4, it is helpful to characterize the types
of parallelism present in HDC, 𝑘NN, SVM and CNN. An algorithm may exhibit 4
classical levels of parallelism [102]: bit-level parallelism (BLP) exploits full-width logic
units for complex arithmetic, instruction-level parallelism (ILP) exploits concurrent
execution of logically-sequential instructions without architectural hazards, thread-
level parallelism (TLP) exploits concurrent execution of independent processes, and
Data-level parallelism (DLP) performs identical operation on different data points
simultaneously. An efficient hardware exploits most levels of parallelism present in the
workload. Table 3.2 lists the levels of parallelism available in the profiled algorithms.

𝑘NN has low parallelism because generating sub-sequences and maintaining a large
histogram in memory is a great bottleneck. Thus, it performs poorly for both eCPU
and eGPU. SVM has moderate ILP and TLP exploited by eCPU, and some DLP to
make efficient use of eGPU. Its low ILP and very high DLP indicates the eGPU for
CNN is a better choice.

HDC performs simple logical operations on high-dimensional vectors, hence it has
very high BLP. However, the ALUs in eCPU and eGPU unable to harness it using bit-
operations on parts of a hyper-vector (unless specialized assembly code is implemented).
The feature-value superposition algorithm also allows multiple channels to be processed
concurrently (i.e. having high DLP). Unfortunately, compilers cannot discover the
underlying parallelism present in HDC as it is hard to discover the coherence of very-
large dimensional hyper-vectors (𝑑 is in thousands) with an instruction set operating
on 32 or 64 bits. HDC still produces more efficient code than ML occasionally.

Finally, a comparison across platforms in figure 3-4, reveals that an ASIC imple-
mentation can offer orders of magnitude improvement in classification energy, with
energy/inference of a few micro-joules necessary for deployment in sensor-based IoT.

Hand-optimized FPGA code [103] also results in order(s) of magnitude higher
energy/prediction cost than ASIC (see table 3.1.5; ASIC results for HDC 𝑑 = 104

from section 4.3.2 and section VII of [32]). HDC (𝑑 = 104) for EMG was profiled for
inference energy by [82] on the PULP SoC containing ultra-low-power CPU cores.
The PULP SoC uses advanced circuit techniques such as near-threshold operation,
optimized implementation of bit-wise extensions of OpenRISC ISA and voltage supply
reduction [104]. A hand-written code optimized for exploiting TLP available in HDC
was deployed on the 4-core cluster, however the energy/inference costs are > 5×
that of ASIC implementation in the same technology node: 42 𝜇J/prediction for
single-core execution on PULP and 21 𝜇J/prediction for 4-core execution on PULP vs
≈ 4 𝜇J/prediction on synthesized ASIC implementation (section 4.3.2).

22

To summarize, the case for developing accelerator for HDC is an exemplar for
the accelerator-level parallelism concept proposed recently [102]: HDC uses far higher
data-widths and very different operations on its data than instructions for classical
architectures. Thus, the next step is to develop a simple architecture for an HDC
accelerator, composed of simple building blocks and a small programmed state.

L A N G E M G M N I S T1 E - 1 1
1 E - 1 0
1 E - 0 9
1 E - 0 8
1 E - 0 7
1 E - 0 6
1 E - 0 5
1 E - 0 4
1 E - 0 3
1 E - 0 2
1 E - 0 1
1 E + 0 0

En
erg

y[J
]/p

red
icti

on
 (lo

g1
0 s

ca
le)

AS
IC

eC
PU

eG
PU

AS
IC

eC
PU

eG
PU AS
IC

eC
PU

eG
PU

Figure 3-4: Energy/prediction summary across platforms.

HDC (𝑑 = 104) platform Dataset: UCIHAR Dataset: ISOLET Dataset: FACE
Hand-optimized FPGA code 1− 10 mJ 10− 100 mJ 1− 10 mJ
Post-synthesis 28nm ASIC < 22.1 mJ < 11.6 mJ < 18.7 mJ

FPGA/ASIC energy > 45× > 860× > 54×

Table 3.3: Comparison of ASIC implementation of HDC with hand-optimized FPGA
implementation [103] for dimension 𝑑 ≈ 10000.

23

3.2 Structure of HDC algorithms
The goal of this section is to deduce the likely properties of an efficient HDC architecture
from the properties of MAP operations (from section 2.2). To achieve high energy
efficiency, the unifying principles of simplicity, optimal use of resources and avoiding
redundant computation are employed.

A successful and widely-applicable architecture must be able to use application-
specific data from a variety of domains after suitable pre-processing. The first step
towards such a general design is to abstract essential elements of all possible HDC
algorithms using the MAP framework. As shown below, a clear structure emerges.

3.2.1 Value representation in HDC
To allow consumption by a discrete-time (clocked) digital system, the input data must
be quantized into discrete states and sampled with a finite frequency. The choice of
quantization scheme and sampling rates are important [105, 106] and is assumed to
be pre-determined by a domain expert. Hence, without losing generality, any HDC
algorithm’s input space can be abstracted as a symbol set X′ representing values in
the domain’s feature space. For example, MNIST from sec 3.1.1 has symbols for
each pixel: pixel1, pixel2, . . . pixel784 and for each pixel value: 0, 1, . . . , 255. To
handle multi-channel inputs, multiple streams can be serialized to a single stream
with a suitable policy (for example, samples from 2 channels 𝑥1, 𝑥2, ... and 𝑦1, 𝑦2, ...
combined to 𝑥1, 𝑦1, 𝑥2, 𝑦2, ...). The order of serialization depends on data acquisition
order and buffering capacity; for streaming applications only minor shuffling on raw
data is usually feasible at runtime.

Therefore, the input is abstracted in an application-agnostic manner as a sin-
gle finite-length time-series of symbols and denoted 𝐼𝑠𝑒𝑟𝑖𝑎𝑙 , (𝑥1, 𝑥2, ..., 𝑥𝑇). For
example, an MNIST image may be represented by the input stream 𝐼𝑠𝑒𝑟𝑖𝑎𝑙 = (
pixel1, <value of pixel 1>, pixel2, <value of pixel 2>, . . ., pixel784, <value
of pixel 784>). Note that 𝐼𝑠𝑒𝑟𝑖𝑎𝑙 is the input stream after sampling, all domain-
specific pre-processing, quantization, and channel ordering are completed.

3.2.2 Encoding stages
An input symbol is substituted by a hyper-vector (defined as item) to allow computa-
tions using them with the MAP operations. If the symbol doesn’t represent entities
from an ordered set (such as pixel1, . . . pixel784 for MNIST) they are assigned to
random hyper-vectors. If it represent numbers or vectors from an ordered field, some
transformations on random hyper-vector is performed before assigning it to the symbol
[87]. Hence, the symbol set X′ representing the input space is substituted by an item
set X. Let N𝑛 , {1, 2, ...𝑛} be the set of all natural numbers up to 𝑛. Therefore, the
input stream of symbols 𝐼𝑠𝑒𝑟𝑖𝑎𝑙 = (𝑥𝑡|𝑡 = 1, 2, ..., 𝑇) (where each 𝑥𝑡 ∈ X′) is assigned
to a stream of items I , (𝑋𝑡|𝑡 = 1, 2...., 𝑇) (where each 𝑋𝑡 ∈ X). Any collection of
input symbols can be specified by set of indices in I.

24

To discern the basic properties of HDC algorithms, it is important to consider its
inherently symbolic nature. Each input symbol is substituted by an item that are used
to compute expressions using HDC operations (multiply, permute and superposition
for MAP) to form hyper-vector representations of composite structures (such as list,
trees, classes for supervised classification). Historically, HDC’s remarkable power for
analogical and hierarchical reasoning exploiting such composite representations was
the first to be discovered [63, 27].

Any HDC algorithm is composed of multiple steps – each step is either processing
(i.e. “encoding”) the stream of items substituting the stream of input symbols using
the MAP operations to produce a composite hyper-vector, or comparing a computed
composite hyper-vector with all previously stored hyper-vectors in an associative
data-structure to return the closest match. While the number and order of steps and
the details of encoding items vary for different HDC algorithms. the comparison of
vectors in an associative data-structure is an identical operation. Therefore, the study
of HDC algorithms can be reduced to study of encodings and of the combination of
different encodings and the associative search.

An encoding step is an expression of hyper-vectors 𝑋𝑡, 𝑡 ∈ N𝑇 and MAP operations
multiply ⊕, permute 𝜌() and addition i.e. (thresholded-)superposition [. . . + . . .].
Importantly, using these laws of the MAP operations, any encoding expression can be
transformed to have superposition as the last operation:
∙ 𝜌([𝐴 + 𝐵 + 𝐶 + . . .]) = [𝜌(𝐴) + 𝜌(𝐵) + 𝜌(𝐶) + . . .] for all permutations 𝜌() and

vectors 𝐴, 𝐵, 𝐶, . . .
∙ 𝑍 ⊕ [𝐴 + 𝐵 + 𝐶 + . . .] = [(𝑍 ⊕ 𝐴) + (𝐶 ⊕ 𝐵) + (𝑍 ⊕ 𝐶) + . . .] for all vectors

𝐴, 𝐵, 𝐶, . . . , 𝑍 since the threshold after superposition is the element-wise mean
(0 for +1/−1 vectors). [𝐴+𝐵 +𝐶 + . . .] computes the bit-wise majority function,
and element-wise XOR (‘⊕’ in the MAP model) distributes over it.
∙ 𝐴 = [𝐴] for all vectors 𝐴.

Without loss of generality, all HDC encoding expressions are assumed to have super-
position as the last operation. This allows the classification of encoding expressions
by number of nested hierarchies of superposition present in them.

A single-stage encoding expression contains superposition only once, as the final
operation. The expression is 𝑆 = [∑︀𝐾

𝑖=1 𝑓𝑖(I)] where 𝑖𝑡ℎ term hyper-vector is:

𝑓𝑖(I) = (𝑋𝑝1 ⊕𝑋𝑝2 . . .⊕𝑋𝑝𝑚)⊕ (𝜌𝑢1(𝑋𝑞1)⊕ 𝜌𝑢2(𝑋𝑞2) . . .⊕ 𝜌𝑢𝑛(𝑋𝑞𝑛))

where each term 𝑓𝑖(I) contains specific items and their permutations: some items as is
(set of positions in I denoted by 𝑃𝑖 , {𝑝1, 𝑝2, . . . , 𝑝𝑚} ⊆ N𝑇), and others are permuted
(set of positions in I denoted by 𝑄𝑖 , {𝑞1, 𝑞2, . . . , 𝑞𝑛} ⊆ N𝑇 , the permutation degrees
𝑢1, 𝑢2, . . . , 𝑢𝑛 are positive integers). Note that a few inputs may occur both with and
without permutation in the term (i.e. 𝑃𝑖 ∩𝑄𝑖 ̸= 𝜑).

A dual-stage encoding has the final superposition with terms composed of prod-
ucts of items and of single-stage expressions only, and their permutations.

Similarly, all multi-stage encoding expressions are defined.

25

3.3 The Generic architectural model for HDC
Following arguments from the previous section, the complexity of supporting all possi-
ble encodings can be hierarchically reduced to the complexity of implementing single-
stage encodings. However, an architecture attempting to support all possible single-
stage encodings is very likely to be highly inefficient for most encodings (like eCPUs/eG-
PUs from sections 3.1.3 and 3.1.4), as it must support all possible input dependency
patterns. The number of all possible single-stage encodings is extremely large, as can be
seen by a simple counting argument. Since permutation has a period of 𝑑 (from section
??), each term in a single-stage encoding expression is a product of distinct, non-empty
selections from the set {𝑋1, 𝑋2, . . . , 𝑋𝑇 , 𝜌(𝑋1), 𝜌(𝑋2), . . . 𝜌(𝑋𝑡), . . . , 𝜌𝑑−1(𝑋1), . . . , 𝜌𝑑−1(𝑋𝑇)}
containing 𝑑𝑇 distinct elements. Thus there are 2𝑑𝑇 − 1 distinct possibilities for
each term. If all terms of the superposition were distinct, the total number of
possible single-stage encodings are 22𝑑𝑇 −1 − 1. Hence there are Ω(22𝑑𝑇) possible
single-stage encodings, a quantity super-exponential in HDC dimension 𝑑 (usually
in thousands) and number of symbols 𝑇 (usually in hundreds). More rigorously,
observe that every term-expression may be represented by 𝑑𝑇 bits: for each element
of {𝑋1, 𝑋2, . . . , 𝜌(𝑋1), . . . , 𝜌𝑑−1(𝑋1), . . . , 𝜌𝑑−1(𝑋𝑇)}, a 1 indicates its presence in the
term and 0 indicates absence. Hence, every single-stage encoding expression has a
corresponding 𝑑𝑇 -bit boolean function, whose output is 1 iff the term represented
by the 𝑑𝑇 -bit input is present in the expression’s superposition. A classical result
from circuit complexity (Theorem 7 of [107]) establishes that this requires at least
Θ(2𝑑𝑇 −log 𝑑𝑇) logic gates – a number almost exponential in HDC dimension 𝑑 and
number of symbols 𝑇 . Clearly, to support all (single-stage) encodings and guarantee
overall efficiency is not feasible.

Therefore, a prudent approach is to support a limited collection of encodings very
efficiently – one which contains all successful and useful HDC algorithms known till
date. This strategy is likely to succeed since most HDC algorithms were designed by
experts rather than being produced by an automated procedure (such as deep learning),
and given that HDC derives most of its efficiency from short programs/encodings
[19, 86], it is likely to use similar expressions repeatedly.

3.3.1 Common algorithmic kernels
Remarkably, variations of only 2 encoding expressions are used in a great majority of
known HDC algorithms:
∙ 𝑛-gram sequence encoding. As mentioned in Section 3.1.1, 𝑛-grams i.e. the

multi-set of 𝑛-sequences can be very useful for modelling sequences. Characters
in an symbol set A , {𝑎1, 𝑎2, ..., 𝑎𝑁} are mapped to random hyper-vectors
𝑌𝑎1 , 𝑌𝑎2 , ..., 𝑌𝑎𝑁

and the 𝑛-sequence 𝑥1, 𝑥2, ...𝑥𝑛 (where 𝑥𝑖 ∈ A) is encoded as
𝜌𝑛−1(𝑌𝑥1)⊕ 𝜌𝑛−2(𝑌𝑥2)⊕ 𝜌𝑛−3(𝑌𝑥3)...⊕ 𝑌𝑥𝑛 . Finally, all occurring 𝑛-sequences in
the input are encoded and superimposed to form the final hyper-vector.
∙ Feature-value encoding. Let the feature vector of 𝑓 dimensions be 𝑉 =

(𝑣1, 𝑣2, ..., 𝑣𝑓). For each feature 𝑖 ∈ N𝑘, a random hyper-vector 𝐶𝑖 is assigned
and as discussed in section 3.2, all possible input values 𝑣 are assigned items 𝑌𝑣.

26

𝑉 is encoded as [∑︀𝑓
𝑖=1(𝐶𝑖 ⊕ 𝑌𝑣𝑖

)] and a collection of 𝑛 samples (a matrix U with
sample vectors as rows) is encoded as the superposition [∑︀𝑛

𝑖=1
∑︀𝑓

𝑗=1(𝐶𝑗 ⊕ 𝑌𝑈𝑖𝑗
)].

From section 3.1.1: superposition of 4-grams is used for LANG, EMG uses a 2-stage
encoding: 64-feature as the first stage and 4-grams as the second stage. HDC for
MNIST encodes superposition of 784-feature samples.

3.3.2 The Generic abstraction

The main complexity in encoding is the generation of term vectors 𝑓𝑖(I). Limiting
the encoding to only 𝑛-gram sequence and feature-value encodings make these term
expressions fixed. The total number of possible single-stage encodings is now only
Θ(𝑑𝑇 2) since number of feature-encodings is 𝑑𝑇 (2𝑑− 1), and number of 𝑛-grams is 𝑇 .
Therefore, only 𝑛-grams and feature-value encodings are too restrictive.

The proposed set of encodings should generalize the regularity present in 𝑛-gram
and feature-value encodings. For instance, note that each term of these two encoding
schemes require only few specific inputs 𝐴𝑖 = 𝑃𝑖 ∪ 𝑄𝑖 ⊆ N𝑇 (defined the set of
dependent inputs), which a small part of the total number of symbols 𝑇 .

Therefore, the following conditions are proposed:
1. Constant number of inputs per term. The number of dependent inputs
|𝐴𝑖| is constant for all terms 𝑖 ∈ N𝐾 . (Call this quantity by 𝐿.)

2. Common expression for all terms. All 𝐾 terms have the same HDC
expression. If 𝑓𝑖(𝑧1, 𝑧2, ..., 𝑧𝐿) denotes the expression of the 𝑖𝑡ℎ term in terms of
𝐿 input variables 𝑧 = (𝑧1, 𝑧2, ..., 𝑧𝐿) ∈ X𝐿, then 𝑓𝑖(𝑧) ≡ 𝑓𝑗(𝑧) ∀𝑖, 𝑗 ∈ N𝐾 . This
common term expression will be called 𝑓(𝑧).

3. Term inputs are continuous chunks of the input streams. The set of
dependent inputs for the 𝑖𝑡ℎ term are translations of a fixed sub-sequence of
indices in the input stream. That is, for some increasing sequence 𝑡𝑖 ∈ N𝑇 with
𝑡1 = 0; the 𝑖𝑡ℎ input dependency set is 𝐴𝑖 = 1 + (𝐴1 + 𝑡𝑖) mod 𝑇 where 𝐴1 + 𝑡
denotes the set obtained by adding 𝑡 to each element of 𝐴1.

These conditions completely specify the collection of all (single-stage) encoding
expressions supported by the architecture studied in this dissertation, and shall be
called Generic encodings. An architecture designed to support all Generic encodings
shall be called a Generic architecture (as opposed to “general-purpose”, “complete”,
“fully programmable” or “general”).

Observe that the regularity conditions above clarify important structures of a
Generic architecture. Since inputs to each term is a translation of the overall input
time-series, the entire programming complexity of such a machine is only for computing
𝑓(𝑧). Property 3 above ensures an in-order sequential generation of all 𝐾 term vectors
by any pipelined hardware for 𝑓(𝑧) with fixed latency and throughput equalling the
symbol input rate. As the input symbols I are entered in sequence, the 𝑖𝑡ℎ term is
produced 𝑡𝑖 steps after the first term. The final superposition 𝑆 = [∑︀𝐾

𝑖=1 𝑓𝑖(I)] of a
single-stage Generic encoding may be computed by accumulating these terms 𝑓𝑖(I) at
the required time-steps (𝑡1, 𝑡2, ...). A 𝑇 -bit register can enable these clock cycles to
allow the accumulation of the generated term hyper-vectors.

27

Finally, note that the class of Generic algorithms is rich and large: there are
2𝑑𝐿 − 1 term expressions possible for each 1 ≤ 𝐿 ≤ 𝑇 , and 𝑇 translations (of length
𝐿) possible for each term. Therefore, assuming unique terms being superimposed,
there are (2𝑑𝐿 − 1)(2𝑇 − 1) unique single-stage Generic encodings. Thus, the total
number of Generic encodings possible with 𝑇 input symbols and HDC dimension 𝑑 is∑︀𝑇

𝐿=1 Ω(2𝑇 +𝑑𝐿) = Ω(2(𝑑+1)𝑇).

dH

d
H

...

H
D

 M
A

P
P
E
R

X
t

Multi-channel

Input OUTPUT

DSP

SERIALIZER

At

ITEM MEMORY

ASSOCIATIVE MEMORY
ENCODER

Zt

Address

 In

Serial

 In

Address

 Out

Figure 3-5: The major components of a HDC processor.

3.3.3 Major components of the Generic architecture
A generic HDC architecture requires 3 fundamental components:
∙ Item Memory (IM) maintains a repertoire of random hyper-vectors (items).

A sufficiently large collection of such vectors can be re-used for many applications.
This storage requirement cannot be avoided as the map of items assigned to
input symbols must be retained for the entire life of the application.
∙ Encoder combines its input hyper-vector sequence using the MAP operations

to compute a Generic expression specific to the application.
∙ Associative Memory (AM) stores all encoded hyper-vectors representing

composite concepts and associatively searches against a query hyper-vector to
return the closest-match among them.
For supervised classification, the Associative Memory stores an encoded vector
as a representation of a class after training, and returns the closest match to an
encoded test query as the prediction while testing.

Fig. 3-5 shows a diagram for the complete Generic HDC system, illustrated for a
human-centric IoT application. All application specific pre-processing, sampling and
quantization is done before combining input streams. The peripheral HD Mapper
block assigns incoming symbols to an address in Item Memory and class labels to an
address in Associative Memory. This mapping is retained by HD Mapper throughout
all sessions of the live application. Therefore, the actual inputs and outputs to the
application-agnostic Generic processor is a time series of addresses of memory.

Fig. 3-5 also shows the operation during testing when applied to supervised
classification. The HD Mapper substitutes the input symbols for Item Memory
addresses. The Item Memory fetches item hyper-vectors and passes them on to the
encoder, which generates the test hyper-vector according to the encoding expression
programmed by the user. The Associative Memory returns the address of the closest
class vector as output, which is converted by HD Mapper to the predicted class label.

28

3.3.4 Arguments for a data-flow architecture
While there could be multiple ways to interconnect these fundamental blocks, the
simplest system obeys:

1. Single programmable component. Only the Encoder needs to be pro-
grammed for an application. The operation of both memories always remain
the same and do not change with applications. The simplest system will have a
single Item Memory, Encoder and Associative Memory; the sole Encoder is the
only programmable component.

2. Uni-directional data-flow. In the simplest case, hyper-vectors move from
Item Memory to Associative Memory through the Encoder. This is obeyed by
all single-pass HDC algorithms for supervised classification. As shown in section
4.2.3, an architecture supporting uni-directional data-flow can be easily modified
to support newer HDC algorithms such as factorization [108] requiring multiple
iterations of hyper-vectors moving between Encoder and Associative Memory in
a cycle.

Note that since Encoder is the only non-memory and the sole programmable component,
all major architectural decisions principally concern the Encoder. Furthermore, note
that all MAP operations performed by the Encoder are simple and bit-parallel –
superposition and multiply are element-wise operations. And although permutation
creates across-vector dependency, the pattern is very regular and connects to a
fixed neighbouring element. These observations can help guide the selection of the
architectural style for the Encoder.

To begin with, the generic model of section 3.3.2 explicitly encodes dependencies
and bit-level parallelism not exploited well by compiled code using classical instructions
and architectures. Hardware required to extract dynamic ILP and DLP add to energy
costs. Section 3.1.3 and 3.1.4 and fig. 3-4 show that conventional architectures such as
embedded CPU and embedded GPUs are very energy-inefficient for HDC. Vector and
other Single-Instruction-Multiple-Data (SIMD) architectures with full data-width 𝑑 are
expensive. HDC algorithms are too small to extract significant run-time parallelism
to justify their overhead. Finally, such architectures require wide register-files and
complex control logic requiring extra overhead and contradicting the advantages of
performing a few steps composed of simple bit-wise MAP operations. Considering
these factors, a data-flow based array architecture is the most suitable style.

Here, the Encoder is comprised of a regular network of simple Data Processing
Units (DPU), and inter-DPU communication for dependencies is restricted to neighbors
no more than a fixed distance away [109]. Though several attempts have been made
to map common workloads to DPUs [110, 111, 112, 113, 114], only a few of them
where dependency patterns can be expressed as a regular graph have been successful
[109, 115, 116]. HDC algorithms perfectly fit these conditions. All MAP operations can
be implemented with a few gates. The sequential symbolic-input model of section 3.2.1
and the Generic abstraction of section 3.3.2 enables one to map any HDC algorithm
to DPUs explicitly. The next chapter develops these details for the Encoder and the
Generic architecture.

29

Chapter 4

Programmability, scalability and a
hardware evaluation of the Generic
HDC architecture

This chapter considers in detail the micro-architectural choices of a generic HDC
architecture implementable in Silicon. Following from the definition of the Generic
HDC architecture the first section examines the building blocks and construction for
the Encoder – the only programmable component. Descriptions of its programmability,
methods of controlling its execution, pipeline states, sparsity-based energy-efficiency
and security considerations are provided. This completely specifies the core features
and capabilities of the Generic architecture studied in this dissertation. Next, the
three major components of the generic architecture (i.e. Item Memory, Encoder and
Associative Memory), their extensions and interconnections to produce a generic HDC
system of the required capability is considered. Finally, an evaluation of a generic HDC
system, synthesized in an advanced technology node, is performed on a benchmark of
supervised classification tasks.

4.1 Organization of the Encoder
The Encoder is crucial for the overall programmability of the processor and has the
largest activity and wiring complexity. Hence, its efficient and minimal design is
important for an optimal implementation of the architecture. As outlined in section
3.3.4, encoders must be organized into multiple redundant computing elements as a
consequence of adopting the data-flow architecture style.

The Generic architecture (section 3.3.2) is based on the fact that computing any
expression of the MAP model for a single-stage algorithm can be decomposed into:
∙ the generation of all the necessary terms 𝑓𝑖(I) from each of the dependent input

symbols entered into the processor, and
∙ computing their superposition to evaluate the result 𝑆 = [∑︀𝐾

𝑖=1 𝑓𝑖(I)].
Therefore, the first principle of organization is to split the stage of Encoder into

two functional parts: one for collecting all dependent inputs and generating the terms

30

(producer of terms), and the other for collecting the terms as they are produced,
scheduling them for accumulation, and performing the binary thresholding operation
once the stage’s input symbols are exhausted (consumer of terms or accumulator).
Since the accumulator is a common resource shared by all terms in a stage of encoding
algorithm, the main decisions about its construction are about scheduling terms for
accumulation, avoiding conflicts (i.e. terms produced in the same cycle must be
stored for accumulation in separate cycles) and properly initiating the thresholding
operation. In contrast, different terms of generic expressions may not share many
input symbols. But the conditions of the generic model ensure the expressions have a
regular structure: they are all the same term expression 𝑓(·) but different operand
symbols. The common term expression over different inputs strongly suggests that
a network of DPUs (proposed in section 3.3.4) be employed for the production of
terms, and hence it needs to implement only multiply and permute. The accumulator
implements the superposition/add HDC operation.

Note that the encoding and fetching of hyper-vectors from Item Memory should
occur in lock-step. The associative memory cannot begin until the entire vector has
been encoded. Hence, a computation phase barrier exists between the Encoder and
Associative Memory. The encoder DPUs can be designed to process narrow slices
of HDC vectors and the network to join them together. Since HDC operations are
very simple, such DPUs should be small and easily optimized. Locality of operand
dependencies ensures that the network is regular and free from wire congestion. Finally,
as HD algorithms are short and online [14], the entire network could be small and
have a short depth. This reduces the distance between Item memory (the item
store), Encoder (computations) and Associative memory (the vector store), thereby
substantiating the expectation of HDC being an example of in-memory computing.

4.1.1 Hyper-dimensional Logic Unit (HLU)
Since the network of DPUs need to perform only multiply/XOR and permutation in the
MAP framework of HDC, the details of the DPU abstraction and their interconnections
follow as a logical consequence.

To begin with, observe that the simplest possible DPU is that which supports
single-bit multiply/XOR and permutation: fig. 4-1(a) shows the Hyper-dimensional
Logic Unit (HLU) containing a single-bit flip-flop and simple gates. It takes two
input bits 𝐴 and 𝐵 every cycle, a permutation input bit p_in, and can “multiply”
(out= 𝐴⊕𝐵), “permute” (out = 𝜌(𝐵) = p_out), “delay 𝐴 by a cycle” (out = 𝐴) or
“permute and multiply” (out = 𝐴⊕ 𝜌(𝐵)). The permutation output bit p_out, the
output bit when permutation is involved, is just the input bit 𝐵.

Since permutation produces intra-word dependencies in a hyper-vector, 𝑑 identical
HLUs can be connected together by chaining inputs p_in and p_out of different HLUs,
according to the permutation implemented, to form a module operating on an entire
hyper-vector (Fig. 4-1(b)). This coherent unit will be called HLU Layer. It takes
two hyper-vector operands 𝐴 and 𝐵 every cycle, produces hyper-vector OUT and can
“multiply” (OUT= 𝐴⊕𝐵), “permute” (OUT= 𝜌(𝐵)), “delay 𝐴 by a cycle” (OUT= 𝐴) or
“permute and multiply” (OUT= 𝐴⊕ 𝜌(𝐵)). Each constituent HLU performs the same

31

Figure 4-1: Encoder organization.
(Clock-wise from top-left): (a) Hyper-Dimensional Logic Unit (HLU), (b) HLU Layer:

connecting single-bit HLUs to create a HLU Layer for multiplying and permuting
hyper-vectors, (c) HLU Layer Network: inter-connecting multiple HLU Layers to
generate terms, and (d) Accumulator for superposition and thresholding of terms.

Control and data-path wires have distinct colors.

operation on their respective bits of the operand hyper-vectors. The actual operation
performed is determined by the 2-bit op signal provided by the Encoder’s control logic.
The permutation must be a single-cycle derangement, hence any hamiltonian path
connection through p_in and p_out visiting all HLUs is valid. Fig. 4-1(b) illustrates
a scheme where alternate HLUs (except first and last) are connected to minimize
length of longest wire for a linear physical placement constraint on the HLU Layer.

HLU Layers can be interconnected among themselves to form a HLU Layer
Network, generating an overall output hlu_final_out every cycle by operating on
the stream of input hyper-vectors consumed thus far (labeled item in fig. 4-1(c), usually
item hyper-vectors directly from the Item Memory). Observe that each HLU Layer is
a pipeline stage storing intermediate hyper-vectors as they contain 𝑑-bit flip-flops. By
convention, the last HLU Layer’s output will be considered hlu_final_out.

Finally, the Accumulator is a 𝑑-dimensional array of counters for performing
superposition and thresholding of outputs from the HLU Layer Network (see fig.
4-1(d)). A counter at each hyper-vector position stores a signed integer in two’s

32

complement representation, and increments or decrements it every clock cycle according
to corresponding bits of hlu_final_out being 1 or 0 respectively. When the encoding
completes, the vector formed by the MSB of the counters is the required superposition
after thresholded. An update by increment/decrement at all counters can be suppressed
or enabled each cycle using the output of an always circular-left-shifting register
ENABLEREG (see fig. 4-1(d); let 0 represent suppression). ENABLEREG is pre-loaded
with an appropriate bit pattern so that its contents are shifted as the design encodes,
enabling accumulation of only the required terms for the HDC expression.

Figure 4-2: Permutation leads to across-word dependency in the Encoder.
The across-word dependencies created by permutation when evaluating a 3-gram 𝑍𝑡

of hyper-vectors 𝑋𝑡, 𝑋𝑡−1, 𝑋𝑡−2 is shown; the ⊕ symbol in this figure represents
element-wise accumulation before thresholding to produce 𝑍𝑡.

Now that the main structure of the HLU Layer Network is architected, the width
of the network must be decided. The question to be resolved is: is the full-width HLU
Network of HDC dimension 𝑑 optimal, or is a smaller word more efficient?

To begin answering, first note that 2 of the 3 fundamental components, the Item
and Associative Memories, must be of full-width 𝑑 to avoid accesses to extremely
expensive off-chip memory. Secondly, since the critical path is determined by the most
complex logic, likely to be the Accumulator of the Encoder or the distance calculation
block of the Associative Memory – both independent on HDC dimension 𝑑), reducing
the HLU Network’s dimension is unlikely to change the clock period significantly.
Thus, the following arguments suggest width < 𝑑 is likely to be inefficient:
∙ Sub-word HLU Network requires iterations. Encoder words of width < 𝑑

introduce multiple iterations on any HDC algorithm – especially single-pass
algorithms. This necessitates storing data which can have a large memory
footprint. For example, millions of char in EUROPARL from section 3.1.1
would require mega-bytes of storage. For a full-width HLU Network, this is not
necessary – especially for commonly occuring single-pass HDC algorithms.
∙ Permutation leads to across-word dependency. Illustrated in fig. 4-2: at

each cycle, grey-coded output bits require operands from neighboring sub-words
due to permutation. This leads to redundant computation as the extra bits from

33

a neighbouring sub-word. For example: 𝑛-gram uses 𝑛(𝑛− 1)/2 extra bits/cycle
for each sub-word.

Therefore, the HLU Network is recommended to be of full-width 𝑑 where the HDC
dimension 𝑑 must be large enough to support a majority of HDC applications.

4.1.2 Programming the Encoder
An important decision regarding the design of array architectures is the choice of
interconnection network for the DPUs. A general interconnection network allows
efficient mapping of a largest possible collection of algorithms at the cost of increased
programming state, hardware complexity and power consumption. For the HLU
Layers in a HLU Network, the most general interconnection network allows feedback
i.e. it allows connecting the output of any HLU Layer or the Encoder’s input (the
item for unidirectional HDC processors) to either one of the two hyper-vector inputs 𝐴
and 𝐵 in each HLU Layer. In particular, a HLU Layer’s input may be programmed to
be its own output from the previous cycle. Such a fully-connected HLU Network
with 3 HLU Layers is shown in fig. 4-1(c). Signals op1, op2, op3 program the
operation carried out by HLU Layer 1, 2, 3 respectively. Since the term expression
to be implemented by HLU Layers is constant for Generic expressions, these control
signals stay constant throughout encoding. Operand-select signals A1, B1, A2, B2,
A3, B3 decide the actual interconnections of HLU Layers.

HLU Layers are the principal computing resource in this encoder architecture.
They are meant to hold intermediate results, a much more efficient strategy than using
expensive high-dimensional register-files or a data cache. A possible simplification to
the fully-connected network is to allow feed-forward connections only i.e. no cycles in
input-output dependency paths across HLU Layers are allowed. For example, figure
4-3(a) shows a feed-forward interconnection and programming of 3 HLU Layers to
encode the 3-gram. Fig. 4-3(c) shows an alternative interconnection using feedback
for HLU Layer 1 to produce 3-grams with 5 HLU Layers.

Using feedback allows multiple configurations for encoding a term expression and
often produces interesting intermediate expressions. For example, the first layer
of the HLU Network in figure 4-3(c) encodes an infinite-length term expression:
𝑍𝑡 , 𝑋𝑡−1 ⊕ 𝜌(𝑋𝑡−2) ⊕ 𝜌2(𝑋𝑡−3) ⊕ 𝜌3(𝑋𝑡−4) ⊕ ... (as mentioned in fig. 4-3(b)).
While using this to produce 3-gram requires 5 HLU Layers instead of 3, it may
have significant advantages from a security point-of-view (see section 4.1.4). The
remaining steps to produce a 3-gram from 𝑍𝑡 can be understood as follows: observe
that 𝐴 ⊕ 𝐴 = 0 and 𝐴 ⊕ 0 = 𝐴 for all vectors 𝐴. The output 𝑍𝑡 of HLU Layer 1
can be re-written as 𝑍𝑡 = 𝑋𝑡−1 ⊕ 𝜌(𝑋𝑡−2)⊕ 𝜌2(𝑋𝑡−3)⊕ 𝜌3(𝑍𝑡−3). HLU Layers 2, 3, 4
permute and add a cycle delay to 𝑍𝑡 to produce 𝑍 ′

𝑡 , 𝜌3(𝑍𝑡−3) as the output of
HLU Layer 4. Finally, HLU Layer 5 computes 𝑍𝑡−1 ⊕ 𝑍 ′

𝑡−1 = 𝑍𝑡−1 ⊕ 𝜌3(𝑍𝑡−4) =
𝑋𝑡−2⊕𝜌(𝑋𝑡−3)⊕𝜌2(𝑋𝑡−4)⊕

(︁
𝜌3(𝑍𝑡−4)⊕𝜌3(𝑍𝑡−4)

)︁
= 𝑋𝑡−2⊕𝜌(𝑋𝑡−3)⊕𝜌2(𝑋𝑡−4) which

is the term expression required for encoding the 3-gram.
The total number of wires, which determines physical routing complexity, grows

quadratically with the number of HLU Layers in the fully-connected interconnection
network. Hence, encoders with a large number of HLU Layers are unlikely to allow

34

Figure 4-3: Examples of programming 3-gram in a HLU Network.
Control signals of HLU operation and operand-select are colored red. An unused

operand of a HLU Layer is left unconnected or marked “don’t care”. (a) An example
of feed-forward-only connections for programming 3-gram. (b) Using feedback allows

construction of a rich variety (including infinite length) term expressions. (c) An
alternative configuration of HLU Layers using feedback for 3-gram.

feedback. As discussed in the next section, feedback also complicates the pipeline
control logic as flushing and filling a pipeline with arbitrary feedback is difficult.

Since 𝑛-grams require at least 𝑛 pipeline stages to store each of the hyper-vectors
for the 𝑛-subsequence with or without feedback, the feed-forward implementation of
figure 4-3(a) (shown for 𝑛 = 3) is optimal. Note that more than the minimum number
of HLU Layers is trivially possible for any term expression and there is no maximum
number of HLU Layers.

For a general encoding term expression, the feed-forward interconnection using
the minimum number of HLU Layers may be found by selecting the best among all
interconnections that produce the said term expression. Therefore, the minimum
number of HLU Layers required determines a complete ordering of complexity of all
possible HDC encoding expressions, and any HDC processor containing a limited
number of HLU Layers is qualitatively limited in the class of HDC expressions it can
encode. For example, a HDC processor with 8 HLU Layers cannot encode 11-grams.
This is a unique property of the architecture developed here – it is unlike CPUs and
GPUs where a smaller register files or on-chip cache increases dependence on off-chip
memory but does not constrain the collection of possible programs that is computable.

