Title
THE HYDROGENATION OF CARBON MONOXIDE OVER RHODIUM OXIDE SURFACES

Permalink
https://escholarship.org/uc/item/861193km

Authors
Watson, P.R.
Somorjai, G.A.

Publication Date
1981-05-01
THE HYDROGENATION OF CARBON MONOXIDE OVER RHODIUM OXIDE SURFACES

P.R. Watson and G.A. Somorjai

May 1981
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE HYDROGENATION OF CARBON MONOXIDE OVER RHODIUM OXIDE SURFACES

P.R. Watson and G.A. Somorjai

Materials and Molecular Research Division,
Lawrence Berkeley Laboratory
and
Department of Chemistry,
University of California, Berkeley, CA 94720

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U. S. Department of Energy under Contract W-7405-ENG-48, and the Exxon Foundation.
Abstract

Hydrated and anhydrous rhodium oxides, \(\text{Rh}_2\text{O}_3\cdot5\text{H}_2\text{O} \) and \(\text{Rh}_2\text{O}_3 \) crystallites were used as catalysts for the hydrogenation of CO at 6 atm. and in the range of 250–350°C. The anhydrous oxide reduced to metallic rhodium rapidly, while the hydrated oxide was quite stable under the reaction conditions. The hydrated oxide produces a high concentration of oxygenated hydrocarbons, mostly acetaldehyde in addition to \(\text{C}_2–\text{C}_5 \) alkenes and methane in contrast to the unsupported metal which is a mediocre methanation catalyst. The activation energy for the formation of all of the products is \(26 \pm 2 \) kcal/mole indicating that they are likely to be produced from a common precursor intermediate, \(\text{C}_x\text{H}_y \). The addition of ethylene to CO and \(\text{H}_2 \) results in the conversion of the olefin to propionaldehyde. This carbonylation reaction was not observed on the rhodium metal. The slower rates of hydrogenation on the oxide and its ability to insert CO into the \(\text{C}_x\text{H}_y \) intermediates appears to be responsible for the changed product distribution in the CO/\(\text{H}_2 \) reaction. Electron spectroscopy studies indicate the presence of patches of oxide and metal both participate in the reaction and control the product distribution.
1. Introduction

The catalysis of the hydrogenation of carbon monoxide over the Group VIII metals can lead to a variety of products, the rate of formation of which depends upon the catalyst and the reaction conditions. The product spectrum can contain alkanes, alkenes, and oxygenated hydrocarbons, alcohols, and aldehydes. Rhodium catalysts of various formulations have been explored for use in both heterogenous [1-3] and homogenous [4] processes. An attractive feature of many of these catalysts is their ability to produce large yields of oxygenated products selectively, often containing two carbon atoms. Using heterogeneous rhodium catalysts, the relative amount of oxygenated products depend both on the support used and the method of deposition of the rhodium on the support. High yields of methanol and ethanol for Rh on MgO or ZnO [2], acetaldehyde and acetic acid for Rh on silica [3,28] have been reported which contrast with results reported for alumina supported rhodium [1] and rhodium foil [5] in which only hydrocarbon products that contained no oxygen were detected.

In this laboratory we have explored the characteristics of small surface area rhodium crystals [5] for the hydrogenation of CO at pressures in the range of 1-10 atm. Such systems are model catalysts free of support effects which can reveal the influence of surface structure and composition upon their activity and selectivity. These studies have shown that clean elemental rhodium is a stable methanation catalyst, but of mediocre activity. Preoxidation of the surface of a rhodium single crystal or foil results in sharply enhanced activity for methanation and the formation of small but detectable amounts of oxygenated species.
The changing product distribution and activity obtained upon preoxidation of the rhodium metal samples [6] have prompted us to extend such studies to the rhodium-oxygen system in general. This system is rather poorly understood as rhodium oxides appear to be thermodynamically unstable under the reaction conditions utilized during the catalyzed hydrogenation of CO. We present results obtained for CO hydrogenation over rhodium oxide surfaces obtained from both the hydrated and anhydrous sesquioxide and the dioxide. The differing stabilities of these compounds under reaction conditions have been uncovered and explored. The surface composition and oxidation state was monitored both before and after reaction by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). The reaction were carried out at about 6 atm pressure using temperatures between 250 and 350°C and various H₂/CO ratios.

Our results indicate that the hydrated oxide can be kinetically stabilized for hours under the reducing conditions of the CO/H₂ reaction. The oxide produces up to 30% oxygenated products at low conversions, mostly acetaldehyde. The activation energies to produce methane, ethylene, and acetaldehyde, are all about the same, 26 ± 2 kcal/mole indicating that these molecules form from a common precursor. The addition of ethylene to the CO/H₂ feed led to its conversion to propionaldehyde. Carbonylation activity observed on the rhodium oxide was absent for rhodium metal under identical reaction conditions. The reaction mechanism that can be proposed includes the rate determining formation of CₓHᵧ fragments, followed by the rapid carbonylation
or hydrogenation of these intermediates to form the observed reaction products. The reduced hydrogenation and increased carbonylation activity of the rhodium oxide as compared to the metal is thought to be responsible for the markedly altered product distribution.

2. **Experimental**

The experimental apparatus, described in detail elsewhere [5,7], consists of an ultrahigh vacuum chamber pumped with ion and diffusion pumps and equipped with retarding field LEED/Auger optics, a mass spectrometer and an internal high pressure (<20 atm) isolation cell. With the cell open, samples can be cleaned by argon ion sputtering, annealing, or chemical treatments with gases admitted via a leak valve. Surface composition was monitored regularly by AES. With the cell closed, the apparatus was operated as a stirred batch reactor. The CO (Matheson 99.95%) was passed through a copper tube heated to ~ 200°C and then through molecular sieve chilled by an acetone-dry ice bath to remove carbonyls; the H₂ (Liquid Carbonic 99.995%) was used without further purification. Reaction products were monitored by diverting a very small fraction of the gases to a gas chromatograph (Hewlett-Packard 5720A) equipped with a flame ionization detector and integrator (Spectra Physics). Due to the low conversion levels (<1%) such a detector is required, but unfortunately prevents a carbon and oxygen balance due to its insensitivity to permanent gases. A 6'x1/8" Parapak PS column initially held at 50°C for five minutes and then temperature programmed at 6°/minute allowed a good on-line separation of all major oxygenated and hydrocarbon products in a 15-20 minute analysis.

