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Abstract—Amidst rising concerns of software supply chain
attacks, the Software Bill of Materials (SBOM) has emerged as a
pivotal tool, offering a detailed listing of software components to
manage vulnerabilities, dependencies, and licensing. While many
SBOM generation tools are extensively used in both commercial
and open-source realms, the correctness of these tools remains
largely unscrutinized. To date, there has not been a systematic
study addressing the correctness of contemporary SBOM genera-
tion solutions. In this paper, we conduct a large-scale differential
analysis of the correctness of four popular SBOM generators.
Surprisingly, our evaluation reveals all four SBOM generators
exhibit inconsistent SBOMs and dependency omissions, leading
to incomplete and potentially inaccurate SBOMs. Moreover, we
construct a parser confusion attack against these tools, intro-
ducing a new attack vector to conceal malicious, vulnerable, or
illegal packages within the software supply chain. Drawing from
our analysis, we propose best practices for SBOM generation and
introduce a benchmark to steer the development of more robust
SBOM generators.

I. INTRODUCTION

Software Supply Chain Attacks (e.g., SolarWinds [18],
PyTorch dependency confusion attack [9]) have increased by
742% between 2019 and 2022 [16]. In 2022 alone, 185,572
software packages were affected by these attacks [1]. The
lack of visibility and transparency in the software supply
chain makes defending against such attacks challenging. Re-
cently, the Software Bill of Materials (SBOM) [10], a list
of ”ingredients” used to build software, has demonstrated its
efficacy in protecting the software supply chain by enhancing
visibility from software development to consumption. Driven
by regulations, such as Biden’s executive order [3] and the
National Cybersecurity Implementation Plan [7], the industry
is adopting SBOM-based solutions to safeguard the software
supply chain.

An essential step in adopting SBOM is to generate accurate
SBOMs. While SBOMs have the potential to enhance vulnera-
bility detection and facilitate license compliance, these benefits
can only be realized if the SBOMs themselves are precise and
correct. Discrepancies or omissions in the SBOM can lead to
false assurances of security or compliance, exposing systems
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to potential risks. Many SBOM generation tools [4], [6], [12],
[13] are extensively used in both commercial and open-source
realms. However, the correctness of these tools remains largely
unscrutinized. To date, there has not been a systematic study
addressing the correctness of contemporary SBOM generation
solutions.

Given the diversity of programming languages, build tools,
and development practices, constructing a ground truth for
SBOM generation evaluation is inherently challenging. In this
paper, we adopt a differential analysis approach: we analyze
the discrepancies in SBOMs produced by different tools for the
same software to assess both their correctness and weaknesses
in SBOM generation. More specifically, we 1) select four
popular SBOM generators: Trivy [13], Syft [12], Microsoft
SBOM Tool [6], and GitHub Dependency Graph [4]; 2) collect
7,876 open-source projects written in Python, Ruby, PHP,
Java, Swift, C#, Rust, Golang and JavaScript; 3) evaluate the
correctness of the SBOMs by conducting a differential analysis
on the outputs from these four tools.

Surprisingly, our evaluation reveals all four SBOM gener-
ators exhibit inconsistent SBOMs and dependency omissions,
leading to incomplete and potentially inaccurate SBOMs.
Moreover, we construct a parser confusion attack against these
tools, introducing a new attack vector to conceal malicious,
vulnerable, or illegal packages within the software supply
chain. To assist in creating more effective SBOM generators,
we have developed best practices for SBOM generation and
a benchmark to facilitate their development based on our
evaluation findings.

In summary, we make the following contributions in this
paper:

• We are the first to conduct a large-scale differential
analysis to examine the correctness of SBOM generation
solutions.

• Our evaluation reveals significant deficiencies in current
SBOM generators. We also conduct a comprehensive
case study to uncover how each SBOM tool detects
dependencies during the generation process.

• We construct a parser confusion attack against SBOM
generators, introducing a new attack vector to inject
malicious, vulnerable, or illegal software packages into
the software supply chain.