35

4.1.3 The Valid Chain: a flow-based pipeline control

Section 3.2.1 abstracts the archetypal HDC processor that consumes at most 1 symbol
each clock cycle, irrespective of the number of channels required for the workload.
This is a good abstraction to design a widely programmable HDC processor. However,
following the development of the Encoder’s architecture, a few details can be added to
this abstraction. Since the HLU Layer Network architecture establishes the Encoder
as a pipelined structure, a signalling scheme at the processor’s input interface must
be developed to support the three fundamental functions of a pipeline control logic:

1. Forward progress: Fill pipeline with incoming symbols correctly from an
initial state after a system reset or power-up. During live computation, fill the
pipeline stages with newer results in a correct order, replacing the stale results of
previous steps. An important part of forward progress is to prevent deadlock
i.e. to ensure that the pipeline never stops computation while a valid input is
supplied to it each cycle and no hardware faults or exceptions have occurred.

2. Retention: Hold intermediate results in place at pipeline stages when no
symbols are available but the input stream or computation hasn’t ended.

3. Flush on completion: When the end of computation is signalled, the pipeline
stages still retaining intermediate results are emptied in an orderly manner and
consumed to finish encoding, after which Encoder moves into a final “end” state.

Between the end of a computation and beginning of the next, it may be assumed that
the processor’s control logic resets the Encoder with an effect identical to that after a
fresh power-up. Any results that need to be shared between different computations
are therefore assumed to be stored in an Item or Associative Memory.

Forward progress, retention and pipeline-flush on completion must be implemented
by any pipelined system. However, most pipelined structures usually have fixed
stage-dependency patterns which greatly simplifies its control logic. For example, the
classical single-issue, 5-stage pipeline for a scalar, in-order CPU has a fixed order
of forward progress for instructions, a fixed logic to determine stalls due to hazards,
and a fixed pattern of handling exceptions and completion – all irrespective of the
actual instruction stream being executed. Contrast this with the HLU Layer Network
in a Generic encoder, where changing the dependency pattern among stages is the
principal manner in which different encoding expressions are programmed. Therefore,
its control logic must be able to discharge the 3 main functions for a large variety
of stage-dependencies possible in any reasonably capable Encoder. A simple way to
handle such high complexity is to adopt a flow-based control for the pipeline as well –
where programming the HLU Layers’ dependency must simultaneously program the
pipeline control as well. Thus, pipeline control emerges as a result of a flow of control
state through it, identical to the way data is programmed to flow through its stages.
This is illustrated in figure 4-4.

The pipeline control system is developed as follows. First, the following four
fundamental control states define meaning of the contents of all HLU Layers:

1. INVALID (X): The state of all HLU Layers immediately after a reset. This is
also the valid signal representing a pipeline stall when stages are supposed to
retain their data until the next valid datum arrives.

36

(a) Valid Chain in fully-connected network (b) 4-gram Valid Chain

Figure 4-4: Flow-based pipeline control in HLU Layer Network.
An example for (a) fully-connected network and (b) feed-forward interconnection for

4-gram with 4 HLU Layers is shown. The data-path and flow-based pipeline
control portions have different colors. Control bits stored in each stage are called
valid signals. ITEM and hlu_final_out are the input and output hyper-vectors for

the HLU Network respectively; they too have valid signals to denote the nature of the
present input and the currently encoded term hyper-vector. The dotted AND gate in
the valid signal logic indicates that a stage’s hyper-vector should be set as valid for

computation if and only if its operands were (both) valid.

2. VALID (V): asserts that the values stored in the corresponding HLU Layer is a
valid intermediate hyper-vector, contributing in the encoding process.

3. DELIMIT (D): asserts that the HLU Layer is being emptied (i.e. the its vector
stored is converted to all zeros, the default state after a reset). This does not
signify that the current encoding session has ended. The HLU Layer may still
be used to produce meaningful hyper-vectors for the encoding.
When the DELIMIT state reaches the last stage of the HLU Layer Network, the
shift-reg ENABLEREG of the accumulator is reset. No changes are made to the
accumulator’s values.

4. END (E): asserts that the HLU Layer has completed computation and no longer
contains or will produce a hyper-vector useful to the current encoding process.

To simplify the pipeline control logic, it is useful to impose a priority order among the
4 fundamental control states, which can be inferred for the meaning they represent.
In particular, completing the computation through the pipeline stages once the end
signal is received is more important than any ongoing pipeline flush procedure, which
in turn is more important that the normal progress of data through the pipeline. A
result produced by an HLU Layer is valid if and only if (both) its operand(s) is(are)
simultaneously valid – the pipeline control logic is represented by a dotted AND gate

37

in fig. 4-4) to emphasize this. Therefore, the priority order is

INVALID (X) > END (E) > DELIMIT (D) > VALID (V)

One may find the highest priority accorded to INVALID (X), the default state after
reset, rather curious. However it is the natural choice as the pipeline should remain
in reset state if no valid input vector has been asserted. Similarly, a DELIMIT (D)
or END (E) assertion would not also not travel through the pipeline as emptying or
ending a pipeline after reset is meaningless. As an immediate consequence of the
priority order above, forward progress of valid data is impossible if feedback is present
in interconnections. For example, for the feedback shown in figure 4-3(b), the pipeline
control logic always produces the valid signal 𝑚𝑎𝑥(X, ·) = X for the HLU Layer.

Assuming the convention that single-operand operations of delay and permute have
the unused operand with the lowest priority state VALID (V), the pipeline control
logic can be formulated as

valid[𝑜𝑢𝑡] = 𝑚𝑎𝑥(valid[𝐴], valid[𝐵])

This is sufficient to guarantee forward progress and pipeline flush in feed-forward
interconnections. It can be easily seen that the feed-forward property allows forward
progress of data over the reset state INVALID (X), of newer data over old data (since
VALID (V) remains asserted), and of pipeline flushes and end of encoding signals, as
dictated by their priority ordering. An example for a feed-forward implementation of
the 4-gram is shown is figure 4-6.

However, data retention and resumption of encoding is not supported as shown
for the feed-forward 4-gram interconnection in figure 4-7. While the lack of forward
progress with feedback is manageable as all known HDC algorithms have feed-forward
encodings as well, the data retention issue must be necessarily rectified.

A solution can be gleamed from the observation that INVALID (X) > VALID (V)
is helpful for supporting forward-progress during normal operation, but the opposite
relationship is required for the correct order of resuming operations after retention.
Therefore, a new state similar in meaning to INVALID (X) is required, which shall be
designated ACTIVE (A). The priority order for the 5 pipeline control states is

INVALID (X) > END (E) > DELIMIT (D) > VALID (V) > ACTIVE (A)

The key here is to specify that the input vector to the pipeline i.e. the ITEM in fig.
4-4 can never have the ACTIVE (A) control state. The convention for single-operand
operations of delay and permute is modified for the unused operand to have the lowest
priority state ACTIVE (A). The pipeline control logic needs modification: an improved
logic is specified as a finite automaton in figure 4-5.

This solves the data retention issue for feed-forward networks, as illustrated for
4-grams in figure 4-8. One can readily verify that forward progress and pipeline flush
are supported for feed-forward interconnections as well (for example, 4-grams in fig.
4-6). The 5-stage Valid Chain logic is adopted in the remainder of this dissertation.
Remember that under this scheme, although the Valid Chain logic of the HLU Layers

38

Figure 4-5: State transition diagram for valid[𝑜𝑢𝑡] using the 5-signal pipeline control.
The 5 states are INVALID (X), END (E), DELIMIT (D) VALID (V) and ACTIVE (A).
On reset HLU Layer goes to state X. Doubly-circled E is the end state. Transition

edges are marked by the causal 𝑚𝑎𝑥(valid[𝐴], valid[𝐵]) from operands 𝐴, 𝐵.

use 5 valid signals, the input to the HLU Layer Network pipeline still uses the earlier
4 valid signals: INVALID (X), END (E), DELIMIT (D) and VALID (V).

39

(a) After reset, 𝑡 = 0 (b) 𝑡 = 1

(c) Pipeline full, 𝑡 = 4 (d) DELIMIT pipeline flush, 𝑡 = 5

(e) Pipeline re-filled, 𝑡 = 9 (f) END of encoding, 𝑡 = 10

Figure 4-6: The basic 4-signal pipeline control is sufficient for forward progress and
pipeline flush in feed-forward networks.
Hyper-vectors < 1 >, < 2 >, . . . , < 8 > are inputted in sequence; steps (a) - (f) show
the evolution for a feed-forward 4-gram interconnection. Encoding ends when the last

stage has state END. Short hands 3gram(𝑎, 𝑏, 𝑐) , 𝑎⊕ 𝜌(𝑏)⊕ 𝜌2(𝑐) and
4gram(𝑎, 𝑏, 𝑐, 𝑑) , 𝑎⊕ 𝜌(𝑏)⊕ 𝜌2(𝑐)⊕ 𝜌3(𝑑) are used for brevity.

40

(a) A filled 4-gram Valid Chain, 𝑡 = 0 (b) HLU Layer retains vector for INVALID

(c) VALID input resumes, 𝑡 = 2 (d) 𝑡 = 3

(e) 𝑡 = 4 (f) Pipeline re-filled, 𝑡 = 5

Figure 4-7: The basic 4-signal pipeline control does not support data retention.
Short hands 3gram(𝑎, 𝑏, 𝑐) , 𝑎⊕ 𝜌(𝑏)⊕ 𝜌2(𝑐) and

4gram(𝑎, 𝑏, 𝑐, 𝑑) , 𝑎⊕ 𝜌(𝑏)⊕ 𝜌2(𝑐)⊕ 𝜌3(𝑑) are used for brevity. Hyper-vectors
< 1 >, < 2 >, . . . , < 9 > are inputted in sequence; the term expressions

4gram(< 5 >, < 4 >, < 3 >, < 2 >), 4gram(< 6 >, < 5 >, < 4 >, < 3 >) and
4gram(< 7 >, < 6 >, < 5 >, < 4 >) are skipped due to the intervening INVALID input.

41

(a) A filled 4-gram Valid Chain, 𝑡 = 0 (b) INVALID (X) asserted again, 𝑡 = 1

(c) Data retention for ACTIVE (A), 𝑡 = 2 (d) VALID (V) fills pipeline on resume, 𝑡 = 3

Figure 4-8: 5-signal pipeline control supports data retention for feed-forward networks.
For the feed-forward 4-gram network, (a) - (d) shows the pipeline control when two
INVALID (X) inputs are asserted before the next VALID (V) input. Unlike in figure
4-8, no 4-grams are missed here as the entire pipeline is live immediately after the

subsequent VALID (V) input is asserted at 𝑡 = 2.

42

4.1.4 Considerations of sparsity and security
Classically, all items used are dense i.e. their bits are equally likely to be a 0 or 1.
However, it is known that sparse items – where the probability of a bit being 1 is
a chosen (small) 0 < 𝑝 ≤ 1/2, leads to far greater energy efficiency with negligible
degradation in performance [117]. Therefore, it is important to evaluate the proposed
generic architecture on its ability to gain benefits from sparsity of hyper-vectors. The
generic Encoder architecture does not prevent the use of sparse hyper-vectors.

Security using hyper-vectors principally comes from the fact that it is very hard to
factorize numbers of very high magnitude (i.e. its binary description has thousands of
bits). This has been harnessed to develop a framework to support secure learning over
multiple client-server links in a distributed manner [118]. For decisions pertaining the
Encoder architecture, security from side-channel attacks is more relevant, where the
aim is to limit information that can be gained by monitoring the physical characteristics
of the system on which the job is run (and not the actual calculations in the job). Since
each HLU Layer contains registers, they are easier to observe and monitor using heat
maps, and may be connected to scan chains vulnerable to scan-based side-channels
[119]. Consequently, it desirable to prevent a leak of any meaningful and interpretable
hyper-vectors from any intermediate HLU Layer.

This short analysis demonstrates that sparsity and side-channel security are often
interrelated and can be traded-off by choosing a different encoding interconnection.
Consider again the feed-forward and feedback interconnections for 3-gram in figure
4-3(a), (c). Let ITEM 𝑋𝑡 for all time-steps 𝑡 > 0 have sparsity 𝑝 i.e. all its bits have
probability 𝑝 of being 1. We are interested in calculating the sparsity (probability of
a bit being 1) of all HLU Layers’ outputs in figure 4-3(a), (c). For the feed-forward
interconnection in (a), the HLU Layers progressively construct 2-gram , 𝑋𝑡−1⊕𝜌(𝑋𝑡−2)
followed by 3-gram , 𝑋𝑡−1 ⊕ 𝜌(𝑋𝑡−2) ⊕ 𝜌2(𝑋𝑡−3). The HLU Layer in (b) and HLU
Layer 1 in (c) produces 𝑍𝑡 , 𝑋𝑡−1 ⊕ 𝜌(𝑋𝑡−2)⊕ 𝜌2(𝑋𝑡−3)⊕ 𝜌3(𝑋𝑡−4)⊕ ... as defined in
section 4.1.2, and intermediate HLU Layers 2, 3, 4 in (c) simply delay 𝑍𝑡.

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

n
-g

ra
m

 s
p
a
rs

it
y

p

2-gram
3-gram
4-gram
5-gram

Figure 4-9: Sparsity of 𝑛-gram with item sparsity.
Sparsity is the probability of a bit being 1. Observe that 𝑛-gram sparsity increases

towards 1/2 with increasing 𝑛 for all item sparsity 0 < 𝑝 ≤ 1/2.

Hence the sparsity of 𝑛-grams is required here, for 𝑛 = 2, 3 and 𝑛 = ∞ (for
𝑍𝑡). This calculation is simplified by using bipolar bits with value −1 instead of
0. From the i.i.d. nature of bits in an item, the bit-wise XOR in 𝑋𝑡−1 ⊕ 𝜌(𝑋𝑡−2)

43

does XOR of two independent bits. For a bipolar bit 𝑥 with sparsity 𝑝 we have that
E[𝑥] = 2𝑝 − 1. The XOR function for bipolar vectors is 𝑥 ⊕ 𝑦 = −𝑥𝑦. Thus, the
sparsity of 𝑥 ⊕ 𝑦 is Pr[𝑥 ⊕ 𝑦 = 1] = 1

2(1 − E[𝑥𝑦]); when 𝑥 and 𝑦 are independent
Pr[𝑥 ⊕ 𝑦 = 1] = 1

2(1 − E[𝑥]E[𝑦]). More generally, for independent bipolar bits
𝑥1, 𝑥2, . . . , 𝑥𝑛 with sparsity 0 < 𝑝 ≤ 1/2, the sparsity of 𝑛-grams equal sparsity of
𝑥1 ⊕ 𝑥2 ⊕ · · · ⊕ 𝑥𝑛 which is Pr[⊕𝑛

𝑖=1𝑥𝑖 = 1] = 1
2(1 − (−E[𝑥1])𝑛) = 1

2(1 − (1 − 2𝑝)𝑛).
Since 0 < 𝑝 ≤ 1/2 =⇒ 0 ≤ 1 − 2𝑝 < 1, conclude that sparsity of 𝑛-gram given by
1/2− (1− 2𝑝)𝑛/2 increases to 1/2 as 𝑛 ↑ ∞. Sparsity of 𝑛-grams for 𝑛 = 2, 3, 4, 5 is
shown in fig. 4-9 for item sparsity 0 < 𝑝 ≤ 1/2.

Figure 4-10: Trade-off between sparsity and side-channel security for 3-gram.
Fig. 4-3 has been re-annotated with the varying degrees of sparsity of (the outputs
by) HLU Layers when inputs 𝑋𝑡 are sparse hyper-vectors. A darker color HLU Layer
represents that its output hyper-vector is denser. The black HLU Layers of (b) and
(c) represent that these HLU Layers always output dense hyper-vectors. Thus, HLU
Layers in (a) are sparser but risk leaking interpretable 2-grams and 3-grams, whereas
(b) and all except last HLU Layer in (c) produce dense vectors which are garbled.

One can now see how sparsity and security are inter-related for 3-grams. Figure
4-10 is a sparsity-annotated version of fig. 4-3. For the feed-forward network, (a) has
a sparser but meaningful intermediate vector which can be used to leak the 2-gram of
input items. However, feedback in (b) allows (c) to have dense but secure intermediate
hyper-vectors, independent of item sparsity 𝑝. This is because 𝑍𝑡 binds all items
consumed by the processor and is completely garbled for any finite-𝑛 𝑛-gram encoding.

44

4.2 Extensions of the Generic architecture
To summarize all architectural features developed to far, it is instructive to see how
the various components work together in a complete HDC system to handle a known
HDC algorithm. For simplicity of the architecture as sketched in fig. 3-5, a Read-Only
Memory (ROM) consisting of a fixed set of pseudo-random vectors generated only once
is considered as the Item Memory, and the Associative Memory as shown in the figure
is composed of flip-flops and digital standard cells only. Although most HDC encodings
are single-stage, EMG hand-gesture recognition [88, 39] is a prominent application
requiring two stages. Hence, consider a two-stage encoder capable of training and
testing EMG hand-gestures. Recall that the encoding expression is a superposition of
4-grams from 64 features [39] – the first stage computes a superposition of channel-
values pair bindings from the measurements of 64 channels; on its completion the
second stage computing 4-grams of results from the first stage advances by a pipeline
stage. The generic HDC processor consuming a symbol every cycle (as defined in
section 3.2.1) can read in an EMG sample as an input stream by consuming either a
channel hyper-vector or that of its value with an accompanying valid signal.

Perhaps the first thing one comes to ponder about the two-stage generic Encoder
is: how does one control the encoding across two stages, each of which require valid
signals locally for conveying to their HLU Layers about the END (E), DELIMIT (D),
VALID (V) and INVALID (X) control states? In particular, how does one implement
the two stage-pipeline controls and integrate them such that the Valid Chain for each
stage is the same as described in section 4.1.3, but when configured to work together
the second stage progresses by one (due to a local VALID (V)) whenever the first stage
completes encoding (a role for local END (E))? Clearly, even though the processor
as a whole receives a single input valid signal from a common input interface, the
same valid signal cannot be used for both stages in a clock cycle. A translation logic
intervening between the two stages is necessary. A possible solution is to have a
new designation of the terminating state, called EE, with a higher priority than the
default E (i.e. X > EE > E > D > V > A). Figure 4-11 shows a Generic processor with
a two-stage Encoder – the 5 (input) valid signals with an extra END state and all
Valid Chain logic that uses it are marked with an asterisk(*). E and EE are treated
identically by the first stage E1. Two Logic blocks Logic X and Logic Y translate
the 5-signal (input) valids from the input interface to the 4-signal (input) valid as
developed in section 4.1.3 before consumption by the second stage E2. If the first
stage is unused, only EE is translated to E and all other valid signals are unchanged.
If E1 is used, valid signals are translated by Logic Y as shown in fig. 4-11.

For two-stage encoding data like EMG, it is important to correctly employ the
DELIMIT (D) signal and the higher priority END (EE) signal to effect advancement of
E2 by a cycle and to end encoding. This is shown in figure 4-12.

Finally, to demonstrate the need for distinction between E and EE, consider the prob-
lem of recognizing the emotional state from physiological measurements. Emotion
Recognition has also seen a successful application of two-stage HDC encoding [120],
where 4-grams of 32-feature galvanic skin response measurements (GSR), 77-feature
electrocardiogram or heart-rate measurements (ECG) and 105-feature electroencephalo-

45

Figure 4-11: Two-stage encoder in a Generic HDC processor.
The Encoder is split into two stages: Accumulator 1, HLU Layer A and HLU Layer
B forms the first stage E1, and Accumulator 2, HLU Layer 1− 7 forms the second

stage E2. HLU Layer B and HLU Layer 7 are the output layers of E1 and E2
respectively. At each clock cycle, the input to Item Memory is provided with a valid

signal from a 5-signal collection {X*, V*, D*, E*, EE*}, where EE* is an END state of
higher priority than E* – to allow signalling for two-stage encoding. Item Valid, HLU

Valid A and HLU Valid B, marked by asterisk(*), have a valid logic that accept
values from the 5-signal collection. HLU Valid 1− 7 admits valid signals from the
4-signal valid set {X, V, D, E} only. Logic X and Logic Y converts valid signals from
{X*, V*, D*, E*, EE*} to {X, V, D, E} depending on whether first stage E1 is used.

gram or brain-wave measurements (EEG) are superimposed together to form the
encoded hyper-vector. Unlike EMG hand-gesture recognition, Emotion recognition
needs the second-stage 4-gram encoding pipeline to flush once when switching from
GSR to ECG data and again from ECG to EEG data. To support flushing (but not
completion) of the second stage of encoding by the propagation of a local DELIMIT
signal, the E valid signal is used at the input interface. The complete input scheme of
the physiological data for Emotion recognition is illustrated in figure 4-13.

This completes the description of the Generic architecture. The following sub-
sections consider extensions of the generic architecture developed so far. Along
with increasing the number of Encoders, Item and Associative memories, various
implementation choices and advanced control structures are discussed.

46

Figure 4-12: Valid signals and input scheme for two-stage encoding of EMG hand-
gesture data in a Generic HDC processor.
The DELIMIT (D) valid signal is used between two 64-feature frames and the higher

priority END (EE) is used to signal end of encoding.

Figure 4-13: Valid signals and input scheme for two-stage encoding of physiological
data for Emotion recognition in a Generic HDC processor.
The DELIMIT (D) valid signal is used between two feature frames, the lower priority

END (E) is used to switch from GSR to ECG and then to EEG samples, and the
higher priority END (EE) is used to signal end of encoding.

47

4.2.1 Item Memory and its extensions
While figure 3-5 shows the Item Memory simply as a structure to store random
hyper-vectors at fixed address locations, several extensions are useful to have. For
vectors which do not need to be almost-surely orthogonal due to high dimensions –
such as for the hyper-vectors representing scalars from an ordered field – it is more
efficient to calculate them on-the-fly than use memory resources.

Figure 4-14: Item Memory with continuous-item generation logic for scalar values.
An Item Memory with 2048 addresses is shown – where the lower half of addresses
fetch a vector stored in a Read-Only Memory (ROM) and the upper half containing
1024 addresses produce hyper-vectors for scalars. The scalar value is quantized and
mapped to the set of numbers 0− 1023. The hyper-vector V0 is designated for scalar

0, loaded from the Read-Only Memory (ROM) during configuration, and the
hyper-vector for scalar 1023 differs from V0 at all even bits (i.e. exactly orthogonal to
V0). The Continuous Item Memory (CIM) uses the value of the lower 9 bits address

to determine number of even bits of V0 to be flipped.

Continuous Item Generation: Assigning orthogonal vectors to integers or
values from an ordered set may not be appropriate. Ideally, two close numbers should
have a correspondingly strong correlation among their hyper-vector bits. A possible
solution (by [87]) is to assign points on a line connecting two exactly orthogonal vectors.
Then, any collection of 3 hyper-vectors 𝐴, 𝐵, 𝐶 (representing integers 𝑎 ≤ 𝑏 ≤ 𝑐) will
satisfy the triangle law 𝑑𝐻(𝐴, 𝐵) + 𝑑𝐻(𝐵, 𝐶) = 𝑑𝐻(𝐴, 𝐶). Equivalently, one can begin
with a random vector V0 and a direction vector Y with (𝑑/2)-bits being 1. The smallest
integer, usually 0, is mapped to V0 and the largest integer, say 𝑀 , is mapped to V0
⊕ Y (Fig. 4-14). For all other integers 𝑛, flip 𝑑

2𝑀
additional bits per integer value

48

along direction Y from the hyper-vector assigned to 0 – the only restriction is that 𝑀
divides 𝑑/2. Clearly, the generation of continuous items is very cheap in logical effort
and time: only an array of 𝑑 XOR gates and an extra clock cycle in latency is added.
An example is shown if figure 4-14 for 𝑑 = 2048, 𝑀 = 1023 and the direction vector 𝑌
having 1 in even bit positions.

Representing scalars and elements from other vector fields is a rapidly growing
field of enquiry in the HDC community – section 3.2 in [64] provides a recent review
of all published works in this space. A detailed theoretical treatment for computing
on a reproducing kernel Hilbert space of real-valued functions using hyper-vectors is
presented in [121].

Pseudo-random and random generation of items. The principal mandate
of an Item Memory is to produce random hyper-vectors, the common starting point
of all HDC algorithms, and to map it to the symbol set of the problem at hand (as
discussed in sec. 3.2.1), storing this map for the duration of the problem. Therefore,
its role is that of generation and storage. When implementing Item Memory with a
Read-Only Memory (ROM) [32], the generation of vectors is performed only once by
external means – only the choice of address-symbol mapping by HD MAPPER like in fig.
3-5 remains. This rudimentary strategy limits the number of items and fundamentally
lacks entropy – a cornerstone of HDC’s mechanism. Therefore, a natural choice is to
look at on-chip generation of random hyper-vectors.

Pseudo-Random Number Generators (PRNGs) rely on deterministic calcu-
lations to produce bit-strings that appear random i.e. they are indistinguishable from
independent and uniform bits with respect to the results of a collection of statistical
tests. Multiple batteries of statistical tests are used to evaluate PRNGs, where the
easy ENT suite [122], the NIST suite [123] and the difficult DIEHARDER suite [124] are
common. Among the few PRNG algorithms known to pass these suites successfully, the
“Mersenne Twister” algorithm (both the 32-bit MT19937-32 and 64-bit MT19937-64
variants) [125] is the most well known: it is part of the standard library of widely
used programming languages including python, C, C++11 and MATLAB. While a digital
CMOS implementation of the Mersenne Twister requires only barrel shifters, AND
and XOR gates, the PRNG suffers from a relatively large state buffer of 20480 bits
and a low throughput of the order of 10−2 hyper-vector each cycle (it can produce
at most 64 bits/cycle). The TinyMT variant is an attractive alternative as it uses
only 127 bits of state but has far smaller period [126] (2127 − 1 instead of 219937 − 1
for Mersenne Twister, which is still reasonably large). Similarly, the SFMT variant
producing 128 bits/cycle [127] and data-parallel variants particularly well-suited for
architectures exploiting SIMD parallelism [128] are great candidates for exploring
on-chip generation of pseudo-random vectors with reasonable throughput. A design
exploration of Item Memory containing such PRNG is a great direction for fruitful
research.

Cellular automata have been proposed as hardware-efficient PRNGs [129, 130] to
be distributed in common standard libraries [131]. However, research suggests they are
usually not very cryptographically secure as the effective key length is much smaller
[132] and often fail relatively easy statistical tests (such as the chi-squared test [133]).
While a few recent works have proposed cellular automata (especially rule 90) for

49

hyper-vector generation in HDC [134, 135], the impact of likely lower entropy on HDC
performance hasn’t been studied yet. Cellular automata-based hyper-vector generation
exhibits variable latency to produce hyper-vectors [135] (the latency depends on the
address) which complicates the overall processor architecture. An in-depth analysis of
cellular automata as a candidate for hyper-vector generation is a fertile area of study.

Figure 4-15: Figure 6 of [136]: Variation in cell delay is used to produce 27 items.
Higher standard deviation 𝜎 per average delay 𝜇 indicates greater randomness.
𝜎/𝜇 = 1.5 is sufficient as greater values produce diminished gains in accuracy.

True Random Number Generators (TRNGs) harness randomness in physical
devices to produce random bits. TRNGs have been widely used on-chip as high-quality
sources of entropy, where chaos [137] and metastability [138] are common mechanisms
for generating randomness. TRNGs are the only choice when high-quality entropy is
needed [139] but they are difficult to design and expensive in silicon area. Consequently,
imperfect TRNGs may suffice for hyper-vector generation. For example, [136] uses
the variability of a resistive RAM-based delay cell (see figure 4-15) to produce 32
random bits every cycle (hundreds of cycles are used to process a hyper-vector).
Similarly, a relatively high entropy source may be obtained by a simple extractor
algorithm [140] from real-time galvanic skin response (GSR) measurements (as used in
Emotion recognition [120]). A design of an Item Memory with on-chip TRNG and its
comparison with alternatives will be very useful to evaluate all the choices discussed
here.

4.2.2 Associative Memory and its extensions

The main complexity of associative memory is the implementation of distance cal-
culation logic. For binary vectors, hamming distance 𝑑𝐻(·, ·) is the natural choice.
Hamming distance calculation requires an array of 𝑑 XOR gates, the population count
and closest match logic – a parallel implementation computing the maximum number
of XORs across HDC dimension 𝑑 is likely to make it the critical path in the processor
[32]. The simplest Associative Memory is shown in figure 4-16(a). However, one may
easily extend this implementation, such as a design using tags to store and compare
multiple hyper-vectors for different tasks simultaneously. In this implementation

50

(a) The basic Associative Memory. (b) Extended Associative Memory with tags to
store multiple models.

Figure 4-16: Associative Memory and its extensions.

shown in figure 4-16(b), only those hyper-vectors which are valid and match the tag
of the input are compared to report the closest match.

Digital logic for the distance calculation and comparison may not be the most
efficient implementation. Since address of the closest match is the only output, the
distance calculation can tolerate significant errors. Analog techniques show great
promise of efficiency over digital CMOS implementations [141] and may prove to be
the most successful strategy in mature HDC processors.

Associative Memory for vectors of non-binary elements such as integers, real or
complex numbers necessitates a fundamental change in data-path from their binary
counterparts. The most prominent properties of them are the far greater memory and
logic requirements. The next chapter considers the problem of finding an efficient
and feasible design of the Associative Memory storing integer hyper-vectors and using
cosine similarity for comparisons. An emerging direction of research is to study
HDC using hyper-vectors with elements from finite fields, which promotes hardware
innovation and ease of adoption [142].

51

4.2.3 Multi-component extensions
The basic architecture containing one Item Memory, Encoder and Associative Memory
each, as shown in figure 3-5, may be scaled up to contain multiple instances of them.

Figure 4-17: A scaled up HDC processor with multiple components.
The uni-directional data-flow architecture may be extended to allow hyper-vectors to

flow from Associative Memories back to Encoders (marked X and Y).

This is illustrated in figure 4-17. Multiple components interconnected in the same
processor allow sharing of items and hyper-vectors, iterative HDC algorithms such
as factorization [108, 143], and greater energy efficiency. Similarly, each HLU Layer
in a HLU Layer Network of the Encoder can produce different encoding expressions
simultaneously. An example for concurrently producing 3-grams, 4-grams and 5-grams
from the common input stream is shown in figure 4-18.

52

(a) Encoding multiple expressions concurrently.

(b) Figure 8 of [87]: EMG Hand-gesture recongition requires different 𝑛-grams for different subjects.

Figure 4-18: A common HLU Layer Network can be configured to simultaneously
encode multiple expression from a common input stream.

Encoding a collection of HDC expressions concurrently can reduce total time and
make the job more efficient without incurring performance loss. For example, EMG
hand-gesture recognition often benefits from training multiple 𝑛-grams and choosing
the best among them depending on the subject. This is especially useful when the
number of channels is small – for example, when only 4 channels were available for

EMG measurements in [87].

53

4.3 Hardware evaluation of Generic architecture
This section concludes the development of the generic HDC architecture with a
summary of energy costs per inference for a suite of supervised classification tasks.
These benchmark and results are described in detail in [32].

4.3.1 Benchmark of supervised classification tasks

Applications Abbrev. Encoding HDC Known State-of-the-Art Algorithm
Language Recognition LANG 4-gram 90.6 % 97.1 %, 𝑛-gram-based Nearest Neighbors [19]
EMG Hand-Gesture Recognition* EMG 2-stage 95.8 % 89.7 %, Support Vector Machine [38]
Fetal State Classification (cardio.)* CARDIO 21-features 90.6 % 90.6 %, Support Vector Machine [144]
Page-block Classification PAGE 10-features 91.6 % 85.9 %, min-max Hyperplane Separation [145]
UCI Human activity Recognition* UCIHAR 561-features 76.7 % 89.3 %, Support Vector Machines [146]
Spoken Letter Classification ISOLET 617-features 75.9 % 97.1 %, boosted 𝑘-Nearest neighbors [147]
Human Face Detection* FACE 608-features 66.0 % 96.1 %, HOG-based boosted Decision Trees [148]
MNIST Digit Classification MNIST 784-features 75.4 % 99.7 %, Deep Convolution Neural Network [91]

Table 4.1: Benchmark for energy evaluation of the Generic HDC architecture.
A collection of 8 supervised classification tasks with varying complexity were chosen

to evaluate a generic HDC processor with 𝑑 = 2048, an Item Memory with 2048
items, ROM and CIM as shown in figure 4-14, an Associative Memory with 32 class
vectors, and a two-stage Encoder as with 2 and 7 HLU Layers respectively as shown
in figure 4-11. (*)-members are well suited for human-centric computing in Internet

of Things (IoT) as identified in [149].

To evaluate the Generic architecture, a set of applications must be chosen to
faithfully represent the state of the art. The following 8 applications were a part of
the benchmark chosen in Section III of the hardware evaluation study in [32].

Language Recognition (LANG) is described in section 2.3.2. EMG Hand-Gesture
Recognition (EMG) classifies electromyography signals recorded from a subject’s hand
into a set of hand-gestures – described in section 3.1.1. Fetal State classification
(CARDIO) uses measurements of heart-rate and uterine pressure during pregnancy
to classify fetal condition before delivery [144]. Page-block classification (PAGE)
finds all blocks of the page layout in a document that has been detected by a
segmentation process [145]. UCI Human-activity Recognition (UCIHAR) classifies
recordings of 30 subjects performing activities of daily living while carrying a waist-
mounted smartphone with embedded inertial sensors [146]. Spoken Letter Classification
(ISOLET) predicts the English letter spoken from voice recordings of subjects. Face
Detection (FACE) determines whether a human face is present within a given picture
frame [148]. MNIST Digit Recognition (MNIST) classifies the digit from images of
drawn digits [91] – described in section 3.1.1.

Table 4.1 compares the accuracy of single-pass HDC with the best known ML
models for each benchmark dataset from the literature. Bold indicates better or equal
accuracy for HDC over the best-known ML algorithm. The list is non-exhaustive but
contains representative datasets from human-centric IoT summarized in [15]. It is also
balanced overall: MNIST, FACE and ISOLET represent the fact that known HDC

54

algorithms alone applied on raw features are not competitve compared to ML for even
simple speech and vision problems.

4.3.2 Energy efficiency on a synthesized 28nm processor
A Generic HDC processor was synthesized in a industry-standard 28nm High-K/Metal-
gate physical design kit provided by TSMC. The processor consists of an Item Memory
with 2048 items including continuous items as shown in figure 4-14, an Associative
Memory containing 32 rows and computing hamming distance 𝑑𝐻 of all stored vectors
with the input in parallel, as shown is fig. 4-16(a). The two-stage Encoder is specified
in figure 4-11. Some characteristics of the synthesized data-path is shown in table 4.2.

Property Value
Technology TSMC 28nm High Performance Mobile
Total Cell Area 1.27 sq. mm.
𝑡𝐶𝐿𝐾 2.4 ns
Total estimated power 267 mW

Table 4.2: Quality of Results (QoR) report for the synthesized Generic processor.

The synthesized data-path is used to simulate the inference computations on
the generated net-list, producing logic states at each clock cycle for every wire and
standard cell pin. This information is used to estimate power consumption in each
clock cycle from energy characterizations from standard cell libraries and capacitances
of wires and vias from simple wire models. Such a trace for 20 inferences of Language
Recognition is shown in figure 4-20. Using this data, one can calculate the average
energy consumed per inference for Language Recognition for these 20 inferences as:
total elapsed time × average total power = (17012 − 7712)ns × 444mW ≈ 206nJ.
Similarly, all applications in the benchmark of section 4.3.1 were profiled for average
energy cost per prediction on the synthesized data-path. The results as shown in
fig. 4-19 substantiates the claim that a Generic HDC system can be reasonably
energy efficient – this synthesized data-path requires ≤ 1.5𝜇𝐽 per prediction for the
benchmark of section 4.3.1. Hence, a generic HDC chip fabricated and measured in real
time is very likely to be energy efficient; it could meet extremely high energy-efficiency
requirements necessary for human-centric IoT [149].

55

L A N G
E M G

C A R D I O
P A G E

U C I H A R
I S O L E T

F A C E
M N I S T

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6

En
erg

y/I
nfe

ren
ce

 [u
J]

(a) Energy/inference in 𝜇𝐽 for benchmark applications.

0.303 (24%)

0.186 (15%)

0.784 (62%)

 Item Memory
 Encoder
 Associative Memory

(b) Total synthesized gates area in mm2.

98 (37%)
56 (21%)

112 (42%)

 Item Memory
 Encoder
 Associative Memory

(c) Estimated power consumed in mW.

Figure 4-19: Post-synthesis energy per inference for benchmark applications.
Detailed descriptions and results are available in [32].

56

(a) Switching power trace for one test. (b) Switching power trace for 20 tests.

(c) Leakage power trace for one test. (d) Leakage power trace for 20 tests.

(e) Total power trace for one test. (f) Total power trace for 20 tests.