XPS measurements were carried out in a separate instrument, a modified AES 200 spectrometer. This instrument did not allow for sample treatment and
operated under only modest vacuum conditions of $\sim 5 \times 10^{-8}$ torr and, hence, was only suitable for examination of metal spectra. An AlK$_\alpha$ source was used, and the hemispherical analyzer was equipped with position-sensitive, pulse-counting electronics which allowed good signal-to-noise spectra to be accumulated rapidly. Binding energies were referred to C 1s at 285.0 eV; the resolution of the instrument was about 1.8 eV. Samples were mounted on double sided adhesive tape.

High pressure CO hydrogenation reactions were carried out over various rhodium oxide samples which were deposited as thin layers from a methanol slurry onto gold (and occasionally platinum) foils. The metal foils provided both a physical backing for these powder samples and a means of heating. The foils were heated resistively both to outgas the samples and to establish reaction temperatures, which were measured by an alumel-chromel thermocouple attached to the foil.

The rhodium oxide samples used were (a) anhydrous Rh$_2$O$_3$ (Alfa Products), (b) anhydrous Rh$_2$O$_3$ (Aldrich Chemical Co.), and (c) Rh$_2$O$_3$.5H$_2$O (Pfaltz and Bauer 99.9%). The anhydrous oxides were used as purchased. After deposition as a film, and mounting in the vacuum chamber on Au or Pt foils, they were degassed at 400°C for one hour and then surface impurities removed by ion bombardment. The hydrated sesquioxide was heated in air at $\sim 400^\circ$C prior to deposition on the Au foil. The exact temperature at which this heating was carried out did no appear to be important as regards the catalytic properties of the resulting oxide. Thermogravimetric analysis of the dehydration of the Rh$_2$O$_3$.5H$_2$O, however, showed that the dehydration reaction is complex and gradual.

The surface area of the dried sesquioxide before deposition was estimated
by the B.E.T. method and found to be \(\sim 10 \text{m}^2/\text{gm} \).

3. Results

3.1 Surface characterization.

a. Anhydrous Rh\(_2\)O\(_3\) and RhO\(_2\) AES measurements.

The Auger spectra obtained using the RFA analyzer were in general free of charging effects, probably due to the thin oxide layers and the proximity of the high conductivity metal support. In some cases, particularly after a reaction, rather noisy spectra result, e.g. Fig. 3(c), but generally quite clean spectra could be obtained, e.g. Fig. 1.

The anhydrous sesquioxide, Rh\(_2\)O\(_3\), exhibited an Auger spectrum after mounting in the vacuum chamber, as shown in Fig. 1(a). The oxygen transition at 515 eV is pronounced, being about 1/4 of the intensity of the main rhodium transition at 302 eV. The large peak at \(\sim 255 \text{ eV} \) is composite, being made up of a rhodium transition at 256 eV and an overlapping potassium transition at 252 eV. Due to the strong cross-section of potassium and the low resolution of the RFA analyzer, a relatively small contamination of potassium results in a 255 eV peak larger than that for pure rhodium where \(I_{255}/I_{302} \sim 0.3-0.4 \).

After reaction in 6 atm of 1:1 H\(_2\)/CO at 300°C for 30 minutes, the Auger spectrum of 1(b) is obtained. Clearly, the potassium peak has diminished but, most importantly, the oxygen peak is now entirely absent, indicating reduction to the metal. This reduction can be followed visually by a color change from the black oxide to the silver grey metal.

Figure 2 shows a sequence of Auger spectra for the anhydrous dioxide, RhO\(_2\). The freshly mounted specimen showed an \(O_{515}/Rh_{302} \) ratio of 0.32 and the presence of potassium on the surface. Degassing at 400°C for one hour
changed the color of the sample from brown to black; the surface concentration of potassium dropped, presumably due to desorption or migration into the bulk; the \(\text{O}^{15}/\text{Rh}^{302} \) ratio dropped to about 0.2 close to the value obtained for \(\text{Rh}_2\text{O}_3 \). This indicates a decomposition of the dioxide to the sesquioxide, a reaction known to occur at about 680°C at 1 atm [30]

\[
2\text{Rh}_2\text{O}_2 \rightarrow \text{Rh}_2\text{O}_3 + 1/2\text{O}_2.
\]

Once again reaction of 1:1 \(\text{H}_2/\text{CO} \) at 6 atm, 300°C resulted in complete reduction to the metal as evidenced by Fig. 2(c), together with the re-emergence of some potassium and some deposition of carbon.

b. Hydrated rhodium sesquioxide \(\text{Rh}_2\text{O}_3\cdot5\text{H}_2\text{O} \)-AES, XPS, and TDS measurements.