• We develop best practices for developing SBOM gener-
ators and a benchmark to facilitate their development.
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II. BACKGROUND

A. Software Bill of Materials

An SBOM [10] is a formal, machine-readable inventory
of software components and dependencies that includes in-
formation about those components and their hierarchical re-
lationships. It can be shared and exchanged automatically
among stakeholders (e.g., software vendors and consumers) to
enhance software development, software supply chain man-
agement, vulnerability management, asset management, and
procurement. This results in reduced costs, security risks,
license risks, and compliance risks.

SBOM Types: Based on the stages of the software lifecycle
at which SBOMs are generated, they can be categorized into
six types [14]: Design, Source, Build, Analyzed, Deployed,
and Runtime. Depending on what information is available in
each stage, these types of SBOMs focus on different aspects.
In this paper, we evaluate Source SBOM, a type of SBOM
derived from the development environment. It mainly contains
dependencies used for development and compilation, and is
widely supported by SBOM tools. Also, our survey suggests
that, owing to its simplicity and precision, metadata parsing
is the industry’s leading SBOM generation technique. Thus,
this paper focuses on the Source SBOM generated using the
metadata-based approach.

SBOM Applications: The increasing complexity and inter-
dependence in software development have amplified the im-
portance of SBOMs. These provide clarity by clearly listing
software components, facilitating swift vulnerability tracking
and identification for developers and security professionals.
Their compatibility with Vulnerability Exploitability eXchange
(VEX) [15], a structured database detailing product vul-
nerabilities, is noteworthy. Additionally, the comprehensive
dependency information aids in license assessment, ensuring
compliance and mitigating legal exposures. SBOMs enable
quality assessment of closed-source software through compo-
nent reputation checks, and their transparency fortifies the soft-
ware supply chain by thwarting the introduction of potential
backdoors and vulnerabilities via third-party components.

B. Metadata

At the heart of Source SBOM generation lies the metadata
- an important element in modern software development.
These files encapsulate parameters, settings, dependencies,
and version constraints, all of which are indispensable for
reproducibility and consistent and reliable deployment, and
offer support for package management, version control, and
even automated build processes. Nowadays, almost every pro-
gramming language comes with at least one package manager,
and each package manager defines its own metadata.

At high level, there are two kinds of metadata. One is
“raw” metadata where only direct dependencies are specified
and their versions are often given as a range or a constraint
instead of a specific (pinned) one. Raw metadata, such as
requirements.txt for Python and package.json for

Node.js, are mainly for dependency declaration while en-
suring a degree of flexibility and future compatibility. The
other type is lockfile such as package-lock.json for
Node.js. Lockfiles focus on providing a precise and deter-
ministic snapshot of the exact dependency tree including
transitive dependencies. Locking prevents unexpected updates
or changes in the dependencies when installing the project
across different environments, ensuring reproducibility and
avoiding compatibility issues. Despite that lockfiles contain
the richest information for SBOM generation, they are not
always available. Library developers are not encouraged to
share lockfiles which could otherwise lead to version conflicts.
Some package managers lack a native locking mechanism.
Without lockfiles, the missing transitive dependencies and
pinned versions pose a great challenge to SBOM tools to
generate accurate and complete SBOM files.

III. METHODOLOGY

Despite the growing significance and adoption of SBOMs,
a notable gap exists in systematically assessing the quality
of the SBOM files generated. The reliability of security-
centric applications, including vulnerability detection and li-
cense compliance, highly depends on the correctness of SBOM
data, which raises concerns regarding the trustworthiness of
such information.

This work aims to investigate the correctness and com-
pleteness of the dependency information present in generated
SBOMs. The objective is to not only measure the correctness
but also to unravel the underlying factors contributing to high-
quality SBOMs. Due to the lack of ground truth, we adopt
a differential analysis approach to obtain insights into the
performance of SBOM generators.

A. SBOM Generators

In this work, we evaluate four SBOM tools: Trivy 0.43.0,
Syft 0.84.1, Microsoft SBOM Tool (sbom-tool) 1.1.6,
and GitHub Dependency Graph (GitHub DG). Notably,
the first three are popular open-source projects and offer cross-
platform support for Linux, Windows, and Mac operating
systems. Conversely, the GitHub Dependency Graph is intri-
cately integrated with GitHub repositories. We choose Trivy
and Syft because they are the de facto SBOM generators
used by industries and open-source communities. We pick
the Microsoft SBOM Tool because it is developed by the
esteemed Microsoft. Similarly, the GitHub Dependency Graph
is chosen because it is provided by the most widely used Git
platform. All the evaluated SBOM tools implement metadata-
based approaches, meaning they read metadata files and extract
dependency information declared in the metadata files.

