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A multiancestry genome-wide association study of unexplained 
chronic ALT elevation as a proxy for nonalcoholic fatty liver 
disease with histological and radiological validation

A full list of authors and affiliations appears at the end of the article.

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a growing cause of chronic liver disease. Using a 

proxy NAFLD definition of chronic elevation of alanine aminotransferase (cALT) levels without 

other liver diseases, we performed a multiancestry genome-wide association study (GWAS) in 

the Million Veteran Program (MVP) including 90,408 cALT cases and 128,187 controls. Seventy-

seven loci exceeded genome-wide significance, including 25 without prior NAFLD or alanine 

aminotransferase associations, with one additional locus identified in European American-only 

and two in African American-only analyses (P < 5 × 10−8). External replication in histology-

defined NAFLD cohorts (7,397 cases and 56,785 controls) or radiologic imaging cohorts (n = 

44,289) replicated 17 single-nucleotide polymorphisms (SNPs) (P < 6.5 × 10−4), of which 9 were 

new (TRIB1, PPARG, MTTP, SERPINA1, FTO, IL1RN, COBLL1, APOH and IFI30). Pleiotropy 

analysis showed that 61 of 77 multiancestry and all 17 replicated SNPs were jointly associated 

with metabolic and/or inflammatory traits, revealing a complex model of genetic architecture. Our 

approach integrating cALT, histology and imaging reveals new insights into genetic liability to 

NAFLD.

Chronic liver disease with progression to cirrhosis and hepatocellular carcinoma is a global 

health issue1. In particular, non-alcoholic fatty liver disease (NAFLD) is an increasingly 

common cause of chronic liver disease, with an estimated world prevalence of 25% among 

adults2. In the United States, NAFLD prevalence is projected to reach 33.5% among adults 

by 2030 (ref. 3). NAFLD is defined by ≥5% fat accumulation in the liver in the absence of 

other known causes for liver disease, based on liver biopsy and/or radiologic imaging4,5.

Individual susceptibility to NAFLD involves both genetic and environmental risk factors. 

Current estimates of NAFLD heritability range from 20% to 50%6, and risk factors 

include obesity, insulin resistance and several features of metabolic syndrome2. A limited 

number of genetic variants that promote NAFLD have been identified in GWASs using 

liver biopsy, imaging and/or isolated liver enzyme values, such as PNPLA3, TM6SF2 and 

work. C.J.O. is an employee of Novartis Institute for Biomedical Research. S.F.A.G. is the Daniel B. Burke Endowed Chair for 
Diabetes Research. The remaining authors declare no competing interests.
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MTARC17–11, which highlights the need for expanded discovery with larger samples and 

greater population diversity.

The MVP is among the world’s largest and ancestrally diverse biobanks12 and a promising 

resource for precision medicine. NAFLD is markedly clinically underdiagnosed due to the 

invasive nature of the liver biopsy procedure, variable use of imaging modalities and poor 

sensitivity of diagnostic codes5. The use of chronic elevation of alanine aminotransferase 

(cALT) as a proxy for NAFLD has good specificity and positive predictive value in 

the NAFLD diagnostic algorithm within the US Department of Veterans Affairs (VA)13. 

Accordingly, we recently adapted and validated this cALT phenotype to facilitate NAFLD 

case identification in MVP14, applying a rigorous exclusion of other conditions that are 

known to increase liver enzymes. Our aims are to (1) perform a multiancestry genetic 

susceptibility analysis of cALT in MVP, (2) replicate the lead SNPs in external NAFLD 

cohorts defined by liver histology or radiologic imaging, (3) predict putative effector 

genes at the lead loci and (4) characterize the genetic architecture using cross-phenotypic 

associations.

Results

An ancestry-diverse study population enriched for metabolic conditions.

Our study consisted of 90,408 cALT cases and 128,187 controls comprising four ancestral 

groups: European American (EA, 75.1%), African American (AA, 17.1%), Hispanic 

American (HISP, 6.9%) and Asian American (ASN, 0.9%; Supplementary Table 1 and 

Supplementary Fig. 1). Consistent with the US veteran population, MVP cases and controls 

were predominantly male (92.3%) and enriched for metabolic conditions (Supplementary 

Table 1).

Multiancestry and ancestry-specific cALT-associated loci.

To identify cALT-associated loci, we performed a multiancestry GWAS meta-analysis 

(Methods and Fig. 1). Seventy-seven independent SNPs met conventional genome-wide 

significance (P < 5 × 10−8), of which 60 exceeded multiancestry genome-wide significance 

(P < 5 × 10−9). Fifty-two SNPs were previously reported to be associated with alanine 

aminotransferase (ALT), including nine that were also associated with NAFLD (i.e., 

PNPLA3, TM6SF2, HSD17B13, PPP1R3B, MTARC1, ERLIN1, APOE, GPAM and 

SLC30A10-LYPLAL1; Fig. 2 and Supplementary Table 2)7–11,14–22. Of the 25 remaining 

loci, 11 have been associated with gamma-glutamyl transferase and/or alkaline phosphatase 

levels before22, and 14 were new.

In the ancestry-specific analyses, 55 loci in EAs, eight loci in AAs and three in HISPs were 

genome-wide significant (P < 5 × 10−8; Supplementary Tables 3–5 and Supplementary Figs. 

2–5), of which one EA and two AA SNPs were not captured in the multiancestry analysis 

(Supplementary Fig. 5). Notably, the top two SNPs in the AA-only scan (near/in GPT and 

ABCB4) are polymorphic among AAs but nearly monomorphic in other populations.
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Replication in liver biopsy and radiologic imaging data.