Figure 4-20: Post-synthesis simulation traces for EUROPARL Language Recognition.
Using simple parasitic models for wires, via and energy characterization from

standard cell libraries, post-synthesis power traces provide useful insights on energy
behaviour of the Generic HDC processor. Switching power traces for (a) one inference
and (b) 20 inferences use gate and wire capacitances only and should be considered
preliminary estimates correlating with the actual cost of computation. Leakage power
estimates of (b) and (c) are more accurate. The total power trace in (e) clearly shows

the encoding phase with a large number of spikes and the associative memory
computation with far fewer spikes. Similarly, one could count the encoding phase of
each of the 20 inferences from the high-activity durations in (f). The length of the

encoding phase in (f) gives a good estimate of the length of the test sentence.

57

Chapter 5

Architectural techniques for
multi-bit Hyper-Dimensional
Computing

This chapter considers HDC architectures for applications where more than one
bit is used to represent elements of learned hyper-vectors. Multiple bits per vector
element are required to accommodate the rapidly growing application space of HDC.
Furthermore, multi-bit hyper-vector models almost always have higher performance
than their single-bit counterparts. However, multi-bit elements dramatically increase
the logical effort of the associative search module in a HDC processor – to the extent
that the feasibility of a silicon implementation depends entirely on the architect’s
success in limiting this growth in complexity of associative search.

It is shown that simple, hardware-friendly transformations allow the architect
to fix the logical cost of associative search for multi-bit hyper-vectors to a small
and reasonable constant with a bounded loss in accuracy. In other words, given a
HDC dimension 𝑑, the constant’s value does not depend on the encoding expression
or application – provided mild conditions on the learned hyper-vectors’ probability
density are satistisfied. Studies from previous literature which empirically discovered
these transformations’ effectiveness are reviewed and augmented with complete proofs
of the upper-bounded nature of any resultant loss of accuracy. These mathematically
rigorous arguments are based on well known results from high-dimensional probability
theory and are comprehensively verified by numerical experiments.

An analysis of the proposed transformations’ impact on the performance of a HDC
application and a study of the reduction in associative search’s logical complexity
afforded by these transformations concludes this chapter. The key takeaway here is
that emerging stochastic and brain-inspired paradigms like HDC allow for probability-
inspired accelerator design.

58

5.1 Challenges in multi-bit HDC architectures
Among half a dozen HDC variants [14], the Multiply-Add-Permute (MAP) variant
using 0, 1 or +1,−1 as vector elements (called the binary model in this chapter) has
been most widely adopted in the hardware community due to its hardware-friendliness
([32] provides a brief survey). This is because the binary model with one bit per vector
element in the learned hyper-vector is amenable to energy-efficient implementations.
However, several advanced algorithms of HDC require storage of partially or completely
learned hyper-vectors of non-binary type.

5.1.1 The need for multi-bit HDC
Multiple bits per element of learned hyper-vector is needed due to 2 principal reasons:

1. Multi-bit learned hyper-vectors lead to higher performance. The most
important reason to design multi-bit HDC architectures is that they almost
always have higher performance. When using HDC for supervised classification,
as illustrated by fig. 5-1(a), the binary model uniformly has lower classification
accuracy than a HDC model using signed integers in two’s complement to
represent elements of the trained class vector (called integer model in this
chapter). Furthermore, even though increasing vector dimension improves binary
accuracy (see figure 5-1(b)) the integer model uniformly has greater or equal
accuracy for every dimension [78].

This can be explained by the holographic property of HDC: since each element
contains identical information as every other element, limiting its representation
to one bit limits the total information capacity. This is because each element
contains identical information as every other element, limiting the total informa-
tion capacity [150]. Indeed, [150] concludes that information capacity depends
linearly on the vector dimension of the binary model. Contrast this with the
integer model, where bits in each element differ in significance, linearly increasing
entropy per element; thus requiring a smaller vector dimension for the same
information capacity.

2. Multi-bit Associative Memory helps in re-training. This is particularly
applicable for tasks related to body-sensing and classification, such as EMG
hand-gesture recognition [87, 88, 39]. When training a subject’s hand gesture,
it is necessary to save a partially trained gesture hyper-vector as the subject
transitions to rest or another hand-gesture. Thus any natural training procedure,
especially one that trains in background without rigid instructions for requiring
gestures in a fixed order for fixed durations, necessarily follows a sequence of
partial training and re-training (see figure 5-2). Although some re-training
procedures exist for the binary model when it already has high accuracy [39],
a multi-bit Associative Memory naturally supports re-training – including in
cases where the trained vector has poor performance.

59

(a) Figure 4 of [78]

(b) Figure 5 of [78]

Figure 5-1: Integer models are uniformly more accurate than binary models.
(a) This is true for all dimensions 𝑑. (b) Consequently, much smaller HDC dimension

𝑑 is required for the integer model to achieve same accuracy as binary model.

Perceptron re-training of the closest known expert model can also improve
HDC accuracy [79]. During iteration, if the validation data-point with en-
coded hyper-vector 𝑣 of correct class with vector 𝐶𝑐𝑜𝑟𝑟𝑒𝑐𝑡 results in a wrong
prediction (class with hyper-vector 𝐶𝑤𝑟𝑜𝑛𝑔), we update them as: 𝐶𝑤𝑟𝑜𝑛𝑔 ←
𝐶𝑤𝑟𝑜𝑛𝑔−𝑣, 𝐶𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ← 𝐶𝑐𝑜𝑟𝑟𝑒𝑐𝑡 +𝑣. Clearly, the addition or subtraction of vectors
requires storing their elements as integers or real numbers, which necessitates
storing learned vectors with multi-bit elements.

In addition to the above reasons, there are several algorithms which are naturally
convenient to be expressed on multi-bit HDC models. For example, symbiotic com-
munication using HDC requires the integer model [151]. The factorization algorithm
[108, 143] could be performed using both binary and complex unitary vectors, where
complex vectors often lead to better empirical performance. Recent work by [142]
explores the theoretic development of HDC using vectors from finite fields of a small
order, which essentially extends the integer model but guarantees that low precision
integers will be sufficient.

Therefore, there is abundant demand from the application space to merit an
architectural exploration of multi-bit HDC architectures.

60

Figure 5-2: Figure 6b of [39]: training, updating hand-gestures and transitioning to
other gestures require intermediate storage of learned hyper-vectors.

When a hand gesture is partially trained and a transition to another gesture is
initiated, the currently trained hyper-vector needs to be saved in an Associative
Memory to allow for inferences using it, and to allow resumption of training that

gesture the next time data is available. While bit-mixing [39] to update previously
trained vectors is a novel and clever solution to incrementally update hyper-vectors,

using the integer model or other multi-bit/element hyper-vector in Associative
Memory inherently allows for partial training, intermediate saves and re-training.

5.1.2 Logic complexity of integer Associative Memory
The integer HDC model, the simplest of multi-bit HDC models, is considered for the
remainder of this chapter.

Fig. 5-3 shows main components of the HDC data-path for the binary and integer
models for performing predictions in a supervised classification task. Within the
Encoder, 𝜌 denotes the permutation operation and XOR gates denote the bitwise
XOR or binding operation. Since only class vector elements change from binary to
integer model, all hardware modifications to a binary HDC data path needed for the
integer model reside within the associative memory.

The hamming distance dH is no longer applicable as a distance metric for the
integer model; the cosine similarity dcos, i.e. the inner-product of test vector with each
class vector divided by the class vector norm, is applicable and a common choice [37]
(also illustrated in figure 5-4(a)).

However dcos is expensive to implement in hardware (see figure 5-4): 𝑀 -bit adders
in carry-lookahead parallel implementation and Wallace-tree parallel multipliers [152]
need Θ(𝑀 log 𝑀) and Θ(𝑀2) complex gates respectively with Θ(log 𝑀) delay [153],
and 𝑑 of them (i.e. thousands) are required for each class vector. A register and
divider are needed to store the class norm and divide the inner product for each class.
Register memories scale linearly with 𝑀 . Since there is only one divider per class but
thousands of multipliers and adders, its contribution to the total hardware cost is
likely negligible. In fact, as shown later in this chapter, the proposed transformations
obviate the need for a divider to calculate dcos altogether.

If the number of universal logic gates (called logical complexity) is considered as a

61

(a) Data-path for the binary model using hamming distance for associative search.

(b) Data-path for the integer model using cosine similarity for associative search.

Figure 5-3: Only the associative memories differ among HDC data-paths for the binary
and the integer model.
Data-paths for the EUROPARL Language Recognition [65] is fashioned here for (a)
the binary model and (b) the integer model. Observe that the entire data-path is
identical for both models except the differing associative memories. Contrast the

adders and multipliers in the integer model’s associative memory (b) with the binary
model’s associative memory (a), where elementary logic gates such as XOR gates and
population count are adequate. Any multi-bit Associative Memory like that of integer

model in (b) requires higher logical effort due to the inherent complexity of its
distance metric computation.

62

(a) Thousands (i.e. HDC dimension 𝑑 numbers of) adders and multi-
pliers are required to implement the integer Associative Memory.

(b) The total cost (logic × time taken) of multipliers and adders
increases with larger bits/element 𝑀 . The asymptotic notation Θ(·) is
used here; Θ(1) indicates that the quantity is constant with respect to
𝑀 .

Figure 5-4: Costs of integer associative memory grows quicker than linearly with
increasing bits/element 𝑀 .
The logic gates used here are thousands of integer multipliers and adders as shown in
(a); the only integer divider, to normalize the inner product with the magnitude of
the stored vector, can be ignored when estimating the total hardware effort. (b) lists
the time and logical complexity for parallel implementations of vector-store memory,

adder and multipliers. The total cost of (parallel) adders and multipliers scale
asymptotically as Ω(𝑀 log2 𝑀) with increasing bits/element 𝑀 .

estimate of the adders’ and multipliers’ power consumption, the product of logical
complexity and time taken (composed of critical path delay/clock period and number
of cycles) estimates the total energy cost. Therefore, the parallel 𝑀 -bit adder and
multiplier have energy complexity of Θ(𝑀 log2 𝑀) and Θ(𝑀2 log 𝑀) respectively.

The final bits/element 𝑀 in a trained vector can be arbitrarily large as it is
determined by the number of terms superimposed [150], which is usually the number
of class examples used in training for supervised application tasks. A large dataset
like EUROPARL[90], for the language recognition task [65], would require 𝑀 ≥ 20
bits/element of signed int for each of the 21 language hyper-vectors. From figure
5-4 and energy complexity relationships, the 20-bit multiplier requires more than 400×

63

area and 1729× energy of the single-bit multiplier (the AND gate, which is comparable
to XOR gate in binary AM), and the 40-bit adder requires more than 213× area and
1133× energy of a half adder (a building block of population count logic). Given that
these increases in logic with respect to the binary associative memory are replicated 𝑑
times per stored hyper-vector where HDC dimension 𝑑 is in thousands (for example –
21 languages for EUROPARL), any direct implementation of the integer HDC model
for a task requiring EUROPARL or similary large dataset is simply not feasible.

Therefore, the only approach to guarantee feasibility of a multi-bit HDC processor
is to reduce or (ideally) fix the required bits/element 𝑀 for learned hyper-vectors.

5.1.3 A literature review of multi-bit HDC
Several publications in the HDC literature use non-binary hyper-vectors as their
primary data type. For example, [60] studies integer hyper-vectors instead of complex
hyper-vectors for modulation and communication over a channel using HDC binding
and factorization, [154] compares integer and binary hyper-vectors for robustness to
injected errors for supervised classification tasks on a few public data sets, in [72]
a Phase-Change Memory (PCM) chip was used to store parts of real-valued hyper-
vectors, [155] uses integer hyper-vectors for supervised classifications simulated in an
in-memory data path, and [156] proposed methods of simulating qubits in quantum
circuits using Hyper-Dimensional Computing.

Few published works study the empirical advantages of different strategies to reduce
the number of bits per element for non-binary hyper-vectors. In [157] and [85], various
quantization strategies are discussed to capture a scalar channel value in multi-channel,
multi-modal input streams for classification. Sparse random projections were studied
empirically to reduce the memory footprint for integer hyper-vectors in [158] resulting
in substantial memory savings. A saturating-counter based superposition scheme was
proposed and empirically demonstrated on few supervised classification tasks using
public data sets in [76] – as an alternative to thresholding integer hyper-vectors to
convert them to binary hyper-vectors.

While published literature provides a wealth of evidence about empirical benefits of
various strategies to reduce bits/element in multi-bit HDC models for multiple applica-
tions, no analytical investigations to find the mechanism of these improvements exists.
Furthermore, it is not clear that the strategies proposed for the specific applications
studied will be effective on other applications and data sets. Finally, a theoretical
explanation of their usefulness would greatly improve researchers’ understanding of
the scope of these strategies’ advantages and limitations.

The main contributions of this chapter is to augment the multi-bit HDC literature
with mathematically rigorous proofs establishing their effectiveness. The proven
assertions are also empirically verified for an application that agrees with the presumed
sufficient conditions. This work was inspired by excellent theoretical treatments of
non-binary HDC from the HDC literature – such as [121] for describing real-valued
functions represented by hyper-vector-like embeddings and [150] for a capacity analysis
of generalized superposition memories.

64

5.2 Relevant properties of the probability distri-
bution of hyper-vector elements

Notations used in the remainder of this chapter. Hyper-vectors are desig-
nated by upper-case letters 𝑋, 𝑌, 𝐴, . . . and their elements denoted by corresponding
lower-case letters and subscripts 𝑥𝑖, 𝑦𝑗, 𝑎𝑘, 1condition is the indicator function for
‘condition’ (i.e. 1 when ‘condition’ is true, 0 otherwise). Thus the hyper-vector 𝑋
is composed of elements (𝑥1, 𝑥2, . . . , 𝑥𝑑) where 𝑥𝑖 ∈ Z. Any names of the vectors or
their elements can be annotated within parentheses as super-scripts: 𝑥

(4gram)
2 denotes

the second element of the hyper-vector 𝑋 for the 4-gram of inputs. The norm of
a vector ‖𝑋‖ is its euclidean norm

√︁∑︀
𝑖 𝑥2

𝑖 and 𝑋 · 𝑌 denotes their inner-product∑︀
𝑖 𝑥𝑖𝑦𝑖. Random variables are also denoted by upper-case letters 𝑋, 𝑈, 𝐴, . . . where

the context makes it clear if its a random variable or a hyper-vector (or both), and
their samples are sub-scripted upper-case letters 𝑋1, 𝑈𝑖, 𝐴𝑘, E[𝑋] denotes the
expected value of a random variable 𝑋 and 𝑋 ∼ 𝑌 denotes 𝑋 is identically distributed
as 𝑌 . If they exist, 𝑓𝑍(·) denotes the probability density function of random variable
𝑍, 𝜇𝑋 denotes its mean value E[𝑋] and 𝜎𝑋 denotes its standard deviation i.e. the
square-root of variance E[(𝑋 − E[𝑋])2]. When the random variable 𝑋 being referred
to is clear from the context, 𝜇𝑋 will be abbreviated as 𝜇 and 𝜎𝑋 as 𝜎. �

The integer HDC model is considered for the proposed transformations, where the
cosine similarity between hyper-vectors with integer elements Z is used for the as-
sociative search. Following arguments from section 5.1.2, the final objective is to
fix bits/element 𝑀 after a set of hardware-suitable numerical transformations are
applied on the stored hyper-vector. Towards that goal, all necessary conditions for
the probability distribution of the stored hyper-vector are defined in this section.

Recall that the cosine similarity of two vectors 𝑋 and 𝑌 is given by

dcos(𝑋, 𝑌) =
∑︀𝑑

𝑖=1 𝑥𝑖𝑦𝑖√︁∑︀𝑑
𝑖=1 𝑥2

𝑖

√︁∑︀𝑑
𝑘=1 𝑦2

𝑘

For associative search between a common query vector 𝑇 and stored vectors in
the integer model, figure 5-4(a) illustrates the fact that normalization by norm
‖𝑇‖ =

√︁∑︀𝑑
𝑖=1 𝑡2

𝑖 is not necessary because the query vector is common across all
compared cosine similarities. Since cosine similarity calculations are required only
for associative search in HDC, the scaled cosine similarity score dcos(·, ·) is defined
between the stored vector 𝑋 and common query vector 𝑇 :

dcos(𝑋, 𝑇) , 𝑋 · 𝑇
‖𝑋‖

=
∑︀𝑑

𝑖=1 𝑥𝑖𝑡𝑖√︁∑︀𝑑
𝑖=1 𝑥2

𝑖

(5.1)

Now consider how an individual element 𝑥𝑗 determines the value of dcos(𝑋, 𝑇).
Define the ratio of all other elements and 𝑥𝑗 as 𝑐𝑖 , 𝑥𝑖/𝑥𝑗 where 𝑖 ̸= 𝑗. Then equation

65

5.1 for scaled cosine similarity can be re-written as:

dcos(𝑋, 𝑇) =
∑︀𝑑

𝑖=1 𝑥𝑖𝑡𝑖√︁∑︀𝑑
𝑖=1 𝑥2

𝑖

=
𝑡𝑗 + ∑︀

𝑖 ̸=𝑗 𝑡𝑖(𝑥𝑖/𝑥𝑗)√︁
1 + ∑︀

𝑖 ̸=𝑗(𝑥𝑖/𝑥𝑗)2
=

𝑡𝑗 + ∑︀
𝑖 ̸=𝑗 𝑡𝑖𝑐𝑖√︁

1 + ∑︀
𝑖 ̸=𝑗 𝑐2

𝑖

(5.2)

If |𝑥𝑗| is really large in comparison to all other elements of 𝑋 i.e. |𝑐𝑖| → 0 for
all 𝑖 ̸= 𝑗, the scaled cosine similarity score from equation 5.2 gives us dcos(𝑋, 𝑇) ≈
lim∀𝑖 ̸=𝑗,|𝑐𝑖|→0 dcos(𝑋, 𝑇) = 𝑡𝑗. Hence, when element 𝑥𝑗 has much larger magnitude
compared to other elements of 𝑋, it alone determines the value of scaled cosine
similarity. Conversely, when |𝑥𝑗| is really small compared to all other elements of
𝑋 i.e. |𝑐𝑖| → ∞ for all 𝑖 ̸= 𝑗, the scaled cosine similarity becomes dcos(𝑋, 𝑇) ≈
lim∀𝑖 ̸=𝑗,|𝑐𝑖|→∞ dcos(𝑋, 𝑇) = (∑︀

𝑖 ̸=𝑗 𝑡𝑖𝑐𝑖)/
√︁∑︀

𝑖 ̸=𝑗 𝑐2
𝑖 = (∑︀

𝑖 ̸=𝑗 𝑡𝑖𝑥𝑖)/
√︁∑︀

𝑖 ̸=𝑗 𝑥2
𝑖 . Hence, when

element 𝑥𝑗 has much smaller magnitude compared to other elements of 𝑋, it does not
determine the value of scaled cosine similarity.

This leads to the first observation required to derive transformations that fix
bits/element 𝑀 of stored hyper-vector 𝑋.

Remark 5.2.1. Only the relatively large-magnitude elements among all elements of
the stored vector can meaningfully influence the scaled cosine similarity score.

5.2.1 Tails of probability density functions
From the holographic property of HDC, recall that encoded hyper-vectors are random
variables whose elements are independent and identically distributed. This is because
elements of item hyper-vectors are generated independently from the same probability
distribution, and the HDC operations multiply, add/superposition or permute do
not change the i.i.d. property when encoding hyper-vectors. In other words, all
the information in a hyper-vector 𝑋 is stored in the probability distribution of a
single element (say, the first element 𝑥1); thousands of elements 𝑥1, 𝑥2, . . . , 𝑥𝑑 for 𝑋
is required to provide a sufficiently large sample to capture that distribution. The
independently and identically distributed nature of hyper-vector elements impose a
strong and useful structural constraint on the hyper-vector’s 𝑑-dimensional probability
distribution space: such a distribution has to be spherically symmetrical as shown
in figure 5-5(a).

Since the influence of an element on the scaled cosine similarity depends on its mag-
nitude relative to that of other elements, it is necessary to capture a notion of “spread”
or “variation” of the element’s distribution. The commonly used metric of variance
𝜎2

𝑋 = E[(𝑋 − 𝜇)2] alone is not sufficient to capture this aspect of “variation” in the
distribution – the variance can be trivially changed by scaling and there are multiple
distributions that share the same variance. Similarly, any of the higher-order central
moments E[(𝑋 − 𝜇)𝑘], 𝑘 ≥ 3 capture an incomplete notion of the distribution’s total
variation as they too are scale-dependent. Since the proportion of large-magnitude
elements in the vector is pursued here, a natural next candidate is a dimensionless
ratio of central moments. A commonly used ratio of central moments is the kurtosis
(“tailed-ness” in Greek), defined E[(𝑋 − 𝜇)4]/(E[(𝑋 − 𝜇)2])2, and is more appropriate

66

(a) Hyper-vectors belong to spherically-
symmetric probability distributions in the
𝑑-dimensional space.

5 4 3 2 1 0 1 2 3 4 5

Value of vector element

0.0

0.1

0.2

0.3

0.4

P
ro

b
a
b
ili

ty
 d

e
n
si

ty
 f

(
·)

(s
m

a
ll

m
a
g
n
it

u
d
e
,

h
ig

h
 p

ro
b
a
b
ili

ty
)

(l
a
rg

e
 m

a
g
n
it

u
d
e
,

lo
w

 p
ro

b
a
b
ili

ty
)

(l
a
rg

e
 m

a
g
n
it

u
d
e
,

lo
w

 p
ro

b
a
b
ili

ty
)

N(0, 1. 48262) Cauchy dist.

(b) Tail characteristics determine proportion of
relatively large-magnitude elements in a vector.

Figure 5-5: Properties of hyper-vector probability distribution.
(a) Due to the holographic property of HDC, all hyper-vectors, including items and
learned hyper-vectors, have independent and identically distributed elements. Hence
the vector’s probability distribution is spherically symmetrical i.e. the first coordinate

𝑥1 is identically distributed to all other coordinates on other axes 𝑋2, 𝑋3,
(b) The proportion of elements with magnitude relatively larger than other elements
in a hyper-vector 𝑋 depends on the tail property of the elements’ probability density.
Shown density for the Cauchy distribution and the Normal distribution 𝒩 (0, 1.48262)

(i.e. with mean 0 and standard deviation 1.4826) where both distributions have
quartiles −1, 0, and 1. Since the Cauchy distribution has heavier tails than the

Normal distribution 𝒩 (0, 1.48262), its hyper-vector will have a higher proportion of
elements with relatively larger magnitudes among all its elements.

as it is a (incomplete) metric for the shape of the probability density function 𝑓𝑋 .

The Cramér-Chernoff tail bound. A generalization of kurtosis is the Cramér-
Chernoff tail bound (see section 2.2 of [159]) for a random variable 𝑍, given by

∀𝑢 ≥ 0, Pr[𝑍 − 𝜇 ≥ 𝑢] ≤ exp
(︁

sup
𝜆≥0

(𝜆𝑢−𝑀𝑍−𝜇(𝜆))
)︁

(5.3)

This characterization of the probability distribution’s tail contains all central moments
E[(𝑍 − 𝜇)𝑘], 𝑘 ≥ 2 as it uses the (central) Moment Generating Function (MGF) for
𝑍 defined as 𝑀𝑍−𝜇(𝜆) , E[𝑒𝜆(𝑍−𝜇)] = 1 + ∑︀

𝑘≥2
𝜆𝑘

𝑘! E[(𝑍 − 𝜇)𝑘]. For equation 5.3 to
be meaningful, the MGF 𝑀𝑍−𝜇(𝜆) must be finite in |𝜆| ≤ 𝑟 for some 𝑟 > 0. The
Cramér-Chernoff tail inequality is a special case of the general phenomena called
concentration of measures in high-dimensional geometry. These results were
discovered in the late twentieth century and have led to new and profound insights in
combinatorics, statistical mechanics and learning theory. Perhaps most importantly,
these results allow probabilists and statisticians to refine asymptotic arguments with
results requiring only finite sample size, memory and time. The interested reader is
referred to the excellent text [159] and monograph [160] for a technical introduction.

67

The Cramér-Chernoff tail bound can be used to classify probability distributions
for a random variable 𝑍 admitting a density function 𝑓𝑍(·) into distinct categories
based on the rate of decline in probability density (i.e. the “tail” of the density
function) as the quantity |𝑍 − 𝜇𝑍 | increases. These results are usually expressed as a
univariate function with argument 𝑢 ≥ 0 and scalar parameters, which upper bounds
the probability Pr[|𝑍−𝜇𝑍 | ≥ 𝑢] (as in equation 5.3). Three categories are well known:
∙ Sub-gaussian random variables. Pr[|𝑍 − 𝜇| ≥ 𝑢] ≤ 2 exp(−𝑢2/(2𝜈)) for

some constant 𝜈 > 0 called the variance parameter (see section 2.3 of [159]).
The normal distribution 𝒩 (𝜇, 𝜎2) (i.e with mean 𝜇 and variance 𝜎2 > 0) is a
sub-gaussian random variable with variance parameter 𝜈 = 𝜎2. Sub-gaussian
random variables have one of the steepest decline in probability density with
increasing |𝑍 − 𝜇| – they are a family of distributions with light tails. In
practise, sub-gaussian random variables are often well-approximated by the
Normal distribution with a fitted mean 𝜇 and variance 𝜎2 = 𝜈.
∙ Sub-exponential random variables. Using Bernstein’s characterization (see

proposition 2.10 of [160]), sub-exponential random variables satisfy the tail
inequality Pr[|𝑍 − 𝜇| ≥ 𝑢] ≤ 2 exp

(︁
− 𝑢2/(2𝜈 + 2𝑏𝑢)

)︁
where variance parameter

𝜈 > 0 and scale parameter 𝑏 ≥ 0. The sub-exponential’s rate of decline in
density is slower than that of sub-gaussian random variables (with the same
𝜈) whenever 𝑏 > 0; when 𝑏 = 0 the sub-exponential random variable becomes
sub-gaussian. The Chi-squared distribution with 𝑑 degrees of freedom is a
prominent example of sub-exponential random variable and its concentration of
probability density is the central result used later in this chapter: from Lemma
5.2.1, 𝜒2

𝑑 is sub-exponential with parameters 𝜈 = 2
√

𝑑 and 𝑏 = 4.
∙ Sub-gamma random variables. Pr[|𝑍−𝜇| ≥ 𝑢] ≤ 2 exp

(︁
− (𝜈+𝑐𝑢)−

√
𝜈2+2𝜈𝑐𝑢

𝑐2

)︁
for variance parameter 𝜈 > 0 and scale parameter 𝑐 ≥ 0 (see Theorem 2.3 of [159]).
Clearly, the sub-gamma random variable has a rate of density decline slower than
sub-exponential and sub-gaussian random variables – they are a family of distri-
butions with heavy tails. The Gamma distribution is an example of sub-gamma
random variable. Finally, note that when 𝑐 = 0 sub-gamma random variables
become sub-gaussian with parameter 𝜈, since lim𝑐→0 2 exp

(︁√
𝜈2+2𝜈𝑐𝑢−(𝜈+𝑐𝑢)

𝑐2

)︁
=

lim𝑐→0 2 exp
(︁

𝜈
√

1+(2𝑐𝑢/𝜈)−(𝜈+𝑐𝑢)
𝑐2

)︁
= lim𝑐→0 2 exp

(︁
𝜈(1+(1/2)(2𝑐𝑢/𝜈)−(1/8)(2𝑐𝑢/𝜈)2)−(𝜈+𝑐𝑢)

𝑐2

)︁
=

2 exp(−𝑢2/(2𝜈)). Therefore, it may be possible to approximate a sub-gamma
random variable with a Normal random variable with a fitted mean 𝜇 and
variance 𝜎2 = 𝜈 if the scale parameter 𝑐 is very small compared to

√
𝜈.

In summary, the nature of the Cramér-Chernoff tail bound provides a complete
characterization of the elements’ probability density function which is necessary to
design transformations that exploit remark 5.2.1. Figure 5-5(b) illustrates this for the
Cauchy distribution (with extremely heavy tails – its mean, variance and higher-order
central moments do not exist) and a comparable Normal distribution: a heavier tail of
the density indicates a larger proportion of elements influencing the cosine similarity.

68

5.2.2 Chi-squared concentration

Following the discussion of tail bounds of probability density functions, the main
result of this chapter pertaining to the tail behavior of the Chi-squared random variable
and its relation to the Normal distribution 𝒩 (𝜇, 𝜎2) is stated.

Definition 5.2.1 (𝜒2
𝑑 random variable). Given independent 𝑥1, 𝑥2, . . . , 𝑥𝑑 ∼ 𝑁(0, 1),

the squared euclidean norm of the vector 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑑) given by ‖𝑋‖2 = ∑︀𝑑
𝑖=1 𝑥2

𝑖

obeys the Chi-squared distribution with 𝑑-degrees, denoted 𝜒2
𝑑. Conversely, if 𝑍 ∼ 𝜒2

𝑑

then 𝑍 can be written as ∑︀𝑑
𝑖=1 𝑥2

𝑖 where 𝑥1, 𝑥2, . . . 𝑥𝑑 are i.i.d. random variables obeying
𝒩 (0, 1). Its expected value is E[𝑍] = 𝑑.

The following lemma 5.2.1 is necessary to prove the concentration of density result
for 𝜒2

𝑑 in lemma 5.2.2. Short proofs adapted from example 2.8 of [160] are provided for
both these lemmas. Lemma 5.2.2 is weaker than well known results such as described
in (lemma 1 of [161]). However, it is sufficiently strong for our purpose.

Lemma 5.2.1. If 𝑍 ∼ 𝜒2
𝑑 then the central Moment Generating Function (MGF)

satisfies 𝑀𝑍−𝜇𝑍
(𝑢) = E[𝑒𝑢(𝑍−𝑑)] ≤ 𝑒2𝑑𝑢2 for |𝑢| < 1

4 .

Proof. Begin from 𝑍 = ∑︀
𝑖 𝑥2

𝑖 and simplify:

E[𝑒𝑢(𝑍−𝑑)] =
𝑑∏︁

𝑖=1
E[𝑒𝑢(𝑥2

𝑖 −1)] (𝑥𝑖 are independent)

= (2𝜋)− 𝑑
2

𝑑∏︁
𝑖=1

∫︁ +∞

−∞
𝑒𝑢(𝑥2

𝑖 −1)𝑒−𝑥2
𝑖 /2𝑑𝑥𝑖 = (2𝜋)− 𝑑

2 𝑒−𝑑𝑢
𝑑∏︁

𝑖=1

∫︁ +∞

−∞
𝑒−(1−2𝑢)𝑥2

𝑖 /2𝑑𝑥𝑖

= (2𝜋)− 𝑑
2 𝑒−𝑑𝑢

𝑑∏︁
𝑖=1

√︃
2𝜋

1− 2𝑢
(iff 𝑢 < 1/2) = 𝑒−𝑑𝑢(1− 2𝑢)− 𝑑

2 = (𝑒−𝑢(1− 2𝑢)−1/2)𝑑

The MGF exists iff 𝑢 < 1
2 . Use 𝑒−𝑢(1−2𝑢)−1/2 < 𝑒2𝑢2 for |𝑢| < 1

4 to get the result. �

Lemma 5.2.2 (𝜒2
𝑑 concentration). If 𝑍 ∼ 𝜒2

𝑑 then Pr[𝑍
𝑑
− 1 ≥ 𝑡] ≤ 𝑒−𝑑𝑡2/8 and

Pr[𝑍
𝑑
− 1 ≤ −𝑡] ≤ 𝑒−𝑑𝑡2/8 whenever 0 < 𝑡 < 1.

Proof. Recall Markov’s inequality: for non-negative random variable 𝑋 ≥ 0 and
all 𝑡 > 0, Pr[𝑋 ≥ 𝑡] ≤ E[𝑋]/𝑡. Now if 𝜆 ≥ 0, 𝑒𝜆𝑥 is non-decreasing function of 𝑥.
Thus, for all 𝑡, 𝜆 ≥ 0, Pr[𝑍 − 𝑑 ≥ 𝑑𝑡] ≤ Pr[𝑒𝜆(𝑍−𝑑) ≥ 𝑒𝜆𝑑𝑡] ≤ 𝑒−𝜆𝑑𝑡 E[𝑒𝜆(𝑍−𝑑)] using
Markov’s on 𝑒𝜆(𝑍−𝑑). Use Lemma 1 to get Pr[𝑍−𝑑 ≥ 𝑑𝑡] ≤ 𝑒−𝜆𝑑𝑡+2𝑑𝜆2 for 0 ≤ 𝜆 < 1/4.
The expression 𝑒−𝜆𝑑𝑡+2𝑑𝜆2 has as global minimum at 𝜆* = 𝑡/4 which falls in range
0 ≤ 𝜆* < 1/4 whenever 0 < 𝑡 < 1. Thus Pr[𝑍 − 𝑑 ≥ 𝑑𝑡] ≤ 𝑒−𝜆*𝑑𝑡+2𝑑(𝜆*)2 = 𝑒−𝑑𝑡2/8.

The argument for Pr[𝑍 − 𝑑 ≤ −𝑑𝑡] is analogous: if 𝜆 ≤ 0, 𝑒𝜆𝑥 is non-increasing
function of 𝑥. Thus, for all 𝑡, 𝜆 ≤ 0, Pr[𝑍 − 𝑑 ≤ −𝑑𝑡] ≤ Pr[𝑒𝜆(𝑍−𝑑) ≥ 𝑒−𝜆𝑑𝑡]. Using
Lemma 1 and Markov’s, Pr[𝑍 − 𝑑 ≤ −𝑑𝑡] ≤ 𝑒𝜆𝑑𝑡+2𝑑𝜆2 with global minimum at
𝜆* = −𝑡/4. Substitution gives the result. �

69

- 0 . 4 - 0 . 2 0 . 0 0 . 2 0 . 4
0

2

4

6

8

1 0

1 2

1 4
Pro

ba
bili

ty
De

ns
ity

V a l u e o f r a n d o m v a r i a b l e (χ2d / d - 1)

 d = 1 0 0
 d = 2 0 0
 d = 5 0 0
 d = 1 , 0 0 0
 d = 2 , 0 0 0

Figure 5-6: Concentration of probability density around 𝑑 for 𝜒2
𝑑.

Note that as HDC dimension 𝑑 increases, 𝜒2
𝑑/𝑑 is very likely to be close to 1.

Lemma 5.2.2 shows that the Chi-squared density falls as 𝑒−Θ(|𝜒2
𝑑−𝑑|2) . Given that

the distribution of hyper-vectors 𝑋 is spherically symmetric (as shown in figure 5-5(a)),
the essential identity of the learned vector is the distribution of its norm ‖𝑋‖. If the
hyper-vectors 𝑋 are normally distributed, lemma 5.2.2 determines that – because of
its high dimensional nature – the majority of the probability density for ‖𝑋‖2 lies
within a small interval around its expected value E[‖𝑋‖2]. This fact has been widely
employed for uniform sampling from high-dimensional spheres using standard normal
variables (for example, see items 26 and 27 by Eugene Salamin in HAKMEM [162]).

The next sub-section discusses the EUROPARL dataset and the normal distribution
as an approximation of its language hyper-vectors’ elements.

70

5.2.3 Normality assumption and the EUROPARL dataset
Informally, if it can be shown that transformations exist which can reduce the elements’
magnitude (therefore, bits/element 𝑀) of hyper-vectors without significantly altering
the vector’s radial distribution (i.e. of ‖𝑋‖ or ‖𝑋‖2), one can prove that the resulting
inaccuracy in cosine similarity will be negligible. Therefore, from section 5.2.2 if the
hyper-vector elements happen to be independently and Normally distributed, one
way to proceed is to show that the concentration of its radial 𝜒2

𝑑 distribution remains
unchanged by applying the proposed transformations. Note that the approach of using
the density concentration of the radial distribution as a consequence of an assumption
on each element’s distribution simplifies the problem greatly – for one now need only
consider element-wise transformations which are easily implementable in digital logic.

Hence, the Normality assumption on elements of hyper-vectors stored in the
Associative Memory is defined below. This assumption is necessary to produce concrete
mathematical arguments supporting the efficacy of the proposed transformations. The
results derived in this chapter can be easily extended to other distribution families
of Cramér-Chernoff tail behavior; chapters 2 of [159, 160] are recommended starting
points.
Definition 5.2.2 (Normality assumption). The elements of a hyper-vector stored in
the associative memory are independent and identically distributed and follow a (zero
mean) Normal distribution.

Shannon’s seminal work [163] argues that for classification, languages can be
adequately modeled as independent samples from its empirical 𝑛-gram distribution.
Independence is essential because when HDC is used for language recognition [65],
the language hyper-vector is formed by superposition of bipolar 4-gram vectors:

𝑋(language) = 𝐴(first 4gram) + 𝐵(second 4gram) + . . .

Since 𝐴(first 4gram), 𝐵(second 4gram), . . . are bipolar vectors which are independent as the 4-
gram samples are independent, using de Moivre’s theorem [164] the sum of independent
bipolar random variables may be approximated as a normally-distributed random
variable. And since the elements of bipolar vectors have a mean value of 0, the final
elements of the superimposed language hyper-vector can be accurately approximated
as a zero-mean normal distribution.

The EUROPARL dataset is a good dataset to verify proposed transformations as it
is a really large. Furthermore, when used for language recognition [65], the normality
assumption in definition 5.2.2 is valid for EUROPARL. The Dutch language hyper-
vector agrees the most with Normality assumption giving a coefficient of determination
𝑟 = 0.9996 (see figure 5-7(a) and (c)). The Estonian language hyper-vector is least
agreeable to the Normality assumption giving the smallest coefficient of determination
𝑟 = 0.9910 among all european languages in EUROPARL (see figure 5-7(b) and (d)).
Fig. 5-8 shows the quantile-quantile plot for the empirical distribution of elements
versus the fitted normal distribution.