B. Setup

The evaluation was conducted by downloading popular
GitHub repositories associated with each programming lan-
guage onto the local file system and subsequently scanning
the repository directories using the SBOM tools. Each tool
will generate an SBOM report in either CycloneDX [8] or
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SPDX [5] format depending on which format is supported by
the tools. Dependencies in these reports are then extracted and
compared against each other.

Dataset: GitHub repositories were sourced from the well-
regarded awesome-LANGUAGE repositories, which are
uniquely tailored to the respective programming languages.
Our dataset contains 535 Python, 819 Ruby, 384 PHP, 398
Java, 1,019 Swift, 700 C#, 994 Rust, 2,367 Golang, and 660
JavaScript repositories. We do not evaluate C/C++ projects
due to the absence of an “official” build toolset and ex-
tremely limited support provided by the SBOM tools. C/C++
projects can be configured and built via various tools such as
Bazel, Makefile, CMake, Visual Studio project files, and more.
Consequently, Trivy and Syft only analyze conan.lock,
while GitHub Dependency Graph exclusively focuses on
*.vcxproj files.

Metrics: For our large-scale evaluation, given the absence
of ground truth, we adopt a differential analysis approach.
First, we compare the number of dependencies reported by
each SBOM tool. We then use Jaccard similarity to measure
the reported dependency names. This tells us the degree of
overlap and commonality among the dependencies reported
by different tools. In addition, we identify duplicate packages
reported by the SBOM tools. While these metrics may not
provide a direct ranking, they do shed light on the performance
of these tools.

IV. LARGE-SCALE SBOM COMPARISON

After analyzing 7,876 high-quality repositories, we made
the following major findings. The reasons behind such dis-
crepancies will be discussed in Section V.

A. Discrepancies in Package Counts within SBOM Reports
Generated by Different Tools

The SBOM tools exhibited notable differences in the num-
ber of packages they identified. Figure 1 clearly depicts this
variation. The x-axis is the repository ID sorted by the number
of dependencies detected by the GitHub Dependency Graph.
For Python, PHP, Ruby, and Rust programming languages,
GitHub Dependency Graph discovers the most packages for
these languages. For .Net repositories, Microsoft SBOM Tool
excelled in identifying the most packages, which is unsurpris-
ing as it is tailored to Microsoft’s own projects. For the Go and
Swift languages, Trivy and Microsoft SBOM Tool proved to
be the frontrunners, consistently identifying the most packages
in the majority of cases. Syft excels in detecting the highest
number of packages when it comes to JavaScript repositories.
The disparities presented in this figure underscore that different
tools possess varying capabilities and strategies in identifying
dependency packages across different programming languages.
It is important to note, however, that identifying more packages
does not mean better because false positives may also be
included.

B. Low Package Jaccard Similarities

To measure whether the SBOM tools detect similar depen-
dencies for each repository, we compute a Jaccard similarity
for each SBOM tool pair for each repository as Equation 1
shows. A and B are two sets of dependencies generated
by two different SBOM tools. Each set contains dependency
(name, version) pairs.

J(A,B) =
|A ∩B|
|A ∪B|

(1)

Our evaluation result is illustrated in Figure 2. The majority
of these pairs show significant dissimilarity, with only a very
small portion being similar. As shown in (a), the GitHub
Dependency Graph and Syft have the most similarities among
them, although the majority of SBOM reports still exhibit
substantial differences.

C. Duplicate Packages in SBOMs

During our analysis of the generated SBOMs, we identified
instances of duplicate packages: the same package appear-
ing in different entries with varying or the same version
requirements. To ensure accurate calculations, we excluded
repositories in which tools could not find any packages.

In Table I, we have presented the rate of duplicate packages
for various SBOM tools. This problem was found to be
widespread across all four tools, suggesting a common occur-
rence. However, it is important to note that having duplicate
packages is expected in some cases. For example, a repository
may contain multiple independent projects and they happen to
have a common subset of dependencies.