To assess whether our cALT-associated SNPs capture genetic susceptibility to NAFLD, 

we performed a multiancestry lookup of the 77 SNPs in two external NAFLD cohorts, 

namely (1) a liver biopsy cohort consisting of 7,397 histologically characterized NAFLD 

cases and 56,785 population controls (Methods and Supplementary Tables 6 and 7) and 

(2) a liver imaging cohort consisting of 44,289 participants with available radiologic liver 

imaging-based quantitative hepatic fat (qHF) measurements (Methods and Supplementary 

Table 8). In the liver biopsy cohort, there was directional concordance between effect 

estimates of NAFLD in 66 of 77 SNPs (86%), including 15 SNPs with a significant 

association (adjusted Bonferroni P < 6.5 × 10−4), of which eight have not been reported 

previously (e.g., TRIB1, MTTP, APOH, IFI30, COBLL1, SERPINA1, IL1RN and FTO; 

Supplementary Table 7)9. In the liver imaging cohort, there was directional concordance 

between effect estimates of cALT and qHF in 49 of 77 SNPs (64%). Among these, 11 

were significantly associated (Bonferroni-adjusted P < 6.5 × 10−4; Supplementary Table 8), 

of which six were new (e.g., TRIB1, MTTP, APOH, IFI30, COBLL1 and PPARG). The 

PPP1R3B locus was significantly associated with qHF, but in the opposite direction from 

cALT, and was not associated with biopsy-proven NAFLD. Collectively, 17 of 77 SNPs 

were replicated in external histologic and/or radiologic NAFLD cohorts, of which nine were 

previously unreported (Supplementary Table 2).

We performed a SNP-specific statistical power analysis to investigate the SNP-specific type 

I error (α) in the liver biopsy cohort (Bonferroni-adjusted P < 6.5 × 10−4; Supplementary 

Tables 2 and 7). Twenty-two loci showed sufficient statistical power (>80%) for replication, 

of which ten replicated (Supplementary Fig. 6). Twelve sufficiently powered SNPs did not 

replicate, which included GPT, PPP1R3B and PANX1. Remarkably, of the 55 SNPs without 

sufficient statistical power for replication, six SNPs did in fact replicate (namely PPARG, 

MTTP, FTO, IL1RN, IFI30 and COBLL1). The effect size of cALT SNPs that replicated 

in the histological dataset was on average 92.4% higher than their respective cALT effect 

estimates (Supplementary Figs. 7 and 8). Of the remaining 49 SNPs without sufficient 

statistical power, 22 SNPs showed higher effect sizes for histological NAFLD than cALT 

and were labeled as candidate NAFLD loci (Supplementary Table 2).

GRSs and histologically characterized NAFLD.

We next constructed genetic risk scores (GRSs) in four independent liver biopsy cohorts to 

quantify the cumulative predictive power of our 77 sentinel variants (Supplementary Table 

9 and Supplementary Fig. 9). A 77 candidate SNP-based GRS was predictive of NAFLD 

in the liver biopsy cohort (GRS-77, P = 3.7 × 10−28). A partitioned GRS consisting of 

nine established NAFLD SNPs (GRS-9) and a GRS consisting of 68 new SNPs (GRS-68) 

revealed that both scores independently predicted biopsy-defined NAFLD (GRS-9, P = 2.2 × 

10−11; GRS-68, P = 2.4 × 10−7). A GRS that consisted of the 17 externally replicated SNPs 

strongly predicted NAFLD (P = 2.53 × 10−10) (Supplementary Fig. 10 and Supplementary 

Table 9).
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Heritability and genetic correlations with other phenotypes.

To further characterize the genetic architecture of our cALT phenotype, we estimated 

heritability and genetic correlations with other traits using linkage disequilibrium (LD) 

score regression (Methods). The SNP-based liability-scaled heritability was estimated at 

16% (95% confidence interval (CI), 12–19, P < 1 × 10−6) in EAs. Genetic correlation 

analysis between cALT and 774 complex traits from LD Hub (Methods) identified a total 

of 116 significant associations (Bonferroni-adjusted P < 6.5 × 10−5; Supplementary Table 

10). These associations encompassed 78 cardiometabolic risk factors (67.2%), which is 

consistent with reports from observational studies correlating these traits to NAFLD23. 

Additional genetically correlated traits represented general health conditions (11.2%), 

educational attainment and/or socioeconomic status (12.0%) and other conditions (9.5%), 

such as gastroesophageal reflux, smoking and osteoarthritis.

Conditionally independent variants.

To discover additional conditionally independent cALT signals within the 77 genomic 

regions, we performed exact conditional analysis using stepwise regression on individual-

level data for all single-ancestry sentinel variants. We detected a total of 29 conditionally 

independent SNPs (P < 1 × 10−5) (Supplementary Table 11). Specifically, the GPT 
locus showed the highest degree of genomic regional complexity with four conditionally 

independent SNPs, followed by AKNA with three conditionally independent SNPs. We 

observed a total of six conditionally independent variants at three genomic regions for AAs. 

For one new locus located on chromosome 12 between 121 and 122 Mb, the multiancestry 

lead variant (rs1626329) was located in P2RX7, whereas the lead variant for EA mapped 

to HNF1A (rs1169292; Supplementary Fig. 11). Both variants are linked to compelling 

candidate genes for metabolic liver disease.

Fine mapping to define potential causal variants.

To leverage the increased sample size and population diversity to improve fine-mapping 

resolution, we computed statistically derived 95% credible sets using Wakefield’s 

approximate Bayes’ factors24 (Supplementary Tables 12–15 and Methods). Multiancestry 

fine mapping reduced the median 95% credible set size from 9 in EA (interquartile range, 

3–17) to 7.5 variants (interquartile range, 2–13). A total of 11 distinct cALT associations 

were resolved to a single SNP in the multiancestry metaregression, with four additional loci 

suggesting single SNP sets from EA (n = 2) and AA (n = 2) ancestry-specific scans.

Liver-specific enrichment of cALT heritability.