The hydrated sesquioxide behavior was markedly different from its anhydrous counterpart. In order to avoid excessive outgassing in the vacuum chamber, the oxide was first heated in air to 400°C or more for two hours. Dehydration appears to be a complex and kinetically slow process and results in an oxide with considerably more stability and resistance against reduction to the metal than the anhydrous oxide. This is evidenced in the Auger spectra shown in Fig. 3. The first spectrum shows an as-mounted spectrum of the hydrated sesquioxide which appears similar to that of the anhydrous oxide. Figure 3(b) shows a spectrum of the oxide after degassing and cleaning by ion bombardment in the vacuum chamber and shows a lowered potassium level and only a small reduction in the surface oxygen concentration. However, reaction in \(\text{H}_2/\text{CO} \) under the same conditions that reduced the anhydrous sesqui- and di-oxides to the metal does not reduce the dehydrated oxide totally, but leaves a small but readily detectable oxygen concentration (Fig. 3(c)), and also
does not induce the black-grey color change. This oxygen surface concentration gives rise to the Auger peak ratio, $0_{515}/\text{Rh}^{302} \sim 0.1-0.2$. Thus the CO/H$_2$ reaction over the hydrated sesquioxide produces an oxygen deficient surface region which is, however, relatively stable to reduction under hydrogenation reaction conditions. The stable oxide formed in this manner can be reduced to the metal by (1) heating to $>400^\circ\text{C}$ in vacuo with carbon present, e.g. after a synthesis reaction, leading to production of CO$_2$ and reduction

$$2\text{Clattice} + \text{Rh}_2\text{O}_3 \rightarrow \text{CO} + \text{CO}_2 + 2\text{Rh},$$

(2) heating to $>400^\circ\text{C}$ in excess H$_2$, (3) heating in vacuo to $>550^\circ\text{C}$, or (4) many hours of reaction in H$_2$/CO mixtures will eventually lead to reduction.

XPS spectra were recorded in an separate apparatus for the Rh 3d $5/2$ line. Due to the modest vacuum of this spectrometer and the fact that the samples had to be transferred in air and could not be treated in situ, no analysis of Cls or Ols signals was attempted. Table I shows XPS data for rhodium metal and the used catalyst, together with Rh$_2$O$_3$.5H$_2$O, Rh$_2$O$_3$.5H$_2$O dried at 400$^\circ\text{C}$ for two hours, and anhydrous Rh$_2$O$_3$. A progressive shift of the position of the rhodium 3d $5/2$ peak from a value of 308.5 eV for the metal through to 311.0 eV for Rh$_2$O$_3$ is found. The peak maxima found in our studies are also compared with values given by Brinen and Malera [10].

The shift in binding energy between Rh and Rh$_2$O$_3$ is the same for the two sets of results within 0.1 eV, but the absolute values differ by about 1.5 eV, a discrepancy which may be due to charging effects. We also note that our values for the Rh(III) compounds are quite close that that given by Jørgensen [11] for RhCl$_3$ of 310.5 eV.
This data clearly indicates that the starting material used in the majority of these experiments, Rh$_2$O$_3$.5H$_2$O that had been heated for two hours or more at 400°C, contains rhodium in a high oxidation state close to a formal charge of three. The used catalyst, however, displays a Rh 3d 5/2 binding energy value that is much closer to that of metallic rhodium but still indicates the presence of rhodium in a partially oxidized form.

While the resolution of our XPS instrument is modest, the peak width (at half height) data shown in Table I shows that heating the hydrated sesquioxide results in a rather sharp peak indicating that all the rhodium present is in a similar chemical environment. The anhydrous oxide, the metal, and the used catalyst, however, show rather wide peaks that indicate the presence of other surface oxide phases or a mixture of oxide and rhodium metal environments.

Thermal desorption of both CO and D$_2$ was also performed. On the freshly prepared hydrated oxide surface only small amounts of CO and D$_2$ (<15 and <5%, respectively) were detected desorbing. The vast majority of the reactant gases were desorbed as either CO$_2$ or D$_2$O, indicating facile reduction of lattice oxygen. Further details of this work will be published elsewhere.

On an oxide surface that has been used as a catalyst, both CO and D$_2$ desorb as intact molecules. Typical desorption spectra are shown in Fig.4(a); while CO adsorption continued almost indefinitely (up to several thousands of Langmuirs exposure) the D$_2$ desorption peak is saturated at exposures of ~ 250 L.

This behavior with D$_2$ may be attributable to the rapid conversion of the remaining oxide sites on the surface to hydroxyl. D$_2$ can then only be
desorbed by the breaking of these O-H bonds and subsequent migration and recombination of D atoms resulting in a relatively high temperature of desorption.

In Fig. 4(b), the above results are compared with TDS results for CO and D₂ adsorbed onto a catalyst that had been reduced by high temperature decomposition of the oxide to the metal. Two effects of reduction are immediately apparent. First, D₂ desorbs from the reduced metal surface close to room temperature, in agreement with other studies of the H₂/Rh system [5,31,32]; whereas it desorbs at the relatively high temperature of ~120°C from the oxide surface. Reduction of the oxide appears to lower the amount of CO adsorbed, but also increases the binding energy of that CO, evidenced by the upward shift of the peak maximum from ~150°C to 190°C, a value somewhat lower but close to the range normally found for CO desorption from metallic rhodium [32].

3.2 Reaction of H₂/CO Rhodium Oxides

a. Background reactivity. In order to assess the background reactivity of the system and of the metallic foils used as backings for the oxide films, blank experiments were performed with Au and Pt foils. The results of these tests are presented in Table II and compared with results for deposited films of hydrated Rh₂O₃.5H₂O on gold foil (see more detail in Section 3.2c). As a comparative measure of the rates of reaction, the number of C atoms converted to products during one hour is listed for typical samples. Also listed are the product distributions.

Clearly, the metal foils in the stainless steel reaction chamber give a
very different product distribution containing no oxygenates when compared to
a rhodium oxide film deposited on a foil. The rate of conversion to products
in the presence of the blank foils is an order of magnitude less than when
the foils are covered with rhodium oxide. Samples of oxide deposited on
either type of Pt or Au foil behave in a very similar manner. Therefore, as
the foil supports are completely covered during the experiments with a rhodium
oxide film, we can be certain that any oxygenated products we see are due to
the presence of the rhodium oxide.

b. Reaction over anhydrous RhO₂ and Rh₂O₃. Both of these anhydrous
oxides were rapidly and completely reduced to the metal in an H₂/CO mixture.
The reduction was evidenced by (1) an obvious color change from the character­
istic oxide color of brown (RhO₂) or black (Rh₂O₃) to a silvery-grey metallic
luster characteristic of rhodium metal; (2) the disappearance of an oxygen
Auger signal is noted in section 2.1 and shown in Figs. 1 and 2; (3) a product
distribution typical of rhodium metal showing little or no oxygenates present
and a predominance of methane (80%+).