Note that for at least 95% elements of all language hyper-vectors – i.e. 𝒩 (0, 1) is
within 2 standard deviations of mean 0 – a straight line is a great fit in the quantile-

71

- 1 5 0 k - 1 0 0 k - 5 0 k 0 5 0 k 1 0 0 k 1 5 0 k
0 . 0

2 . 0 × 1 0 - 6

4 . 0 × 1 0 - 6

6 . 0 × 1 0 - 6

8 . 0 × 1 0 - 6

1 . 0 × 1 0 - 5

Pro
ba

bili
ty

De
ns

ity

H y p e r - v e c t o r e l e m e n t v a l u e

 D u t c h
 N o r m a l A p p r o x .

µ = - 2 7 5 6 . 9 1 8
σ = 4 6 2 0 8 . 6 2 9

(a) Probability density of elements of the
Dutch hyper-vector

- 1 5 0 k - 1 0 0 k - 5 0 k 0 5 0 k 1 0 0 k 1 5 0 k
0 . 0

2 . 0 × 1 0 - 6

4 . 0 × 1 0 - 6

6 . 0 × 1 0 - 6

8 . 0 × 1 0 - 6

1 . 0 × 1 0 - 5

1 . 2 × 1 0 - 5

1 . 4 × 1 0 - 5

Pro
ba

bili
ty

De
ns

ity

H y p e r - v e c t o r e l e m e n t v a l u e

 E s t o n i a n
 N o r m a l A p p r o x .

µ = - 1 6 5 6 . 8 4 8
σ = 3 4 9 4 5 . 8 3 1

(b) Probability density of elements of the
Estonian hyper-vector

- 4 - 3 - 2 - 1 0 1 2 3 4
- 4 × 1 0 5

- 3 × 1 0 5

- 2 × 1 0 5

- 5 × 1 0 4

5 × 1 0 4

2 × 1 0 5

3 × 1 0 5

4 × 1 0 5

- 3 × 1 0 5

- 2 × 1 0 5

- 1 × 1 0 5

0
1 × 1 0 5

2 × 1 0 5

3 × 1 0 5

Qu
an

tile
s f

rom
 Du

tch
 hy

pe
r-v

ec
tor

 el
em

en
ts

Q u a n t i l e s f r o m t h e s t a n d a r d N o r m a l d i s t r i b u t i o n N (0 , 1)

r = 0 . 9 9 9 6

Y = - 2 7 5 6 . 9 1 8 + 4 6 2 0 8 . 6 2 9 X

(c) Quantile-quantile plot for elements
of Dutch hyper-vector and fitted normal
distribution.

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

Es
ton

ian

N (0 , 1)

µ = - 1 6 5 6 . 8 5
σ = 3 4 9 4 6
r = 0 . 9 9 1 0

(d) Quantile-quantile plot for
elements of Estonian hyper-
vector and fitted normal dis-
tribution.

Figure 5-7: Normality assumption for best fitting (Dutch) and least fitting (Estonian)
language hyper-vectors in the EUROPARL corpus.

quantile plot of figure 5-8. Since 𝜇/𝜎 < 0.06 for the fitted normal distribution of all
language hyper-vectors, the mean value is essentially zero. Therefore, there is little
evidence to reject the normality assumption in definition 5.2.2 for EUROPARL.

72

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

Bu
lga

ria
n

N (0 , 1)

µ = - 1 8 6 2 . 1 0
σ = 4 4 7 7 9
r = 0 . 9 9 4 4

(a) Bulgarian

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

Cz
ec

h

N (0 , 1)

µ = - 8 9 8 . 4
σ = 3 2 6 1 3
r = 0 . 9 9 4 5

(b) Czech

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

Da
nis

h

N (0 , 1)

µ = - 2 8 2 0 . 9
σ = 5 4 8 6 1
r = 0 . 9 9 8 0

(c) Danish

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

En
gli

sh

N (0 , 1)

µ = - 9 3 7
σ = 4 3 3 0 6
r = 0 . 9 9 8 1

(d) English

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

Es
ton

ian

N (0 , 1)

µ = - 1 6 5 6 . 8 5
σ = 3 4 9 4 6
r = 0 . 9 9 1 0

(e) Estonian

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

Fin
nis

h

N (0 , 1)

µ = - 1 7 3 3 . 9 7
σ = 4 4 6 2 1
r = 0 . 9 9 4 6

(f) Finnish

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

Fre
nc

h

N (0 , 1)

µ = - 8 5 3 . 0 5
σ = 5 7 5 5 1
r = 0 . 9 9 7 5

(g) French

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

Ge
rm

an

N (0 , 1)

µ = - 2 0 1 1 . 6 4
σ = 5 2 4 1 1
r = 0 . 9 9 8 2

(h) German

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

Gr
ee

k

N (0 , 1)

µ = - 1 7 5 3 . 6 1
σ = 6 1 2 4 6
r = 0 . 9 9 4 9

(i) Greek

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

Hu
ng

ari
an

N (0 , 1)

µ = - 5 7 0 . 9 6
σ = 4 1 5 7 7
r = 0 . 9 9 2 7

(j) Hungarian

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k
Ita

lia
n

N (0 , 1)

µ = - 4 5 1 . 0 5
σ = 5 2 6 4 5
r = 0 . 9 9 3 8

(k) Italian

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

La
tvi

an

N (0 , 1)

µ = - 1 8 8 7 . 1 7
σ = 4 1 6 1 9
r = 0 . 9 9 3 8

(l) Latvian

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

Lit
hu

an
ian

N (0 , 1)

µ = - 9 8 8 . 2 2
σ = 3 7 5 4 4
r = 0 . 9 9 3 5

(m) Lithuanian

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

Po
lish

N (0 , 1)

µ = - 1 1 3 9 . 8 8
σ = 3 6 5 8 4
r = 0 . 9 9 5 4

(n) Polish

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

Po
rtu

gu
es

e

N (0 , 1)

µ = - 1 4 5 5 . 8
σ = 5 7 8 3 4
r = 0 . 9 9 3 5

(o) Portuguese

- 2 0 2

2 5 k

- 3 0 0 k

3 5 0 k
Ro

ma
nia

n

N (0 , 1)

µ = - 2 2 9 . 9 7
σ = 5 2 2 5 5
r = 0 . 9 9 4 1

(p) Romanian

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

Slo
va

k

N (0 , 1)

µ = - 8 0 2 . 5 4
σ = 3 4 6 6 9
r = 0 . 9 9 3 0

(q) Slovak

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

Slo
ve

ne

N (0 , 1)

µ = - 1 6 4 6 . 3 8
σ = 4 1 8 4 5
r = 0 . 9 9 5 3

(r) Slovene

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

Sp
an

ish

N (0 , 1)

µ = - 9 4 9 . 7 3
σ = 6 6 2 5 5
r = 0 . 9 9 6 6

(s) Spanish

- 2 0 2

2 5 . 0 k

- 3 0 0 . 0 k

3 5 0 . 0 k

Sw
ed

ish

N (0 , 1)

µ = - 8 0 6 . 9 2
σ = 3 9 9 7 9
r = 0 . 9 9 7 1

(t) Swedish

Figure 5-8: Normality assumption for all except Dutch in the EUROPARL corpus.
Quantile-quantile plots for the empirical distribution of language hyper-vectors’

elements (𝑑 = 2048) and the best-fitting normal distribution are shown. Elements’
distribution are modeled as 𝑌 = 𝜇 + 𝜎𝑋 where 𝑋 ∼ 𝒩 (0, 1). Coefficients of
determination 0 ≤ 𝑟 ≤ 1 are also specified; 𝑟 = 1 indicates perfect modeling.

73

5.3 Transformations for precision reduction
Before applying numerical transformations, encoded hyper-vectors must be held in
ACCUMULATOR (fig. 5-3). To allow training large datasets, ACCUMULATOR must have
large enough bits/element (eg. 32 bits/element as shown in figure 5-3) for both binary
and multi-bit HDC data paths. In other words, the HDC processor must hold the
encoded hyper-vector once in the ACCUMULATOR with its full precision before it can be
transformed, thereby reducing the bits/element 𝑀 for cosine distance calculation and
Associative Memory vector storage as illustrated in figure 5-4 (b).

Figure 5-9: The proposed transformations require elements’ standard deviation 𝜎.
After encoded hyper-vectors are available in the ACCUMULATOR, the standard deviation

of vector elements 𝜎 is calculated prior to applying the transformations.

The proposed transformations require prior calculation of the standard deviation
across elements of the encoded hyper-vector (see figure 5-9). Additional logic is
required to calculate the standard deviation across elements, which is very close to
that of the fitted normal distribution from figure 5-8. However, this calculation is
done only once: after encoding and before the numerical transformations. Hence,
these transformations may be considered as effectively normalization of the encoded
hyper-vectors.

It is assumed that 𝑑 = 2048 since this is sufficient for most applications [32].

74

5.3.1 Saturation
The first objective is to limit the maximum magnitude of the encoded hyper-vector
elements. The idea is to use 𝜒2

𝑑 concentration to show that it is very unlikely for any
element of the encoded hyper-vector to have a magnitude higher than a large multiple
of standard deviation 𝜎.

The saturation of hyper-vector elements 𝑥𝑖 by a scalar 𝑆 > 0 is defined as:

Saturate(𝑥𝑖; 𝑆 > 0) ,

⎧⎪⎪⎨⎪⎪⎩
+𝑆, if 𝑥𝑖 ≥ 𝑆

𝑥𝑖, if − 𝑆 ≤ 𝑥𝑖 ≤ 𝑆

−𝑆, if 𝑥𝑖 ≤ −𝑆

The element-wise saturation can be readily implemented using digital comparators.
One can now use the normality assumption of encoded hyper-vector elements and

𝜒2
𝑑 concentration to derive the expression for 𝑆 in terms of the probability that no

hyper-vector element is larger than 𝑆.
Corollary 5.3.0.1. Let 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑑) where 𝑥𝑖 ∼ 𝒩 (0, 𝜎2) are independent.
Given 𝑆 > 0, define 𝑌 , Saturate(𝑋; 𝑆) to be the hyper-vector obtained from element-
wise saturation of 𝑋 by 𝑆. If 𝑒−𝑑/8 < 𝛿 < 1 then 𝑆 ≥ 𝜎

√︂
𝑑 +

√︁
8𝑑 log 1/𝛿 implies

Pr[𝑌 = 𝑋] ≥ 1− 𝛿. (Note that the condition 𝑒−𝑑/8 < 𝛿 < 1 is not really constraining
𝛿: 𝑑 ≥ 500 =⇒ 𝑒−𝑑/8 < 7.2× 10−28.)
Proof. See that max1≤𝑖≤𝑑 |𝑥𝑖| ≤ ‖𝑋‖. Thus, Pr[𝑌 = 𝑋] = Pr[max𝑖 |𝑥𝑖| ≤ 𝐶] ≥
Pr[‖𝑋‖ ≤ 𝐶]. Since 𝑥𝑖 ∼ 𝒩 (0, 𝜎2), we have ‖𝑋‖2/𝜎2 ∼ 𝜒2

𝑑. From Lemma 5.2.2,
Pr[‖𝑋‖2/𝜎2 ≥ 𝑑(1 + 𝑡)] ≤ 𝑒−𝑑𝑡2/8 whenever 0 < 𝑡 < 1. Substituting 𝑡 from 𝑒−𝑑𝑡2/8 ≤ 𝛿

gives 𝑑(1 + 𝑡) ≥ 𝑑 +
√︁

8𝑑 log 1/𝛿 which is valid provided 𝛿 > 𝑒−𝑑/8. Hence we

have Pr
[︂
‖𝑋‖ ≤ 𝜎

√︂
𝑑 +

√︁
8𝑑 log 1/𝛿

]︂
≥ 1 − 𝛿. Putting it all together, if 𝑆 ≥

𝜎

√︂
𝑑 +

√︁
8𝑑 log 1/𝛿 then Pr[𝑌 = 𝑋] = Pr[max𝑖 |𝑥𝑖| ≤ 𝑆] ≥ Pr

[︂
‖𝑋‖ ≤ 𝑆

]︂
≥ 1− 𝛿 �

Saturation has been studied in [150] – defined there as clipping – in the context of
memory capacity of neural networks. It has also been noted in [165] for its empirical
effectiveness in dimensionality reduction of hyper-vectors.

From the corollary above, there is at least 99% chance of no change when saturating
at 𝑆 ≥ 1.05 × 𝜎

√
2048 ≈ 48𝜎 when HDC dimension is 𝑑 = 2048. An advantage of

using 𝜒2
𝑑 concentration rather than error function erf(·) for deriving bounds for 𝑆 is

that while the former readily produces precise bounds for the entire hyper-vector, the
latter’s expression (erf(24

√
2))2048 is harder to calculate as erf(24

√
2) is vanishingly

small.
As demonstrated in figure 5-10, for 𝑆 = 48𝜎 and HDC dimension 𝑑 = 2048 all

EUROPARL language hyper-vectors remain unchanged. Furthermore, as 𝑆 decreases
to 0 the testing accuracy decreases as more hyper-vector elements get saturated.

While saturation limits the magnitude of hyper-vector elements to a large multiple

of 𝜎, it is still dependent on the standard deviation given by 𝜎 =
√︂∑︀𝑑

𝑖=1(𝑥𝑖−𝜇)2

𝑑−1 ≈

75

1 E - 4 0 . 0 0 1 0 . 0 1 0 . 1 1
9 4 . 0

9 4 . 5

9 5 . 0

9 5 . 5

9 6 . 0

9 6 . 5

9 7 . 0

Ac
cu

rac
y [

%]

C o e f f i c i e n t f o r S a t u r a t i o n C ; s a t u r a t i o n v a l u e = C σ 2 0 4 8 1 / 2

B i n a r y A c c u r a c y : 9 4 . 6 %

C o s i n e A c c u r a c y : 9 7 %

C o s i n e : 9 7 %

B i n a r y : 9 4 . 6 %
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Fra
ctio

n o
f v

ec
tor

 ele
me

nts
 sa

tur
ate

d

Figure 5-10: Accuracy of saturated language hyper-vectors for EUROPARL.
The right vertical axis used by the dashed plot shows the fraction of hyper-vector

elements saturated when 𝑆 = 𝐶𝜎
√

𝑑.

√︂∑︀𝑑

𝑖=1 𝑥2
𝑖

𝑑−1 ∝ ‖𝑋‖ since the mean of hyper-vector elements 𝜇 = ∑︀𝑑
𝑖=1 𝑥𝑖 ≈ 0. The next

transformation removes this dependence on ‖𝑋‖.

5.3.2 Thresholding

The thresholding of hyper-vector elements 𝑥𝑖 by a scalar 𝑇 > 0 is defined as:

Threshold(𝑥𝑖; 𝑇 > 0) ,

⎧⎨⎩0 if− 𝑇 ≤ 𝑥𝑖 ≤ 𝑇

𝑥𝑖 if otherwise

The idea behind thresholding is that when hyper-vector elements of small magnitude
are zeroed out, the error caused in the cosine distance dcos with any other vector
can be upper bounded by a small number. Thresholding has been proposed [117] for
increased sparsity of hyper-vectors in supervised classification tasks. A similar idea of
dropping vector dimensions with high inter-vector variance in the associative memory
has also been proposed in [166]. It can be implemented by a digital comparator for
each element of the hyper-vector.

Theorem 5.3.1 (Thresholding). Let 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑑) where 𝑥𝑖 ∼ 𝒩 (0, 𝜎2) are
independent. Given 𝐶 > 0, let 𝜏𝐶(𝑋) = Threshold(𝑋; 𝐶 > 0) be the hyper-vector
obtained by applying thresholding function element-wise on 𝑋. Then for any vector
𝑢 ∈ R𝑑, error 0 < 𝜖 ≤ 1 and 𝑒−𝑑/8 < 𝛿 < 1, we have Pr[|𝑑cos(𝑢, 𝑋)− 𝑑cos(𝑢, 𝜏𝐶(𝑋))| ≤
𝜖] ≥ 1− 𝛿 whenever 𝐶 ≤ 𝜎

2 𝜖2
√︂

1−
√︁

8
𝑑

log 1/𝛿

Proof. From lemma 5.2.2, Pr
[︂
‖𝑋‖ ≥ 𝜎

√︂
𝑑−

√︁
8𝑑 log 1/𝛿

]︂
≥ 1− 𝛿 whenever 𝑒−𝑑/8 <

76

𝛿 < 1. Then the error in cosine similarity due to saturation can be simplified as:

| dcos(𝑢, 𝑋)− dcos(𝑢, 𝜏𝐶(𝑋))| =
⃒⃒⃒⃒

𝑢

‖𝑢‖
· 𝑋

‖𝑋‖
− 𝑢

‖𝑢‖
· 𝜏𝐶(𝑋)
‖𝜏𝐶(𝑋)‖

⃒⃒⃒⃒

=
⃒⃒⃒⃒

𝑢

‖𝑢‖
·

(︂
𝑋

‖𝑋‖
− 𝜏𝐶(𝑋)
‖𝜏𝐶(𝑋)‖

)︂⃒⃒⃒⃒
≤

⃦⃦⃦⃦
𝑋

‖𝑋‖
− 𝜏𝐶(𝑋)
‖𝜏𝐶(𝑋)‖

⃦⃦⃦⃦
(Cauchy-Schwarz inequality)

=

⎯⎸⎸⎷2
(︂

1− 𝑋 · 𝜏𝐶(𝑋)
‖𝑋‖‖𝜏𝐶(𝑋)‖

)︂
=

⎯⎸⎸⎷2
(︂

1−
∑︀𝑑

𝑖=1 𝑥2
𝑖 1|𝑥𝑖|≥𝐶

‖𝑋‖‖𝜏𝐶(𝑋)‖

)︂
(definition of 𝜏𝐶(·))

=

⎯⎸⎸⎷2
(︂

1− ‖𝜏𝐶(𝑋)‖2

‖𝑋‖‖𝜏𝐶(𝑋)‖

)︂
(expression for ‖𝜏𝐶(𝑋)‖2)

=

⎯⎸⎸⎷2‖𝑋‖ − ‖𝜏𝐶(𝑋)‖
‖𝑋‖

≤

⎯⎸⎸⎷2‖𝑋 − 𝜏𝐶(𝑋)‖
‖𝑋‖

(△ inequality)

=

⎯⎸⎸⎸⎷2

√︁∑︀𝑑
𝑖=1 𝑥2

𝑖 1|𝑥𝑖|<𝐶

‖𝑋‖
<

⎯⎸⎸⎸⎷2

√︁∑︀𝑑
𝑖=1 𝐶2

‖𝑋‖
<

⎯⎸⎸⎷2𝐶

√
𝑑

‖𝑋‖

≤
⎯⎸⎸⎸⎷ 2𝐶

𝜎

√︂
1−

√︁
(8/𝑑) log 1/𝛿

with probability ≥ 1− 𝛿

Using the condition 𝐶 ≤ 𝜎
2 𝜖2

√︂
1−

√︁
(8/𝑑) log 1/𝛿 gives the result. �

The key observation from Theorem 5.3.1 is that the magnitude of threshold 𝐶 is also
proportional to the standard deviation 𝜎 of hyper-vector elements. Thus, following the
results of corollary 5.3.0.1 for saturation, one may threshold the saturated hyper-vector
with 𝑇 from Theorem 5.3.1.

The thresholded hyper-vector may be divided by the threshold 𝑇 element-wise
without affecting the cosine similarity as it is norm invariant. Given that both 𝑆
and 𝑇 are proportional to 𝜎, the largest magnitude of the saturated and thresholded
hyper-vector divided element-wise by 𝑇 is 𝑆/𝑇 , which is independent of 𝜎. This is
shown in the following corollary.
Corollary 5.3.1.1 (Saturation, Thresholding and integer divison by threshold). Let
𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑑) where 𝑥𝑖 ∼ 𝒩 (0, 𝜎2) are independent. Given 𝐶 > 0, let 𝜏𝐶(𝑋) =
Threshold(𝑋; 𝐶 > 0) be the hyper-vector obtained by applying thresholding function
element-wise on 𝑋. Given 0 < 𝜖 ≤ 1 and 2𝑒−𝑑/8 < 𝛿 < 1 and any vector 𝑢 ∈ R𝑑,
let 𝑎 = 𝜎

√︂
𝑑 +

√︁
8𝑑 log(2/𝛿) and 𝑏 = 𝜎

2 𝜖2
√︂

1−
√︁

(8/𝑑) log(2/𝛿). Then the elements
𝑦𝑖 of hyper-vector 𝑌 = 𝜏𝑏(𝑍)/𝑏, where 𝑍 = Saturate(𝑋; 𝑎), satisfies max1≤𝑖≤𝑑 |𝑦𝑖| ≤

2
√

𝑑
𝜖2

√︃
1+
√

(8/𝑑) log(2/𝛿)
1−
√

(8/𝑑) log(2/𝛿)
and for all 𝑢 ∈ R𝑑, Pr[| dcos(𝑢, 𝑋)− dcos(𝑢, 𝑌)| ≤ 𝜖] > 1− 𝛿

Proof. For the first part, note that the maximum absolute value of elements of
𝑍 = Saturate(𝑋; 𝑎) is 𝑎, which remains unchanged by the subsequent thresholding
𝜏𝑏(·). Thus, the maximum absolute value of 𝑌 = 𝜏𝑏(𝑍)/𝑏 is 𝑎/𝑏.

77

For the second part, begin from dcos(𝑢, 𝑌) = dcos(𝑢, 𝑏𝑌) and simplify:

Pr[| dcos(𝑢, 𝑋)− dcos(𝑢, 𝑌)| ≤ 𝜖]
= Pr[| dcos(𝑢, 𝑋)− dcos(𝑢, 𝜏𝑏(𝑍))| ≤ 𝜖]
= Pr[| dcos(𝑢, 𝑋)− dcos(𝑢, 𝜏𝑏(𝑍))| ≤ 𝜖|𝑍 = 𝑋] Pr[𝑍 = 𝑋]
+ Pr[| dcos(𝑢, 𝑋)− dcos(𝑢, 𝜏𝑏(𝑍))| ≤ 𝜖|𝑍 ̸= 𝑋] Pr[𝑍 ̸= 𝑋]
≥ Pr[| dcos(𝑢, 𝑋)− dcos(𝑢, 𝜏𝑏(𝑍))| ≤ 𝜖|𝑍 = 𝑋] Pr[𝑍 = 𝑋]
≥ Pr[| dcos(𝑢, 𝑋)− dcos(𝑢, 𝜏𝑏(𝑋))| ≤ 𝜖](1− 𝛿/2) (from Corollary 5.3.0.1)
≥ (1− 𝛿/2)2 (from Theorem 5.3.1)
> 1− 𝛿

�

The corollary above provides an expression for the saturation and threshold
constants 𝑆, 𝑇 which guarantee that the error in dcos is at most a chosen 𝜖 with
probability 1 − 𝛿 = 0.99. The question therefore arises: how does one choose an 𝜖
which is not specific to the application at hand?

For a generally useful bound, a reasonable choice would be 𝜖 ≤
√︁

2/𝜋 , the cosine
similarity between a normal vector and its bipolarized version in high dimensions
[167]. This is because after normalization, one should (at least) be able distinguish the
language hyper-vector from its bipolarized version used in the binary model. Using
𝜖 ≤

√︁
2/𝜋, lack of confidence 𝛿 = 0.01 and HDC dimension 𝑑 = 2048 in Theorem 5.3.1

gives 𝑇 ≤ 𝜎
2 𝜖2

√︂
1−

√︁
8
𝑑

log 1/𝛿 < 0.3𝜎.
Figure 5-11(b) shows the error in cosine similarity due to thresholding at 𝑇 =

0.3𝜎 so that the error is guaranteed to be at most
√︁

2/𝜋 with probability at least
99%. The Dutch language exhibits the largest absolute error in cosine similarity by
thresholding among all languages in the EUROPARL corpus but is consistently < 0.18𝜖.
Normalization with 𝑇 = 0.3𝜎 gives 20360 correct of 21000 tests (96.95% accuracy)
compared to 20370 correct of 21000 tests for untransformed language hyper-vectors
(i.e. 97.00% accuracy).

Putting it all together, saturation and thresholding followed by element-wise integer

division by threshold (corollary 5.3.1.1) fixes 𝑀 to be log2

⎡⎢⎢⎢𝜋
√

𝑑

√︃
1+
√

(8/𝑑) log(2/𝛿)
1−
√

(8/𝑑) log(2/𝛿)

⎤⎥⎥⎥ + 1

bits (extra bit is the sign bit in 2’s complement representation) and guarantee at most
𝜖 =

√︁
2/𝜋 error in cosine similarity with 1− 𝛿 = 0.99 probability. For 𝑑 = 2048, this

leads to 𝑀 = ⌈7.361⌉+ 1 = 9 bits/element. This results in dramatic improvement in
bits/element for EUROPARL, from 𝑀 = 20 to 𝑀 = 9 bits and a resultant accuracy
drop of at most 0.05%.

Finally, figure 5-12 illustrates that division of inner product by the vector’s norm
‖𝑋‖ is redundant after these transformations: as discussed in section 5.3.1 the
threshold 𝑇 ∝ 𝜎 ∝ ‖𝑋‖. Therefore, the integer division of elements by 𝑇 ∝ ‖𝑋‖
already achieves this.

78

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0
5 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0
1 0 5

Ac
cu

rac
y

C o e f f i c i e n t C o f t h r e s h o l d i n g ; t h r e s h o l d = C σ

B i n a r y : 9 4 . 6 %
C o s i n e : 9 7 %

(a) Accuracy of EUROPARL with thresholded language hyper-vectors.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 2 . 8 3 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 0

Ma
x.

ab
s.

err
or

in
tes

t v
ec

tor
 co

sin
e d

ista
nc

e

C o e f f i c i e n t C o f t h r e s h o l d i n g ; t h r e s h o l d = C σ

 R o m a n i a n
 S w e d i s h
 I t a l i a n
 S l o v e n e
 D u t c h
 P o r t u g u e s e
 L i t h u a n i a n
 H u n g a r i a n
 S l o v a k
 D a n i s h
 F i n n i s h
 P o l i s h
 E s t o n i a n
 C z e c h
 G e r m a n
 G r e e k
 L a t v i a n
 S p a n i s h
 B u l g a r i a n
 E n g l i s h
 F r e n c h
 (T h e o r e t i c a l

 U p p e r B o u n d)

(b) Error in cosine similarity due to thresholding of elements of EUROPARL
language hyper-vectors with threshold 𝑇 = 𝐶𝜎 is shown. Theoretical upper
bound (dotted black line) is derived from corollary 5.3.1.1.

Figure 5-11: Thresholding leads to conservative upper bounds of error introduced in
cosine similarity.
(a) As threshold 𝐶𝜎 increases, EUROPARL language recognition accuracy declines as

more elements are zeroed out in the language hyper-vector for EUROPARL.
(b) The maximum error in cosine similarity between all test vectors and each

thresholded language hyper-vector for various thresholds 𝑇 is shown for EUROPARL.

79

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0
5 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0

Ac
cu

rac
y

C o e f f i c i e n t C o f t h r e s h o l d i n g ; t h r e s h o l d = C σ

 T h r e s h o l d e d , N o r m a l i z e d T h r e s h o l d e d , n o t N o r m a l i z e d

C o s i n e : 9 7 %
B i n a r y : 9 4 . 6 %

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Fra
ctio

n o
f v

ec
tor

 ch
an

ge
d t

o z
ero

(a) Accuracy of EUROPARL language recognition after thresholding and thresh-
old 𝑇 = 𝐶𝜎 with and without normalization by class norms.

(b) Data-path for integer HDC model without division by language vector’s norm.

Figure 5-12: Thresholding allows inner product instead of cosine similarity to be
compared for associative search.
(a) Using inner product of thresholded language hyper-vectors and test hyper-vector,
without division by language vector norm, leads to negligible change in application
accuracy. As threshold 𝐶𝜎 increases, more elements are zeroed out (blue dotted plot
line for the right vertical axis) in the language hyper-vector. (b) Unlike the integer
HDC data-path without transformations (see figure 5-4(b)), an associative memory
supporting saturation, thresholding and element-wise integer division by threshold

can directly compare inner product for associative search.

80

5.3.3 Putting it all together: Modified Thresholding

Figure 5-11(a) shows that if threshold 𝑇 = 𝐶𝜎 is too large, the application accuracy
using thresholded hyper-vectors collapses. This is because most elements of the hyper-
vector become zero. There could be multiple reasons for a large threshold, such as
a large and erroneous estimate for standard deviation 𝜎 or a small value of 𝜖 if the
application is considered difficult.

A more desirable behaviour for thresholding with large threshold 𝑇 is that the
application accuracy approaches that of the binary HDC model (i.e. using bipolar/bi-
nary vectors) instead of dramatically reducing to zero. Like the bipolarization of
integer hyper-vectors [87], a really large threshold should effectively bipolarize the
integer model. Since it cannot be known a priori that the threshold is large, the same
thresholding transformation must also guarantee a small loss in cosine similarity as in
Theorem 5.3.1. The proposed transformation is called modified thresholding.

The key idea behind modified thresholding is to distinguish between positive and
negative elements for large thresholds 𝑇 : small negative elements must become −1 but
small positive elements must become 0. Thresholding and distinguishing between small
positive and negative elements can be simultaneously accomplished by element-wise
integer division of the hyper-vector with threshold 𝑇 such that the results are rounded
towards −∞ (i.e. −1/5 = −1). While the convention of “rounding towards negative
infinity” for integer division [168] is adopted by well-known programming languages
such as Ruby and Python, rounding towards zero (i.e. −1/5 = 0) is more common.
However, the rounding towards zero convention does not distinguish between positive
and negative numbers of magnitude < 𝑇 . For such dividers, pre-multiplying elements
with a large number (such as a power of 2 implementable by left shift), performing the
integer division, and arithmetically right shifting (i.e. preserving the sign bit) to get
the final bits/element 𝑀 = ⌈log2(𝑆/𝑇)⌉+ 1 produces the effect of rounding towards
−∞. The steps of modifed thresholding and its element-wise transfer function are
shown in figure 5-13.

To see that modified thresholding prevents a collapse in application accuracy for a
large threshold 𝑇 , denote the untransformed 𝑖th language and test hyper-vector as C(𝑖)

and T, and their bipolarized versions C(𝑖)
±1 and T±1 respectively. Denote dH(𝑎, 𝑏) as the

hamming distance between bipolar vectors 𝑎, 𝑏 used in the binary model. As 𝑇 ↑ +∞,
the language hyper-vector C(𝑖) changes to (C(𝑖)

±1 − 1)/2 due to modified thresholding
by 𝑇 . Since bipolarization approximately preserves direction of a normal vector in
high dimensions [167], we have dcos(T, (C(𝑖)

±1 − 1)/2) ≈ dcos(T±1, (C(𝑖)
±1 − 1)/2). Next,

note that number of 0 and −1 elements are approximately equal as the vector element
distribution is approximately centered at 0: the norm ‖(C(𝑖)

±1 − 1)/2‖ ≈
√︁

𝑑/2 for all
classes C(𝑖). Hence, dcos with modified thresholding using threshold 𝑇 ↑ ∞ is identical

81

(a) Data path for modified threhsolding in integer HDC Associative Memory. As in figure 5-3, the
encoded hyper-vector is available in ACCUMULATOR before applying transformations. ACCUMULATOR
is also assumed to have plenty bits/element 𝐾 to store the encoded hyper-vectors without any
transformations (i.e. 𝐾 >> 𝑆 is assumed). Note that the intermediate hyper-vectors after each step
of the modified threshlding is stored in the ACCUMULATOR. Therefore, the comparators, barrel-shifters
and adders for each element is a part of the ACCUMULATOR’s logic. The ACCUMULATOR also contains
logic to calculate elements’ standard deviation 𝜎 as shown in figure 5-12(b), which is used to set
parameters 𝑆, 𝑇 and 𝑅. However, since 𝜎 is not a path of the ACCUMULATOR’s data path, it is not
illustrated here. For HDC dimension 𝑑 = 2048, lack of confidence 𝛿 = 0.01, error bound for cosine
similarity 𝜖 =

√︀
2/𝜋 and assuming 𝐾 = 32 bits, we have 𝑆 = 48𝜎, 𝑇 = 0.3𝜎, 𝑅 = 31− ⌈log2(𝑆)⌉ and

final bits/element 𝑀 = ⌈log2(𝑆/𝑇)⌉+ 1.

(b) Transfer function for element-wise modified thresholding. This plot is suggestive – the small steps
caused by the discreteness of integers are smoothened for simplicity of depiction.

Figure 5-13: Modified thresholding for the integer HDC Associative Memory.

to the hamming distance based associative search in the binary HDC model:

arg max
𝑖

dcos(T±1, (C(𝑖)
±1 − 1)/2) ≈ arg max

𝑖
T±1 · (C(𝑖)

±1 − 1)/2 = arg max
𝑖

T±1 · C(𝑖)
±1

= arg max
𝑖

(𝑑− 2 dH(T±1,C(𝑖)
±1)) = arg min

𝑖
dH(T±1,C(𝑖)

±1)

To summarize, if there aren’t enough bits/element when threshold 𝑇 is too large,
the accuracy produced by modified thresholding should approach binary accuracy.

82

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0
5 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0

Ac
cu

rac
y

C o e f f i c i e n t C o f t h r e s h o l d i n g ; t h r e s h o l d = C σ

 T h r e s h o l d i n g , N o r m a l i z e d T h r e s h o l d i n g , n o t N o r m a l i z e d M o d i f i e d T h r e s h o l d i n g , n o t N o r m a l i z e d

C o s i n e : 9 7 %
B i n a r y : 9 4 . 6 %

Figure 5-14: Accuracy of EUROPARL language recognition using modified threshold-
ing with increasing threshold 𝑇 = 𝐶𝜎.

Figure 5-14(b) shows the ‘Modified Thresholding, not Normalized” accuracy plot
(symbol: N) degrades as threshold 𝑇 increases, approaching the binary accuracy for
language recognition using EUROPARL. However, the degradation is graceful and
remains better than the binary accuracy.

For modified thresholding, the error bounds of corollary 5.3.1.1 remains valid. The
final bits/element 𝑀 satisfies 2𝑀−1 ≈ 𝜋

√
𝑑 for conservatively limiting the error in

cosine similarity to a reasonable upper bound of 𝜖 =
√︁

2/𝜋. This allows reducing
𝑀 = 20 (97.00% accuracy) to 𝑀 = 9 (96.96% accuracy). The next section examines
some estimates for the reduction in hardware complexity of the integer associative
memory as a result of the reduced bits/element 𝑀 .

83

5.4 Preliminary estimates for hardware savings due
to Modified Thresholding

This section estimates the anticipated benefits of using modified thresholding from
section 5.3.3 in the integer Associative Memory.

In this preliminary comparison of hardware costs, only the resources required for
the data path of the integer Associative Memory during associative search operation is
considered: the flip-flops containing class vectors and class norms (for the untrans-
formed integer HDC model) in the Associative Memory and the query vector in the
ACCUMULATOR; and logic gates for multipliers, adders and dividers (for the untrans-
formed integer HDC model). A direct comparison of energy cost for associative search
is more useful than that for HDC training and applying proposed transformations,
as energy per inference is the primary metric of competitiveness for HDC and other
learning algorithms [80]. Note that the data path for associative search does not
include the transformation operations SATURATE, THRESHOLD and INTEGER DIVIDE,
and the logic for computing and storing element-wise standard deviation 𝜎 as shown
(in blue) in figure 5-12(b). The compared data-path components are summarized in
figure 5-4: for the untransformed Integer Associative Memory (in fig. 5-4 (a)) with
𝑀 = 20 bits/elements for EUROPARL and that after the proposed transformations
(in fig. 5-4(b)) with 𝑀 = 9 bits/elements for EUROPARL.

In this study, as shown in figure 5-15 the accounted logic resources are categorized
into the number of Flip-Flops (FFs) in bits for sequential logic; number of Half Adders
(HAs), number of Full Adders (FAs) and number of Carry Lookahead Blocks (CLBs)
for combinational logic. For simplicity, elementary gates of lower complexity such as
inverters and AND gates are ignored in this estimate. The total number of transistors
in the digital CMOS implementations of the combinational logic gates (HAs, FAs and
CLBs) will be the final estimate for overall logic complexity. This simple estimate is
likely to correlate well with the actual energy cost of any digital implementation of
the data path during associative search. Unless mentioned otherwise, HDC dimension
𝑑 = 2048 is assumed as it is sufficient for most HDC applications [32].

A future study for a detailed accounting of hardware savings could look at the
comparison of logic and energy costs of a synthesized or physically-implemented design
of the complete HDC processor (both control and data path) for the untransformed
Integer HDC model 5-3(b) and that with proposed transformations 5-12(b).