To ascertain the tissues contributing to the disease-association underlying cALT heritability, 

we performed tissue-specific heritability analysis (Methods). The strongest associations 

were observed for genomic annotations surveyed in liver, hepatocytes, adipose and immune 

cell types, among others (Supplementary Table 16). Medical subject heading-based analysis 

showed enrichment mainly in hepatocytes and liver (Supplementary Table 17). Gene set 

analysis showed strongest associations for liver and lipid-related traits (Supplementary 

Table 18). Enrichment analyses using publicly available epigenomic data (Methods) showed 

that most significant enrichments were observed for active enhancer chromatin state in 
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liver, epigenetic modification of histone H3 in hepatocytes or liver-derived HepG2 cells 

(Bonferroni-adjusted P < 1.8 × 10−5; Supplementary Tables 19 and 20). DEPICT-based 

predicted gene function nominated 28 gene candidates, including PNPLA3, PPARG and 

ERLIN1 (false discovery rate (FDR) < 5%; Supplementary Table 21). These analyses 

support the hypothesis that our cALT GWAS captures multiple physiological mechanisms 

that contribute to NAFLD heritability.

Coding variants in putative causal genes.

Six new multiancestry loci are missense variants (Supplementary Table 22) in CPS1, 

GPT, TRIM5, DNAJC22, SERPINA1 and APOH. To identify additional coding variants, 

we investigated predicted loss-of-function and missense variants in high LD to the 

identified cALT lead variants (ancestry-specific r2 > 0.7; Supplementary Table 22). Four 

previously described missense variants were replicated in the current study (in MTARC1, 

ERLIN1, TM6SF2 and PNPLA3). Among new loci, missense variants in high LD with 

lead variants included variants in CCDC18, MERTK, APOL3, PPARG, MTTP, MLXIPL, 
ABCB4, GPAM, SH2B3, P2RX7, ANPEP, IFI30 and MPV17L2. An AA-specific locus 

(rs115038698) was in high LD to the nearby missense variant Ala934Thr in ABCB4 
(rs61730509, AFR r2 = 0.92) with a predicted deleterious effect using sorting intolerant 

from tolerant (SIFT) and polymorphism phenotyping 2 (PolyPhen-2) tools. In summary, 24 

loci prioritized a candidate gene based on a missense variant in high LD with the lead SNP.

Additional approaches to nominate putative causal genes.

Colocalization analyses.—To prioritize putative causal genes at the cALT-associated 

loci, we performed colocalization analyses with gene and splicing expression quantitative 

trait loci (QTLs) in 48 tissues, and histone QTL data from primary liver (hQTLs; Methods). 

A total of 123 genes were prioritized, including 20 genes expressed in liver tissue 

(Supplementary Table 23). In liver tissue, eight variant-gene pairs were identified where 

the direction of association between the effect allele was concordant between cALT risk and 

transcription levels. Splicing QTL analysis prioritized two genes in the liver (HSD17B13 
and ANPEP) (Supplementary Table 24). Finally, two lead SNPs were in high LD (r2 > 

0.8) with variants that regulated H3K27ac levels in liver tissue (hQTLs), namely EFHD1 
(rs2140773 and rs7604422) and FADS2 (rs174566).

Assay for chromatin accessibility using liver-derived cells.—To decipher 

regulatory mechanisms involved in the pathophysiology of NAFLD, we mapped our cALT 

loci to regions of open chromatin using assay for transposase-accessible chromatin with 

high-throughput sequencing in three biologically relevant liver-derived tissues (human liver, 

liver cancer cell line (HepG2) and hepatocyte-like cells (HLCs) derived from pluripotent 

stem cells)25. Additionally, we used promoter-focused Capture-C data to identify those 

credible sets that physically interact with genes in two relevant cell types (HepG2 and 

liver). For each credible set, we identified genes with significant interactions (CHiCAGO 

score > 5; Methods) that overlap with at least one lead variant (Supplementary Table 25). 

Based on DEPICT gene prediction, coding variant linkage analysis and QTL colocalization 

(Supplementary Tables 18–25), we identified 215 potentially relevant genes for the 77 

loci. A protein–protein interaction (PPI) analysis revealed that among the 192 available 
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proteins, 86 nodes were observed, with strong PPI enrichment (P < 9.0 × 10−8), indicating 

that the protein network shows substantially more interactions than expected by chance 

(Supplementary Table 26 and Supplementary Fig. 12).

Cumulating evidence to nominate putative causal genes.

We present an ensemble method for predicting the likely causal effector gene at 77 loci 

based on eight distinct gene-mapping analyses (Methods). For each available gene within 

a sentinel locus, we counted the number of times it was identified in these eight analyses 

as a measure of cumulative evidence that the respective gene is the actual causal effector 

gene in the region. This ensemble method resulted in the nomination of a single gene as 

the causal effector gene at 53 of 77 genomic loci. At the remaining 24 loci, two loci lacked 

any data to support the nomination of a causal gene, and at 22 loci, two or more causal 

genes were nominated (Supplementary Table 27). We highlighted 35 loci for which a causal 

gene was prioritized by at least three sources of evidence (or four sources of evidence for 

coding variants) in Tables 1 and 2. To confirm that the nominated genes are involved in liver 

biology, we performed a gene expression lookup in single-cell RNA-sequencing data from 

the Liver Single Cell Atlas26 and found that at 76 of 77 loci, a gene was nominated that was 

expressed in at least one liver cell type (Supplementary Table 27).

Transcription factor analysis.

We observed that 14 nominated genes are transcription factors (TFs) (Supplementary Table 

28). Using the DoRothEA data in OmniPath, we identified that two of these TFs have 

several downstream target genes that were also identified in our GWAS scan (Methods). 

Notably, CEBPA targets the downstream genes PPARG, TRIB1, GPAM, FTO, IRS1, 

CRIM1, HP, TBC1D8 and CPS1. Similarly, HNF1A, encoded by the lead gene in the EA 

scan, targets SLC2A2, MTTP and APOH.

Cross-phenotypic associations.

We next sought to identify additional traits that were associated with our 77 multiancestry 

lead SNPs using (1) a LabWAS of clinical laboratory test results27 in MVP (Methods, 

Supplementary Table 29 and Supplementary Fig. 13), (2) PheWAS analyses in the UK 

Biobank using SAIGE (Methods and Supplementary Table 30), (3) candidate SNP lookups 

in the Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) OpenGWAS 

project (Supplementary Table 32) and (4) ancestry-specific cross-trait colocalization 

analyses with 36 GWAS statistics of cardiometabolic and blood cell-related traits (Methods 

and Supplementary Table 33). Specifically, we examined all associations for PheCode 571.5, 

‘Other chronic nonalcoholic liver disease’ in the UK Biobank, which comprised 1,664 cases 

and 400,055 controls, which with a disease prevalence of 0.4% seems to be under-reported. 