TABLE I: Rate of Duplicate Packages in SBOMs

Syft Trivy GitHub DG sbom-tool
Python 14.05% 12.56% 13.54% 13.71%

Java 12.76% 15.01% 19.93% 18.89%
JavaScript 17.46% 17.34% 18.89% 19.42%

Go 9.97% 6.69% 11.03% 6.58%
.NET 17.38% 12.43% 18.01% 20.94%
PHP 13.76% 11.77% 14.53% 23.76%
Ruby 13.56% 9.1% 15.84% 12.39%
Rust 13.19% 11.37% 19.18% 13.83%
Swift 1.37% 2.28% 6.98% 3.39%

V. SBOM GENERATION ANALYSIS

To uncover the root causes behind the large disparities in
SBOM outputs, we conducted an in-depth analysis of the
source code of the SBOM tools. Our examination revealed
several critical issues in SBOM generation, which are sum-
marized below.

A. Limited Support for Metadata

All the evaluated tools employ a metadata-based approach
where they analyze metadata to identify the components used
in the project. The supported metadata file types for each tool
are detailed in Table II. It is important to note that the table
indicates the tools’ actual capability to extract dependencies
from metadata, which may differ from their claims.
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Fig. 1: Comparison of Package Counts Across Languages Using Various SBOM Generators

The table illustrates that each tool supports only a subset of
commonly used metadata files. Overall, the SBOM tools have
good support for lockfiles in which transitive dependencies
and pinned versions are available, but they struggle with raw
metadata. The GitHub Dependency Graph has the best support
for raw metadata such as Gemfile and Cargo.toml, while
other tools show limited or no support for raw metadata.
Despite claims by Trivy and Syft to support package.json,
they do not extract dependencies from the JSON file. In our
evaluation, we found that 93% of Python repositories, 47% of
JavaScript repositories, and 56% of Rust repositories contain
raw metadata only.

B. Incomplete Metadata Parsing
Our evaluation shows that all the evaluated SBOM tools im-

plement custom parsers for metadata. However, certain meta-
data, like requirements.txt defined in PEP 508, poses
challenges due to its complex syntax. The self-implemented

parsers only support common syntaxes, leading to false neg-
atives. For instance, the lack of support for the backslash “\”
as a line continuation in all the SBOM tools causes parsing
errors, resulting in incorrect versions or missed dependencies.
About 1.8% of Python repositories are affected by this.

C. Transitive Dependency

The offline nature of SBOM tools (except Microsoft SBOM
Tool) implies a lack of attempts to resolve transitive dependen-
cies. In the case where lockfiles are not present, the absence
of transitive dependencies will adversely affect SBOM appli-
cations. Microsoft SBOM Tool attempts to resolve transitive
dependencies by querying package managers for each detected
dependency, but this functionality is not well-implemented and
often fails to retrieve dependency information from package
managers. About 74% of Python dependencies are transitive
dependencies.
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Fig. 2: Distribution of Jaccard Similarity among Various Tools

TABLE II: Supported File Types

Trivy Syft sbom-
tool

GitHub
DG

Go go.mod ✓ ✓ ✓ ✓
Go executable ✓ ✓ ✗ ✗

Java

pom.xml ✓ ✓ ✓ ✓
gradle.lockfile ✓ ✓ ✓ ✓
MANIFEST.MF ✓ ✓ ✗ ✗
pom.properties ✓ ✓ ✗ ✗

JS

package.json ✗ ✗ ✗ ✓
package-lock.json ✓ ✓ ✓ ✓
yarn.lock ✗ ✓ ✓ ✓
pnpm-lock.yaml ✗ ✓ ✓ ✗

PHP composer.json ✗ ✗ ✗ ✓
composer.lock ✓ ✓ ✗ ✓

Python

requirements.txt ✓ ✓ ✓ ✓
poetry.lock ✓ ✓ ✓ ✓
pipfile.lock ✓ ✓ ✓ ✓
setup.py ✗ ✗ ✗ ✓