84

Figure 5-15: Logic components of integer Associative Memory considered for a prelim-
inary estimate of hardware cost.
Only the data path during the associative search operation of the integer Associative
Memory is considered. The sequential logic is captured as multi-bit Flip-Flops (FFs).
The combinational logic is captured as Half-Adders (HAs), Full-Adders (FAs) and
Carry Lookahead Blocks (CLBs). The divider logic needed for the untransformed
Integer Associative Memory requires FFs for storing the dividend (i.e. the inner

product of query vector 𝑇 and stored class vector 𝑋), the divisor (i.e. the norm of the
class vectors) and the quotient (i.e. the scaled cosine similarity dcos(𝑋, 𝑇) defined in
section 5.2). The total number of transistors in digital CMOS implementation of the
combinational gates HAs, FAs and CLBs give the final estimate of logic complexity.

85

5.4.1 Estimating number of sequential gates
It is prudent to account for the number of bits of register storage required in the data
path of the integer Associative Memory (in figure 5-15). This sequential storage cost
does not change markedly for associative search and transformation operations. The
following arithmetic budgets the total number of bits of Flip-Flops (FFs):

1. ACCUMULATOR. The ACCUMULATOR needs to store the complete, untrans-
formed vector before committing to the Associative Memory. As mentioned
in section 5.3, using 32 bits per hyper-vector element for the ACCUMULATOR is
sufficient for most classification tasks [32], including language recognition on the
EUROPARL corpus Therefore, FFs contributed by the ACCUMULATOR with and
without transformations is 32× 𝑑 = 32× 2048 = 65536 bits.

2. Associative Memory vectors. The vectors stored in the Associative Memory
consume the majority of storage logic. The EUROPARL language recognition
has 21 class hyper-vectors.
The untransformed integer HDC model requires 𝑀 = 20 bits/element, thus the
total number of FF bits are 21×𝑀 × 𝑑 = 21× 20× 2048 = 860160 bits.
After Modified Thresholding in section 5.3.3, 𝑀 = 9 bits/element is sufficient
for the transformed language hyper-vectors. Thus, the total number of FF bits
are 21× 9× 𝑑 = 21× 9× 2048 = 387072 bits.

3. Hyper-vector norms. The untransformed Associative Memory requires nor-
malization by the norm of the class hyper-vector of the inner product of the
query vector and the class hyper-vector (as shown in fig. 5-3(b)). To prevent
excessive expenditure of energy during associative search, the class vectors’
norms are calculated and stored in registers before the associative search begins.
If 𝑀 bits/element are used for the class hyper-vectors stored in the Associative
Memory, ⌈𝑀 + (log2 𝑑)/2⌉ bits are required to store the class norm.
This is only required for the untransformed integer HDC model with 𝑀 = 20;
contributing ⌈20 + 0.5× log2 2048⌉ × 21 = 26× 21 = 546 bits of FF.

4. Divider. Since the query hyper-vector does not have bits/elements larger than
that of the class hyper-vectors 𝑀 , the number of bits required to store the
inner-product (i.e. the dividend) is 2𝑀 + log2 𝑑 bits. For a slight overestimate,
assume another register with the same number of bits to store the quotient of
the integer division. Finally, the class norm (i.e. divisor) requires 𝑀 + (log2 𝑑)/2
bits of FF. The division is assumed to contain no other sequential elements
including pipeline stages.
Since this is required only for untransformed integer HDC model with 𝑀 = 20,
the total number FFs contributed by the divider is ⌈5𝑀 + (5/2) log2 𝑑⌉ bits per
language hyper-vector = ⌈5×20+2.5×log2(2048)⌉ = 128 bits per language hyper-
vector. Since there are 21 languages in EUROPARL, the total bits contributed
to FF are 128× 21 = 2688 bits.

86

To summarize: the untransformed Integer Associative Memory data path for
associative search requires 65536 + 860160 + 546 + 2688 = 928930 bits of FF.

The transformed integer Associative Memory data path for associative search, using
Modified Thresholding to get 𝑀 = 9 bits/element, requires 65536 + 387072 = 452608
bits of FF.

5.4.2 Estimating logic complexity for the adder-tree
In figure 5-15, the adder tree is essential to accumulate the element-wise product of
query and language hyper-vectors to produce the inner product. Since the language
vectors’ bits/elements 𝑀 is larger than the query hyper-vector’s bits/element, the
adder tree must add 𝑑 signed integers of 2𝑀 bits each.

Figure 5-16: The 16-bit Kogge-Stone adder containing Half Adders (HAs), Carry
Lookahead Blocks (CLBs) and Full Adders (FAs).
The HAs produce the propagate and generate signals at each bit position, layers of
CLBs combine them to produce the sum’s propagate and generate signals and the

final FAs combine the final propagate and generate signals for sum generation.

A Kogge-Stone adder tree of radix 2 is chosen for the implementation of the adders
in this adder tree [169] (illustrated in figure 5-16). The first layer of the Kogge-Stone
adder contains Half Adders (HAs) for the production of generate (G) and propagate
(P) signals. Subsequent layers contain Carry Lookahead Blocks (CLBs) that
takes two pairs of generate and propagate signals (𝐺, 𝑃) and (𝐺′, 𝑃 ′) from distinct
bit positions and combines them using the logic (𝐺 + 𝑃 ×𝐺′, 𝑃 × 𝑃 ′) where + and ×
denote logical OR and AND respectively.

Kogge-Stone adder. In the Kogge-Stone adder of radix 2, adding two 𝑁 -bit numbers
to produce a 𝑁 + 1-bit sum, there are ⌈log2(𝑁)⌉ layers of CLB reductions The total
number of CLBs used across these layers are ⌈log2(𝑁)⌉𝑁 − 2⌈log2(𝑁)⌉ + 1. The final
layer at the output is used to generate the sum bits from propagate 𝑃 and generate 𝐺
bits at each bit position produced by the layers of CLB reductions. The final layer has

87

one HA for the LSB and 𝑁 − 1 FAs for generating the output bit for the remaining
positions.

The tally of combinational gates for Kogge-Stone adder of two 𝑁 bits numbers are:
∙ ⌈log2(𝑁)⌉𝑁 − 2⌈log2(𝑁)⌉ + 1 Carry Lookahead Blocks (CLBs).
∙ 𝑁 + 1 Half Adders (HAs).
∙ 𝑁 − 1 Full Adders (FAs).

Tree of Kogge-Stone adders. Since there are 𝑑 (a power of 2) 𝑁 -bit numbers to be
added, a binary tree containing log2 𝑑 stages of addition would minimize the latency
of addition. However, the total number of additions is fixed at 𝑑− 1, independent of
the strategy chosen for reduction of sums. For addition stage 𝑖 in the tree, where stage
𝑖 = 1 contains 𝑑/2 adders summing 𝑁 -bit numbers and stage 𝑖 = log2(𝑑) contains a
single adder summing 𝑁 + log2(𝑑)− 1 bits, 2−𝑖𝑑 numbers of 𝑁 + 𝑖− 1 bits are added
to produce 2−𝑖−1𝑑 numbers of 𝑁 + 𝑖 bits.

Adder-tree for Integer Associative Memory without transformations. There-
fore, the untransformed integer Associative Memory data path for associative search
has 𝑁 = 2×𝑀 = 40 and HDC dimension 𝑑 = 2048. Thus the Kogge-Stone adders
required are from 𝑁 = 40 to 𝑁 = 51 (i.e. ⌈log2(𝑁)⌉ = 6)
∙ There are ⌈log2 𝑁⌉ = 6 layers of Carry Lookahead Blocks (CLBs) reduction in

each Kogge-Stone adder in the tree. For each stage 𝑖 of the adder tree, there
are 𝑑2−𝑖 Kogge-Stone adders each contributing 6(𝑁 + 𝑖 − 1) − 63 = 6𝑖 + 171
CLBs. Thus, the total number of CLBs in the Kogge-Stone adder tree for each
EUROPARL language are ∑︀log2 𝑑

𝑖=1 𝑑2−𝑖(6𝑖 + 171) = ∑︀11
𝑖=1 2048× 2−𝑖(6𝑖 + 171) =

374535. Since there are 21 languages in EUROPARL, the total number of CLBs
are 21× 374535 = 7865235 CLBs.
∙ At adder tree stage 𝑖, all Kogge-Stone adders contain 𝑁 + 𝑖 = 40 + 𝑖 HAs. Thus

the total number of HAs in an adder tree for each EUROPARL language are∑︀11
𝑖=1 2048× 2−𝑖(40 + 𝑖) = 85963. Since there are 21 languages in EUROPARL,

the total number of HAs are 21× 85963 = 1805223 HAs.
∙ At adder tree stage 𝑖, all Kogge-Stone adders contain 𝑁 + 𝑖− 2 = 38 + 𝑖 FAs.

Thus the total number of FAs in an adder tree for each EUROPARL language are∑︀11
𝑖=1 2048× 2−𝑖(38 + 𝑖) = 81869. Since there are 21 languages in EUROPARL,

the total number of FAs are 21× 81869 = 1719249 FAs.
Since the adder tree is purely combinational and it is presumed there are no additional
pipeline stages, this completely summarizes its total logic contribution.

Adder-tree for Integer Associative Memory with Modified Thresholding.
Using Modified Thresholding, the integer Associative Memory has transformed vectors
with bits/element 𝑀 = 9. Therefore, its data path for associative search has 𝑁 =
2×𝑀 = 18 and HDC dimension 𝑑 = 2048. Thus the Kogge-Stone adders required
are from 𝑁 = 18 to 𝑁 = 29 (i.e. ⌈log2(𝑁)⌉ = 5)
∙ There are ⌈log2 𝑁⌉ = 5 layers of Carry Lookahead Blocks (CLBs) reduction in

each Kogge-Stone adder in the tree. For each stage 𝑖 of the adder tree, there are
𝑑2−𝑖 Kogge-Stone adders each contributing 5(𝑁+𝑖−1)−31 = 5𝑖+54 CLBs. Thus,
the total number of CLBs in a Kogge-Stone adder tree for each EUROPARL

88

language are ∑︀log2 𝑑
𝑖=1 𝑑2−𝑖(5𝑖 + 54) = ∑︀11

𝑖=1 2048 × 2−𝑖(5𝑖 + 54) = 130953 CLBs.
Since there are 21 languages in EUROPARL, the total number of CLBs are
21× 130953 = 2750013 CLBs.
∙ At adder tree stage 𝑖, all Kogge-Stone adders contain 𝑁 + 𝑖 = 18 + 𝑖 HAs.

Thus the total number of HAs in an adder tree for each EUROPARL language
are ∑︀11

𝑖=1 2048 × 2−𝑖(18 + 𝑖) = 40929 HAs. Since there are 21 languages in
EUROPARL, the total number of HAs are 21× 40929 = 859509 HAs.
∙ At adder tree stage 𝑖, all Kogge-Stone adders contain 𝑁 + 𝑖− 2 = 16 + 𝑖 FAs.

Thus the total number of FAs in an adder tree for each EUROPARL language
are ∑︀11

𝑖=1 2048 × 2−𝑖(16 + 𝑖) = 36835 FAs. Since there are 21 languages in
EUROPARL, the total number of FAs are 21× 36835 = 773535 FAs.

5.4.3 Estimating logic complexity for multipliers
The multipliers of the Associative memory data path (in figure 5-15) are presumed
to be implemented as a Wallace tree [152]. Its tree-like structure reduces both the
critical path and number of adder gates required [153]. Since the number of bits for
the multiplied integers are rather large (𝑀 = 20 for untransformed Integer HDC
model and 𝑀 = 9 for Integer HDC model with Modified Thresholding), the tree-based
structure results in substantial hardware savings, especially with respect to a carry-save
multiplier [153]. The Wallace-tree based estimate of the multipliers’ complexity is
likely to correlate strongly with other tree-based implementations. Furthermore, the
total number of gates consuming energy in a Wallace-tree multiplier is less than that
of any shift-and-add implementation of multipliers.

The simplest implementation of the Wallace tree multiplier of two 𝑁 -bit integers
(as illustrated in [153]) uses Full Adders (FAs) as 3:2 compressors. An iterative
reduction tree containing these compressors converts 𝑁2 partial products into a sum of
two (2𝑁 − 2)-bit numbers. Using Full Adders only instead of a variety of compressors
results in about log3/2 𝑁 stages of reduction of partial products [153]. Such a reduction
step is shown in figure 5-17 for multiplying two 9-bit integers. The first stage computes
the partial products 𝑎𝑖𝑏𝑗 i.e. logical AND of bits 𝑎𝑖 and 𝑏𝑗 for each 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁}.

89

Figure 5-17: A stage of reducing partial products for 𝑁 = 9-bit Wallace tree multiplier
using Full Adders.
The first stage produces the partial products 𝑎𝑖𝑏𝑗 which is the logical AND of operand

bits 𝑎𝑖 and 𝑏𝑗 for each 𝑖, 𝑗 ∈ {1, 2,𝑁} and uses Full Adders (FAs) to combine
specific partial products. For each stage, the number of partial products remaining at
every bit position of the product can be summarized in a 2𝑁 = 18-element integer
array as shown. The goal of this reduction is make every element of the array ≤ 2.

90

The array of partial products remaining at each bit position at the end of a
partial-product reduction stage will be called partial product array. The following
sequence of partial product arrays completes the set of reductions for the 9-bit Wallace
tree multiplier.

Stage 1, 21 FAs: [0,1,3,2,3,5,4,5,7,5,6,5,3,4,3,1,2,1]
Stage 2, 14 FAs: [0,2,1,3,2,4,3,5,4,5,3,4,2,3,1,1,2,1]
Stage 3, 9 FAs: [0,2,2,1,3,3,2,4,3,4,2,2,3,1,1,1,2,1]
Stage 4, 6 FAs: [0,2,2,2,2,1,3,3,2,2,2,3,1,1,1,1,2,1]
Stage 5, 3 FAs: [0,2,2,2,2,2,2,1,2,2,3,1,1,1,1,1,2,1]
Stage 6, 1 FAs: [0,2,2,2,2,2,2,1,2,3,1,1,1,1,1,1,2,1]
Stage 7, 1 FAs: [0,2,2,2,2,2,2,1,3,1,1,1,1,1,1,1,2,1]
Stage 8, 1 FAs: [0,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,2,1]

Total Full Adders = 56

Note that the partial product array of the last stage has 0 partial products for MSB of
the output, indicating that it is the carry bit from the sum of the two partial products
present for the adjacent bit. Similarly, note that the partial product array has only one
partial product for the LSB of the output, therefore requiring no addition to generate
the output’s LSB. All other bits of must be computed by adding together the two
numbers formed by the remaining partial products. For this purpose, a Kogge-Stone
adder to add two 2× 9− 2 = 16-bit integers can be used.

Multipliers for Integer Associative Memory with Modified Thresholding.
For EUROPARL language recognition, 𝑀 = 9 bits/element is sufficient after trans-
formations. Thus, we can summarize the combinational logic contribution due to
multipliers for the Integer Associative Memory with Modified Thresholding as follows:
∙ 9-bit Wallace-tree multipliers are required, using 56 FAs for each multiplier.
∙ A 16-bit Kogge-Stone adder may be used for product generation from partial

sums, requiring 4× 16− 15 = 49 CLBs, 16 + 1 = 17 HAs and 16− 1 = 15 FAs
(see section 5.4.2).
∙ Therefore, the total number of logic gates required for each multiplier are: 49

CLBs, 17 HAs and 71 FAs.
Since there are 21 languages in EUROPARL, and given that 𝑑 = 2048 multipliers are
required for each language, the total contribution due to multipliers can be determined
to be 2107392 CLBs, 731136 HAs and 3053568 FAs.

91

Similarly, for the untransformed Integer model 𝑀 = 20 bits/element will suffice. This
requires 20-bit Wallace-tree multiplier for each hyper-vector element. The sequence of
partial product arrays for each reduction stage is shown below:

Stage 1, 120 FAs: [0,1,3,2,3,5,4,5,7,6,7,9,8,9,11,10,11,13,12,13,14,
13,11,12,11,9,10,9,7,8,7,5,6,5,3,4,3,1,2,1]
Stage 2, 80 FAs:
[0,2,1,3,2,4,3,5,5,4,6,5,7,6,8,7,9,9,8,9,10,8,9,7,8,6,7,5,5,6,4,5,3,4,2,3,1,1,2,1]
Stage 3, 53 FAs:
[0,2,2,1,3,3,2,4,4,4,3,5,5,4,6,6,6,5,7,6,6,7,5,5,6,4,4,4,5,3,3,4,2,2,3,1,1,1,2,1]
Stage 4, 36 FAs:
[0,2,2,2,2,1,3,3,3,3,2,4,4,4,4,4,3,5,5,4,4,4,4,5,3,3,3,3,4,2,2,2,2,3,1,1,1,1,2,1]
Stage 5, 23 FAs:
[0,2,2,2,2,2,2,2,2,1,3,3,3,3,3,3,2,4,4,3,3,3,3,4,2,2,2,2,2,2,2,2,3,1,1,1,1,1,2,1]
Stage 6, 14 FAs:
[0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,3,1,1,1,1,1,1,2,1]
Stage 7, 4 FAs:
[0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,3,1,1,1,1,1,1,1,2,1]
Stage 8, 1 FAs:
[0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,3,1,1,1,1,1,1,1,1,2,1]
Stage 9, 1 FAs:
[0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,3,1,1,1,1,1,1,1,1,1,2,1]
Stage 10, 1 FAs:
[0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,2,1]
Stage 11, 1 FAs:
[0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,1,2,1]
Stage 12, 1 FAs:
[0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,1,1,2,1]
Stage 13, 1 FAs:
[0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1]
Stage 14, 1 FAs:
[0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1]
Stage 15, 1 FAs:
[0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1]
Stage 16, 1 FAs:
[0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1]
Stage 17, 1 FAs:
[0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1]
Stage 18, 1 FAs:
[0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1]
Stage 19, 1 FAs:
[0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1]

Total Full Adders = 342

For the 𝑁 = 20-bit Wallace-tree multiplier, a 2𝑁 − 2 = 38-bit Kogge-Stone adder
is required for the product generation.

92

Multipliers for Integer Associative Memory without transformations. With-
out transformations, 𝑀 = 20 bits/element is sufficient for EUROPARL language
recognition. The summary of combinational logic contributed by the multipliers for
the untransformed Integer Associative Memory is as follows:
∙ 20-bit Wallace-tree multipliers are required, using 342 FAs for each multiplier.
∙ A 38-bit Kogge-Stone adder is needed for product generation from partial sums,

requiring 6× 38− 63 = 165 CLBs, 38 + 1 = 39 HAs and 38− 1 = 37 FAs (see
section 5.4.2).
∙ Therefore, the total number of logic gates required for each multiplier are: 165

CLBs, 39 HAs and 379 FAs.
Since there are 21 languages in EUROPARL, and given that 𝑑 = 2048 multipliers are
required for each language, can be determined to be 7096320 CLBs, 1677312 HAs and
16300032 FAs.

5.4.4 Estimating logic complexity for the divider

The divider is required only for the Integer HDC model without proposed transfor-
mations, requiring at least 𝑀 = 20 bits/element to store the language hyper-vectors
of EUROPARL. Recall that since the query hyper-vectors in EUROPARL tests are
very unlikely to have bits/elements larger than that of the class hyper-vectors 𝑀 , the
number of bits required to store the inner-product (i.e. the dividend) is 2𝑀 + log2 𝑑
bits = ⌈40 + log2 2048⌉ = 51 bits. The vector norm (i.e. the divisor) requires
⌈𝑀 + (log2 𝑑)/2⌉ = 26 bits. To simplify this at the risk of a slight overestimation,
assume that the quotient register is 52 bits wide as well.

Since there is only one integer division per class for the associative search – in
contrast to thousands of multiplications and additions – an accurate estimation of an
optimized implementation is not necessary for the divider. Therefore, an estimate of
logical cost for the shift-and-add divider is sufficient in this context. For dividing a
51-bit dividend with a 26-bit divisor, 51− 26 + 1 = 26 subtractions and comparisons
need to be performed. The logic required to perform the shifting operation, computing
the negative of an integer and comparing against a constant are ignored as they have
smaller logical complexity than that of integer addition and subtraction. Furthermore,
since the divider’s contribution is a tiny minority of the total logic costs of Associative
Memory data path, a larger variance in its estimate is permissible. Adding two 51-bit
numbers using a Kogge-Stone adder requires 6 × 51 − 63 = 243 Carry Lookahead
Blocks (CLBs), 51 + 1 = 52 Half Adders (HAs) and 51− 1 = 50 Full Adders (FAs).
Therefore, 26 such additions require 6318 CLBs, 1352 HAs and 1300 FAs.

Since EUROPARL has 21 languages where each language hyper-vector requires a
division, the total cost due to division is: 21×6318 = 132678 CLBs, 21×1352 = 28392
HAs and 21× 1300 = 27300 FAs. The total combinational and sequential costs for the
Associative Memory data path during associative search – with and without Modified
Thresholding – can now be collected for comparison. This comparison is done in the
next sub-section.

93

5.4.5 Comparison of logic complexity estimates with and with-
out transformations for Integer HDC associative search

This section collects the estimates of the total combinational logic cost (counted as
number of CLBs, FAs and HAs) and sequential logic cost (counted as bits of FF) from
all components of the Integer Associative Memory’s data path during associative search
(as shown in figure 5-15) with Modified Thresholding and without transformations. The
total number of Complementary MOS transistors in the static digital implementation
of Half Adders (HAs), Full Adders (FAs) and Carry Lookahead Blocks (CLBs) are
required to estimate the total CMOS transistor count for the combinational logic in
Associative Memory’s data path.

The Full Adder (FA) contains 28 transistors in a static CMOS implementation
(from Fig. 11-4 of [153]). The Half Adder (HA) contains 3 inverters containing 2
transistors each, a XOR gate containing 8 transistors and a NAND gate containing
4 transistors, thereby having a total of 18 transistors. The Carry Lookahead Block
can be implemented with 18 transistors as well: 4 inverters with 2 transistors each
to invert each of its 4 inputs, a static CMOS gate with 6 transistors to produce the
generate output and a static CMOS gate with 4 transistors to produce the propagate
output.

Type of Integer HDC Model FF (# bits) # HAs # FAs # CLBs # Transistors
(A) Without transformations 928,930 3,510,927 18,046,581 15,094,233 840,197,148
(B) With (modified) Thresholding 452,608 1,590,645 3,827,103 4,857,405 223,223,784
(A)/(B) Improvement ratio 2.05 2.21 4.72 3.11 3.77

Table 5.1: Preliminary estimates for logic cost of associative search in Integer Associa-
tive Memory with and without transformations.

HDC dimension is 𝑑 = 2048. The combinational logic of Half-Adders (HAs)
containing 18 transistors, Full-Adders (FAs) containing 28 transistors and

Carry-Lookahead Blocks (CLBs) containing 18 transistors are combined to produce
the total CMOS transistor count shown in the last column.

Table 5.1 summarizes the logic estimates calculated in this section for the Integer
Associative Memory’s data path. The total CMOS transistor count provides a single
metric to compare the amount of combinational logic. These preliminary estimates
indicate more than 3.5× savings in logic cost when using Modified Thresholding from
section 5.3.3 with only 0.05% drop in accuracy of EUROPARL language recognition.

94

Chapter 6

A 2048-dim generic
Hyper-Dimensional Binary core

A binary HDC processor was manufactured in a 28nm High-K/Metal Gate (HK/MG)
process by Taiwan Semiconductor Manufacturing Company (TSMC), Limited. The
architectural principles for efficient HDC processor design developed in chapters 3 and
4 were implemented in this chip.

This chapter is divided into three sections. The first section describes the physical
characteristics and technical specifications of the fabricated chip. The reader is likely to
find these details useful in understanding the complexity of the design process involved
– a source of complexity distinct from that regarding the development of its underlying
architecture. The second section considers the testing setup and infrastructure. The
testing objectives and strategy, test equipments, on-board components and associated
software are described. A summary of functionality test results conclude this section.

EUROPARL Language Recognition [19] 19833/21000 correct (94.44%)
EMG hand-gesture recognition of 5 single degrees-of-freedom gestures [38]

Subject 1: 96.93% accuracy Subject 2: 97.93% accuracy Subject 3: 89.87% accuracy
EMG hand-gesture recognition of 20 single & multiple degrees-of-freedom gestures [39]

Experiment 1: For each subject and session, train one trial and test all remaining 4 trials. Exp. 2*
Subjects Sess. 1 Sess. 2 Sess. 3 Sess. 4 Sess.5 Sess. 6 Sess. 7 Sess. 8 Sess. 1&2
Subject 1 94.24% 90.77% 94.99% 99.95% 98.38% 98.29% 95.29% 97.27% 90.08%
Subject 2 90.01% 95.92% 94.35% 97.50% 99.70% 98.89% 99.30% 98.65% 90.22%
Subject 3 89.35% 72.03% 81.32% 97.02% 87.08% 90.18% 87.98% 93.12% 79.83%
Subject 4 87.43% 79.14% 81.53% 77.48% 81.89% 84.26% 86.88% 90.79% 80.45%
Subject 5 72.24% 81.20% 85.28% 85.19% 91.43% 82.30% 74.59% 78.21% 69.59%

Table 6.1: Benchmark applications for measurements on the binary HDC chip.
Experiments 1, 2 and all 8 sessions are described in Supplementary Table 1 of [39].

Experiment 2*: for each subject, use a trial of combined sessions 1 and 2 for training,
and test on remaining trials combined for sessions 1 and 2.

The third section contains measurements of the chip for 2 supervised classification
tasks listed in table 6.1 from the benchmark of section 4.3.1 in chapter 4. These
measurements are compared against other works to establish the chip’s energy efficiency
in this chapter’s conclusion.

95

As mentioned in section 2.4, the literature on hardware accelerators for Hyper-
Dimensional Computing does not contain any previous works that have reported
a complete HDC processor entirely on chip. The results of this chapter establish
the energy efficiency and robustness of Hyper-Dimensional Computing reported in
numerous simulation studies in the literature (summarized in chapters 1 and 2) using
real-time measurements for a complete HDC processor on chip for the first time.

6.1 Physical characteristics and specifications
Figure 6-1 shows the dice bonded to a Ceramic Pin-Grid Array (CPGA) package for
testing and measurements. The bonded chip was the final deliverable of all the design,
manufacturing and packaging steps that came before.

Design attribute Attribute value
Design area 2𝑚𝑚� die, 1.647𝑚𝑚� core, core area utilization is 55%
Technology node 28nm High Performance Mobile (HPM), a High-K/Metal-

Gate (HK/MG) process with 10 Copper metal routing
layers, 1 poly-silicon routing and 1 Aluminium-Copper
redistribution layer.

Manufacturer Taiwan Semiconductor Manufacturing Company
Nominal supply voltage 0.9V for core logic, 1.8V for Input/Ouput
Setup clock 𝑇CLK ≥ 5.0× 10−9 seconds
Clock jitter assumption ≤ 10−10 seconds
On-chip memory Read-Only Memory (ROM) only. 16 KiB × 16 ROMs

= 256 KiB. Used in the Item Memory exclusively.
cells and transistors about 4.68 million cells, 23 million MOSFET transistors
inverters and buffers 111, 068 inverters and 284, 524 buffers
flip-flop cells 216, 755 flip-flop cell instances of different bit-widths

Table 6.2: Summary of technical specifications of the 2048-dim binary HDC processor.

A summary of the chip’s design attributes are presented in table 6.2. Containing
about 23 million transistors routed in a core area of about 2.71mm2, the design
size is of medium complexity and its core utilization of 55% – which estimates the
difficulty of routing wires – approaches the industry-wide range of 50−60% for mature
chip designs. Note that the total number of buffers and inverters, which would be
a significant fraction of the total number of cells with unoptimized data-paths or
difficult-to-route gate placement, is less than 1% of the total number of cells for this
chip. A relatively high clock jitter assumption of 100 picoseconds was considered
(as shown in table 6.2) since although its only 2% of the fastest clock period of 5
nanoseconds, the chip does not contain a Phase-Locked Loop (PLL) to synthesize a
clock on-chip from an extremely low-jitter, low-frequency crystal clock input. Since
the system clock is obtained directly from an input pad, external signal and supply
noise will have a greater effect on clock jitter. Consequently, the fastest clock period

96

(a) Micrograph of the wire-bonded chip.
The missing pad towards the top of the
right edge is the orientation marker.

(b) A graphic of the chip’s layout where
metal and inter-metal via layers 7 and
above are not visible. Region directives
in the chip’s floorplan are overlayed with
annotations.

(c) The wire-bonded chip in a 144-pin
ceramic package. The horizontal tape
attaching the lid is also visible.

(d) The wire-bonded chip with silicon
interposers in a 144-pin ceramic package.

Figure 6-1: Chip micrograph of the 2048-dim binary HDC processor.
The die micrograph (a) and its layout with a few upper layers removed (b) is shown.
Two strategies of connecting the die to a 144-pin ceramic pin-grid array were pursued:

(c) a classical wire-bond where long gold wires with significantly larger inductive
parasitics and (d) an intervening silicon interposer such that bonding gold wires are

shorter – resulting in less inductance but possibly greater capacitive parasitics.

of 5 nanoseconds allowed by setup timing constraints could be improved using an
on-chip PLL and smaller clock jitter assumptions.

97

6.1.1 Physical design and implementation
The design was synthesized from a SystemVerilog Register Transfer Logic (RTL) code
using Cadence Genus Synthesis 18.10. The synthesized net list was produced using
logic gates from the standard cell library provided by TSMC as a part of 28nm HPM
technology node’s Physical Design Kit (PDK). The synthesized design was placed
and routed using Cadence Innovus 18.10. Finally, the placed and routed design was
checked for Design Rule Check (DRC) violations so that it can be manufactured
by TSMC, Layout Versus Schematic (LVS) checks to confirm that the synthesized
net list is logically equivalent to the placed and routed physical geometries for all
manufacturing layers, and Electrical Rule Checks (ERC) for verifying the absence of
shorts and low-drive strengths in transistors and I/O pads. Calibre DesignReview
version 2016.4_15.11 by Mentor Graphics was used to execute the DRC, ERC and
LVS scripts. The principal challenges faced in the physical design of the chip were:

∙ Good floor planning. Generating effective floor plans is necessary for quick
turnaround and high-quality results after place-and-route stage of the synthesized
net list subject to design constraints. The main idea is to use region directives for
each of the logical modules such that those with high inter-module connectivity
are adjacent. Trying to achieve equal density of modules’ total cell area to area
of of the assigned region also helped in improving floor plans.
The final floor plan is shown in figure 6-1(b). The Item Memory consists almost
entirely of 16 ROMs (visible as 16 vertical bars towards the top edge) and is
assigned a smaller region that is contained within that assigned for the first
Encoder stage. Similarly, the Associative Memory’s region is a part of that
for the second Encoder stage. This arrangement also follows from the flow
of information from the chip’s I/O pad-frame. A simplified explanation is as
follows: (most of) the chip’s input pads are on the top edge and (most of) the
chip’s output pads are on the bottom edge. Since data inputs to HDC processors
are item addresses to the Item Memory and data outputs are results of the
associative search, data can be visualized as flowing from top to bottom: input
pads from the top edge go into the Item Memory, whose output goes to the two
Encoder stages and finally reach the Associative Memory (refer figure 3-5 from
chapter 3). The Associative Memory output is transmitted by the output pads
on the bottom edge.
Over an 8 months long design period, executing and evaluating a large number
of candidate floor plans was very useful in improving design productivity. It
was observed that the design tools consume a large amount of time and memory
to produce poor designs when the floor plan is difficult to route, but produce
excellent designs using far smaller runtime memory and time when the floor
plans are effective and well optimized.

∙ Viable power plan. Having a great power plan to produce enough power and
ground straps over the entire core area is crucial for a good cell placement by the
design tool. Making the power straps too wide or far apart reduces the amount

98

of area available for placement of standard cells. On the contrary, making the
power straps too dense uses up valuable routing resources required to route
signals and connect logic gates. Therefore, a careful balance must be maintained
between access of standard cells to power straps and avoiding overuse of routing
tracks. It was also observed that certain standard cells which had input/output
ports directly under a wide power strap were difficult to route signals to and
produced a lot of short violations.

Figure 6-2: Heavy-tailed distribution of positive setup slack.

6.1.2 Timing constraints and design convergence
An important objective of this chip is to validate, using direct on-chip measurements,
the assertion that supply voltage over-scaling leads to greater energy savings but
minimal degradation in performance as HDC is inherently robust to representation
errors (stated in [18] and demonstrated in figure 1-4). Therefore, a practical consid-
eration in this design is to have fewer data paths failing as VDD is lowered from its
nominal value of 0.9 Volts. This is contrary to the objective of timing optimization
in the place-and-route EDA algorithms: to achieve the fastest possible clock, the
tool searches for a design such that a majority of timing paths have delays slightly
less than the fastest clock period. Therefore, a highly-optimized design would have a
majority of its data paths fail when the core supply voltage VDD is reduced slightly
from its nominal value – thereby greatly reducing the overall robustness of the chip’s
functionality.

To prevent this, a novel timing-optimization strategy was adopted in this chip’s
design. When compiling the chip’s logic into a net list of logic gates from the RTL, a
stringent setup clock period constraint of 2.5 nanoseconds was used – this constraint
was barely met by Cadence Genus, even after maximum effort configured for its
algorithms. Subsequently, when physically implementing the design using Cadence
Innovus, the setup clock period constraint was relaxed to ≥ 5.0 nanoseconds to
encourage negligible timing optimizations by the place-and-route algorithms. The
argument is as follows: given a highly timing-optimized net list produced during

99

synthesis, a reasonable floor plan with relatively large core utilization (signifying
reasonable use of available silicon space) and low total inverter and buffer count
(signifying absence of numerous long wires) should produce a good design without
significant timing optimizations. Furthermore, given that most HDC applications are
not timing-critical or ultra-low latency response [32, 80], a slower than optimal setup
clock is still useful in a HDC chip.

Indeed, this strategy produced a heavy-tailed distribution of the (positive) setup
slack after placement of logic gates and routing of wires was completed. As shown in
figure 6-2, the set of paths with a setup slack ≤ +100 picoseconds have a majority
with setup slack close to +100 picoseconds. However, as shown in the colored map in
figure 6-3(a) the vast majority of timing paths have a positive setup slack far larger
than +100 picoseconds. The great diversity of positive setup slack among all timing
paths in the design ensures that the chip’s functionality will fail gracefully as the
core supply VDD is reduced from its nominal value of 0.9 Volts. Note also that the
Associative Memory has the largest concentration of near-zero setup slack cells in
figure 6-3(a), indicating that most of the logic failures with lower VDD is likely to
occur in the Associative Memory. Fortunately, the Associative Memory is known to
be tolerant to logic errors introduced by VDD over-scaling [18].

Both setup and hold constraints (as shown in figure 6-3(b)) were met for the final
design before manufacturing.

100

(a) The design annotated with slack for setup constraints

(b) The design annotated with slack for hold constraints

Figure 6-3: Standard cells annotated with setup and hold timing constraints.
The legend shows the color map and positive slack value in nanoseconds. Both setup

and hold constraints were met in the final design.

101

6.2 Testing infrastructure and experiments
This section describes the peripheral infrastructure for testing the chip’s logic, con-
ducting experiments and obtaining measurements of HDC performance and energy
efficiency.

6.2.1 Printed Circuit Board and equipments for testing the
binary HDC processor

The primary objectives of the Printed Circuit Board (PCB) through which the Binary
HDC processor is tested are to house and connect electronic components such that
the core and I/O supply voltages (VDD and VDDPST supply rails respectively) can
be precisely controlled and monitored for measuring power consumption. The PCB
is also responsible for connecting the HDC processor chip bonded to the Ceramic
Pin-Grid Array (CPGA) package to the appropriate pins of the Field-Programmable
Gate Array (FPGA) administering the test harness.

The following features in the PCB circuit are designed to aid in performance and
energy efficiency measurements of the HDC processor:

1. Opal Kelly XEM7310 FPGA. This is the principal testing infrastructure
as the Field-Programmable Gate Array (FPGA) is critical for uploading test
programs for measurements, producing a periodic clock signal for the chip’s clock
input, sending and receiving signals in each clock cycle and reading voltage and
current measurements every few clock cycles for the chip’s power consumption
from VDD and VDDPST voltage supplies. The XEM7310 integration module
contains a Xilinx Artix-7 XC7A75T FPGA on-board with necessary power jacks,
voltage regulators and a 200 MHz clock crystal [170]. The FPGA produces the
chip’s clock signal of the desired frequency from the 200 MHz input.

2. Power Monitoring Integrated Circuits (PMIC). The INA229 Power/En-
ergy Monitor by Texas Instruments [171] with Serial Peripheral Interface (SPI)
is the primary on-board component for measuring voltage and current drawn
for core supply VDD by the HDC processor. Its data sheet mentions a power
monitoring accuracy of 0.5%, and energy/charge monitoring accuracy of 1%
for ambient temperatures of −40∘𝐶 to 125∘𝐶. An ultra-precise 0.075 Ohm
sense-resistor is used to measure the voltage drop across it and calculate the
current drawn from the core supply VDD. The INA229 chip monitors and up-
dates its internal registers storing bus voltage, shunt voltage across the 0.075
Ohm sense resistor (i.e. VDD rail current) and temperature measurements at a
frequency of 6.67 KHz. Calibration using a resistive load (figure 6-4) indicates
that sense-resistor’s nominal value is close to the nominal value of 0.075 Ohm.
As shown in figure 6-5(a), the I/O pins from the FPGA can be used to read
these measurement registers using INA229’s 5 MHz SPI interface.