Still, of the 73 available lead variants, 14 were nominally associated and directionally 

consistent with our scan (signed binomial test P = 3.4 × 10−9) (Supplementary Table 31). Of 

the 17 replicated SNPs in liver biopsy and qHF, 14 were consistent with the UK Biobank 

NAFLD phenotype.

Based on the four analyses described above, we selected all SNP–trait associations with 

relevant phenotypes to NAFLD biology and classified them as liver (for example ALT, 
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aspartate aminotransferase (AST)), metabolic (for example cholesterol, triglycerides, body 

mass index (BMI) and HbA1c) or inflammatory traits (e.g., C-reactive protein, white blood 

cell count) (Fig. 3 and Supplementary Tables 29–33). Seventeen multiancestry SNPs and 

one EA-specific SNP showed associations with liver traits only (Fig. 3). In contrast, 17 

multiancestry and three ancestry-specific loci showed associations with both liver and 

metabolic traits, whereas four multiancestry loci showed associations with both liver and 

inflammatory traits. Finally, 39 multiancestry loci showed association with all three traits 

(liver enzymes, cardiometabolic traits and inflammation), including 15 of 17 externally 

replicated loci. Our findings confirm that NAFLD-associated loci are highly pleiotropic.

Pleiotropy-stratified GRS and histological NAFLD.

The above analyses raised the possibility that SNPs with greater pleiotropy relative 

to metabolic and/or inflammatory traits beyond liver-related traits may have greater 

contributions to NAFLD. To this end, we compared the GRS between four subgroups of 

multiancestry SNPs as defined in Fig. 3, including (1) 17 SNPs only associated with liver 

traits, (2) 5 SNPs associated with liver and inflammatory traits, (3) 17 SNPs associated 

with liver and metabolic traits and (4) 38 SNPs associated with liver, cardiometabolic and 

inflammatory traits. All four subgroups showed significant capacity to predict NAFLD 

(Supplementary Table 9). However, the strongest effect was observed for the GRSs in 

which SNPs were associated with all three traits (P = 2.8 × 10−9) (Supplementary Fig. 

14). Collectively, these findings show highest discriminative accuracy for NAFLD of SNPs 

associated with liver, metabolic and inflammatory traits.

Directional pleiotropy and gene clusters.

Finally, we visualized the direction and strength of the associations between 77 

multiancestry loci and 7 inflammatory biomarkers and 13 cardiometabolic traits in a 

heatmap (Fig. 4). The loci were grouped into seven gene clusters (Methods). Gene 

cluster 1 consisted of five multiancestry loci (including APOE) for which cALT risk 

alleles were associated with increased low-density lipoprotein (LDL) and total cholesterol, 

apolipoprotein B1 and markers of inflammation. Gene cluster 2 composed of genes (such as 

IL1RN, MTARC1, GPAM and TRIB1) for which the cALT risk alleles were associated with 

increased LDL, total cholesterol and apolipoprotein B1 but decreased levels of inflammatory 

markers. Gene cluster 3 (including MTTP) included genes that showed predominantly 

positive associations with apolipoprotein B1, LDL and total cholesterol. Gene cluster 4 

was characterized by a lack of distinctive biomarker coassociation profiles. Genes in cluster 

5 (including PNPLA3, ERLIN1 and PPP1R3B) were characterized by higher rates of type 

2 diabetes but decreased levels of triglycerides, LDL cholesterol, high-density lipoprotein 

(HDL) cholesterol, apolipoprotein A1 and B1 and white blood cell count. Genes in cluster 

6 (e.g., PPARG and SLC30A10) were associated with higher triglycerides and type 2 

diabetes but decreased sex hormone binding globulin, HDL cholesterol and apolipoprotein 

A1. Finally, genes in cluster 7 (including TM6SF2 and FTO) were associated with 

increased inflammatory markers but lower apolipoprotein B1 and total and LDL cholesterol. 

Interestingly, for a total of nine SNPs (TRIB1, PPARG, SLC30A10 (formerly LYPLAL1), 

MLXIP, CEBPA, COBLL1, C6orf223, MIR5702 and SH2B3), the cALT risk allele was 

associated with lower BMI, consistent with a ‘lean NAFLD’ phenotype. Similarly, the cALT 
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risk alleles of SERPINA1 and OSGIN1 loci seemed to be associated with lower rates of 

type 2 diabetes and SH2B3 and SLC2A2 with lower glucose and HbA1c. Overall, these 

directional associations define distinct gene cluster characteristics with potential biological 

implications.

Discussion

In this study, we describe a multiancestry GWAS of cALT as a proxy for NAFLD, 

which resulted in a total of 77 multiancestry loci, of which 25 have not been associated 

with NAFLD or ALT before. We additionally identified three ancestry-specific loci and 

35 conditionally independent SNPs. We assembled two external replication cohorts with 

histologically confirmed NAFLD and hepatic fat defined by imaging and replicated the 

association of 17 SNPs with NAFLD, of which nine are new (TRIB1, PPARG, MTTP, 

SERPINA1, FTO, IL1RN, COBLL1, APOH and IFI30).

All 17 replicated SNPs showed significant associations with metabolic risk factors and/or 

inflammatory traits, and a GRS based on the subset of SNPs that are associated with 

liver, cardiometabolic and inflammatory markers showed the highest discriminative accuracy 

to predict histological NAFLD. Our directional pleiotropy analysis for metabolic risk 

factors are overall concordant with the results from Sliz et al.28, which investigated four 

NAFLD SNPs (LYPLAL1, PNPLA3, GCKR and TM6SF2). Collectively, our findings offer 

a comprehensive, expanded and refined view of the genetic contribution to cALT with 

potential clinical, pathogenic and therapeutic relevance.