Ruby
Gemfile ✗ ✗ ✗ ✓
Gemfile.lock ✓ ✓ ✓ ✓
.gemspec ✓ ✓ ✓ ✓

Rust
Cargo.toml ✗ ✗ ✗ ✓
Cargo.lock ✓ ✓ ✓ ✓
Rust executable ✓ ✓ ✗ ✗

D. Limited Support for Version Constraints

Raw metadata often contains version ranges or constraints
instead of pinned versions; for example, developers use
>=1.2.3 <2.0.0 to get the latest version while ensuring
backward compatibility. Trivy and Syft handle version con-

straints by silently discarding dependencies without pinned
versions, resulting in false negatives. The GitHub Dependency
Graph reports version ranges as they appear in the metadata,
introducing additional parsing challenges for SBOM manage-
ment. In our evaluation, only 46% of dependencies declared in
requirements.txt have pinned versions, indicating that
Trivy and Syft may miss more than half of the dependencies
even when transitive dependencies are not considered. Mi-
crosoft SBOM Tool addresses this by pinning a version after
querying the corresponding package manager for the latest
version within the specified range.

E. Inconsistent Package Naming Convention

When dealing with packages having compound names,
SBOM tools name them differently. For Java, a package is
located using the group ID and artifact ID. Syft uses the artifact
ID as the package name, Microsoft SBOM Tool concatenates
the group and artifact ID with a dot “.” as the package name,
while Trivy and the GitHub Dependency Graph use a colon
sign “:” for this purpose. Similarly, Swift package manager
CocoaPods supports subpecs when declaring a dependency.
Subspecs are a way of chopping up the functionality of a li-
brary, allowing people to install a subset of the library. Syft and
Trivy report the subspecs, while Microsoft SBOM Tool reports
their main dependency names. Additionally, Golang uses a
leading letter “v” when specifying versions (e.g., v1.0.0). Syft
and Microsoft SBOM Tool adhere to this convention, while
Trivy and the GitHub Dependency Graph omit this leading
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letter. Such inconsistencies can potentially compromise the
accuracy of vulnerability detection.

F. Different Dependency Definition

SBOM tools employ different strategies regarding whether
to include development dependencies (e.g., test suites, linters,
etc.) in SBOM files. Trivy focuses solely on production
dependencies and ignores development dependencies, whereas
Syft and GitHub Dependency Graph include both types. Our
evaluation reveals that in JavaScript, 76% of dependencies
declared in package.json are development dependencies.
It is crucial to note that there is no definitive answer regarding
which approach is better. Including development dependencies
in the SBOM report offers several advantages, such as more
comprehensive vulnerability assessments and license violation
checks, but it may also introduce false alarms as the code of
development dependencies rarely goes into the final product.
The root problem lies in the absence of an existing field
in SBOM formats representing the dependency scope. While
most metadata have distinct fields for this purpose, such as the
scope field in pom.xml and the devDependencies in
package.json, the current SBOM formats lack this support
and may cause confusion in downstream applications.

G. Multiple Projects and Metadata

Our evaluation indicates that, on average, over 10% of the
detected dependencies appear more than once in a repository,
causing duplicate entries in SBOM files. This is primarily due
to multiple metadata files present in a repository, either be-
cause of having multiple subprojects or submodules or having
both raw metadata and lockfiles present. The SBOM tools
analyze metadata individually without merging dependencies
in the same project. Duplicate entries in SBOMs can lead to
confusion and potentially inflate the apparent package count.
Our evaluation shows that there are 5.7 metadata files in
a Python repository and 12.8 metadata files in a JavaScript
repository on average.

H. Accuracy on Ground Truth

Our large-scale evaluation employed a differential analysis
due to the lack of ground truth. In this section, we quantify
the accuracy of each SBOM tool on requirements.txt
using our manually crafted ground truth. The ground
truth is obtained by dry-running pip install (Python
3.11, pip 23.1.2), and we consider a correct dependency
(name, version) pair as a correct match. Dry run simulates
the installation process and the dependencies reported by pip
install are those that will be installed in our environment.
This evaluation aims to highlight the differences between the
reported libraries and the ones actually installed.