3. Supply voltage switches. As shown in figure 6-5(a) and (b), two 3-pin male
headers determine the source of the HDC processor’s VDD (core) and VDDPST

102

Figure 6-4: Calibrating the sense-resistor for VDD current measurements.
Load resistors 5.3, 5.3, 5.3 and 5.2 Ohms were connected in parallel between core
voltage supply VDD and common ground GND. The PMIC shunt voltage read

176716 which indicates 55.2 mV. The load resistors draw about 0.758 A from the
VDD supply rail, indicating the sense resistor’s value is about 0.0728 Ohm.

(I/O pad) power supplies. The middle pin corresponds to the selected supply,
which can be connected to either the constant regulated output produced by Opal
Kelly XEM7310 FPGA’s board, or the regulated output of the corresponding
LDO from its DC socket input. Finally, the bare middle pin allows a direct
power input from a bench-top DC power supply unit, bypassing both FPGA
supply and the LDO output.

4. Low Drop-Out (LDO) voltage regulator. Texas Instruments’ TPS74301
LDOs [172] are used to regulate the voltage input from DC supply sockets in the
PCB circuit (see figure 6-5). 3-pin male connectors (labeled in figure 6-5(b)) is
used to select voltage inputs from LDO outputs, FPGA’s 1.0/1.8 Volt regulated
supplies or output of external DC supplies.

5. Test loops. Several test loops are provided on the PCB (see figure 6-5(b)).
They help in observing and troubleshooting signals in real time as the test
program is being applied on the chip.

Figure 6-6 shows the general setup for running tests and measurements. A personal
computer acts as a host to the Opal Kelly FPGA, uploading the test program and
instructing the begin and end of the test sequence. Opal Kelly’s FrontPanel Software
Development Kit (SDK) [173] was used to command the execution of FPGA’s test logic
using a Graphical User Interface (GUI) in the laptop host. As shown in figure 6-6(b),
the USB cable connecting FPGA to laptop host is the main link of communication
between the PC host and the FPGA controlling the test program.

The next sub-section describes a few functionality tests establishing the proper
functioning of the chip.

103

(a) A schematic of the electronics components on the test PCB.

(b) The test PCB with its electronic components.

Figure 6-5: The test Printed Circuit Board and components on board.
(a) Two Low-Drop-Out voltage regulators (LDOs) and Power Monitoring ICs

(PMICs) for the supply VDD (for core) and VDDPST (for I/O pads) are present in
PCB’s testing circuit. Apart from the FPGA and the HDC processor, these are the
only other active components. (b) Components on the soldered PCB is shown. The
VDDPST and VDD switches as 3-pin male header posts allow the user to provide a

regulated supply from a bench-top DC Power supply as well.

104

(a) The experimental setup for measurements and testing.

(b) PCB test setup.

Figure 6-6: The test setup and equipments for experiments and measurements.
Oscilloscopes, PC host and a multi-meter are necessary for performing tests.

105

Figure 6-7: Waveforms for the correct behavior when testing the ready output.
The 2-bit counter repeatedly counts up from 0 to 3, periodically toggling the

valid_in and rst inputs to effect periodic changes in output ready as shown.

6.2.2 Testing basic I/O and chip response
Tests verifying the functionality of the HDC processor chip are described. The first test
verifies correct behavior of the ready output when the synchronous reset-high input
rst and least significant bit of valid input valid_in is toggled. This ready-valid_in
request-response test establishes proper receipt of input signals from the FPGA to
the chip, correct functioning of the chip’s primary control logic and proper delivery of
chip’s output signal to the FPGA.

The waveforms of inputs clk, rst, valid_in and output ready are captured by
a digital oscilloscope. Waveforms are an illustration of the correct functioning of
the chip’s ready output. The default ready output by the chip after reset is HIGH,
indicating that it is ready for the next computation to commence. As shown in figure
6-7, when the valid_in pad is asserted HIGH while reset rst is LOW, the next
clock cycle onwards should see the output ready de-asserted by the chip as a valid
computation should have commenced. Consequently, when output ready is de-asserted
by the chip, the reset rst is asserted HIGH indicating a synchronous global reset in
the next cycle. Thus, the next cycle should see the output ready asserted again as
the ongoing valid computation should have been terminated by a global reset. Figure
6-8 lists the output waveforms and confirms correct functionality of the HDC
processor’s basic I/O. For all except 40 MHz clock, no differences were observed in
the waveforms for chips bonded to package with or without inter-posers (refer figure
6-1(c), (d)). For 40 MHz clock, the waveforms of chips bonded classically with long
bond wires showed higher distortions due to greater inductive parasitics. Since the
rise and fall times of the ready output was always ≈ 19 nanoseconds, only frequencies
≤ 25 MHz are admissible as clock is slow enough to ensure that output transitions
complete while the oscilloscope’s 8pF probes are attached to the test-loops.

106

(a) Waveforms for 10 MHz clock with/out
interposers.

(b) Waveforms for 25 MHz clock with/out
interposers.

(c) Waveforms for 40 MHz clock with inter-
posers.

(d) Waveforms for 40 MHz clock without in-
terposers.

(e) Waveforms for 50 MHz clock with/out
interposers.

(f) Waveforms for 100 MHz clock with/out
interposers.

Figure 6-8: Captured waveforms for testing ready output.
The waveforms for chip inputs clock (clk), reset (rst) and output ready are shown. A

digital phosphor oscilloscope was used with a 8pF, 500 MHz voltage probe.

107

6.2.3 Testing Associative Memory functionality.

Testing functionality of the Associative Memory is critical to test the functional logic
of the chip’s output pads. Given that data output pads are connected directly to
the Associative Memory, a faulty Associative Memory control logic or configuration
state could interfere with HDC processor’s operations which may (not) have any
computation performed in the Associative Memory. Therefore, a complete functional
verification of the Associative Memory is of the highest priority among the 3 major
components of the generic HDC architecture (as shown in section 3.3.3).

The Associative Memory functionality tests are split into the following tasks
performed sequentially:

1. Check that hyper-vectors are loaded successfully. Using the LOAD_AM
mode, a randomly-generated hyper-vectors may be inputted into the Associative
Memory and loaded to any address 0− 31 by inputting 2 bytes/cycle in little-
endian order. After the loading is complete, the chip should assert the done
output for a single clock cycle to signal a successful vector load operation.

2. Check that loaded class hyper-vectors are read out successfully. The
READ_AM mode is used to read out the contents of the Associative Memory from
any address 0 − 31. Once asserted, the chip commences a data transfer of 1
byte/cycle in little-endian order including that address’s class valid bit. Once
all the 256 bytes are outputted by the chip, the done output should be asserted
for a single clock cycle to signal a successful vector read operation. All outputted
vector should match the corresponding loaded vectors exactly.

3. Check that an associative search is working correctly.
The mode LOAD_AND_COMPARE_AM is used to load a vector 2 bytes/cycle (in
little-endian order) and perform associative search for among all vectors loaded.
The HDC processor is supposed to automatically change its internal control
state to stop loading two-byte blocks once 128 valid blocks have been received
to commence the associative search operation.
When the associative search is completed, the done output should be asserted
by the chip in the next clock cycle. The address of the closest match (the
largest address in case of a tie) is outputted by the bus label_out, and the
hamming distance of the query hyper-vector with the closest match is outputted
at output bus best_distance. Both outputs are held fixed until the next valid
computation is asserted.
For all hyper-vectors stored in the Associative Memory, the output hamming
distance should be 0 and the output label_out should be the hyper-vector’s
own address. Agreement indicates Associative Memory’s distance and minimum-
argument logic is working correctly for each closest-match address location.

Using Opal Kelly’s FrontPanel SDK [173], it is easier to produce a GUI that
can begin these tasks, collect the results and display messages summarizing the
outcome of the test. This is shown in figure 6-9 (a), where the GUI for the testing
program for loading and reading out random hyper-vectors into Associative Memory
was developed. All 32 random hyper-vectors were successfully loaded, read out and
matched. Furthermore, figure 6-9 (b) confirms that the loaded hyper-vectors, when

108

(a) GUI to load, read out and compare vectors into
Associative Memory.

(b) GUI to load and associatively search vectors into
chip’s Associative Memory.

Figure 6-9: The FrontPanel testing GUI to load, read-out and associatively compare
hyper-vectors into the HDC processor’s Associative Memory.
(a) Messages indicate all 32 random hyper-vectors were loaded successfully, read out
successfully and all 32 vector matched. (b) The red box and asserted “Match?” LED

confirms that the chip’s associative search outputs are correct.

associatively searched among all stored hyper-vectors in Associative Memory, always
returns itself as the closest match with a hamming distance of 0 and its own address
as output.

Therefore, the Associative Memory is functioning correctly.

109

6.2.4 Testing ROM and Item Memory functionality.
Since the Read-Only Memory (ROM) in the HDC processor’s Item Memory is the
only source of item hyper-vectors in the chip, it is crucial to check the funcionality of
the ROM and Continous Item Memory (as described in section 4.2.1).

The READ_IM mode is used to read out hyper-vectors produced by Item Memory
at the rate of 1 byte/cycle in little-endian order. When the read-out is complete, the
HDC processor should assert the done output signal for a single clock cycle.

1. Check the ROM hyper-vectors. The first part of the Item Memory tests is to
download and inspect the ROM item vectors. The item vectors were downloaded
and verified 1 against multiple die for consistency across chips. These items were
used to produce the accuracy numbers for EUROPARL language recognition
and EMG hand-gesture recognition benchmarks listed in table 6.1.

2. Check the Continuous Item Memory. For each of the 1024 ROM items as
the origin vector (V0 in section 4.2.1), all 1024 continuous items were generated
and its hamming distance to the origin vector verified. This step confirms that all
possible item hyper-vectors are generated correctly by the chip’s Item Memory,
as shown in figure 6-10(a)

3. Check associative search outputs with each ROM item. In this final
test, each of the 1024 ROM items are associatively searched among 32 random
hyper-vectors loaded in the Associative Memory. The Encoder is configured
to its post-reset default: The first stage is disabled and the second stage is
enabled and programmed to be a delay chain. As shown in figure 6-10(b), all
comparisons produced outputs that matched the expected values.

All Item Memory tests were passed successfully.
It has been verified that the chip’s Item Memory correctly produces items for each

item address, which travel unaltered through the default Encoder configuration (i.e. a
delay chain) and results in correct Associative Memory search behavior.

6.2.5 Testing Encoder for on-chip benchmark applications
Before obtaining energy efficiency measurements, the only remaining functionality test
is to check whether the Encoder can successfully encode vectors for EMG hand-gesture
recognition (a 2-stage 5-gram encoding) and EUROPARL hand-gesture recognition (a
3-gram encoding) as listed in table 6.1. From the Item Memory functionality tests,
the delay chain for Encoder’s second stage has already been verified.

While the functionality of the Encoder can be tested more elaborately, directly
verifying with the application-based encodings is a composite method of verifying
functionality. It also saves time as a correct functioning obviates the need for detailed

1All 1024 item hyper-vectors downloaded from the chip’s ROM were not equal to those originally
designed to be programmed into the ROM. In fact, a careful analysis revealed that these item vectors
were (statistically) random and independent from the intended ROM hyper-vectors. Owing to the
fact that any set of randomly-generated hyper-vectors could serve as items, these new vectors were
adopted as the de-factor Item Memory of the fabricated processor. These vectors may have been
generated inadvertently while finalizing the design data-base for manufacturing.

110

(a) GUI to check all ROM and continous items.

(b) GUI to associatively search ROM items against Associative Memory.

Figure 6-10: The FrontPanel testing GUI to read-out and associatively compare Item
Memory hyper-vectors against the HDC processor’s Associative Memory.
(a) ROM and Continous Item Memory hyper-vectors are read out and matched to

expected vectors for each Item Memory address. (b) Each ROM item is associatively
searched against 32 random hyper-vector loaded into the Associative Memory; all
1024 items produced the expected closest match and hamming distance output.

111

(a) GUI after testing encoded hyper-vectors
for EUROPARL language recognition.

(b) GUI after testing encoded hyper-vectors
fpr EMG hand-gesture recognition.

Figure 6-11: Encoder tests for Lanuage and EMG hand-gesture recognition
Tests are encoded and outputted: read out hyper-vector are matched with correct
hyper-vectors. (a) 64 random test sentences from the EUROPARL corpus [90] are
entered into the chip for encoding and reading out. (b) 64 random test sentences

from the EMG hand-gesture recognition data set (from [39]) for subject 2, session 7,
trial 1 are entered into the chip for encoding and reading out.

Note the (averaged) PMIC measurements of VDD voltage and power when the chip is
idle or testing, reported as multiples of 195.3125 𝜇V and 813.802 pW respectively.

testing of Encoder. The mode READ_ENCODER is used to read out the encoded hyper-
vector at a rate of 1 byte/cycle in little-endian order after the encoding completes.

All 64 tests of EUROPARL language recognition and EMG hand-gesture
recognition returned perfectly correct encoded hyper-vectors. This confirms
the correct functionality of Encoder for the 2 applications listed in benchmark table
6.1 for measurements.

112

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0
0

1 2 0
0

1 4 0
0

1 6 0
0

1 8 0
0

2 0 0
0

2 2 0
0

2 4 0
0

2 6 0
0

2 8 0
0

3 0 0
0

4 4 0
04 6 0
04 8 0
05 0 0
05 2 0
05 4 0
05 6 0
0

Cu
rre

nt
me

as
ure

me
nts

 [m
ult

iple
s o

f 4
.16

7 u
A]

P M I C s a m p l e s @ 6 . 6 7 K H z

 C u r r e n t V o l t a g e T e s t i n g s a m p l e s i n d i c a t o r

5 1 4
05 1 4
55 1 5
05 1 5
55 1 6
05 1 6
55 1 7
0

Vo
lta

ge
 m

ea
su

rem
en

ts
[m

ult
iple

s o
f 1

95
.31

25
 uV

]

Figure 6-12: A measurement trace from PMIC
The dotted red line is an indicator flag output from the FPGA test-bench to mark

the duration when the tests are ongoing in the HDC processor chip.

6.3 Inference energy measurements on chip
After the functionality of the three major components of the HDC processor chip has
been verified in the previous section, the inference energy and power measurements
from on-board PMIC is described in this section.

Figure 6-12 shows an example trace of VDD voltage and current measurements for
the cope supply VDD. Unfortunately, corresponding measurements for I/O voltage
supply VDDPST could not be obtained as the PCB’s connection to PMIC B (see figure
6-5(a)) was faulty.

Note the elevated current value but no appreciable change in average VDD voltage
while tests are ongoing – this indicates a much higher testing power consumption than
during the chip’s idle state. PMIC measurement traces, such as shown in figure 6-12,
are used to calculate average VDD voltage and power consumption values over some
idle time (to estimate idle power) and while testing. Figure 6-11 illustrates how the
final PMIC measurements are displayed on the FrontPanel GUI for the 2 applications
of the benchmark table 6.1 tested on chip.

In the chip’s idle state, all inputs except CLK are held constant – only the clock
input CLK transitions periodically. Therefore, the clock net and all associated nets are
toggling – thereby contributing a large dynamic component to the chip’s idle power
consumption. The power consumed by the HDC processor in the idle state for a
collection of VDD and CLK frequencies are plotted in figure 6-13. Indeed, as shown in
figure 6-14, the measured leakage power consumption (when all chip inputs including
CLK are held constant) was far smaller than the idle power consumption at the same
VDD core supply voltages. The measured leakage power ≤ 0.8 mW was found to be a
relatively small value for the chip – indicating an adequately high threshold voltage
for most of its field-effect transistors.

On using linear predictors for chip power consumption to estimate en-
ergy/prediction: As one may expect in digital circuits, the idle power varies approx-

113

0 . 5 5 0 . 6 0 0 . 6 5 0 . 7 0 0 . 7 5 0 . 8 0 0 . 8 5 0 . 9 0 0 . 9 5 1 . 0 0
0 . 0 0
0 . 0 1
0 . 0 2
0 . 0 3
0 . 0 4
0 . 0 5
0 . 0 6
0 . 0 7
0 . 0 8
0 . 0 9
0 . 1 0
0 . 1 1
0 . 1 2
0 . 1 3
0 . 1 4
0 . 1 5

Me
as

ure
d i

dle
 po

we
r [W

]

C o r e s u p p l y v o l t a g e , V D D [V o l t s]

 4 . 7 2 5 M H z 5 . 9 8 8 M H z
 1 4 . 9 3 4 M H z 2 0 . 1 6 1 M H z
 4 0 . 3 3 2 M H z 6 2 . 0 3 4 M H z
 8 0 . 6 4 4 M H z 1 0 0 . 8 0 6 M H z
 1 2 0 . 9 6 7 M H z 1 4 1 . 1 2 8 M H z
 1 5 1 . 2 0 9 M H z

(a) Idle power vs. VDD at various CLK frequen-
cies.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 0
0 . 0 0
0 . 0 1
0 . 0 2
0 . 0 3
0 . 0 4
0 . 0 5
0 . 0 6
0 . 0 7
0 . 0 8
0 . 0 9
0 . 1 0
0 . 1 1
0 . 1 2
0 . 1 3
0 . 1 4
0 . 1 5

Me
as

ure
d i

dle
 po

we
r [W

]

C L K f r e q u e n c y [M H z]

 0 . 5 5 V 0 . 6 V
 0 . 6 5 V 0 . 7 V
 0 . 7 5 V 0 . 8 V
 0 . 8 5 V 0 . 9 V
 0 . 9 5 V 1 V

(b) Idle power vs. CLK frequency for various VDD
voltages.

Figure 6-13: Idle power measurements.

0 . 4 0 0 . 4 5 0 . 5 0 0 . 5 5 0 . 6 0 0 . 6 5 0 . 7 0 0 . 7 5 0 . 8 0 0 . 8 5 0 . 9 0 0 . 9 5 1 . 0 0 1 . 0 5
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0

 l e a k a g e p o w e r
 l e a k a g e c u r r e n t

C o r e s u p p l y v o l t a g e , V D D [V o l t s]

Le
ak

ag
e p

ow
er

[uW
]

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0

Le
ak

ag
e c

urr
en

t [u
A]

Figure 6-14: Measurements of leakage power at various VDD voltages.
Leakage power is measured when chip inputs including CLK are held constant.

imately quadratically with supply voltage VDD at constant CLK frequencies (figure
6-13(a)) and approximately linearly with CLK frequency at constant VDD voltage
(figure 6-13(b)). The linear dependence of power consumed with CLK frequency was
also found to be a great model for estimating power consumed when testing applica-
tions on chip, such as EUROPARL language recognition at VDD = 1.0V as plotted
in 6-15(a) However, even small errors in the power consumed at low CLK frequencies
can lead to large discrepancies between estimated and measured energy/classification.
Indeed, while 𝑓 = 4.7 and 𝑓 = 150 MHz lead to ≈ −2 mW error in estimated testing
power (figure 6-15(b)), the estimation error in energy/classification for 𝑓 = 4.7 MHz
is about 37× that for 𝑓 = 150 MHz as shown in figure 6-15(c). This is in contrast
with the fact that since PMIC samples at a constant rate of ≈ 6670 samples/s, the
identical test program at a lower CLK frequency takes longer, yields proportioanlly
more samples and therefore results in a more accurate (averaged) VDD voltage and
power measurements.

114

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 0
02 04 06 08 01 0 01 2 01 4 01 6 01 8 0

Po
we

r [m
W]

C L K f r e q u e n c y [M H z]

 m e a s u r e d a v e r a g e p o w e r w h i l e t e s t i n g
 b e s t l i n e a r f i t

(a) Testing power vs. CLK frequency at VDD = 1.0V.

- 1 . 8 6 2 6 5
- 1 . 1 8 2 2 3

- 0 . 5 5 2 6 1
0 . 2 3 8 0 9 0 . 0 8 1 3 7

2 . 6 9 2 9 7 2 . 4 6 2 8 4
1 . 4 7 0 6 1

0 . 0 0 1 9 6
- 0 . 8 4 3 5 1

- 2 . 5 0 6 8 6
0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 0

- 3
- 2
- 1
0
1
2
3

Err
or

in
line

ar
fit

[m
W]

C L K f r e q u e n c y [M H z]
(b) Error of linear model for testing power vs. CLK frequency at VDD = 1.0V.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 0
1 8 0
2 0 0
2 2 0
2 4 0
2 6 0

En
erg

y [
nJ

]

C L K f r e q u e n c y [M H z]

 E U R O P A R L L a n g u a g e e n e r g y / c l a s s i f i c a t i o n m e a s u r e d
 E U R O P A R L L a n g u a g e e n e r g y / c l a s s i f i c a t i o n e s t i m a t e d

 f r o m l i n e a r m o d e l o f p o w e r c o n s u m p t i o n d u r i n g t e s t s

(c) Error of energy/classification estimated by the linear model for testing power
vs. CLK frequency at VDD = 1.0V.

Figure 6-15: Using the linear model for power consumption leads to inaccurate
energy/predioction estimates at low frequencies.
(a) The best fitting line is (1.1223𝑓 + 0.5042) mW for the test power consumption of
language recognition at CLK frequency of 𝑓 MHz and VDD = 1.0 Volts. (b) The best

fitting line is a great predictor for the testing power consumed. (c) Since
energy/classification ∝ 𝑓−1, power estimation errors by the linear power model leads

to large discrepancies in estimates of energy/prediction at low CLK frequencies.

115

6.3.1 Measured inference energy for Language Recognition
Language recognition for 21 European languages [65] were conducted on the 28nm
HDC processor chip. After loading in the language vectors (already pre-trained offline)
into the chip’s Associative Memory, 2048 random sentences were administered for
testing; all 2048 tests were repeated 500 times without break to collect a large enough
sample of PMIC measurements. A total of 434852 × 500 ≈ 2.174 × 108 CLK cycles
were spent continuously for testing.

The chip’s outputs for each test in every repetition were compared with that of
the offline software simulation. Such testing for EUROPARL language recognition
was repeated for multiple CLK frequencies and VDD voltages, and the measured
energy/classification is reported if and only if the chip produced the expected outputs
(i.e. closest language’s Associative Memory address and its hamming distance to the
test’s encoded hyper-vector) for all 2048 tests during each of the 500 repetitions.

Figure 6-16 plots the measured energy/classification from the testing data collected.
Measurements show that one can reliably conduct language recognition for less than
40 nJ/classification; specifically 32.79± 0.36 nJ for VDD ≈ 0.6V and 𝑓 = 4.725 MHz,
38.12 ± 0.36 nJ for VDD ≈ 0.65V and 𝑓 = 4.725 MHz, 31.02 ± 0.36 nJ for VDD
≈ 0.6V and 𝑓 = 5.988 MHz, and 36.26± 0.36 nJ for VDD ≈ 0.65V, 𝑓 = 5.988 MHz.

Table 6.3 compares the best measurement with previous literature on HDC data-
paths for language recognition. The comparison reveals interesting caveats:

1. The lowest energy/classification measured on chip is also the smallest reported
on table 6.3, with a competitive overall classification accuracy.

2. JSSC 2018 [136] implemented only 32 bits of the HDC dimension, multiplexing
the entire data-path through the chip when testing. It used Carbon-Nanotube
FETs (CNFETs) for logic, integrated with Resistive RAM (RRAM) memories;
and on-chip device variability to produce item hyper-vectors (instead of ROMs
on this chip). However, they report far greater average inference energy cost
while offering a similar order of prediction throughput.

3. TCAS 2021 [174] used digital standard cells to implement its data-path, like this
chip. However, it was designed specifically to reduce leakage power consumption
i.e. for a lower core supply and CLK frequency. Therefore, it has far smaller
prediction throughput. However, the average inference energy cost is about an
order of magnitude larger.

4. Nature Electronics 2020 [70] offers an interesting comparison. They use 90nm
post-synthesis estimates for logic at a higher core supply voltage of 1.2V and
on-chip 90nm Phase-Change Memory (PCM), implementing the Associative
Memory and part of the Encoder, with only 0.1V supply. Even with a greater
HDC dimension 𝑑 = 10, 000 bits and a far higher prediction throughput of 0.9
million preds/s, they report only 430 nJ/classification. An estimate for their
design for 𝑑 = 2048 would be 0.2× 430 = 86 nJ/classification. The analogous
measurement on this chip is 236.61 ± 0.36 nJ/classification for VDD = 1.0V
and 𝑓 = 151.209 MHz – i.e. about 2.75× greater energy cost! This achieves the
highest prediction throughput of 712141 preds/s for this chip but is still ≈ 20%
smaller than their throughput.

116

5 . 0 5 7 . 3 1 4 . 5 1 9 2 8 3 7 5 0 . 5 7 3 1 4 51 0 1 0 0
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0
2 2 0
2 4 0

Me
as

ure
d a

ve
rag

e i
nfe

ren
ce

 en
erg

y [
in

nJ
/in

fer
en

ce
]

of
20

48
 EU

RO
PA

RL
 la

ng
ua

ge
 re

co
gn

itio
n t

es
ts

C L K f r e q u e n c y [M H z] , i n l o g 1 0 s c a l e

 0 . 6 V 0 . 6 5 V 0 . 7 V
 0 . 7 5 V 0 . 8 V 0 . 8 5 V
 0 . 9 V 0 . 9 5 V 1 V

(a) Measured inference energy vs. CLK frequency

0 . 6 0 0 . 6 5 0 . 7 0 0 . 7 5 0 . 8 0 0 . 8 5 0 . 9 0 0 . 9 5 1 . 0 0
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0
2 2 0
2 4 0
2 6 0

Me
as

ure
d a

ve
rag

e i
nfe

ren
ce

 en
erg

y [
in

nJ
/in

fer
en

ce
]

for
 20

48
 EU

RO
PA

RL
 la

ng
ua

ge
 re

co
gn

itio
n t

es
ts

C o r e s u p p l y v o l t a g e , V D D [V o l t s]

 4 . 7 2 5 M H z 5 . 9 8 8 M H z
 1 4 . 9 3 4 M H z 2 0 . 1 6 1 M H z
 4 0 . 3 3 2 M H z 6 2 . 0 3 4 M H z
 8 0 . 6 4 4 M H z 1 0 0 . 8 0 6 M H z
 1 2 0 . 9 6 7 M H z 1 4 1 . 1 2 8 M H z
 1 5 1 . 2 0 9 M H z

(b) Measured inference energy vs. VDD (c) Measurement at VDD ≈ 0.6V, 𝑓 ≈ 6
MHz

Figure 6-16: Measured energy/prediction for 2048 random tests of EUROPARL
language recognition.

117

P
ub

lic
at

io
n:

JS
SC

20
18

[1
36

]
T

C
A

S
I,

20
21

[1
74

]
N

at
ur

e
El

ec
tr

on
ic

s
20

20
[7

0]
T

hi
s

w
or

k

D
at

a
se

t
2

la
ng

ua
ge

s
on

ly
fro

m
EU

RO
PA

R
L

[9
0]

EU
RO

PA
R

L
[9

0]
W

or
ts

ch
at

z
[1

75
]f

or
tr

ai
ni

ng
EU

RO
PA

R
L

[9
0]

fo
r

te
st

in
g

EU
RO

PA
R

L
[9

0]

H
D

C
di

m
.

20
48

bi
ts

20
48

bi
ts

10
00

0
bi

ts
20

48
bi

ts
A

cc
ur

ac
y

≈
96

%
≈

84
%

96
.9

9%
94

.4
4%

Pl
at

fo
rm

A
SI

C
w

ith
R

R
A

M
m

em
or

y,
C

N
FE

T
lo

gi
c

A
SI

C
w

ith
22

nm
H

K
/M

G
C

M
O

S
A

SI
C

w
ith

90
nm

PC
M

m
em

or
y

an
d

65
nm

C
M

O
S

lo
gi

c
A

SI
C

w
ith

28
nm

H
K

/M
G

C
M

O
S

D
at

a-
pa

th
w

id
th

32
bi

ts
20

48
bi

ts
10

00
0

bi
ts

20
48

bi
ts

M
ea

s.
ty

pe
di

re
ct

ly
fro

m
ch

ip
sim

ul
at

ed
po

st
-la

yo
ut

pa
rt

ly
m

ea
su

re
d

fro
m

ch
ip

(1
)

di
re

ct
ly

fro
m

ch
ip

C
or

e
su

pp
ly

3.
0

V
0.

6
V

1.
2

V
(lo

gi
c)

,0
.1

V
(P

C
M

m
em

or
y)

0.
6

V
T

hr
ou

gh
pu

t
13

12
6

pr
ed

s/
s

72
pr

ed
s/

s
≈

9
×

10
5

pr
ed

s/
s

28
20

1
pr

ed
s/

s
Pr

ed
.

la
te

nc
y

76
.2

𝜇
s

14
m

s
1.

2
𝜇

s
35

.5
𝜇

s
En

er
gy

/p
re

d.
41

1.
4

nJ
33

2
nJ

43
0

nJ
31

.0
2
±

0.
36

nJ

Ta
bl

e
6.

3:
C

om
pa

ris
on

of
m

ea
su

re
d

en
er

gy
pe

r
in

fe
re

nc
e

fo
r

La
ng

ua
ge

R
ec

og
ni

tio
n.

Th
e

re
po

rt
ed

en
er

gy
/c

la
ss

ifi
ca

tio
n

ar
e

fo
r

V
D

D
=

0.
6

V
an

d
CL

K
fre

qu
en

cy
is

5.
98

8
M

H
z.

(1
) T

he
Ph

as
e-

Ch
an

ge
M

em
or

y
(P

CM
)

m
ea

su
re

m
en

ts
in

[7
0]

,i
m

pl
em

en
tin

g
th

e
A

ss
oc

ia
tiv

e
M

em
or

y
an

d
2-

m
in

te
rm

ap
pr

ox
im

at
io

n
(fo

r
bi

nd
in

g
𝑛

-g
ra

m
s

du
rin

g
en

co
di

ng
),

we
re

do
ne

di
re

ct
ly

on
ch

ip
–

re
st

of
its

da
ta

-p
at

h
wa

s
sim

ul
at

ed
po

st
-s

yn
th

es
is

in
65

nm
C

M
O

S.

118

6.3.2 Inference energy for EMG hand-gesture recognition

EMG hand-gesture recognition implemented in [38] and [39] have identical encoding
algorithm – a channel-value product in the first encoding stage (called spatial encoding)
followed by a 5-gram in the second encoding stage (called temporal encoding). The
data set in [38] contains 5 gestures (4 single degrees-of-freedom gesture and a “rest”
gesture) obtained from 3 subjects over 3 sessions. To save testing time, only the
first session for each subject was considered for on-chip measurements (as tabulated
in table 6.1). In [39], an augmented data set containing a total of 21 gestures (12
single degrees-of-freedom gestures, 8 multiple degrees-of-freedom gestures and a “rest”
gesture) obtained from 5 subjects over 8 recording sessions, each further composed of 5
trials. While a large number of experiments were conducted in [39], only experiments
1 and 2 of [39] were performed for on-chip measurements (see table 6.1).

Unlike transliterated test sentences for language recognition which are of variable
length, EMG test samples are of a fixed length: for the data sets [38, 39] considered
here, a single test sample is a filtered sequence of 5 consecutive measurements over 64
channel-electrodes. Therefore, the number of cycles required to compute a prediction
for EMG hand-gesture recognition is also fixed. However, there are two methods
in which gesture classification may be conducted. This is because EMG gestures
are modeled as a single 𝑛-gram of spatially-encoded vectors, unlike a superposition
of 𝑛-grams for language recognition. The two methods of conducting hand-gesture
prediction on the test sample are as follows:
∙ Testing each 𝑛-gram separately. For the test sample composed of a time-

series of filtered, 64-channel measurements denoted by a sequence of 64-vectors
�⃗�(1), �⃗�(2) . . . �⃗�(𝑘), the corresponding sequence of 5-grams

(�⃗�(1), �⃗�(2) . . . �⃗�(5)), (�⃗�(2), �⃗�(3) . . . �⃗�(6)), . . . , (�⃗�(𝑘−4), �⃗�(𝑘−3) . . . �⃗�(𝑘))

are inputted to the chip one-at-a-time for testing. Following the development of
two-stage valid signalling in section 4.2, the 5-gram (�⃗�(1), �⃗�(2) . . . �⃗�(5)) is inputted
as the following sequence of valids and inputs (denoted valid⟨item⟩):

V⟨Channel 1⟩, V⟨𝑣(1)
1 ⟩, V⟨Channel 2⟩, V⟨𝑣(1)

2 ⟩, . . . V⟨Channel 64⟩, V⟨𝑣(1)
64 ⟩, D⟨don’t care⟩

V⟨Channel 1⟩, V⟨𝑣(2)
1 ⟩, V⟨Channel 2⟩, V⟨𝑣(2)

2 ⟩, . . . V⟨Channel 64⟩, V⟨𝑣(2)
64 ⟩, D⟨don’t care⟩

· · · similar inputs for �⃗�(3) and �⃗�(4) · · ·
V⟨Channel 1⟩, V⟨𝑣(5)

1 ⟩, V⟨Channel 2⟩, V⟨𝑣(5)
2 ⟩, . . . V⟨Channel 64⟩, V⟨𝑣(5)

64 ⟩, D⟨don’t care⟩
EE⟨don’t care⟩

as illustrated in figure 4-12. Crucially, note the use of global termination valid-
signal EE at the end, which instructs the processor to flush both encoding stage’s
pipelines and ends the entire computation. The computation is recommenced
for the next 5-gram (�⃗�(2), �⃗�(3) . . . �⃗�(6)), and this is repeated for the remaining
5-grams.
In this mode of testing, each prediction costs 707 cycles. EMG hand-gesture

119

recognition for data sets [38, 39] were conducted on the 28nm HDC processor
chip. After loading in the gesture vectors (already pre-trained offline) into the
chip’s Associative Memory, 512 random gesture 5-grams were administered for
testing; all 512 tests were repeated 500 times without break to collect a large
enough sample of PMIC measurements. A total of 361984× 500 ≈ 1.81× 108

CLK cycles were spent continuously for testing. The chip’s outputs for each test
in every repetition were compared with that of the offline software simulation.
Such testing was repeated for multiple CLK frequencies and VDD voltages, and
the measured energy/classification is reported if and only if the chip produced
the expected outputs (i.e. closest gesture’s Associative Memory address and its
hamming distance to the test’s encoded hyper-vector) for all 512 tests during
each of the 500 repetitions.
Figure 6-18 plots the measured energy/classification from the testing data
collected. Measurements show that one can reliably conduct gesture recognition,
each 5-gram at a time, for less than 200 nJ/classification; specifically 144.52±1.22
nJ for VDD ≈ 0.6V and 𝑓 = 4.725 MHz, 167.44 ± 1.22 nJ for VDD ≈ 0.65V
and 𝑓 = 4.725 MHz, 196.09 ± 1.22 nJ for VDD ≈ 0.7V and 𝑓 = 4.725 MHz,
134.43± 1.22 nJ for VDD ≈ 0.6V and 𝑓 = 5.988 MHz and 165.07± 1.22 nJ for
VDD ≈ 0.65V, 𝑓 = 5.988 MHz.
Inputting each 5-gram separately is beneficial for testing the chip and for
suppressing 𝑛-grams during transitions between hand-gestures. However, this
does not use the advantage of pipelining afforded by HLU layers of the second
encoding stage (refer section 4.1.2). Pipelining improves the throughput and
the energy cost for each inference.

120

∙ Streaming samples and pipelining 𝑛-grams. This mode of testing uses
HLU layers of the Encoder’s second stage to pipeline the sequence of 𝑛-grams.
The entire test time-series of filtered, 64-channel measurements denoted by
a sequence of 64-vectors �⃗�(1), �⃗�(2) . . . �⃗�(𝑘) are inputted sequentially so that the
corresponding sequence of 5-grams

(�⃗�(1), �⃗�(2) . . . �⃗�(5)), (�⃗�(2), �⃗�(3) . . . �⃗�(6)), . . . , (�⃗�(𝑘−4), �⃗�(𝑘−3) . . . �⃗�(𝑘))

are generated within the chip’s Encoder during testing. The sequence of valid-
input pairs, denoted valid⟨item⟩, are streamed into the chip as follows:

V⟨Channel 1⟩, V⟨𝑣(1)
1 ⟩, V⟨Channel 2⟩, V⟨𝑣(1)

2 ⟩, . . . V⟨Channel 64⟩, V⟨𝑣(1)
64 ⟩, D⟨don’t care⟩

V⟨Channel 1⟩, V⟨𝑣(2)
1 ⟩, V⟨Channel 2⟩, V⟨𝑣(2)

2 ⟩, . . . V⟨Channel 64⟩, V⟨𝑣(2)
64 ⟩, D⟨don’t care⟩

· · · similar inputs for �⃗�(3) and �⃗�(4) · · ·
V⟨Channel 1⟩, V⟨𝑣(5)

1 ⟩, V⟨Channel 2⟩, V⟨𝑣(5)
2 ⟩, . . . V⟨Channel 64⟩, V⟨𝑣(5)

64 ⟩, D⟨don’t care⟩
V⟨Channel 1⟩, V⟨𝑣(6)

1 ⟩, V⟨Channel 2⟩, V⟨𝑣(6)
2 ⟩, . . . V⟨Channel 64⟩, V⟨𝑣(6)

64 ⟩, D⟨don’t care⟩
· · · · · · · · ·
V⟨Channel 1⟩, V⟨𝑣(𝑘)

1 ⟩, V⟨Channel 2⟩, V⟨𝑣(𝑘)
2 ⟩, . . . V⟨Channel 64⟩, V⟨𝑣(𝑘)

64 ⟩, D⟨don’t care⟩
EE⟨don’t care⟩

Crucially, the global termination valid-signal EE is used only when the entire
test sequence is completely consumed by the chip. Using the STREAM mode
of operation, the second layer of Encoder is instructed to output instead of
accumulating all Valid (V) hyper-vectors. In this mode, the Associative Mem-
ory is also enabled while the Encoder is encoding inputs, commencing on an
associative search whenever the Encoder’s second stage outputs a valid encoded
hyper-vector. In this manner, the chip produces a sequence of predicted gesture
(Associative Memory) labels and the test hyper-vector’s hamming distance to it
while the inputs are streamed in and processed.
In this mode of testing, a prediction is reported every 136 CLK cycles. EMG
hand-gesture recognition for data sets [38, 39] were conducted on the 28nm HDC
processor chip. After loading in the gesture vectors (already pre-trained offline)
into the chip’s Associative Memory, the test trace was streamed in for testing, and
the entire trace was repeated 500 times without break to collect a large enough
sample of PMIC measurements. A total of 261096× 500 ≈ 1.31× 108 CLK cycles
were spent continuously for testing. The chip’s outputs for each non-transition
5-gram contained in the test trace, in every repetition, were compared with
that of the offline software simulation. This routine was repeated for multiple
CLK frequencies and VDD voltages, and the measured energy/classification is
reported if and only if the chip produced the expected outputs (i.e. closest
gesture’s Associative Memory address and its hamming distance to the test’s
encoded hyper-vector) for all non-transition 5-grams during each of the 500
repetitions.