Attempts were made to reoxidize reduced samples of these materials
by heating in wet and in dry O₂ at 1 atm pressure and at 600°C for 30 minutes.
After such treatments the oxide formed was still found to be unstable and re­
duced to the metal very rapidly under reaction conditions in the CO-H₂ gas
mixtures. Due to the extreme instability of these oxides no further studies
were made of their catalytic properties.

c. Reaction over hydrated Rh₂O₃·5H₂O.

1. Product distributions. As mentioned in Section 2.1, the hy­
drated sesquioxide is relatively stable under reaction conditions and can be
operated for many hours in a mixture of H₂ and CO with only slow reduction occurring.

The hydrogenation of CO over a hydrated Rh₂O₃.₅H₂O surface leads to the formation of large concentrations of oxygenated hydrocarbons. A yield of oxygenated products that can be detected that can be as high as 25 wt% or more, depending upon the reaction conditions. This sequence is shown in more detail in Fig.5 where the product distribution obtained for Rh₂O₃.₅H₂O, rhodium metal and the oxidized metal are reported.

Acetaldehyde is the major oxygen containing product together with smaller amounts of propionaldehyde, butyraldehyde, methanol, and trace amounts of ethanol. An interesting feature is that the C₂+ hydrocarbon yield is almost entirely olefinic, in contrast to the usual predominance of alkanes with the metallic rhodium catalysts.

Table III compares the product distribution from this Rh₂O₃.₅H₂O catalyst with other literature reports for rhodium catalysts. The results for this rhodium catalyst approach those reported by Wilson et al.[3] for a silica supported catalyst operated at somewhat higher pressures and higher conversion than those used here. The silica supported catalyst produces large amounts of acetic acid and ethanol, while the dehydrated rhodium oxide used here produces predominantly acetaldehyde. It is possible that at high conversion or pressures acetaldehyde may be formed initially and then further reacted to form these other products.

It is intriguing to speculate on the differences in behavior between these various rhodium catalysts and as to their origin. Our results suggest that the degree of oxidation of the rhodium may be an important factor, metallic rhodium formulations [1,5] leading to hydrocarbons and oxidized
forms leading to more oxygenated products \[2,3,6,28\]. Clearly, the method of preparation and pretreatment of these catalysts is all important and should be characterized more fully.

The effect of changing the \(\text{H}_2/\text{CO} \) ratio is shown in Fig. 6 for a sample held at 6 atm total pressure and 350°C. The percentage of oxygenated products is relatively insensitive to this parameter, although a slight trend to more alcoholic products is seen at higher \(\text{H}_2\) partial pressures as might be expected. The major effect of increasing the \(\text{CO}\) concentration in the reactant stream is to depress the methane yield and increase the amount of \(\text{C}_2-\text{C}_4\) hydrocarbons formed such that they are formed in roughly equal (wt%) amounts for a 1:3 \(\text{H}_2/\text{CO}\) mixture.

As is demonstrated in Fig.7, the effect of changing the total pressure over the range of 2-10 atm at fixed temperature and synthesis gas composition is very small.

The effect of increasing the reaction temperature upon the product distribution is shown in Fig.8. Raising the temperature favors the production of shorter chain hydrocarbons presumably by preferentially increasing the rate of hydrogenation relative to that of chain growth. Conversely, lowering the temperature increases the total yield of oxygenated products; unfortunately, at temperatures of 250°C and below the rate of conversion is sufficiently low to make accurate determination of the oxygenate yields difficult.

2. **Kinetics.** A typical plot of the accumulation of products with time is shown in Fig. 9 for a gold supported, hydrated \(\text{Rh}_2\text{O}_3.\text{5H}_2\text{O}\) film at 300°C, 6 atm pressure, and 1:1 \(\text{H}_2/\text{CO}\) ratio. We can see that all products are produced at approximately constant rates with little or no
induction period and with no drop in performance over a period of 2-3 hours. Occasionally poisoning by sulfur led to reductions in the rates. Assigning turnover numbers (TN's) to each product is complicated by imprecise knowledge of the number of Rh atoms available for reaction; but, using the BET surface area of 10 m²/gm and assuming that 2/5 of the surface atoms are rhodium, we arrive at TN's for the major products of:

\[
\text{(1:1 H}_2/\text{CO, 300°C) \, \text{Rh}_2\text{O}_3.5\text{H}_2\text{O \, TN}} \quad \text{CH}_4 \quad \text{CH}_3\text{CHO} \\
6 \text{ atm} \quad \text{molecules/site/sec} \quad \sim 1 \times 10^{-3} \quad 1 \times 10^{-4}
\]

The CH₄TN estimate is lower than those reported for Rh foils at 6 atm[6], but are closer to those reported for supported rhodium catalysts [1,3], as shown in Table IV. This discrepancy, however, may be more apparent than real as no in situ measure of the number of surface Rh atoms was available and, hence, the number of atoms taking part in reaction is probably overestimated. Table IV also lists the activation energy for methane production obtained from an Arrhenius plot. The value of 26 kcal/mole, found for the dehydrated rhodium oxide used in the present work, compares very favorably with other values found for rhodium synthesis gas catalysts.

In Fig.10 is shown Arrhenius plot for the formation of C₁-C₃ hydrocarbons and acetaldehyde, the major oxygenated product. Within experimental error, all the hydrocarbon species methane, ethylene, and propylene/propane, and acetaldehyde show a variation of reaction rate with temperature that are all closely similar, and the activation energies of their formation all cluster around a value of 26 ± 2 kcal/mole.