The evaluation result is presented in Table III. Most
SBOM tools fail to detect over 90% of the dependencies in
requirements.txt due to incomplete syntax support and
the lack of transitive dependency resolution. The Microsoft
SBOM Tool excels in this test because it attempts to resolve
transitive dependencies, but it ignores the extras field, and

TABLE III: SBOM Accuracy on requirements.txt

Trivy Syft sbom-tool GitHub DG
Precision 0.25 0.25 0.74 0.13
Recall 0.10 0.10 0.73 0.08

TABLE IV: requirements.txt Attack Samples

Trivy Syft sbom-tool GitHub
DG

requests [security]>=2.8.1 - - - -
numpy \
==\
1.19.2

- - numpy
1.25.2 -

-r SOME REQS.txt - - - -
./path/to/local pkg.whl - - - -
https://remote pkg.whl - - - -
urlib3 @ git link@hash - - - -

OS and Python requirements. The low recall suggests that
relying solely on these SBOM tools in practice may have
serious negative impacts on downstream applications, such as
vulnerability detection and license violation checks.

VI. PARSER CONFUSION ATTACK

Motivated by the findings in Section V-H, we present a
parser confusion attack [20] to illustrate how adversaries can
obscure malicious dependencies. A parser confusion attack
exploits inconsistencies among different parsers processing the
same input, enabling malicious actors to craft input that is
benign for one parser but harmful for another. Our case study
shows that SBOM tools, employing custom metadata parsers,
introduce a new attack vector for constructing parser confusion
attacks within the SBOM ecosystem. In this study, we use
Python’s requirements.txt as an illustrative example.

Constructing the attack: Given that requirements.txt
lacks a locking mechanism and exhibits a rich syntax, it
becomes a suitable candidate for this type of attack. For
instance, none of the SBOM tools support the backslash as
a line continuation; Trivy and Syft rely on the double-equal
sign to separate package names and versions; installations
from wheel packages are not universally supported; and many
more. Table IV provides some input patterns that can be
used to bypass detections based on our manual analysis and
benchmark (discussed in Section VII). It shows how attack-
ers can leverage different syntax elements to either conceal
specific dependencies or confuse SBOM tools, leading to
inaccurate results. In the table, a dash (“-”) signifies that the
corresponding SBOM tool cannot detect anything from the
given dependency declaration.

Achieving Damage: When the SBOM tools encounter un-
supported syntax, the default behavior is to silently ignore
the associated dependency. Adversaries can exploit this and
inject malicious or vulnerable dependencies in metadata using
unsupported syntax, effectively evading the tools’ detection
entirely. In our dataset, the two most common patterns are
installing from other requirement files (-r) and installing
from version control systems, each appearing in over 50
requirements.txt files.
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VII. BEST PRACTICE AND BENCHMARK

Drawing from our evaluation, we present what we believe
are the most optimal solutions to address identified issues and
minimize the attack surface. We propose the following best
practices for metadata-based approaches:

Package Manager Dry Run for Lockfile Generation: The
root cause of the large discrepancies lies in the limitations
of self-implemented parsers, particularly in their support for
metadata and metadata syntax. Instead of relying on these
parsers, we recommend employing a package manager dry
run to generate lockfiles. This simulates the dependency in-
stallation process, providing both transitive dependencies and
accurate version information for each package. Adopting this
approach ensures the creation of a precise and reliable SBOM
file, thereby enhancing resilience against confusion attacks.

PURL and CPE Support: Each dependency should include
a PURL (Package URL) entry and a CPE (Common Product
Enumerator) entry for consistent package naming convention,
maximum compatibility with vulnerability databases, and fa-
cilitate software identification.

Our evaluation benchmark is available on GitHub
at https://github.com/DeepBitsTechnology/sbom-benchmark.
This benchmark includes manually crafted metadata files and
ground truth datasets for common languages. These metadata
files try to cover all supported syntaxes for each language,
and can be used to evaluate of the SBOM tools’ capability to
handle corner cases. This initiative aims to guide the develop-
ment of SBOM tools, emphasizing completeness and accuracy.
We are working on adding support for more programming
languages.

VIII. DISCUSSION

This study aims to assess the quality of SBOMs produced by
widely used SBOM tools. Our analysis exposes deficiencies in
the SBOM generation process employed by these tools. Trivy,
Syft, and GitHub Dependency Graph do not identify transitive
dependencies or determine an appropriate version when no
pinned version is provided. In contrast, the Microsoft SBOM
Tool reaches out to package managers to validate package
names and ascertain a suitable version.