121

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 0
02 04 06 08 01 0 01 2 01 4 01 6 01 8 0

Me
as

ure
d p

ow
er

[m
W]

 at
 VD

D =
 0.

9V
C L K f r e q u e n c y [M H z]

 i d l e t e s t i n g L a n g u a g e
 t e s t i n g E M G 5 g r a m s
 s t r e a m i n g E M G s a m p l e s

Figure 6-17: Measured test power for Language recognition and EMG hand-gesture
recognition at VDD ≈ 1V.

Figure 6-19 plots the measured energy/classification from the testing data
collected. Measurements show that one can reliably conduct gesture recognition,
for less than 40 nJ/classification; specifically 29.28± 0.24 nJ for VDD ≈ 0.6V
and 𝑓 = 4.725 MHz, 34.41 ± 0.24 nJ for VDD ≈ 0.65V and 𝑓 = 4.725 MHz,
39.29± 0.24 nJ for VDD ≈ 0.7V and 𝑓 = 4.725 MHz and 28.59± 0.24 nJ for
VDD ≈ 0.6V, 𝑓 = 5.988 MHz.

EMG gesture classifications consume greater power on chip than language recognition,
as shown in figure 6-17 for VDD ≈ 1V. EMG streaming tests consume greater power
than without since the associative search happens simultaneously with encoding.

Since streaming inputs leads to real-time gesture recognition – a property of
most competitive EMG hand-gesture recognition systems [39, 38, 87] – only the best
measurements for the chip’s streaming tests are considered for comparison with the
available literature. Comparisons are available in table 6.4. Note the following:

1. There is a diversity of number of channels and number of gestures in the EMG
hand-gesture data sets mentioned in table 6.4. All except [39] use gestures with
a single degree-of-freedom; they are considered to be easier to classify and result
in comparatively higher classification accuracy. This chip was verified with both
single-degree-of-freedom gestures (data set from [38]) and multiple-degrees-of-
freedom gestures (data set from [39]). Since energy cost per inference increases
with larger number of channels, the inference energy per channel is considered
as the final metric of efficiency.

2. Streaming in tests increases the throughput of gestures predicted by the HDC
processor chip due to pipelining, but does not change the latency of processing a
gesture. Therefore, even though a gesture label is produced every 136 CLK cycles,
each gesture still needs 707 cycles to be classified by the chip. The resultant
prediction throughput and latency for the reported best energy/prediction
measurement at VDD ≈ 6.0 V and 𝑓 = 5.988 MHz are shown in table 6.4.

3. The left-most three columns of table 6.4 for [176, 177, 178] implements EMG
hand-gesture recognition in 32-bit micro-controllers using different algorithms.
Significantly, [178] employs HDC on a 8-core, ultra-low-power micro-controller
executing an optimized assembly program. Measurements confirm that ASIC
implementation results in at least 3 orders of magnitude greater efficiency than
micro-controllers, similar to CPUs as seen section 3.1.3.

122

5 . 0 5 7 . 3 1 4 . 5 1 9 2 8 3 7 5 0 . 5 7 3 1 4 51 0 1 0 0
1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

1 0 0 0

1 1 0 0
Me

as
ure

d a
ve

rag
e i

nfe
ren

ce
 en

erg
y [

in
nJ

/5g
ram

]
of

51
2 t

es
ts

(i.e
. 5

gra
ms

) fo
r E

MG
 ha

nd
-ge

stu
re

rec
og

nit
ion

C L K f r e q u e n c y [M H z] , i n l o g 1 0 s c a l e

 0 . 6 V 0 . 6 5 V 0 . 7 V
 0 . 7 5 V 0 . 8 V 0 . 8 5 V
 0 . 9 V 0 . 9 5 V 1 V

(a) Measured inference energy vs. CLK frequency

0 . 6 0 0 . 6 5 0 . 7 0 0 . 7 5 0 . 8 0 0 . 8 5 0 . 9 0 0 . 9 5 1 . 0 0
0

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0

1 0 0 0
1 1 0 0
1 2 0 0

Me
as

ure
d a

ve
rag

e i
nfe

ren
ce

 en
erg

y [
in

nJ
/5g

ram
]

of
51

2 t
es

ts
(i.e

. 5
gra

ms
) fo

r E
MG

 ha
nd

-ge
stu

re
rec

og
nit

ion

C o r e s u p p l y v o l t a g e , V D D [V o l t s]

 4 . 7 2 5 M H z 5 . 9 8 8 M H z
 1 4 . 9 3 4 M H z 2 0 . 1 6 1 M H z
 4 0 . 3 3 2 M H z 6 2 . 0 3 4 M H z
 8 0 . 6 4 4 M H z 1 0 0 . 8 0 6 M H z
 1 2 0 . 9 6 7 M H z 1 4 1 . 1 2 8 M H z

(b) Measured inference energy vs. VDD (c) Measurement at VDD ≈ 0.6V, 𝑓 ≈ 6
MHz for subject 2, session 7, trial 1 of
data set [39]

Figure 6-18: Measured energy/prediction for 512 random tests of EMG hand-gesture
recognition classified each 5-gram at a time.

EMG hand-gesture recognition for classifying each 5-gram at a time – without
pipe-lining at the second encoding stage. Both data sets [38] and [39] require 707

cycles/prediction, and hence have same energy/inference.

123

5 . 0 5 7 . 3 1 4 . 5 1 9 2 8 3 7 5 0 . 5 7 3 1 4 51 0 1 0 0
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0
2 2 0
2 4 0

Me
as

ure
d a

ve
rag

e i
nfe

ren
ce

 en
erg

y [
in

nJ
/pr

ed
icti

on
]

wh
en

 st
rea

mi
ng

 18
93

 te
sts

 fo
r E

MG
 ha

nd
-ge

stu
re

rec
og

nit
ion

C L K f r e q u e n c y [M H z] , i n l o g 1 0 s c a l e

 0 . 6 V 0 . 6 5 V 0 . 7 V
 0 . 7 5 V 0 . 8 V 0 . 8 5 V
 0 . 9 V 0 . 9 5 V 1 V

(a) Measured inference energy vs. CLK frequency

0 . 6 0 0 . 6 5 0 . 7 0 0 . 7 5 0 . 8 0 0 . 8 5 0 . 9 0 0 . 9 5 1 . 0 0
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0
2 2 0
2 4 0

Me
as

ure
d a

ve
rag

e i
nfe

ren
ce

 en
erg

y [
in

nJ
/pr

ed
icti

on
]

wh
en

 st
rea

mi
ng

 18
93

 te
sts

 fo
r E

MG
 ha

nd
-ge

stu
re

rec
og

nit
ion

C o r e s u p p l y v o l t a g e , V D D [V o l t s]

 4 . 7 2 5 M H z 5 . 9 8 8 M H z
 1 4 . 9 3 4 M H z 2 0 . 1 6 1 M H z
 4 0 . 3 3 2 M H z 6 2 . 0 3 4 M H z
 8 0 . 6 4 4 M H z 1 0 0 . 8 0 6 M H z
 1 2 0 . 9 6 7 M H z 1 4 1 . 1 2 8 M H z

(b) Measured inference energy vs. VDD (c) Measurement at VDD ≈ 0.6V, 𝑓 ≈ 6
MHz for subject 2, session 7, trial 1 of
data set [39]

Figure 6-19: Measured energy/prediction for 1893 random tests of EMG hand-gesture
recognition with samples streamed in continuously.

EMG hand-gesture recognition was performed by streaming in the entire
measurement time-series, where the Encoder’s pipelines produce 5-grams internally.

Both data sets [38, 39] require 136 cycles/prediction and therefore have same
energy/inference. In (c), a trace from trial 1, session 7 for subject 2 in the data set
[39] was streamed in, containing 1919 5-grams of which 26 were during transitions.

Inferences on the remaining 1893 gestures were considered.

124

4. FPGAs have far greater efficiency than micro-controllers, as shown by [39] – but
still results in more than 50× energy cost compared to the chip.

5. Among the last 3 columns, this chip results in about 5 − 6× greater energy
efficiency per channel. In particular, it is uniformly better than [174] which uses
the same data set [38] as this chip but has ≈ 300× lower prediction throughput.

6. In [179], measurements from 90nm PCM memory were combined with 65nm
post-synthesis logic simulations for EMG hand-gesture recognition on the data
set [19]; as done for EUROPARL language recognition in [70]. The data set [19]
is far more rudimentary compared to data sets [38, 39] tested on this chip: it
has only 4 gestures and needs much higher HDC dimensions to get adequately
high classification accuracy. However, their preliminary results show promise
as the inference energy per channel is only 7.4× of this chip’s. In fact, [179]
can improved further as real-time EMG hand-gesture recognition could function
with far lower HDC dimensions and prediction throughput than theirs.

6.3.3 Robustness of classification accuracy
While the previous sub-sections report the best measured inference energy costs when
the chip’s outputs match simulations exactly, it is instructive to measure the accuracy
while the core supply VDD is reduced further to introduce timing errors in the chip.

HDC literature reports that robustness of classification accuracy with respect
to representation errors is remarkably high. Specifically, [18] simulated a resistive
Associative Memory structure with fine-grained control of the logic gates’ voltage
supply and reported splendid robustness of EUROPARL language recognition accuracy
as a function of the fraction of bits corrupted (the combined fraction of the test hyper-
vector and all language hyper-vectors) during associative search. Their simulations
revealed a gradual decline in classification accuracy with increasing bit-error rate
during associative search (see figure 6-20(a)). Their fine-grained Associative Memory
allowed simulations where voltage supply could be reduced beyond the nominal limits
for only a few logic gates at a time, resulting in a substantial reduction in inference
energy costs (see figure 6-20(b)). Similar conclusions on HDC robustness have been
drawn from simulations of device variability [18, 21].

Since the smallest (error-free) inference energy was observed for 𝑓 = 5.988 MHz
and VDD ≈ 600 mV for both applications, VDD was reduced from ≈ 0.6V to introduce
bit-errors. The READ_ENCODER mode (used in section 6.2.5) was employed to read-out
and compare the chip’s encoded hyper-vectors with simulated hyper-vectors for 64
random tests, revealing the fraction of bit errors introduced. Figure 6-20 (c), (d) plots
the observed error-rates and classification accuracy (averaged over 5000 repetitions
for each VDD voltage) for EUROPARL language recognition and streaming EMG
hand-gesture recognition respectively.

Measurements show that bit-error rate in the test’s encoded hyper-vector is ex-
tremely sensitive to small reductions in VDD (about 10%/mV) . Nevertheless, the
accuracy remains high for bit-error ≤ 40% for both applications. VDD ≤ 557
mV resulted in an output timeout by the chip – indicating a fatal control failure.

125

P
ub

lic
at

io
n:

Tr
an

.
Bi

oC
A

S
20

15
[1

76
]

Tr
an

.
C

A
S-

II
20

17
[1

77
]

Tr
an

.
Bi

oC
A

S
20

19
[1

78
]

N
at

ur
e

El
ec

tr
on

ic
s

20
21

[3
9]

Tr
an

.
C

A
S-

I
20

21
[1

74
]

N
at

ur
e

El
ec

tr
on

ic
s

20
20

[1
79

]
T

hi
s

w
or

k

El
ec

tr
od

e
fre

qu
en

cy
1

K
H

z
1.

6
K

H
z

1
K

H
z

1
K

H
z

1
K

H
z

2
K

H
z

1
K

H
z

Fe
at

ur
es

ex
tr

ac
te

d
en

ve
lo

pe
m

ea
n

ab
s.

va
lu

e
ro

ot
m

ea
n

sq
ua

re
m

ea
n

ab
s.

va
lu

e
m

ea
n

ab
s.

va
lu

e
co

nt
in

ou
s

ite
m

s
[8

7]
m

ea
n

ab
s.

va
lu

e
D

at
a

w
in

do
w

3
m

s
20

0
−

25
0

m
s

60
m

s
25

0
m

s
10

0
m

s
25
−

12
5

m
s

10
0

m
s

[3
8]

,2
50

m
s

[3
9]

In
fe

re
nc

e
al

go
rit

hm
fl

oa
t3

2
SV

M
ne

ur
al

ne
tw

or
ks

H
D

C
H

D
C

H
D

C
H

D
C

H
D

C
H

D
C

di
m

en
sio

n
-(

no
t

H
D

C
)

-(
no

t
H

D
C

)
10

00
0

bi
ts

10
00

bi
ts

20
48

bi
ts

10
00

0
bi

ts
20

48
bi

ts
N

um
be

r
of

ch
an

ne
ls

8,
di

ffe
re

nt
ia

l
4,

di
ffe

re
nt

ia
l

8,
di

ffe
re

nt
ia

l
64

,s
in

gl
e-

en
de

d
64

,s
in

gl
e-

en
de

d
4,

sin
gl

e-
en

de
d

64
,s

in
gl

e-
en

de
d

N
um

be
r

of
su

bj
ec

ts
4

he
al

th
y

4
he

al
th

y
10

he
al

th
y

5
he

al
th

y
(o

ffl
in

e)
,

2
he

al
th

y
(o

nl
in

e)
3

he
al

th
y

5
he

al
th

y
3

he
al

th
y

fo
r

[3
8]

5
+

2
he

al
th

y
fo

r
[3

9]

N
um

be
r

of
ge

st
ur

es
6

+
re

st
10

10
+

re
st

20
+

re
st

4
+

re
st

4
+

re
st

4
+

re
st

fo
r

[3
8]

20
+

re
st

fo
r

[3
9]

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
fo

r
te

st
s

89
.2

0%
94

%
85

%
84

.5
3%

(o
ffl

in
e)

,
92

.8
7%

(o
nl

in
e)

95
.2

%
98

.9
%

96
.6

4%
fo

r
[3

8]
,

84
.5

3%
,9

2.
87

%
fo

r
[3

9]

Pl
at

fo
rm

fo
r

cl
as

sifi
ca

tio
n

90
nm

A
R

M
C

or
te

x
M

4
𝜇

-c
on

tr
ol

le
r

90
nm

A
R

M
C

or
te

x
M

4
𝜇

-c
on

tr
ol

le
r

40
nm

PU
LP

v2
8-

co
re

cl
us

te
r

𝜇
-c

on
tr

ol
le

r
[1

80
]

FP
G

A
(M

ic
ro

se
m

i
M

2S
06

0T
)

A
SI

C
w

ith
22

nm
C

M
O

S

A
SI

C
w

ith
90

nm
PC

M
m

em
or

y,
65

nm
C

M
O

S
lo

gi
c

A
SI

C
w

ith
28

nm
C

M
O

S

D
at

a-
pa

th
w

id
th

32
bi

ts
32

bi
ts

32
bi

ts
-(

FP
G

A
)

20
48

bi
ts

10
00

0
bi

ts
20

48
bi

ts

M
ea

su
re

m
en

t
ty

pe
di

re
ct

ly
fro

m
𝜇

-c
on

tr
ol

le
r

di
re

ct
ly

fro
m

𝜇
-c

on
tr

ol
le

r
di

re
ct

ly
fro

m
𝜇

-c
on

tr
ol

le
r

di
re

ct
ly

fro
m

FP
G

A
po

st
-la

yo
ut

sim
ul

at
io

ns
pa

rt
ly

fro
m

ch
ip

(1
)

di
re

ct
ly

fro
m

ch
ip

C
or

e
su

pp
ly

3.
3

V
3.

3
V

0.
8

V
1.

2
V

0.
6

V
1.

2V
lo

gi
c,

0.
1V

PC
M

0.
6

V
Pr

ed
.

th
ro

ug
hp

ut
≈

10
00

pr
ed

s/
s
≈

50
00

pr
ed

s/
s

27
77

8
pr

ed
s/

s
38

46
2

pr
ed

s/
s

14
7.

5
pr

ed
s/

s
≈

3.
15
×

10
7

pr
ed

s/
s

44
02

9
pr

ed
s/

s
Pr

ed
.

la
te

nc
y

1
m

s
0.

2
m

s
36

us
26

us
6.

78
m

s
-

11
8.

07
us

En
er

gy
/p

re
d.

89
.1

𝜇
J

13
.8

𝜇
J

83
.2

𝜇
J

1.
95

𝜇
J

19
1

nJ
13

.3
nJ

28
.5

9
±

0.
24

nJ
En

er
gy

/p
re

di
ct

io
n

fo
r

ea
ch

ch
an

ne
l

11
.1

4
𝜇

J
3.

45
𝜇

J
10

.4
𝜇

J
30

.4
7

nJ
2.

98
nJ

3.
32

nJ
44

6.
7
±

3.
7

pJ

Ta
bl

e
6.

4:
C

om
pa

ris
on

of
m

ea
su

re
d

en
er

gy
pe

r
in

fe
re

nc
e

fo
r

EM
G

ha
nd

-g
es

tu
re

re
co

gn
iti

on
.

Th
e

re
po

rt
ed

en
er

gy
/c

la
ss

ifi
ca

tio
n

ar
e

fo
rV

D
D

=
0.

6
V

an
d

CL
K

fre
qu

en
cy

is
5.

98
8

M
H

z
wh

en
st

re
am

in
g

in
te

st
in

pu
ts

fo
rE

M
G

ha
nd

-g
es

tu
re

re
co

gn
iti

on
.

A
ll

da
ta

se
ts

ex
ce

pt
[3

9]
us

e
sin

gl
e-

de
gr

ee
-o

f-f
re

ed
om

ge
st

ur
es

.
(1

) T
he

Ph
as

e-
C

ha
ng

e
M

em
or

y
(P

C
M

)
m

ea
su

re
m

en
ts

in
[7

0]
,i

m
pl

em
en

tin
g

th
e

A
ss

oc
ia

tiv
e

M
em

or
y

an
d

2-
m

in
te

rm
ap

pr
ox

im
at

io
n

(fo
r

bi
nd

in
g

𝑛
-g

ra
m

s
du

rin
g

en
co

di
ng

),
we

re
do

ne
di

re
ct

ly
on

ch
ip

–
re

st
of

its
da

ta
-p

at
h

wa
s

sim
ul

at
ed

po
st

-s
yn

th
es

is
in

65
nm

C
M

O
S.

126

(a) Figure 1 of [18]: Robustness of EU-
ROPARL language recognition’s accu-
racy against bit-errors.

(b) Figure 5 of [18]: EUROPARL lan-
guage recognition’s robustness may be
harnessed for energy savings with fine-
grained sampling or voltage overscaling.

5 6 0 5 7 0 5 8 0 5 9 0 6 0 0
3 04 05 06 07 08 09 01 0 0

R o b u s t n e s s o f E U R O P A R L l a n g u a g e r e c o g n i t i o n

C o r e s u p p l y v o l t a g e , V D D [m V]

Ac
cu

rac
y [

%] 3 0 . 0 2 n J
3 0 . 2 1 n J

2 9 . 1 3 n J2 8 . 0 5 n J
2 7 . 6 2 n J

2 7 . 3 1 n J
2 6 . 9 8 n J2 6 . 8 2 n J

2 6 . 5 6 n J 0
1 0
2 0
3 0
4 0
5 0

Av
g.

bit
 flip

s [
%]

 of
 en

co
de

d
tes

t h
yp

er-
ve

cto
rs

(c) Observed on-chip accuracy robustness and bit-errors in encoded test hyper-
vectors for 𝑓 = 5.988 MHz. Measured inference energy costs are annotated.

5 6 0 5 7 0 5 8 0 5 9 0 6 0 0 6 1 0
9 5 . 0
9 5 . 5
9 6 . 0
9 6 . 5
9 7 . 0
9 7 . 5
9 8 . 0
9 8 . 5

R o b u s t n e s s o f E M G h a n d - g e s t u r e r e c o g n i t i o n (s t r e a m i n g)

C o r e s u p p l y v o l t a g e , V D D [m V]

Ac
cu

rac
y [

%] 2 8 . 6 0 n J
2 7 . 2 2 n J

2 6 . 4 6 n J
2 5 . 6 0 n J

2 4 . 6 2 n J
2 4 . 3 6 n J

2 4 . 1 1 n J

0
1 0
2 0
3 0
4 0
5 0

Av
g.

bit
 flip

s [
%]

 of
 en

co
de

d
tes

t h
yp

er-
ve

cto
rs

(d) Observed on-chip accuracy robustness and bit-errors in encoded test hyper-
vectors for 𝑓 = 5.988 MHz. Measured inference energy costs are annotated.

Figure 6-20: Measured robustness of classification accuracy with voltage over-scaling.
In [18], EUROPARL language recognition’s accuracy simulations with varying bit

flips in encoded and language hyper-vectors during associative search showed
significant tolerance (a) and potential for energy savings (b). Measurements from chip

for EUROPARL language recognition (c) and streaming EMG hand-gesture
recognition (d) for VDD ≤ 0.6V and CLK frequency 𝑓 = 5.988 MHz are shown.

127

Chapter 7

Conclusions

The principal contributions of this dissertation may be summarized as follows:

1. The Generic HDC architecture. Inferring from the uniquely high-dimensional
data-path width and symbolic nature of HDC operations, a reasonable restric-
tion of arbitrarily-programmable architectures for efficient hyper-dimensional
computing was specified. This body of arguments, described in chapters 3 and
4, form the foundational core of this study.

2. A probability-inspired numerical normalization for integer HDC. After
identifying the core bottleneck in feasibility of multi-bit HDC data-paths, chapter
5 derives a method of numerical normalization of integer hyper-vectors stored
in the Associative Memory. The proposed method is proven to be effective
in universally limiting the bit-precision of the hyper-vectors’ elements when
their empirical distribution is reasonably Gaussian. This normalization could be
utilized in an efficient integer processor for hyper-dimensional computing.

3. A pioneering HDC processor was manufactured, tested and measured.
Chapter 6 describes the 2048-dimensional binary HDC chip fabricated in a 28nm
technology node, which is a pioneering contribution in the following manner:

(a) This is the first chip that contains a HDC processor in its en-
tirety. All hyper-vectors are computed in full width. No off-chip memory is
required for its functioning and no part of the HDC algorithm is computed
outside the chip.
In contrast, [136] and [21] do not support full-width hyper-vectors, and [70]
simulates a portion of its data-path.

(b) This is the first HDC chip that can be programmed to handle
a multitude of algorithms with a great diversity in data-rates
and data channels. All generic HDC algorithms complying with the
uni-directional hyper-vector flow described in section 3.3.4; using ≤ 1024
random item hyper-vectors and ≤ 32 Associative Memory prototype hyper-
vectors; and requiring at most 2 encoding stages, with ≤ 2 and ≤ 7
HLU layers in each respective stage, can be computed using this chip. In

128

particular, this chip can perform all 7 supervised classification tasks listed
in table 4.1 of section 4.3.1. In contrast, [21] and [136] can perform only
language recognition.
Furthermore, all supported encoding algorithms are computed exactly. This
is unlike [70] where only a 2-minterm approximation of the 𝑛-gram encoding
algorithm can be implemented.

(c) Measurements establish this chip to be the most energy-efficient
for both tested applications. In chapter 6, tables 6.3 and 6.4 present
comparisons for both benchmarks tested on chip (see table 6.1). As per the
author’s knowledge, this chip is also the most efficient classifier as validated
by measurements – for both language recognition of transliterated texts
and EMG hand-gesture recognition – using any classification algorithm
other than HDC.
The results reported in [70, 179] are a close second for both applications.
However, they contain measurements for only the PCM memory in the data
path – the rest was simulated after synthesis. Nevertheless, their estimates
indicate a potential to surpass this chip in energy efficiency. It is yet be
validated with on-chip measurements – preferably after adapting to the
real-time data-rates of the applications (it currently has needlessly high
prediction throughput).

(d) Measurements establish HDC robustness for tested applications.
While [21] simulates the effect of RRAM variability (measured from chip) on
the classification accuracy, [136] provided the first measured confirmation
of robustness to stuck-at faults seen in chip’s outputs.
Measurements on this chip (see figure 6-20) provides further evidence of
HDC robustness for language recognition. Importantly, it furnishes first-
ever evidence for real-time robustness of EMG hand-gesture recognition.

(e) This is the first HDC processor designed and fabricated using
only conventional digital logic and memory. While [21, 136, 70]
describe ASICs using emerging memory technologies such as PCM and
RRAMs, or novel logic devices such as CNFETs, no known ASIC exists
that was designed and manufactured using only conventional 𝑛-MOSFETs
and 𝑝-MOSFETs.
Such an ASIC is necessary to establish a competitive baseline against
which HDC systems designed and manufactured with advanced technology
can be compared. This chip provides such a baseline; it would facilitate in
isolating the novel technology’s contribution to system’s overall efficiency.

129

Figure 7-1: HDC is suitable paradigm for human-centric computing.
A network of intelligent sensors, actuators and efficient processors could form an

on-body computing fabric in the future. An ultra-low-power processor core capable of
functioning with energy harvested from the ambience is the key enabling technology.

First expressed in the abstract [181], an inter-connected network of intelligent
sensors, actuators and highly efficient processors (illustrated in figure 7-1) could form
a computing fabric on a user’s person. Successful applications could be monitoring
health and emotional state, recognize and assist in postures and daily activities and
administering telemedicine. HDC was identified in [181] due to its potential for
ultra-low-power processing at extremely energy-constrained environments.

The chip measurements presented in this dissertation confirm the effectiveness of
HDC. By reliably achieving ≈ 30 nJ per gesture classification, it provides evidence
that the technology may have matured to the point where a system like that is feasible.
Such a project could begin by build on the setup described in [39] to create an on-body
activity and health monitoring system. Electrode arrays could be stitched into the
user’s clothes, securely transmitting real-time data sensed from their entire body to a
central hub containing an HDC processor chip, memory and battery. The processor
could be used to train and classify incoming channel values and recognize the user’s
physical stress levels, activity states; or combine them with other types of body-sensing
data. The classification labels may then be utilized to provide services to the user
– such as estimate daily calories expended, suggest physical exercises and massages,
monitor long-term health, and so on.

130

There are several other fruitful research directions where this work may be improved
upon and extended in the author’s opinion.
∙ The chip’s Item and Associative memories are rudimentary. Sections 4.2.1 and

4.2.2 list a few advanced implementations for these memories respectively.
∙ An asynchronous or stochastic implementation of HDC processor is an interesting

research direction. A comparison with such implementations with this work
could reveal interesting design patterns for greater energy efficiency.
∙ Non-binary HDC implementations would be the natural next step of this chip.

In particular, a design with the proposed normalization on-chip would be a great
resource to analyze the efficiency and robustness estimated in section 5.4.
∙ The theoretical analysis of the proposed normalization in chapter 3 can be

extended as well. A future work could generalize the result to other applications
with prototype hyper-vectors obeying other distributions such as the truncated
Normal, Beta and Pareto distributions and other members of Sub-Gaussian,
Sub-Gamma and Exponential families.
∙ The Generic HDC architecture may be adapted and specialized for ultra-high

efficiency in target applications. For instance, the EMG pre-processing logic
could be augmented to a specialized HDC data-path for ultra-efficient gesture
or activity recognition using EMG signals collected from a subjects body in real
time.
A similar design combining the pre-processor and the classifier for hand-gestures
using visual frames captured by a camera in real time is described in [182].
However, they are expensive to train, are vulnerable to visual interference such
as flashes and background artifacts, and reduce in effectiveness when the subject
is far away, in vigorous kinetic motion or is occluded.
∙ Finally, a system of HDC processors as a part of a larger network of diverse

computation cores, or hybrid designs for HDC and neural networks (such as
[183]) are great project ideas.

131

Finally, this work required a sustained and elaborate design effort for the fabricated
HDC processor chip. During this period, important lessons were learned that could
greatly improve the productivity of designers and the quality of the overall design
experience. The most prominent lessons are listed below:

1. When constructing an ASIC design, include all necessary test modes and
capabilities in the design. This encourages the designers to develop a testing
strategy far earlier in the design cycle, which in turn improves the productivity
while writing RTL source code.
Furthermore, any estimates and analysis of the design will always include the
testing overhead – a necessary overhead for all hardware to function properly
after manufacturing. Analysis without testing overhead is very likely to produce
an (unreasonably) optimistic result.

2. Ensure thorough testing of the design’s functionality and performance-
enhancement features. Proper testing is necessary for designs intended to
be manufactured and measured as the entire process is very expensive in time,
designer-months, financial and computing resources. To organize this effort, it
helps to sequentially number each feature that is intended in the design, begin-
ning with the lowest-level feature. For composite features requiring multiple
simple features, list all constituents explicitly.
Similarly, it helps to number and administer tests in an order that progressively
establishes correctness of the chip (with high confidence) – beginning with the
lowest-level features. When designing a collection of tests for a complex or
composite feature, ensure that the collection is necessary and sufficient to argue
the feature’s correctness.

3. Complete a pass through all stage of silicon design as early as possible.
This helps new and inexperienced designers to gain familiarity with all the stages
in silicon design early, and helps tremendously in identifying bottlenecks related
to compute resources, EDA software versions and licenses, and physical design
libraries.

4. Strongly prefer any possible reuse of previous designs and cells. Given
the intensity of effort required, it is far more beneficial to reuse previously
compiled and tested net-lists and silicon designs wherever possible. Reuse
may be desirable over a new design even if a degradation in final efficiency is
anticipated as it greatly increases the odds of successful completion.

5. Plan the peripheral testing strategy before manufacturing the design.
The peripheral testing strategy includes designing all required printed-circuit
boards, listing all required packages, PCB components and test equipments; and
any special signal considerations when testing and measuring the chip. This
greatly reduces the chance of errors in the testing setup before the irreversible
and expensive step of committing a design for manufacturing.

132

Bibliography

[1] C. A. Mack, “Fifty years of moore’s law,” IEEE Transactions on Semiconductor
Manufacturing, vol. 24, pp. 202–207, May 2011.

[2] R. Dennard, F. Gaensslen, H.-N. Yu, V. Rideout, E. Bassous, and A. LeBlanc,
“Design of ion-implanted mosfet’s with very small physical dimensions,” IEEE
Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[3] S. Salahuddin, K. Ni, and S. Datta, “The era of hyper-scaling in electronics,”
Nature Electronics, vol. 1, no. 8, p. 442, 2018.

[4] S. Borkar, “Designing reliable systems from unreliable components: the chal-
lenges of transistor variability and degradation,” IEEE Micro, vol. 25, pp. 10–16,
Nov 2005.

[5] T. N. Theis and H.-S. P. Wong, “The end of moore’s law: A new beginning for
information technology,” Computing in Science & Engineering, vol. 19, no. 2,
pp. 41–50, 2017.

[6] H. Chen, R. H. Chiang, and V. C. Storey, “Business intelligence and analytics:
from big data to big impact,” MIS quarterly, pp. 1165–1188, 2012.

[7] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud computing:
architecture, applications, and approaches,” Wireless communications and mobile
computing, vol. 13, no. 18, pp. 1587–1611, 2013.

[8] Y.-B. Kim, “Challenges for nanoscale mosfets and emerging nanoelectronics,”
Transactions on Electrical and Electronic Materials, vol. 11, no. 3, pp. 93–105,
2010.

[9] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge,
“Near-threshold computing: Reclaiming moore’s law through energy efficient
integrated circuits,” Proceedings of the IEEE, vol. 98, pp. 253–266, Feb 2010.

[10] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,
“Dark silicon and the end of multicore scaling,” in 2011 38th Annual International
Symposium on Computer Architecture (ISCA), pp. 365–376, June 2011.

[11] J. Von Neumann, “Probabilistic logics and the synthesis of reliable organisms
from unreliable components,” Automata studies, vol. 34, pp. 43–98, 1956.

133

[12] R. Sarpeshkar, “Analog versus digital: extrapolating from electronics to neuro-
biology,” Neural computation, vol. 10, no. 7, pp. 1601–1638, 1998.

[13] R. Echeveste, L. Aitchison, G. Hennequin, and M. Lengyel, “Cortical-like dy-
namics in recurrent circuits optimized for sampling-based probabilistic inference,”
Nature neuroscience, vol. 23, no. 9, pp. 1138–1149, 2020.

[14] A. Rahimi, S. Datta, D. Kleyko, E. P. Frady, B. Olshausen, P. Kanerva, and
J. M. Rabaey, “High-dimensional computing as a nanoscalable paradigm,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 9, pp. 2508–
2521, 2017.

[15] A. Rahimi, P. Kanerva, L. Benini, and J. M. Rabaey, “Efficient biosignal
processing using hyperdimensional computing: Network templates for combined
learning and classification of exg signals,” Proceedings of the IEEE, vol. 107,
pp. 123–143, Jan 2019.

[16] P. Kanerva, “Hyperdimensional computing: An introduction to computing in
distributed representation with high-dimensional random vectors,” Cognitive
Computation, vol. 1, no. 2, pp. 139–159, 2009.

[17] P. Kanerva, Sparse distributed memory. MIT press, 1988.

[18] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring
hyperdimensional associative memory,” in 2017 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pp. 445–456, Feb 2017.

[19] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-efficient classifier
using brain-inspired hyperdimensional computing,” in Proceedings of the 2016
International Symposium on Low Power Electronics and Design, ISLPED ’16,
(New York, NY, USA), pp. 64–69, ACM, 2016.

[20] T. F. Wu, H. Li, P. C. Huang, A. Rahimi, J. M. Rabaey, H. S. P. Wong, M. M.
Shulaker, and S. Mitra, “Brain-inspired computing exploiting carbon nanotube
fets and resistive ram: Hyperdimensional computing case study,” in 2018 IEEE
International Solid - State Circuits Conference - (ISSCC), pp. 492–494, Feb
2018.

[21] H. Li, T. F. Wu, A. Rahimi, K. S. Li, M. Rusch, C. H. Lin, J. L. Hsu, M. M.
Sabry, S. B. Eryilmaz, J. Sohn, W. C. Chiu, M. C. Chen, T. T. Wu, J. M. Shieh,
W. K. Yeh, J. M. Rabaey, S. Mitra, and H. S. P. Wong, “Hyperdimensional
computing with 3d vrram in-memory kernels: Device-architecture co-design for
energy-efficient, error-resilient language recognition,” in 2016 IEEE International
Electron Devices Meeting (IEDM), pp. 16.1.1–16.1.4, Dec 2016.

[22] M. Imani, C. Huang, D. Kong, and T. Rosing, “Hierarchical hyperdimensional
computing for energy efficient classification,” in Proceedings of the 55th Annual
Design Automation Conference, DAC ’18, (New York, NY, USA), pp. 108:1–
108:6, ACM, 2018.

134

[23] M. Radovanović, A. Nanopoulos, and M. Ivanović, “On the existence of obstinate
results in vector space models,” in Proceedings of the 33rd International ACM
SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’10, (New York, NY, USA), p. 186–193, Association for Computing
Machinery, 2010.

[24] V. Pestov, “Is the k-nn classifier in high dimensions affected by the curse of
dimensionality?,” Computers & Mathematics with Applications, vol. 65, no. 10,
pp. 1427–1437, 2013. Grasping Complexity.

[25] I. Assent, “Clustering high dimensional data,” Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, vol. 2, no. 4, pp. 340–350, 2012.

[26] G. Geenens, “Curse of dimensionality and related issues in nonparametric
functional regression,” Statistics Surveys, vol. 5, pp. 30–43, 2011.

[27] T. A. Plate, “Holographic reduced representations,” IEEE Transactions on
Neural networks, vol. 6, no. 3, pp. 623–641, 1995.

[28] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5, no. 4,
pp. 115–133, 1943.

[29] D. A. Rachkovskij, “Representation and processing of structures with binary
sparse distributed codes,” IEEE transactions on Knowledge and Data Engineer-
ing, vol. 13, no. 2, pp. 261–276, 2001.

[30] P. Blouw, E. Solodkin, P. Thagard, and C. Eliasmith, “Concepts as semantic
pointers: A framework and computational model,” Cognitive science, vol. 40,
no. 5, pp. 1128–1162, 2016.