Our proxy NAFLD phenotype was based on chronic elevation of ALT levels with the 

exclusion of other known diagnoses of liver disease or causes of ALT elevation (e.g., 

viral hepatitis, alcoholic liver disease and hemochromatosis), based on previous validation 

within VA population13,14. In this regard, several GWASs of liver enzyme levels have been 

reported, particularly of serum ALT8,17,21,22, but not all studies systematically excluded 

non-cardiometabolic causes of ALT elevation. Pazoki et al. recently reported 230 loci related 

to ALT, of which 52 were also included in our panel of 77 (67.5%) lead cALT loci21,22. We 

recognize that some cALT loci such as GPT may be involved more directly in ALT biology 

rather than NAFLD.

The MVP is one of the world’s largest and most ancestrally diverse biobanks, and 25% of 

the participants are of non-white ancestry. Using data from multiple ancestries allowed us 

to narrow down putative causal variants for NAFLD through multiancestry fine mapping. 

Additionally, the affirmative external replication of 17 SNPs in two large biopsy- and 

imaging-based NAFLD cohorts supports the relevance of our proxy phenotype for NAFLD, 

including not only loci previously associated with NAFLD or all-cause cirrhosis but also 

several of the new loci reported here (e.g., TRIB1, SERPINA1, MTTP, IL1RN, IFI30, 

COBLL1, APOH, FTO, PPP1R3B and PPARG). For all loci except PPP1R3B, we observed 

concordant directionality of effects between cALT and hepatic fat. The apparent discrepancy 

in the PPP1R3B locus has been reported before9 and may represent diffuse attenuation on 

radiologic images due to hepatic accumulation of glycogen29 rather than triglycerides30. In 

addition, our study failed to replicate the GCKR locus, where a common missense variant 

Vujkovic et al. Page 9

Nat Genet. Author manuscript; available in PMC 2023 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(rs780094) has been repeatedly shown to confer susceptibility to NAFLD11. The SNP is 

a risk factor for increased triglycerides, C-reactive protein and LDL cholesterol but seems 

to be protective for T2D, fasting glucose, alcohol intake, alcohol use disorder, BMI and 

monocyte percentage. It is hypothesized that the variant GCKR protein loses interaction 

efficiency with glucokinase, which promotes hepatic glucose metabolism, decreases plasma 

glucose levels and increases NAFLD risk31. Our phenotype might not be a suitable proxy for 

NAFLD for SNPs that act through multiple pathways with opposing effects on ALT.

A substantial fraction of our cALT loci showed a shared genetic coarchitecture with 

metabolic traits (Fig. 4). Of interest is that for nine SNPs, the cALT risk allele 

was associated with lower BMI, including PPARG. These SNPs seem to exhibit mild 

lipodystrophic effects, characterized by reduced adipose tissue and increased hepatic 

steatosis. Further study is required to clarify whether and which loci are working primarily 

in adipose tissue with a secondary effect on liver steatosis. Several genes and liver-enriched 

TFs involved in LDL and triglyceride pathways have been identified, such as TRIB1, 

FTO, COBLL1, MTTP, TM6SF2, PPARG, APOE and GPAM32–35. TRIB1 presumably 

regulates very low density lipoprotein (VLDL) secretion by promoting the degradation 

carbohydrate-response element binding protein (ChREBP, encoded by MLXIPL), reducing 

hepatic lipogenesis and limiting triglyceride availability for apolipoprotein B lipidation. 

Furthermore, TRIB1 coactivates the transcription of MTTP, a microsomal triglyceride 

transfer protein that loads lipids onto assembling VLDL particles to facilitate their 

secretion. Lomitapide, a small-molecule inhibitor of MTTP, is an LDL cholesterol-lowering 

treatment in homozygous familial hypercholesterolemia36. TRIB1 is also involved in the 

degradation of the key hepatocyte TF CEBPA37, which together with HNF1A, RORα 
and MIR-122 is involved in a feedback loop of the liver-enriched TF network to control 

hepatocyte differentiation38. RORα is also a suppressor of transcriptional activity of 

peroxisome proliferator‐activated receptor γ (PPARγ)39. PPARγ facilitates the hepatic 

uptake of triglyceride-rich lipoproteins via interaction with apolipoprotein E40. Large 

randomized controlled clinical trials have reported that the PPARγ agonists rosiglitazone 

and pioglitazone improve NAFLD‐related hepatic steatosis, inflammation and fibrosis41–44. 

However, treatment is frequently accompanied with weight gain and fluid retention, limiting 

its application. RORα competes with PPARγ for binding to PPARγ target promoters, and 

therapeutic strategies designed to modulate RORα activity in conjunction with PPARγ may 

be beneficial for the treatment of NAFLD.

More than half of our cALT loci were associated with inflammatory traits (Fig. 4), 

consistent with the multiple-hit hypothesis of NAFLD45. For example, the TF MafB 

regulates macrophage differentiation46, and genetic variation in MAFB has been associated 

with hyperlipidemia and hypercholesterolemia47. FADS1 and FADS2 are markedly induced 

during monocyte to macrophage differentiation, and it is hypothesized that they impact 

metabolic disease by balancing inflammatory and lipid mediators48. Another interesting 

locus is IL1RN. IL1RN encodes the anti-inflammatory cytokine interleukin-1 receptor 

antagonist (IL-1Ra) and is a natural inhibitor of IL-1 activity. It remains to be investigated 

whether remodeling of the adipose tissue inflammasome via IL-1 signaling blockade in 

obesity-associated NAFLD offers potential therapeutic benefit49. We note during proofing 
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that a recent report described NAFLD associations using an imputed phenotype50, some of 

which overlap with loci we report here (Supplementary Table 2).

In conclusion, we discovered 77 genomic loci associated with cALT in a large, ancestrally 

diverse cohort. We replicated our findings in external cohorts with hepatic fat defined by 

liver biopsy or radiologic imaging. The genetic architecture of the lead loci indicate a 

predominant involvement of metabolic and inflammatory pathways. This study constitutes 

a much-needed large-scale, multiancestry genetic resource that can be used to build 

genetic prediction models, identify causal mechanisms and understand biological pathways 

contributing to NAFLD initiation and disease progression.