3. **Hydrogenation of carbonaceous residues.** At the end of a re-
action, AES and XPS reveal the presence of considerable amounts of carbon on
the surface of the sample (Fig. 3c). Carbonaceous deposits formed during CO/H₂
reactions have been reported for Ni [12-14], Fe [15-17], and Rh catalysts [5, 6]. In common with these systems, the carbon deposits that are found on the rhodium oxide surfaces investigated can be easily hydrogenated. The results of such a hydrogenation experiment are depicted in Fig. 11. The products are solely alkanes with methane the majority product (95 wt%), although products up to C₅ can be detected. In particular, no oxygenated products of any type can be detected during such an experiment, even as a transitory feature.

These results are similar to those reported by Bonzel et al. [16,17] for the hydrogenation of carbidic residues on Fe foils, but do differ in certain respects. Under the conditions employed by these workers, the Fe foil acted as a methanation catalyst. The Fe foil produced CH₄ at the same rate from a mixture of CO and H₂ as when carbidic residues were hydrogenated.

Our experiments with rhodium oxide show a somewhat different behavior in that CH₄ was produced by hydrogenation of carbonaceous deposits at initial rates of about 10-30 times the rate of methane production from CO/H₂ mixtures. As reported in Table V, while the rate of methane production is greater under hydrogenation conditions; the initial rates of production of higher hydrocarbons (not reported by Bonzel et al.) are lowered from their CO/H₂ reaction values. Clearly, in contrast to the results on simple methanation catalysts, the fate of carbon deposits under reaction conditions are not the same as under pure hydrogenation conditions. The implications for the reaction mechanism are discussed in Section 4.2.
4. The effect of added ethylene. The effect of adding a small amount of ethylene (0.1%) to the reactant gas stream is demonstrated in Fig. 12. With no added ethylene, we obtain a typical product spectrum, shown in (a). Note that these data are product distributions for all products excluding C₂. When 0.1% C₂H₄ is present, it completely dominates the analysis and is, hence, removed from these data to more clearly show the effect on the production of other substances. In (b) are the results when 0.1% C₂H₄ is present, and we can clearly see that added ethylene is converted almost completely to propionaldehyde. This is in complete contrast to the behavior of rhodium metal where only a small increase in the concentration of higher hydrocarbons was observed [6].

It appears that C₂ units are being formed intact on the active surface from ethylene and then converted to C₂H₅CHO by direct carbonylation. We would expect that hydrogenation of the carbon deposit from such a mixture would lead to abnormally high C₂ and C₃ hydrocarbon fractions. This is indeed the case as is shown in Fig. 13, where the product distributions for hydrogenation from carbon layers formed from CO/H₂ and CO/H₂/0.1%C₂H₄ are compared. In the presence of the ethylene additive, the C₁ fraction is markedly reduced, the C₂ fraction greatly increased, and the C₃ fraction is now measurable, clearly indicating a large fraction of C₂ species on the surface.

4. Discussion

4.1 Identity and stability of rhodium oxide catalysts.

The thermodynamic parameters (free energy and heat of formation) that characterize rhodium oxides [30] indicate that they should be unstable
under the reaction conditions used during the hydrogenation of CO (>300°C, absence of oxygen). The dissociation oxygen pressure of the oxide is greater than 10^{-6} torr at 400°C which assures its decomposition in the reducing CO-H$_2$ gas mixture. The ordered oxide forms readily upon heating the metal in a low partial pressure of oxygen at high temperatures [29] followed by rapid cooling that prevents the out-diffusion of oxygen from the bulk of the metal. The trapped oxygen readily orders, and the oxide structures that form in the near surface region have been studied by Castner and Somorjai [29]. The rapid reduction of anhydrous rhodium oxides in CO/H$_2$ gas mixtures upon heating to 300°C is clearly demonstrated in this study and by previous studies of the pre-oxidized metal. However, we find that the hydrated rhodium oxide, Rh$_2$O$_3.5$H$_2$O retains a relatively high concentration of oxygen at the surface even after hours of chemical reaction in high pressures of CO and H$_2$ at 300°C. Thus while the metal oxide is thermodynamically unstable, it is kinetically stabilized by the slow rate of reduction of this particular form of hydrated oxides.

It occurs frequently in heterogeneous catalysis that a certain form of catalyst that is thermodynamically unstable remains stable indefinitely under the circumstances of chemical reaction. Zeolites (alumina silicates) of all types are metastable with respect to crystalline alumina and silica, yet they remain structurally stable to over 1000°C. Noble metal oxides, oxides of platinum, gold, and iridium, in addition to rhodium are all thermodynamically unstable, yet they are prepared and utilized as stable catalysts under proper circumstances. Their stability is assured by their slow rate of decomposition that is controlled by the diffusion of oxygen from the bulk to the surface of the metal, a very slow process indeed below 500-600°C, that is, under the
usual conditions of most heterogeneous catalytic reactions.

4.2 Reaction mechanism

The major difference between hydrated Rh_2O_3 and metallic rhodium for the hydrogenation of CO is that the oxide produces large quantities of aldehydes and the hydrocarbon product is predominantly olefinic. This clearly implies that placing rhodium atoms in an oxide environment leads to a diminution of their hydrogenation ability. Thus while rhodium metal catalyzes the formation of only small quantities of olefins compared to alkanes, the oxide catalyst produces mostly olefins. The diminished hydrogenation capability also leads to the formation of aldehydes rather than alcoholic oxygenates particularly at H_2/CO ratios of 1 or less. The different product distributions obtained during the CO/H_2 reaction over rhodium catalysts dispersed on a variety of supports [1,3,28] may well be the result of the unique oxidation rates that are stabilized by metal-support interactions.