While conducting our evaluation, we encountered a sig-
nificant challenge stemming from the absence of a well-
defined benchmark for accurately assessing the quality of the
generated SBOMs. Currently, the industry lacks a standardized
dataset and uniform statistical methods for conducting evalu-
ations in this area. In response to this issue, we created our
own dataset.

Our experiment focuses on metadata-based Source SBOM
generation on file system. It is important to note that certain
SBOM tools, such as Trivy, may exhibit different behaviors
depending on the specific targets of their scans. For example,
scanning metadata files is enabled for both file system and
git repository scans, while the activation of wheel packages is
restricted to Docker image and Rootfs scans.

It is worth mentioning that our evaluation was specifically
limited to a subset of SBOM tools, namely Trivy, Syft, Mi-
crosoft SBOM Tool, and GitHub Dependency Graph. Despite
our careful selection of these prominent tools, the dynamic
and ever-evolving landscape of SBOM generation solutions
implies that our findings may not cover the entirety of available
options. There is a possibility that subtle variations presented
by other tools might have been inadvertently overlooked.

While metadata-based SBOM generation is relatively simple
to implement, this approach has inherent limitations. First,
declared dependencies may only be partially built into the
final product or not be used at all, potentially leading to false
alarms. Transitive dependencies are not well-captured, causing
false negatives. Moreover, developers might add code directly
to the project for experiments or testing, and metadata-based
approaches are unable to detect such cases. We recommend
implementing def-use analysis to determine whether each
library within the project has been used or not. Additionally,
code clone detection [26], [27], [33] can identify libraries
introduced via copy & paste. Employing these techniques
helps eliminate false positives and false negatives, enhancing
the overall correctness of the SBOM.

IX. RELATED WORK

Software Supply Chain Attacks Malicious [30] or vulner-
able packages [21] have resulted in increasing [28] software
supply chain attacks (SolarWind [18], NotPetya [24], etc.).
Various approaches have been proposed [31], [32]. SBOM [10]
demonstrates its efficiency in managing risks in the software
supply chain and has been advocated by both the industry and
goverment stakeholders [3], [7].

SBOM & Vulnerability Exploitability eXchange (VEX)
VEX, as defined by NTIA, is a “companion artifact” to a
SBOM [15], allowing manufacturers to share product vulner-
ability exploitability in a standardized, automatable format.
Ahmed el al. [17] applied SBOM tools to assess how code de-
bloating reduces vulnerabilities in Docker images. Numerous
tools (DependencyTrack [2], DeepSCA [11], Nadgowa [29],
Girdha [23], etc.) have been developed to support SBOM
generation and consumption. In particular, DeepSCA is a
complimentary online service that generates different types of
SBOMs and conducts risk analysis for most popular languages
and platforms with or without the source code.

Software Composition Analysis (SCA) Apart from metadata-
based parsing, SCA is also a promising technique for generat-
ing SBOMs. When source code is available, SCA solutions
such as CENTRIS [33] and Tamer [26] can be combined
with program analysis to identify components that are actively
invoked in the software, yielding more accurate SBOMs. When
the source code is not available, binary-focused SCA tools like
BAT [25], OSSPolice [22], B2SFinder [34], and LibScout [19]
utilize string literals and other language-specific features to
discern components in the examined binaries. Though their
accuracy might not be optimal, they still enhance transparency
to a certain degree.
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X. CONCLUSION AND FUTURE WORK

In this paper, we conducted the first large-scale differential
analysis to examine the correctness of SBOM generation
solutions. We generated SBOMs using four popular SBOM
generators for 7,876 open-source projects and systematically
studied the correctness of these SBOMs. Our evaluation un-
covered significant deficiencies in current SBOM generators.
Additionally, we identified the design flaws in each SBOM
generator, and devised a parser confusion attack against these
generators, introducing a new path for injecting malicious,
vulnerable, or illegal packages. Finally, based on our findings,
we established best practices for creating SBOM generators
and introduced a benchmark to aid their development.

In the future, we plan to extend our benchmark to sup-
port languages beyond just Python. Additionally, we aim
to establish a ranking system to qualitatively measure the
quality of SBOM generators in the market, allowing security
professionals to select the most suitable tools and SBOM
generator vendors to evaluate and improve their offerings.
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