Methods

Discovery cohort in the MVP.

The MVP is a megabiobank that was launched in 2011 and supported entirely by the 

Veterans Health Administration Office of Research and Development in the United States. 

The MVP received ethical and study protocol approval from the VA Central Institutional 

Review Board (IRB) in accordance with the principles outlined in the Declaration of 

Helsinki. The specific design, initial demographics and quality-control procedures of the 

MVP have been detailed previously12.

Proxy NAFLD phenotype.

MVP NAFLD phenotype definitions were adapted from a previously published VA 

corporate data warehouse-derived approach using noninvasive clinical parameters13,14. The 

primary cALT phenotype was defined by: (1) elevated ALT > 40 U liter−1 for men or >30 

U liter−1 for women during at least two time points at least 6 months apart within a 2-year 

window at any point prior to enrollment and (2) exclusion of other causes of liver disease, 

chronic liver diseases or systemic conditions and/or alcohol use disorders. The control group 

was defined by having a normal ALT (≤30 U liter−1 for men, ≤20 U liter−1 for women) 

and no apparent causes of liver disease or alcohol use disorder or related conditions14. 

Habitual alcohol consumption was assessed with the age-adjusted Alcohol Use Disorders 

Identification Test score51,52. Demographics of the proxy NAFLD cohort are shown in 

Supplementary Table 1. The prevalence of cirrhosis and advanced fibrosis was based on 

ICD-9 codes (456.2, 456.21, 571.5, 572.2 and 572.3) and ICD-10 codes (K72.9, K72.91, 

K74.0, K74.02, K74.1, K74.2, K74.6 and K74.69).

Single-variant autosomal analyses.

We tested imputed SNPs that passed quality control (i.e., Hardy-Weinberg equilibrium 

P-value > 1 × 10−10, INFO imputation accuracy score > 0.3, and genotyping call rate > 

0.975) for association with proxy NAFLD through logistic regression assuming an additive 

model of variants with minor allele frequency > 1% in EAs, AAs, HISPs and ASNs 

using PLINK2a software53. The regression coefficients from these analyses are the effect 

estimates and represent the log-odds change in the outcome for each unit of increase in 

effect alleles while holding other independents (e.g., covariates) in the model constant. 

Covariates included age, gender, age-adjusted Alcohol Use Disorders Identification Test 
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score and first ten principal components (PCs) of genetic ancestry. Indels were excluded 

from analysis. We aggregated association summary statistics from the ancestry-specific 

analyses and performed a multiancestry meta-analysis. The association summary statistics 

for each analysis were meta-analyzed in a fixed-effects model using METAL with inverse-

variance weighting of log odds ratios54. Variants were clumped using a range of 500 kb 

and/or LD r2 > 0.05 in people of North European ancestry and were considered genome-

wide significant if they passed the conventional P-value threshold of 5 × 10−8. Multiancestry 

and ancestry-specific summary statistics are displayed in Supplementary Tables 2–5, and 

their corresponding genome-wide summary statistics are available through dbGAP accession 

code phs001672.v7.p1.

Secondary signal analysis.

The PLINK–condition and–condition-list parameters were used to conduct stepwise 

conditional analyses on individual-level data in MVP to detect ancestry-specific distinct 

association signals nearby lead SNPs. Regional SNPs were eligible if they were located 

within 500 kb of lead SNP with a minor allele frequency > 1%. Logistic regression was 

performed in a stepwise fashion, starting with a regional association analysis with the 

following set of covariates: lead SNP imputed allele dosage, age, gender, and 10 PCs of 

genetic ancestry. If the corresponding output file contained SNPs that reached locus-wide 

significance (P < 1.0 × 10−5), then the most significant SNP was selected and added 

to the covariate set. The regression was repeated until no locus-wide significant SNPs 

remained. The effect estimates (regression coefficients) for the secondary signals from 

logistic regression are shown in Supplementary Table 11.

Credible sets.

We calculated Wakefield’s approximate Bayes’ factors24 based on the marginal summary 

statistics of the multiancestry and ancestry-specific summary statistics using the CRAN R 

package corrcoverage55. For each locus, the posterior probabilities of each variant being 

causal were calculated, and a 95% credible set was generated that contains the minimum set 

of variants that jointly have at least 95% posterior probability of including the causal variant 

(Supplementary Tables 12–15).

External replication in a liver imaging cohort.

A replication lookup of lead loci was performed to evaluate the extent to which genetic 

predictors of hepatocellular injury (cALT) correspond with qHF derived from computed 

tomography/magnetic resonance imaging-measured hepatic fat in the Penn Medicine 

Biobank56, UK Biobank57, Multi-Ethnic Study of Atherosclerosis, Framingham Heart 

Study9 and University of Maryland Old Order Amish study (Supplementary Table 8). 

A detailed description is available in the Supplementary Note. All participating cohorts 

have ethical approval from their local institutions, and all relevant ethical regulations 

were followed. Liver fat was measured as attenuation in Hounsfield units in all computed 

tomography studies and as proton density fat fraction in the UK Biobank magnetic 

resonance imaging study. All cohorts underwent individual-level linear regression analysis 

on hepatic fat, adjusted for the covariates of age, gender, first ten PCs of genetic ancestry 

and alcohol intake if available. If the lead SNP was not available in any of the studies, 
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then a proxy SNP in high LD with the lead variant was used (r2 > 0.7); if no such 

variant was identified, then the SNP was set to missing for that respective study. The 

study-specific ancestry-stratified effect estimates were first standardized to generate standard 

scores or normal deviates (z-scores) and then meta-analyzed using METAL in a fixed-effects 

model with inverse-variance weighting of regression coefficients54. In a first round of meta-

analysis, ancestry-specific effect estimates were generated, which then served as input for a 

subsequent round of meta-analysis that represents the multiancestry effects of our lead SNPs 

on qHF.