The first question we might address is that of the source of the oxygen atoms that appear in the oxygenated products—do they arise from CO or from the lattice oxygen? In the absence of isotopic labelling evidence, which is not practicable in this experimental arrangement, we must turn to indirect evidence. There is, in fact, good indirect evidence that in the main the oxygen atoms found in the oxygenated products of CO hydrogenation over $\text{Rh}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$ do originate in CO and are not abstracted from the oxide lattice.

(1) the rate of production of oxygenates does not decrease with time;

(2) AES indicates that the working catalyst surface has a relatively low oxygen content. The total number of oxygen atoms found in the products
generally exceeds that available in the sample.

(3) When the carbonaceous deposit, formed during a synthesis reaction, is hydrogenated in pure H₂, no trace of oxygenated products is detected, yet hydrocarbons up to C₅ are produced. This evidence shows that in the absence of CO, oxygenated species do not form, while in the presence of CO they form in a manner indicating that CO incorporation is part of the reaction pathway. Thus it seems reasonable to propose that the aldehydic species formed during reaction arise from CO insertion into carbidic fragments present on the metal surface. The AES and rehydrogenation results with their similarity to those results seen for Fe [17] and Ni [19] indicate that a carbonaceous deposit is present on the surface of the working catalyst that contains little oxygen. Thus we would postulate that aldehyde formation occurs through CO insertion.

\[
\begin{align*}
M-\text{CH}_x & \xrightarrow{\text{CO}} M-\text{CO-CH}_x \xrightarrow{\text{H}} M + \text{CH}_3\text{CHO} \\
M-\text{C}_2\text{H}_x & \xrightarrow{\text{CO}} M-\text{CO-C}_2\text{H}_x \xrightarrow{\text{H}} M + \text{CH}_3\text{CH}_2\text{CHO}
\end{align*}
\]

Support for this contention comes from two sources. First, we see almost complete carbonylation of C₂H₄ to C₂H₅CHO when ethylene is added to the reactant mixture. Second, rhodium is well known for its ability to catalyze the carbonylation of methanol both in homogeneous [18,19] and heterogeneous systems [20-22]. In these systems CO insertion into a Rh-CH₃ bond is thought to be the key step.

Important evidence to support this reaction mechanism is provided by our kinetic measurements. In particular, the activation energy for the formation of all hydrocarbons and acetaldehydes are all closely similar. This strongly suggests that these products all come from the same precursor with the same rate determining step. The similarity of the activation energy
for methane formation on both the oxide surface, rhodium metal, and the supported catalyst suggest that the mechanism for methane formation on all these surfaces is similar.

A way in which this data can be accommodated with a reaction mechanism is to postulate a rate determining formation of surface metal-carbon species and then have efficient hydrogenation and carbonylation reaction steps. Once a M-CH$_x$ or similar species is formed, then it is rapidly and competitively converted to hydrocarbon or aldehyde.

\[
\begin{align*}
\text{M-CH}_x & \xrightarrow{\text{H}} \text{CH}_4 \\
\text{CH}_x & \xrightarrow{\text{H}} \text{C}_2\text{H}_y \\
\text{C}_2\text{H}_y & \xrightarrow{\text{H}} \text{C}_2\text{H}_4 \\
\text{M-CH}_x & \xrightarrow{\text{CO}} \text{M-CO-CH}_x \\
\text{M-CO-CH}_x & \xrightarrow{\text{H}} \text{CH}_3\text{CHO} \\
\text{CH}_3\text{CHO} & \xrightarrow{\text{H}} \text{C}_2\text{H}_4
\end{align*}
\]

Chain growth could occur through addition of CH$_x$ units, by CO insertion followed by hydrogenation or by condensation of two oxygenated intermediates. The data obtained through olefin addition suggests that when CO is inserted, the product aldehyde is released much more quickly than it can be hydrogenated, i.e. C$_2$H$_5$CHO is produced to the exclusion of C$_3$H$_8$. Hence, chain growth by insertion followed by hydrogenation to give hydrocarbon does not seem likely.

The actual product spectrum obtained will depend weakly on temperature as all activation energies are similar, and to a larger extent upon the H$_2$/CO ratio which will alter the balance between the competing secondary reactions.
While CO dissociation can occur on Rh surfaces under certain conditions [27], it has not been conclusively demonstrated to occur on rhodium oxide. Attempts to perform thermal desorption to investigate this possibility were hampered by a large background of CO produced by the reaction of carbon trapped in the bulk with lattice oxygen on heating. However, the TDS results do show that the bonding of both H$_2$ and CO on the active oxide surface differ markedly from those on the reduced metal surface. The relatively weaker bonding of CO and stronger bonding of the H$_2$ to the oxide versus the metal surface correlates with the reduced hydrogenation capacity and increased tendency towards carbonylation of the oxide surface. However, it is difficult at this time to interpret these findings in mechanistic terms though it is hoped that further work in this area will clarify this question.

The spectroscopic results indicate that we are dealing with a partially reduced oxide possibly containing patches of metallic rhodium. It is interesting to note that rhodium in an oxidized form has been suggested as the active agent for carbonylation activity in a zeolite matrix [24,25] as a result of IR, XPS, and UV measurements, although not conclusively [26]. It is possible that the oxide traps hydrogen as hydroxyl groups allowing carbonylation to compete successfully with hydrogenation and carbidic chain growth. Such ideas have been advanced by Sachtler et al. [23] as the formation of oxygenated products over iron Fischer-Tropsch catalysts occurring on oxide patches, possibly maintained by the water produced in the reaction.
5. Conclusions

1. While anhydrous RhO₂ and Rh₂O₃ are unstable to reduction under reaction conditions, Rh₂O₃.5H₂O is stable for long periods of time at temperatures <350°C.

2. This oxide is catalytically active for the hydrogenation of CO producing 25+ wt% of oxygenated products, mostly acetaldehyde, the balance being methane and C₂-C₅ alkenes.