[31] R. W. Gayler, “Vector symbolic architectures answer jackendoff’s challenges for
cognitive neuroscience,” arXiv preprint cs/0412059, 2004.

[32] S. Datta, R. A. G. Antonio, A. R. S. Ison, and J. M. Rabaey, “A programmable
hyper-dimensional processor architecture for human-centric iot,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 3, pp. 439–
452, 2019.

[33] A. DasGupta, Normal Approximations and the Central Limit Theorem, pp. 213–
242. New York, NY: Springer New York, 2010.

[34] M. Okamoto, “Some inequalities relating to the partial sum of binomial probabil-
ities,” Annals of the institute of Statistical Mathematics, vol. 10, no. 1, pp. 29–35,
1959.

[35] P. Kanerva, “Some properties of the space {0, 1}𝑛,” in Sparse distributed memory,
ch. 1, pp. 18–22, MIT press, 1988.

135

[36] M. Ledoux, The concentration of measure phenomenon. No. 89, American
Mathematical Soc., 2001.

[37] L. Ge and K. K. Parhi, “Classification using hyperdimensional computing: A
review,” IEEE Circuits and Systems Magazine, vol. 20, no. 2, pp. 30–47, 2020.

[38] A. Moin, A. Zhou, A. Rahimi, S. Benatti, A. Menon, S. Tamakloe, J. Ting,
N. Yamamoto, Y. Khan, F. Burghardt, L. Benini, A. C. Arias, and J. M. Rabaey,
“An emg gesture recognition system with flexible high-density sensors and brain-
inspired high-dimensional classifier,” in 2018 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–5, May 2018.

[39] A. Moin, A. Zhou, A. Rahimi, A. Menon, S. Benatti, G. Alexandrov, S. Tamak-
loe, J. Ting, N. Yamamoto, Y. Khan, et al., “A wearable biosensing system
with in-sensor adaptive machine learning for hand gesture recognition,” Nature
Electronics, vol. 4, no. 1, pp. 54–63, 2021.

[40] A. Menon, D. Sun, M. Aristio, H. Liew, K. Lee, and J. M. Rabaey, “A highly
energy-efficient hyperdimensional computing processor for wearable multi-modal
classification,” in 2021 IEEE Biomedical Circuits and Systems Conference (Bio-
CAS), pp. 1–4, 2021.

[41] Y. Kim, M. Imani, N. Moshiri, and T. Rosing, “Geniehd: Efficient dna pat-
tern matching accelerator using hyperdimensional computing,” in 2020 Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 115–120, 2020.

[42] S. Gupta, M. Imani, B. Khaleghi, V. Kumar, and T. Rosing, “Rapid: A
reram processing in-memory architecture for dna sequence alignment,” in 2019
IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED), pp. 1–6, 2019.

[43] I. Barclay, C. Simpkin, G. Bent, T. La Porta, D. Millar, A. Preece, I. Taylor,
and D. Verma, “Trustable service discovery for highly dynamic decentralized
workflows,” Future Generation Computer Systems, 2022.

[44] A. Burrello, K. Schindler, L. Benini, and A. Rahimi, “Hyperdimensional com-
puting with local binary patterns: One-shot learning of seizure onset and
identification of ictogenic brain regions using short-time ieeg recordings,” IEEE
Transactions on Biomedical Engineering, vol. 67, no. 2, pp. 601–613, 2020.

[45] A. Burrello, L. Cavigelli, K. Schindler, L. Benini, and A. Rahimi, “Laelaps: An
energy-efficient seizure detection algorithm from long-term human ieeg recordings
without false alarms,” in 2019 Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 752–757, 2019.

[46] D. Kleyko, C. Bybee, C. J. Kymn, B. A. Olshausen, A. Khosrowshahi, D. E.
Nikonov, F. T. Sommer, and E. P. Frady, “Integer factorization with composi-
tional distributed representations,” arXiv preprint arXiv:2203.00920, 2022.

136

[47] Y. Yao, W. Liu, G. Zhang, and W. Hu, “Radar-based human activity recognition
using hyperdimensional computing,” IEEE Transactions on Microwave Theory
and Techniques, vol. 70, no. 3, pp. 1605–1619, 2022.

[48] P. R. Genssler and H. Amrouch, “Brain-inspired computing for circuit reliability
characterization,” IEEE Transactions on Computers, pp. 1–1, 2022.

[49] D. Ma, S. Zhang, and X. Jiao, “Hdcoin: A proof-of-useful-work based blockchain
for hyperdimensional computing,” arXiv preprint arXiv:2202.02964, 2022.

[50] W. He, Y. Ye, T. Pan, Q. Meng, and Y. Li, “Emotion recognition from ecg
signals contaminated by motion artifacts,” in 2021 International Conference on
Intelligent Technology and Embedded Systems (ICITES), pp. 125–130, 2021.

[51] B. Khaleghi, M. Imani, and T. Rosing, “Prive-hd: Privacy-preserved hyperdi-
mensional computing,” in 2020 57th ACM/IEEE Design Automation Conference
(DAC), pp. 1–6, 2020.

[52] K. Schlegel, F. Mirus, P. Neubert, and P. Protzel, “Multivariate time series anal-
ysis for driving style classification using neural networks and hyperdimensional
computing,” in 2021 IEEE Intelligent Vehicles Symposium (IV), pp. 602–609,
2021.

[53] Y. Guo, M. Imani, J. Kang, S. Salamat, J. Morris, B. Aksanli, Y. Kim, and
T. Rosing, “Hyperrec: Efficient recommender systems with hyperdimensional
computing,” in 2021 26th Asia and South Pacific Design Automation Conference
(ASP-DAC), pp. 384–389, 2021.

[54] M. Hersche, S. Lippuner, M. Korb, L. Benini, and A. Rahimi, “Near-channel
classifier: symbiotic communication and classification in high-dimensional space,”
Brain Informatics, vol. 8, no. 1, pp. 1–15, 2021.

[55] F. Cumbo, E. Cappelli, and E. Weitschek, “A brain-inspired hyperdimensional
computing approach for classifying massive dna methylation data of cancer,”
Algorithms, vol. 13, no. 9, p. 233, 2020.

[56] M. Hersche, E. M. Rella, A. Di Mauro, L. Benini, and A. Rahimi, “Integrating
event-based dynamic vision sensors with sparse hyperdimensional computing:
A low-power accelerator with online learning capability,” in Proceedings of the
ACM/IEEE International Symposium on Low Power Electronics and Design,
ISLPED ’20, (New York, NY, USA), p. 169–174, Association for Computing
Machinery, 2020.

[57] Y. Ma, M. Hildebrandt, V. Tresp, and S. Baier, “Holistic representations for
memorization and inference.,” in UAI, pp. 403–413, 2018.

[58] A. Mitrokhin, P. Sutor, C. Fermüller, and Y. Aloimonos, “Learning sensorimotor
control with neuromorphic sensors: Toward hyperdimensional active perception,”
Science Robotics, vol. 4, no. 30, p. eaaw6736, 2019.

137

[59] B. Cheung, A. Terekhov, Y. Chen, P. Agrawal, and B. A. Olshausen, “Superpo-
sition of many models into one,” CoRR, vol. abs/1902.05522, 2019.

[60] M. Hersche, M. Zeqiri, L. Benini, A. Sebastian, and A. Rahimi, “A neuro-vector-
symbolic architecture for solving raven’s progressive matrices,” arXiv preprint
arXiv:2203.04571, 2022.

[61] M. Hersche, G. Karunaratne, G. Cherubini, L. Benini, A. Sebastian, and
A. Rahimi, “Constrained few-shot class-incremental learning,” 2022.

[62] J. Yang, Y. Sheng, S. Zhang, R. Wang, K. Foreman, M. Paige, X. Jiao, W. Jiang,
and L. Yang, “Automated architecture search for brain-inspired hyperdimensional
computing,” arXiv preprint arXiv:2202.05827, 2022.

[63] P. Kanerva, “What we mean when we say" what’s the dollar of mexico?":
Prototypes and mapping in concept space.,” in AAAI fall symposium: quantum
informatics for cognitive, social, and semantic processes, pp. 2–6, 2010.

[64] D. Kleyko, D. A. Rachkovskij, E. Osipov, and A. Rahimi, “A survey on hyper-
dimensional computing aka vector symbolic architectures, part i: Models and
data transformations,” arXiv preprint arXiv:2111.06077, 2021.

[65] A. Joshi, J. T. Halseth, and P. Kanerva, “Language geometry using random
indexing,” in International Symposium on Quantum Interaction, pp. 265–274,
Springer, 2016.

[66] C. E. Shannon, “A mathematical theory of communication,” The Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[67] T. Vatanen, J. J. Väyrynen, and S. Virpioja, “Language identification of short
text segments with n-gram models.,” in LREC, 2010.

[68] J. F. D. Silva and G. P. Lopes, “Identification of document language is not
yet a completely solved problem,” in 2006 International Conference on Com-
putational Inteligence for Modelling Control and Automation and International
Conference on Intelligent Agents Web Technologies and International Commerce
(CIMCA’06), pp. 212–212, Nov 2006.

[69] S. F. Chen and J. Goodman, “An empirical study of smoothing techniques for
language modeling,” Computer Speech & Language, vol. 13, no. 4, pp. 359–394,
1999.

[70] G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi, and A. Se-
bastian, “In-memory hyperdimensional computing,” Nature Electronics, vol. 3,
no. 6, pp. 327–337, 2020.

[71] G. Karunaratne, A. Rahimi, M. L. Gallo, G. Cherubini, and A. Sebastian,
“Real-time language recognition using hyperdimensional computing on phase-
change memory array,” in 2021 IEEE 3rd International Conference on Artificial
Intelligence Circuits and Systems (AICAS), pp. 1–1, 2021.

138

[72] G. Karunaratne, M. Schmuck, M. Le Gallo, G. Cherubini, L. Benini, A. Sebastian,
and A. Rahimi, “Robust high-dimensional memory-augmented neural networks,”
Nature communications, vol. 12, no. 1, pp. 1–12, 2021.

[73] X. Yin, F. Müller, Q. Huang, C. Li, M. Imani, Z. Yang, J. Cai, M. Lederer,
R. Olivo, N. Laleni, et al., “An ultra-compact single fefet binary and multi-bit
associative search engine,” arXiv preprint arXiv:2203.07948, 2022.

[74] M. Eggimann, A. Rahimi, and L. Benini, “A 5 uw standard cell memory-
based configurable hyperdimensional computing accelerator for always-on smart
sensing,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68,
no. 10, pp. 4116–4128, 2021.

[75] S. Salamat, M. Imani, B. Khaleghi, and T. Rosing, “F5-hd: Fast flexible fpga-
based framework for refreshing hyperdimensional computing,” in Proceedings of
the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, FPGA ’19, (New York, NY, USA), p. 53–62, Association for Computing
Machinery, 2019.

[76] M. Imani, J. Messerly, F. Wu, W. Pi, and T. Rosing, “A binary learning
framework for hyperdimensional computing,” in 2019 Design, Automation Test
in Europe Conference Exhibition (DATE), pp. 126–131, 2019.

[77] P. Poduval, M. Issa, F. Imani, C. Zhuo, X. Yin, H. Najafi, and M. Imani,
“Robust in-memory computing with hyperdimensional stochastic representa-
tion,” in 2021 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH), pp. 1–6, 2021.

[78] A. Hernández-Cano, C. Zhuo, X. Yin, and M. Imani, Real-Time and Robust
Hyperdimensional Classification, p. 397–402. New York, NY, USA: Association
for Computing Machinery, 2021.

[79] Y. Kim, M. Imani, and T. S. Rosing, “Efficient human activity recognition using
hyperdimensional computing,” in Proceedings of the 8th International Conference
on the Internet of Things, IOT ’18, (New York, NY, USA), pp. 38:1–38:6, ACM,
2018.

[80] S. Benatti, F. Montagna, V. Kartsch, A. Rahimi, D. Rossi, and L. Benini,
“Online learning and classification of emg-based gestures on a parallel ultra-low
power platform using hyperdimensional computing,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 13, no. 3, pp. 516–528, 2019.

[81] M. Hersche, E. M. Rella, A. Di Mauro, L. Benini, and A. Rahimi, “Integrating
event-based dynamic vision sensors with sparse hyperdimensional computing:
A low-power accelerator with online learning capability,” in Proceedings of the
ACM/IEEE International Symposium on Low Power Electronics and Design,
ISLPED ’20, (New York, NY, USA), p. 169–174, Association for Computing
Machinery, 2020.

139

[82] F. Montagna, A. Rahimi, S. Benatti, D. Rossi, and L. Benini, “Pulp-hd: Accel-
erating brain-inspired high-dimensional computing on a parallel ultra-low power
platform,” in Proceedings of the 55th Annual Design Automation Conference,
DAC ’18, (New York, NY, USA), pp. 111:1–111:6, ACM, 2018.

[83] P. Poduval, H. Alimohamadi, A. Zakeri, F. Imani, M. H. Najafi, T. Givargis, and
M. Imani, “Graphd: Graph-based hyperdimensional memorization for brain-like
cognitive learning,” Frontiers in Neuroscience, vol. 16, 2022.

[84] A. Rahimi, P. Kanerva, L. Benini, and J. M. Rabaey, “Efficient biosignal
processing using hyperdimensional computing: Network templates for combined
learning and classification of exg signals,” Proceedings of the IEEE, vol. 107,
no. 1, pp. 123–143, 2019.

[85] M. Imani, Z. Zou, S. Bosch, S. A. Rao, S. Salamat, V. Kumar, Y. Kim, and
T. Rosing, “Revisiting hyperdimensional learning for fpga and low-power ar-
chitectures,” in 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pp. 221–234, 2021.

[86] A. Rahimi, P. Kanerva, L. Benini, and J. M. Rabaey, “Efficient biosignal
processing using hyperdimensional computing: Network templates for combined
learning and classification of exg signals,” Proceedings of the IEEE, vol. 107,
no. 1, pp. 123–143, 2019.

[87] A. Rahimi, S. Benatti, P. Kanerva, L. Benini, and J. M. Rabaey, “Hyperdimen-
sional biosignal processing: A case study for emg-based hand gesture recognition,”
in Rebooting Computing (ICRC), IEEE International Conference on, pp. 1–8,
IEEE, 2016.

[88] A. Moin, A. Zhou, S. Benatti, A. Rahimi, L. Benini, and J. M. Rabaey, “Analysis
of contraction effort level in emg-based gesture recognition using hyperdimen-
sional computing,” in 2019 IEEE Biomedical Circuits and Systems Conference
(BioCAS), pp. 1–4, 2019.

[89] “Prior releases of european parliament proceedings parallel corpus.” https:
//www.statmt.org/europarl/archives.html. Accessed: 30 January 2022.

[90] “European parliament proceedings parallel corpus 1996-2011.” https://www.
statmt.org/europarl/index.html. Accessed: 30 January 2022.

[91] J. Schmidhuber, “Multi-column deep neural networks for image classification,”
in Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), CVPR ’12, (Washington, DC, USA), pp. 3642–3649, IEEE
Computer Society, 2012.

[92] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks
for image classification,” in 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3642–3649, 2012.

140

https://www.statmt.org/europarl/archives.html
https://www.statmt.org/europarl/archives.html
https://www.statmt.org/europarl/index.html
https://www.statmt.org/europarl/index.html

[93] D. Franklin, “Nvidia jetson tx2 delivers twice the intelligence to
the edge.” https://devblogs.nvidia.com/jetson-tx2-delivers-twice-
intelligence-edge/, 2017.

[94] Texas Instruments, INA226 High-Side or Low-Side Measurement, Bi-Directional
Current and Power Monitor with I2C Compatible Interface, 2011.

[95] A. O. Troy Hanson, “Ut-hash: A hash table for c structures.” https://
troydhanson.github.io/uthash/, 2017.

[96] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector machines,”
ACM transactions on intelligent systems and technology (TIST), vol. 2, no. 3,
p. 27, 2011.

[97] “Kann.” https://github.com/attractivechaos/kann, 2018.

[98] “perf: Linux profiling with performance counters.” https://perf.wiki.kernel.
org/index.php/Main_Page.

[99] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic
binary instrumentation,” ACM Sigplan notices, vol. 42, no. 6, pp. 89–100, 2007.

[100] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015.
Software available from tensorflow.org.

[101] Z. Wen, J. Shi, Q. Li, B. He, and J. Chen, “ThunderSVM: A fast SVM library
on GPUs and CPUs,” Journal of Machine Learning Research, vol. 19, pp. 1–5,
2018.

[102] M. D. Hill and V. J. Reddi, “Accelerator-level parallelism,” Commun. ACM,
vol. 64, p. 36–38, nov 2021.

[103] S. Salamat, M. Imani, B. Khaleghi, and T. Rosing, “F5-hd: Fast flexible fpga-
based framework for refreshing hyperdimensional computing,” in Proceedings of
the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, FPGA ’19, (New York, NY, USA), p. 53–62, Association for Computing
Machinery, 2019.

[104] D. Rossi, I. Loi, A. Pullini, C. Müller, A. Burg, F. Conti, L. Benini, and
P. Flatresse, “A self-aware architecture for pvt compensation and power nap in
near threshold processors,” IEEE Design Test, vol. 34, pp. 46–53, Dec 2017.

141

https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
https://troydhanson.github.io/uthash/
https://troydhanson.github.io/uthash/
https://github.com/attractivechaos/kann
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page

[105] A. Coates and A. Y. Ng, “The importance of encoding versus training with
sparse coding and vector quantization,” in Proceedings of the 28th international
conference on machine learning (ICML-11), pp. 921–928, 2011.

[106] G. E. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior of
several methods for balancing machine learning training data,” ACM SIGKDD
explorations newsletter, vol. 6, no. 1, pp. 20–29, 2004.

[107] C. E. Shannon, “The synthesis of two-terminal switching circuits,” The Bell
System Technical Journal, vol. 28, no. 1, pp. 59–98, 1949.

[108] E. P. Frady, S. J. Kent, B. A. Olshausen, and F. T. Sommer, “Resonator
Networks, 1: An Efficient Solution for Factoring High-Dimensional, Distributed
Representations of Data Structures,” Neural Computation, vol. 32, pp. 2311–2331,
12 2020.

[109] H. V. Jagadish, S. K. Rao, and T. Kailath, “Array architectures for iterative
algorithms,” Proceedings of the IEEE, vol. 75, no. 9, pp. 1304–1321, 1987.

[110] U. Eckhardt and R. Merker, “Hierarchical algorithm partitioning at system
level for an improved utilization of memory structures,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 1,
pp. 14–24, 1999.

[111] S. V. Rajopadhye, “Synthesizing systolic arrays with control signals from recur-
rence equations,” Distributed Computing, vol. 3, no. 2, pp. 88–105, 1989.

[112] S. Borkar, R. Cohn, G. Cox, S. Gleason, and T. Gross, “Warp: An integrated so-
lution of high-speed parallel computing,” in Proceedings of the 1988 ACM/IEEE
Conference on Supercomputing, Supercomputing ’88, (Los Alamitos, CA, USA),
pp. 330–339, IEEE Computer Society Press, 1988.

[113] K. K. Parhi, C.-Y. Wang, and A. P. Brown, “Synthesis of control circuits in
folded pipelined dsp architectures,” IEEE Journal of Solid-State Circuits, vol. 27,
no. 1, pp. 29–43, 1992.

[114] P. Cappello, “A processor-time-minimal systolic array for cubical mesh algo-
rithms,” IEEE transactions on parallel and distributed systems, vol. 3, no. 1,
pp. 4–13, 1992.

[115] T. Komarek and P. Pirsch, “Array architectures for block matching algorithms,”
IEEE Transactions on Circuits and Systems, vol. 36, no. 10, pp. 1301–1308,
1989.

[116] H. Jagadish and T. Kailath, “A family of new efficient arrays for matrix mul-
tiplication,” IEEE Transactions on computers, vol. 38, no. 1, pp. 149–155,
1989.

142

[117] M. Imani, S. Salamat, B. Khaleghi, M. Samragh, F. Koushanfar, and T. Rosing,
“Sparsehd: Algorithm-hardware co-optimization for efficient high-dimensional
computing,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 190–198, 2019.

[118] M. Imani, Y. Kim, S. Riazi, J. Messerly, P. Liu, F. Koushanfar, and T. Rosing,
“A framework for collaborative learning in secure high-dimensional space,” in
2019 IEEE 12th International Conference on Cloud Computing (CLOUD),
pp. 435–446, 2019.

[119] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic, “Securing designs against
scan-based side-channel attacks,” IEEE Transactions on Dependable and Secure
Computing, vol. 4, no. 4, pp. 325–336, 2007.

[120] E.-J. Chang, A. Rahimi, L. Benini, and A.-Y. A. Wu, “Hyperdimensional
computing-based multimodality emotion recognition with physiological signals,”
in 2019 IEEE International Conference on Artificial Intelligence Circuits and
Systems (AICAS), pp. 137–141, 2019.

[121] E. P. Frady, D. Kleyko, C. J. Kymn, B. A. Olshausen, and F. T. Sommer,
“Computing on functions using randomized vector representations,” ArXivorg.

[122] “Ent: A pseudorandom number sequence test program.” https://www.
fourmilab.ch/random/. Accessed: 06 March 2022.

[123] L. Bassham, A. Rukhin, J. Soto, J. Nechvatal, M. Smid, S. Leigh, M. Levenson,
M. Vangel, N. Heckert, and D. Banks, “A statistical test suite for random and
pseudorandom number generators for cryptographic applications,” 2010-09-16
2010.

[124] “Dieharder: A random number test suite.” https://webhome.phy.duke.edu/
~rgb/General/dieharder.php. Version: 3.31.1, Accessed: 06 March 2022.

[125] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator,” ACM Trans. Model.
Comput. Simul., vol. 8, p. 3–30, jan 1998.

[126] K. Rikitake, “Tinymt pseudo random number generator for erlang,” in Proceed-
ings of the Eleventh ACM SIGPLAN Workshop on Erlang Workshop, Erlang ’12,
(New York, NY, USA), p. 67–72, Association for Computing Machinery, 2012.

[127] M. Saito and M. Matsumoto, “Simd-oriented fast mersenne twister: a 128-bit
pseudorandom number generator,” in Monte Carlo and Quasi-Monte Carlo Meth-
ods 2006 (A. Keller, S. Heinrich, and H. Niederreiter, eds.), (Berlin, Heidelberg),
pp. 607–622, Springer Berlin Heidelberg, 2008.

[128] M. Saito and M. Matsumoto, “Variants of mersenne twister suitable for graphic
processors,” ACM Trans. Math. Softw., vol. 39, feb 2013.

143

https://www.fourmilab.ch/random/
https://www.fourmilab.ch/random/
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php

[129] M. Tomassini, M. Sipper, and M. Perrenoud, “On the generation of high-quality
random numbers by two-dimensional cellular automata,” IEEE Transactions on
Computers, vol. 49, no. 10, pp. 1146–1151, 2000.

[130] J. C. Cerda, C. D. Martinez, J. M. Comer, and D. H. K. Hoe, “An efficient fpga
random number generator using lfsrs and cellular automata,” in 2012 IEEE
55th International Midwest Symposium on Circuits and Systems (MWSCAS),
pp. 912–915, 2012.

[131] S. Wolfram, “A new kind of science,” 2002.

[132] W. Meier and O. Staffelbach, “Analysis of pseudo random sequences generated
by cellular automata,” in Advances in Cryptology — EUROCRYPT ’91 (D. W.
Davies, ed.), (Berlin, Heidelberg), pp. 186–199, Springer Berlin Heidelberg, 1991.

[133] M. Sipper and M. Tomassini, “Generating parallel random number generators
by cellular programming,” International Journal of Modern Physics C, vol. 07,
10 1996.

[134] D. Kleyko, E. P. Frady, and F. T. Sommer, “Cellular automata can reduce
memory requirements of collective-state computing,” IEEE Transactions on
Neural Networks and Learning Systems, pp. 1–13, 2021.

[135] A. Menon, D. Sun, M. Aristio, H. Liew, K. Lee, and J. M. Rabaey, “A highly
energy-efficient hyperdimensional computing processor for wearable multi-modal
classification,” in 2021 IEEE Biomedical Circuits and Systems Conference (Bio-
CAS), pp. 1–4, 2021.

[136] T. F. Wu, H. Li, P.-C. Huang, A. Rahimi, G. Hills, B. Hodson, W. Hwang,
J. M. Rabaey, H.-S. P. Wong, M. M. Shulaker, and S. Mitra, “Hyperdimensional
computing exploiting carbon nanotube fets, resistive ram, and their monolithic
3d integration,” IEEE Journal of Solid-State Circuits, vol. 53, no. 11, pp. 3183–
3196, 2018.

[137] M. Dichtl and J. D. Golić, “High-speed true random number generation with
logic gates only,” in Cryptographic Hardware and Embedded Systems - CHES
2007 (P. Paillier and I. Verbauwhede, eds.), (Berlin, Heidelberg), pp. 45–62,
Springer Berlin Heidelberg, 2007.

[138] C. Tokunaga, D. Blaauw, and T. Mudge, “True random number generator with
a metastability-based quality control,” IEEE Journal of Solid-State Circuits,
vol. 43, no. 1, pp. 78–85, 2008.

[139] M. Stipčević and Ç. K. Koç, True Random Number Generators, pp. 275–315.
Cham: Springer International Publishing, 2014.

[140] C. Camara, H. Martín, P. Peris-Lopez, and M. Aldalaien, “Design and analysis of
a true random number generator based on gsr signals for body sensor networks,”
Sensors, vol. 19, no. 9, 2019.

144

[141] M. Rusch, “The design of an analog associative memory circuit for applications
in high-dimensional computing,” Master’s thesis, EECS Department, University
of California, Berkeley, May 2018.

[142] T. Yu, Y. Zhang, Z. Zhang, and C. De Sa, “Understanding hyperdimensional
computing for parallel single-pass learning,” arXiv preprint arXiv:2202.04805,
2022.

[143] S. J. Kent, E. P. Frady, F. T. Sommer, and B. A. Olshausen, “Resonator Net-
works, 2: Factorization Performance and Capacity Compared to Optimization-
Based Methods,” Neural Computation, vol. 32, pp. 2332–2388, 12 2020.

[144] N. Chamidah and I. Wasito, “Fetal state classification from cardiotocography
based on feature extraction using hybrid k-means and support vector machine,”
2015 International Conference on Advanced Computer Science and Information
Systems (ICACSIS), pp. 37–41, 2015.

[145] A. M. Bagirov, J. Ugon, D. Webb, and B. Karasözen, “Classification through
incremental max–min separability,” Pattern Analysis and Applications, vol. 14,
pp. 165–174, May 2011.

[146] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human activity
recognition on smartphones using a multiclass hardware-friendly support vector
machine,” in International workshop on ambient assisted living, pp. 216–223,
Springer, 2012.

[147] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdimensional com-
puting for efficient speech recognition,” in 2017 IEEE International Conference
on Rebooting Computing (ICRC), pp. 1–8, Nov 2017.

[148] Y. Kim, M. Imani, and T. Rosing, “Orchard: Visual object recognition ac-
celerator based on approximate in-memory processing,” in 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 25–32, Nov
2017.

[149] J. M. Rabaey, “The human intranet–where swarms and humans meet,” IEEE
Pervasive Computing, vol. 14, no. 1, pp. 78–83, 2015.

[150] E. P. Frady, D. Kleyko, and F. T. Sommer, “A theory of sequence indexing and
working memory in recurrent neural networks,” Neural Computation, vol. 30,
no. 6, pp. 1449–1513, 2018.

[151] M. Hersche, S. Lippuner, M. Korb, L. Benini, and A. Rahimi, “Near-channel
classifier: symbiotic communication and classification in high-dimensional space,”
Brain Informatics, vol. 8, no. 1, pp. 1–15, 2021.

[152] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on
electronic Computers, no. 1, pp. 14–17, 1964.

145

[153] J. M. Rabaey, A. Chandrakasan, and B. Nikolić, “Designing arithmetic building
blocks,” in Digital integrated circuits: a design perspective, ch. 11, pp. 578–589,
Pearson Education, Inc., 2nd ed., 2003.

[154] S. Zhang, R. Wang, J. J. Zhang, A. Rahimi, and X. Jiao, “Assessing robustness
of hyperdimensional computing against errors in associative memory : (invited
paper),” in 2021 IEEE 32nd International Conference on Application-specific
Systems, Architectures and Processors (ASAP), pp. 211–217, 2021.

[155] A. Kazemi, M. M. Sharifi, Z. Zou, M. Niemier, X. S. Hu, and M. Imani,
“Mimhd: Accurate and efficient hyperdimensional inference using multi-bit in-
memory computing,” in 2021 IEEE/ACM International Symposium on Low
Power Electronics and Design (ISLPED), pp. 1–6, 2021.

[156] S. Bosch, A. S. de la Cerda, M. Imani, T. S. Rosing, and G. D. Micheli, “Qubithd:
A stochastic acceleration method for HD computing-based machine learning,”
CoRR, vol. abs/1911.12446, 2019.

[157] M. Imani, S. Bosch, S. Datta, S. Ramakrishna, S. Salamat, J. M. Rabaey, and
T. Rosing, “Quanthd: A quantization framework for hyperdimensional comput-
ing,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 10, pp. 2268–2278, 2020.

[158] M. Hersche, L. Benini, and A. Rahimi, “Binarization methods for motor-imagery
brain–computer interface classification,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 10, no. 4, pp. 567–577, 2020.

[159] S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

[160] M. J. Wainwright, High-dimensional statistics: A non-asymptotic viewpoint,
vol. 48. Cambridge University Press, 2019.

[161] B. Laurent and P. Massart, “Adaptive estimation of a quadratic functional by
model selection,” Annals of Statistics, pp. 1302–1338, 2000.

[162] M. Beeler, R. W. Gosper, and R. Schroeppel, “Hakmem,” 1972.

[163] C. E. Shannon, “A mathematical theory of communication,” The Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[164] P. Diaconis and S. Zabell, “Closed form summation for classical distributions:
variations on a theme of de moivre,” Statistical Science, pp. 284–302, 1991.

[165] Z. Zou, Y. Kim, F. Imani, H. Alimohamadi, R. Cammarota, and M. Imani,
“Scalable edge-based hyperdimensional learning system with brain-like neural
adaptation,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’21, (New York, NY, USA),
Association for Computing Machinery, 2021.

146

[166] J. Morris, R. Fernando, Y. Hao, M. Imani, B. Aksanli, and T. Rosing, “Locality-
based encoder and model quantization for efficient hyper-dimensional computing,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 41, no. 4, pp. 897–907, 2022.

[167] A. G. Anderson and C. P. Berg, “The high-dimensional geometry of binary
neural networks,” arXiv preprint arXiv:1705.07199, 2017.

[168] C. Maxfield, “An introduction to different rounding algorithms,” Programmable
Logic Design Line, pp. 1–15, 2006.

[169] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution
of a general class of recurrence equations,” IEEE transactions on computers,
vol. 100, no. 8, pp. 786–793, 1973.

[170] “Opal kelly xem7310.” https://opalkelly.com/products/xem7310/. Ac-
cessed: 02 May 2022.

[171] “Ina229 85-v, 20-bit, ultra-precise power/energy/charge monitor with spi inter-
face.” https://www.ti.com/lit/ds/symlink/ina229.pdf. Accessed: 02 May
2022.

[172] “1.5a ultra-ldo with programmable sequencing.” https://www.ti.com/lit/ds/
symlink/tps74301.pdf. Accessed: 02 May 2022.

[173] “The opal kelly frontpanel software design kit.” https://opalkelly.com/
products/frontpanel/. Accessed: 02 May 2022.

[174] M. Eggimann, A. Rahimi, and L. Benini, “A 5 uw standard cell memory-
based configurable hyperdimensional computing accelerator for always-on smart
sensing,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68,
no. 10, pp. 4116–4128, 2021.

[175] U. Quasthoff, M. Richter, and C. Biemann, “Corpus portal for search in mono-
lingual corpora.,”

[176] S. Benatti, F. Casamassima, B. Milosevic, E. Farella, P. Schönle, S. Fateh,
T. Burger, Q. Huang, and L. Benini, “A versatile embedded platform for emg
acquisition and gesture recognition,” IEEE transactions on biomedical circuits
and systems, vol. 9, no. 5, pp. 620–630, 2015.

[177] X. Liu, J. Sacks, M. Zhang, A. G. Richardson, T. H. Lucas, and J. Van der
Spiegel, “The virtual trackpad: An electromyography-based, wireless, real-time,
low-power, embedded hand-gesture-recognition system using an event-driven
artificial neural network,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 64, no. 11, pp. 1257–1261, 2017.

147

https://opalkelly.com/products/xem7310/
https://www.ti.com/lit/ds/symlink/ina229.pdf
https://www.ti.com/lit/ds/symlink/tps74301.pdf
https://www.ti.com/lit/ds/symlink/tps74301.pdf
https://opalkelly.com/products/frontpanel/
https://opalkelly.com/products/frontpanel/

[178] S. Benatti, F. Montagna, V. Kartsch, A. Rahimi, D. Rossi, and L. Benini,
“Online learning and classification of emg-based gestures on a parallel ultra-low
power platform using hyperdimensional computing,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 13, no. 3, pp. 516–528, 2019.

[179] G. Karunaratne, M. Le Gallo, M. Hersche, G. Cherubini, L. Benini, A. Sebastian,
and A. Rahimi, “Energy efficient in-memory hyperdimensional encoding for
spatio-temporal signal processing,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 68, no. 5, pp. 1725–1729, 2021.

[180] D. Rossi, A. Pullini, I. Loi, M. Gautschi, F. K. Gürkaynak, A. Teman, J. Con-
stantin, A. Burg, I. Miro-Panades, E. Beignè, F. Clermidy, P. Flatresse, and
L. Benini, “Energy-efficient near-threshold parallel computing: The pulpv2
cluster,” IEEE Micro, vol. 37, no. 5, pp. 20–31, 2017.

[181] J. Rabaey, A. Rahimi, S. Datta, M. Rusch, P. Kanerva, and B. Olshausen,
“Human-centric computing — the case for a hyper-dimensional approach,” in
2017 7th IEEE International Workshop on Advances in Sensors and Interfaces
(IWASI), pp. 29–29, 2017.

[182] Y. Lu, V. L. Le, and T. T.-H. Kim, “9.7a 184uw real-time hand-gesture recogni-
tion system with hybrid tiny classifiers for smart wearable devices,” in 2021 IEEE
International Solid- State Circuits Conference (ISSCC), vol. 64, pp. 156–158,
2021.

[183] G. Karunaratne, M. Schmuck, M. Le Gallo, G. Cherubini, L. Benini, A. Sebastian,
and A. Rahimi, “Robust high-dimensional memory-augmented neural networks,”
Nature communications, vol. 12, no. 1, pp. 1–12, 2021.

148

	Introduction
	Hyper-Dimensional Computing (HDC): preliminaries and a survey
	Orthogonality in high dimensions
	The Multiply-Add-Permute (MAP) paradigm
	Examples of computing with hyper-vectors
	Encoding semantics with random hyper-vectors
	Language recognition

	A summary of HDC hardware literature

	Principles of constructing an efficient architecture for HDC
	Profiling HDC on embedded CPU and GPU
	Benchmark applications for instrumentation
	Hardware setup for instrumentation
	Instrumentation results on eCPU
	Instrumentation results on eGPU
	Lessons learned

	Structure of HDC algorithms
	Value representation in HDC
	Encoding stages

	The Generic architectural model for HDC
	Common algorithmic kernels
	The Generic abstraction
	Major components of the Generic architecture
	Arguments for a data-flow architecture

	Programmability, scalability and a hardware evaluation of the Generic HDC architecture
	Organization of the Encoder
	Hyper-dimensional Logic Unit (HLU)
	Programming the Encoder
	The Valid Chain: a flow-based pipeline control
	Considerations of sparsity and security

	Extensions of the Generic architecture
	Item Memory and its extensions
	Associative Memory and its extensions
	Multi-component extensions

	Hardware evaluation of the Generic HDC architecture
	Benchmark of supervised classification tasks
	Energy efficiency on a synthesized 28nm processor

	Architectural techniques for multi-bit HDC
	Challenges in multi-bit HDC architectures
	The need for multi-bit HDC
	Logic complexity of integer Associative Memory
	A literature review of multi-bit HDC

	Relevant properties of the probability distribution of hyper-vector elements
	Tails of probability density functions
	Chi-squared concentration
	Normality assumption and the EUROPARL dataset

	Transformations for precision reduction
	Saturation
	Thresholding
	Putting it all together: Modified Thresholding

	Preliminary estimates for hardware savings due to Modified Thresholding
	Estimating number of sequential gates
	Estimating logic complexity for the adder-tree
	Estimating logic complexity for multipliers
	Estimating logic complexity for the divider
	Comparison of logic complexity estimates with and without transformations for Integer HDC associative search

	A 2048-dim generic Hyper-Dimensional Binary core
	Physical characteristics and specifications
	Physical design and implementation
	Timing constraints and design convergence

	Testing infrastructure and experiments
	Printed Circuit Board and components for testing
	Testing basic I/O and chip response
	Testing Associative Memory functionality.
	Testing ROM and Item Memory functionality.
	Testing Encoder for on-chip benchmark applications

	Inference energy measurements on chip
	Measured inference energy for Language Recognition
	Measured inference energy for EMG hand-gesture recognition
	Robustness of classification accuracy with VDD over-scaling

	Conclusions