External replication in a liver biopsy cohort.

Available data from the following groups contributed to the liver biopsy cohort: (1) 

Non-Alcoholic Steatohepatitis Clinical Research Network (NASH-CRN) studies20,41,58–62, 

(2) EPoS Consortium11,63, (3) Geisinger Health System bariatric surgery cohort64,65, (4) 

STELLAR-3 and ATLAS studies66, (5) BioVU Biorepository67 and (6) Penn Medicine 

Biobank. Results from liver biopsy data are shown in Supplementary Tables 6 and 7, and 

a detailed description of each of the individual studies is available in the Supplementary 

Note. All cohorts underwent individual-level logistic regression analysis on histologically 

defined NAFLD, adjusted for the covariates of age, gender, first ten PCs of genetic ancestry 

and alcohol intake if available. The study-specific effect estimates were meta-analyzed 

using METAL in a fixed-effects model with inverse-variance weighting of regression 

coefficients54.

Heritability estimates and genetic correlations analysis.

LD score regression was used to estimate the heritability coefficient, and population 

and sample prevalence estimates were subsequently applied to estimate heritability on 

the liability scale68. A genome-wide genetic correlation analysis was performed to 

investigate possible coregulation or a shared genetic basis between cALT and other 

complex traits and diseases (Supplementary Table 9). Pairwise genetic correlation 

coefficients were estimated between the meta-analyzed cALT GWAS summary output in 

EA and each of 774 precomputed and publicly available GWAS summary statistics for 

complex traits and diseases by using LD score regression through LD Hub v1.9.3 (http://

ldsc.broadinstitute.org). Statistical significance was set to a Bonferroni-corrected level of P < 

6.5 × 10−5.

Tissue- and epigenetic-specific enrichment of cALT heritability.

We analyzed cell type-specific annotations to identify enrichments of cALT heritability as 

shown in Supplementary Table 16. First, a baseline gene model was generated consisting 

of 53 functional categories, including ENCODE functional annotations69, Roadmap 

epigenomic annotations70 and FANTOM5 enhancers71. Gene expression and chromatin 

data were also analyzed to identify disease-relevant tissues, cell types and tissue-specific 

epigenetic annotations. We used LDSC68,72,73 to test for enriched heritability in regions 

surrounding genes with the highest tissue-specific expression. Sources of data that were 

analyzed included human tissue or cell type RNA-sequencing data from GTEx74; human, 

mouse or rat tissue or cell type array data from the Franke lab75; mouse brain cell type array 

data from Cahoy et al.76; mouse immune cell type array data from ImmGen77; and human 
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epigenetic annotations from the Roadmap Epigenomics Consortium70. Expression profiles 

were considered statistically significantly enriched for cALT susceptibility if they passed the 

nominal P-value threshold of 0.003.

Pathway annotation enrichment.

Enrichment analyses in DEPICT78 were conducted using genome-wide significant (P < 5 × 

10−8) cALT GWAS lead SNPs (Supplementary Table 18) and considered an FDR threshold 

of 0.05 as significant. Tissue and gene set enrichment features are considered. We tested 

for epigenomic enrichment of genetic variants using GREGOR software (Supplementary 

Table 19)79. We selected EA-specific cALT lead variants with P < 5 × 10−8. We tested 

for enrichment of the resulting GWAS lead variants or their LD proxies (r2 threshold of 

0.8 within 1 Mb of the lead SNP) in genomic features including ENCODE, Epigenome 

Roadmap and manually curated data (Supplementary Table 20). Enrichment was considered 

significant if the enrichment P-value was less than the Bonferroni-corrected threshold of P = 

1.8 × 10−5 (0.05/2,725 tested features).

Coding variant mapping.

All imputed variants in MVP were evaluated with Ensembl variant effect predictor80, and 

all predicted loss-of-function and missense variants were extracted. The LD was calculated 

with established variants for multiancestry, EA, AA and HISP lead SNPs based on 1000 

Genomes reference panel81. For SNPs with low allele frequencies, the MVP dataset was 

used for LD calculation for the respective underlying population. For the multiancestry 

coding variants, the EA panel was used for LD calculation. Coding variants that were in 

strong LD (r2 > 0.7) with lead SNPs and had a strong statistical association (P < 1 × 10−5) 

were considered the putative causal drivers of the observed association at the respective 

locus (Supplementary Table 22).

Colocalization with gene expression.

Colocalization analysis was run separately for eQTLs and sQTLs for each of the 49 tissues 

in GTEx v8 (Supplementary Tables 23 and 24) (ref. 82). For each tissue, we obtained an LD 

block for the genome with a sentinel SNP at P < 5 × 10−8, and then we restricted analysis 

to the LD blocks. For each LD block with a sentinel SNP, all genes within 1 Mb of the 

sentinel SNP (cis-Genes) were identified and then restricted to those that were identified 

as eGenes in GTEx v8 at an FDR threshold of 0.05 (cis-eGenes). For each cis-eGene, we 

performed colocalization using all variants within 1 Mb of the gene using the default prior 

probabilities in the ‘coloc’ function for the coloc package in R. We first assessed each coloc 

result for whether there was sufficient power to test for colocalization (PP3 + PP4 > 0.8), 

and for the colocalization pairs that passed the power threshold, we defined the significant 

colocalization threshold as PP4/(PP3 + PP4) > 0.9.

Overlap with open chromatin.

At each of the 77 NAFLD-associated loci from the multiancestry meta-analysis, we looked 

for overlaps between any variant in the credible set and regions of open chromatin 

previously identified using assay for transposase-accessible chromatin with high-throughput 
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sequencing experiments in two cell types (three biological replicates of HepG2 (ref. 83) 

and three biological replicates of HLCs84 produced by differentiating three biological 

replicates of induced pluripotent stem cells), which in turn were generated from peripheral 

blood mononuclear cells using a previously published protocol85. Results are shown in 

Supplementary Table 25.

Overlap with promoter Capture-C data.