3. The oxygenated products appear to form by insertion of CO into surface CₓHᵧ species; this process competes successfully on the oxide, but not on the reduced metal, with hydrogenation to hydrocarbons.

These results show that the reaction pathway that the hydrogenation of CO follows over rhodium surfaces can be drastically altered to produce oxygen containing hydrocarbons instead of alkanes by placing the rhodium surface atoms into an oxide matrix. The ability to successfully produce oxygenated species by carbonylation appears to be linked to the higher than zero oxidation state of the rhodium. The hydrated Rh₂O₃.5H₂O catalyst undergoes partial reduction during pretreatment and eventual full reduction if used for a long enough period or at high enough temperatures. Work is underway to define and prepare more stable oxidized rhodium systems to further test the possibility of controlling the product distribution in the CO/H₂ reaction by the control of the oxidation state of the metal.

Acknowledgement

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U. S. Department of Energy under Contract W-7405-ENG-48, and the Exxon Foundation. We thank Dr. R. Dodd (Lawrence Berkeley Laboratory) for taking the XPS data, and Drs. T.P. Wilson and J.A. Rabo for useful discussions.
References

18. F.E. Paulik and J.P. Roth, Chem. Commun. 1578 (1968)
TABLE I. XPS binding energy data for the Rh 3d 5/2 line

<table>
<thead>
<tr>
<th>Sample</th>
<th>This work</th>
<th>ΔE_B</th>
<th>Brinen and Melera(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh metal</td>
<td>308.5 0.2</td>
<td>2.8</td>
<td>307.1</td>
</tr>
<tr>
<td>$\text{Rh}_2\text{O}_3\cdot5\text{H}_2\text{O}$</td>
<td>311.0 ± 0.2</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>dried $\text{Rh}_2\text{O}_3\cdot5\text{H}_2\text{O}$</td>
<td>309.8 ± 0.2</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>anhydrous Rh_2O_3</td>
<td>310.0 ± 0.2</td>
<td>2.5</td>
<td>308.7</td>
</tr>
<tr>
<td>used catalyst</td>
<td>309.0 ± 0.2</td>
<td>2.4</td>
<td></td>
</tr>
</tbody>
</table>

Binding energies are referred to C 1s at 285.0 eV.

ΔE_B represents the full width at half-height of the Rh 3d 5/2 peak.
TABLE II. Reaction of 1:1 \(\text{H}_2/\text{CO} \) at 6 atm pressure over Au and Pt foils compared with dried Rh\(_{2} \text{O}_{3}.5\text{H}_2\text{O} \) on Au foil.

<table>
<thead>
<tr>
<th>Sample</th>
<th>T°C</th>
<th>Total C atoms converted in 60 min.</th>
<th>(\text{C}_1)</th>
<th>(\text{C}_2)</th>
<th>(\text{C}_3)</th>
<th>(\text{C}_{4+})</th>
<th>oxys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au foil</td>
<td>300</td>
<td>6x10(^{16})</td>
<td>64</td>
<td>19</td>
<td>13</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Pt foil</td>
<td>350</td>
<td>25x10(^{16})</td>
<td>87</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>dried rhodium oxide on Au foil</td>
<td>350</td>
<td>190x10(^{16})</td>
<td>41</td>
<td>17</td>
<td>13</td>
<td>5</td>
<td>23</td>
</tr>
</tbody>
</table>
TABLE III. Product distributions for CO hydrogenation over various rhodium catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>T°C</th>
<th>P atm</th>
<th>H₂/CO</th>
<th>C₁</th>
<th>C₂</th>
<th>C₃</th>
<th>MeOH</th>
<th>EtOH</th>
<th>MeCHO</th>
<th>MeCOOH</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh/Al₂O₃</td>
<td>265</td>
<td>1</td>
<td>3</td>
<td>89</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Rh metal</td>
<td>300</td>
<td>6</td>
<td>3</td>
<td>91</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Rh/La₂O₃</td>
<td>225</td>
<td>0.1</td>
<td>2</td>
<td>23</td>
<td>1</td>
<td><<1</td>
<td>30</td>
<td>46</td>
<td>trace</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Rh/ZnO</td>
<td>250</td>
<td>0.1</td>
<td>2</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>82</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Rh/SiO₂</td>
<td>300</td>
<td>70</td>
<td>1</td>
<td>53</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>trace</td>
<td>30</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Rh/SiO₂</td>
<td>300</td>
<td>80</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>44</td>
<td>52</td>
<td>28</td>
</tr>
<tr>
<td>preox.Rh.</td>
<td>300</td>
<td>6</td>
<td>3</td>
<td>80</td>
<td>11</td>
<td>7</td>
<td>trace</td>
<td>trace</td>
<td>2</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>dried Rh₂O₃·5H₂O</td>
<td>300</td>
<td>6</td>
<td>3</td>
<td>29</td>
<td>22</td>
<td>25</td>
<td>3</td>
<td>trace</td>
<td>16</td>
<td>0</td>
<td>this work</td>
</tr>
</tbody>
</table>
TABLE IV. Turnover numbers for methane production over dried Rh$_2$O$_3$.5H$_2$O compared with literature data at 300°C, 1:1 H$_2$O

<table>
<thead>
<tr>
<th></th>
<th>CH$_4$ TN (molecule/site/sec)</th>
<th>E_a (kcal/mole)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh foil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clean</td>
<td>0.1</td>
<td>24 ± 2</td>
<td>5,6</td>
</tr>
<tr>
<td>Rh/Al$_2$O$_3$ 1 atm</td>
<td>0.034</td>
<td>24 ± 2</td>
<td>1</td>
</tr>
<tr>
<td>Rh/SiO$_2$ 7 atm</td>
<td>0.030</td>
<td>24 ± 2</td>
<td>3</td>
</tr>
<tr>
<td>dried</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rh$_2$O$_3$.5H$_2$O 6 atm</td>
<td>0.001</td>
<td>26 ± 2</td>
<td>this work</td>
</tr>
</tbody>
</table>
TABLE V. Comparison of rates of formation of products formed over dried Rh₂O₃·5H₂O at 350°C

(a) 1:1 H₂/CO mixture

(b) Hydrogenation of the residue from (a)

<table>
<thead>
<tr>
<th>P atm</th>
<th>CO</th>
<th>H₂</th>
<th>C₁</th>
<th>C₂</th>
<th>C₃</th>
<th>C₄</th>
<th>CH₃CHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Reaction</td>
<td>3</td>
<td>3</td>
<td>18.0</td>
<td>8.4</td>
<td>4.5</td>
<td>1.4</td>
<td>3.5</td>
</tr>
<tr>
<td>(b) Hydrogenation</td>
<td>0</td>
<td>3</td>
<td>140.0</td>
<td>2.6</td>
<td>0.9</td>
<td>0.45</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure Captions

1. Auger electron spectra of an anhydrous Rh$_2$O$_3$ surface
 a. as mounted in the vacuum chamber
 b. after reaction at 300°C, 6 atm in 1:1 H$_2$/CO

2. Auger electron spectrum of an anhydrous Rh$_2$O$_3$ surface
 a. as mounted in the vacuum chamber
 b. after heating to 400°C for one hour
 c. after reaction at 300°C, 6 atm in 1:1 H$_2$/CO

3. Auger electron spectrum of a Rh$_2$O$_3$.5H$_2$O sample dried at 600°C for 2 hours.
 a. as mounted in the vacuum chamber
 b. after heating to 400°C for 1 hour and then argon ion-bombarded
 at 500 and 5 μ A/cm2 for 15 min.
 c. after reaction at 300°C, 6 atm in 1:1 H$_2$/CO

4. Thermal desorption spectra of CO and D$_2$ from
 a. a used oxide catalyst
 b. the same catalyst reduced to the metal by heating in vacuo to
 750°C for 30 min. and subsequently cleaned by ion bombardment.

5. Product distribution (wt%) for the reaction of 1:1 H$_2$/CO at 300°C and
 6 atm pressure for rhodium oxide (Rh$_2$O$_3$.5H$_2$O) compared with rhodium
 metal both clean and preoxidized [6].

6. The effect of changing the H$_2$/CO ratio on the product distribution of
 the hydrogenation of CO over dried Rh$_2$O$_3$.5H$_2$O at 350°C and 6 atm.
7. The effect of changing the total pressure on the product distribution for the reaction of 1:1 H₂/CO at 350°C over dried Rh₂O₃·5H₂O.

8. The product distribution in wt% at temperatures of 350°C and 300°C for the reaction of 1:1 H₂/CO at 6 atm over dried Rh₂O₃·5H₂O.

9. Product accumulation with time for the reaction of 1:1 H₂/CO at 300°C and 6 atm over dried Rh₂O₃·5H₂O.

10. Arrhenius plot of kinetic data for the reaction of 1:1 H₂/CO at 6 atm over dried Rh₂O₃·5H₂O.

11. Product accumulation with time for the hydrogenation of carbonaceous residue from a previous hydrogenation of CO reaction using 3 atm H₂ at 350°C.

12. Product distributions in wt% (excluding C₂ hydrocarbons) found for the reaction of 1:1 H₂/CO at 6 atm and 350°C with
 a. no added C₂H₄
 b. 0.1% C₂H₄ added to the reactants.

13. Product distribution obtained from the hydrogenation of the carbonaceous residue formed in the reactions of Fig. 12 with 3 atm of H₂ at 350°C.
Fig. 1

Anhyd. Rh₂O₃

N'(E)

Energy (eV)

100 200 300 400 500

as mounted

×2.5

Rh+K

Rh

after reaction

C

XBL 816-5895
Anhyd. RhO₂

a) as mounted

Rh+K

b) 400°C

Rh

c) after reaction

Energy (eV)

100 200 300 400 500

Fig. 2
Dehydr. Rh$_2$O$_3$·5H$_2$O
350°C

Fig. 3
Fig. 4

CO TDS

a) Used oxide catalyst

D₂ TDS

b) Reduced metal

AMU 28 Intensity (arb. units)

AMU 4 Intensity (arb. units)

5 L

25 L

XBL 816-5893

XBL 816-5893

5 L (×10)

25 L (×10)

Temperature (°C)
Fig. 5

1:1 H₂/CO, 300°C, 6 atm.

Product Distribution (wt. %)

Clean Rh

Preoxidised Rh

Rhodium Oxide

C₁ C₂ C₃ C₄+ C₁ C₂ C₃ C₄+ oxy C₁ C₂ C₃ C₄+ oxy

ene one ene one ene

MeOH EtCHO MeCHO

XBL816-5887
Rh₂O₃, 350°C
6 atm.

Product Distribution (wt. %)

H₂/CO Ratio

CH₄
C₂⁺
Σoxy

XBL 816-5890

Fig. 6
Fig. 7

Rh₂O₃, 1:1 H₂/CO
350 °C

Product Distribution (wt.%) vs. Total Pressure (atm.)

- C₁
- C₂+
- Σoxy
Rh$_2$O$_3$, 1:1 H$_2$/CO
6 atm.

- 350°C
- 300°C

Product Distribution (wt. %)

C$_1$, C$_2$, C$_3$, C$_4+$, MeCHO, EtCHO, MeOH
Rh$_2$O$_3$, 300°C, 6 atm.
1:1 H$_2$/CO

Fig. 9
Rh$_2$O$_3$, 1:1 H$_2$/CO
6 atm.

Fig. 10
Rh₂O₃, 350°C
3 atm. H₂
Rh$_2$O$_3$, 1:1 H$_2$/CO, 350°C
6 atm.

Fig. 12
Rh$_2$O$_3$ hydrogenation
350°C, 3 atm. H$_2$

Fig. 13
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.