We used two promoter Capture-C datasets from two cell/tissue types to capture physical 

interactions between gene promoters and their regulatory elements and genes: three 

biological replicates of HepG2 liver carcinoma cells and HLCs83. The detailed protocol 

has been previously described85. Briefly, for each dataset, 10 million cells were used 

for promoter Capture-C library generation. Custom capture baits were designed using 

an Agilent SureSelect library design targeting both ends of DpnII restriction fragments 

encompassing promoters of all human coding genes, noncoding RNA, antisense RNA, 

small nuclear RNA, microRNA, small nucleolar RNA and long intergenic non-coding RNA 

transcripts, totaling 36,691 RNA baited fragments. Each library was then sequenced on an 

Illumina NovoSeq (HLCs) or Illumina HiSeq 4000 (HLCs), generating 1.6 billion read pairs 

per sample (50-bp read length). HiCUP86 was used to process the raw FastQ files into loop 

calls; we then used CHiCAGO87 to define significant looping interactions; a default score of 

5 was defined as significant. We identified those NAFLD loci at which at least one variant 

in the credible set interacted with an annotated bait in the Capture-C data (Supplementary 

Table 25).

PPI network analysis.

We used the search tool for retrieval of interacting genes (STRING) v11 (ref. 88) to 

seek potential interactions between nominated genes. STRING integrates both known and 

predicted PPIs and can be applied to predict functional interactions of proteins. In our 

study, the sources for interaction were restricted to the Homo sapiens species and limited 

to experimentally validated and curated databases. An interaction score >0.4 was applied to 

construct the PPI networks, in which the nodes correspond to the proteins and the edges 

represent the interactions (Fig. 4 and Supplementary Table 26).

Ensemble variant-to-gene mapping to identify putative causal genes.

Based on DEPICT gene prediction, coding variant linkage analysis, QTL analysis, 

annotation enrichment and PPI networks (Supplementary Tables 18–26), a total of 215 

potentially relevant genes for NAFLD were mapped to multiancestry 77 loci. For each locus, 

we counted how many times each gene in that region was identified in the eight analyses. 

We then divided this number by the total number of experiments (i.e., eight) to calculate an 

evidence burden (called nomination score) that ranges from 0% to 100%. For each genomic 

locus, the gene that was most frequently identified as a causal gene was selected as the 

putative causal gene for that locus. In the case of a tie break, and if the respective genes had 

identical nomination profiles, the gene with eQTLs in multiple tissues was selected as the 

putative causal gene. Similarly, gene nomination was preferred for loci that strongly tagged 

(r2 > 0.8) a coding variant. Loci that scored with three distinct sources of evidence or greater 

are listed for the coding variant (Table 1) and noncoding variants (Table 2), respectively.
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MVP LabWAS.

A total of 21 continuous traits in the discovery MVP dataset (e.g., AST, alkaline 

phosphatase, fasting triglycerides, HDL, LDL, total cholesterol, random glucose, HbA1c, 

albumin, bilirubin, platelet count, BMI, blood urea nitrogen, creatinine, eGFR, systolic 

blood pressure, diastolic blood pressure, erythrocyte sedimentation rate, international 

normalized ratio and C-reactive protein) were tested in 186,681 EAs with association of 

77 SNPs using linear regression of log-linear values. Covariates included age, gender and 

the first 10 PCs of EA ancestry (Supplementary Table 29). The Bonferroni P-value threshold 

was set at 3.09 × 10−5 (0.05/21 traits × 77 SNPs).

PheWAS with UK Biobank data.

For the 77 lead multiancestry SNPs and EA- and AA-specific SNPs, we performed a 

PheWAS in a GWAS of EHR-derived ICD billing codes from the white British participants 

of the UK Biobank using PheWeb89. In short, phenotypes were classified into 1,403 

PheWAS codes excluding SNP–PheWAS code association pairs with case counts less than 

50 (ref. 90). All individuals were imputed using the Haplotype Reference Consortium 

panel91, resulting in the availability of 28 million genetic variants for a total of 408,961 

individuals. Effect estimates (e.g., regression coefficients) on binary outcomes were 

conducted using a model named SAIGE, adjusted for genetic relatedness, gender, year 

of birth and the first four PCs of white British genetic ancestry92. Results are shown in 

Supplementary Tables 30 and 31. SNP–trait associations are listed if they passed a nominal 

significance threshold of P < 0.001 and are considered Bonferroni significant when P < 4.6 × 

10−7 (0.05/77 SNPs × 1,403 traits).

IEU OpenGWAS project SNP lookup.

An additional phenome-wide lookup was performed for 77 lead multiancestry SNPs 

and EA- and AA-specific SNPs in Bristol University’s MRC IEU GWAS database93. 

This database consists of 126,114,500,026 genetic associations from 34,494 GWAS 

summary datasets, including UK Biobank (http://www.nealelab.is/uk-biobank), FinnGen 

(https://github.com/FINNGEN/pheweb), Biobank Japan (http://jenger.riken.jp/result), the 

NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas), a large-scale blood metabolites 

GWAS94, circulating metabolites GWAS95, the MR-Base manually curated database96 and a 

protein-level GWAS97. Results are shown in Supplementary Table 32.

Regional cardiometabolic cross-trait colocalization.

Bayesian colocalization tests between cALT-associated signals and the following trait- 

and disease-associated signals were performed using the COLOC R package98. To enable 

cross-trait associations, we compiled summary statistics of 36 cardiometabolic and blood 

cell-related quantitative traits and disease from GWASs conducted in individuals of 

EA ancestry and for MVP-based reports on individuals of AA or HISP ancestry. To 

summarize, for total, HDL and LDL cholesterol; triglycerides; alcohol use disorder and 

alcohol intake; systolic blood pressure and diastolic blood pressure; type 2 diabetes; 

BMI; and coronary artery disease, we used the summary statistics available from various 

MVP-based studies47,51,99. Of these, the summary statistics for coronary artery disease 
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and BMI GWAS in MVP have not been published or deposited as of yet. Data on 

WHR were derived from GIANT Consortium100, whereas summary statistics on CKD, 

gout, blood urea nitrogen, urate, urinary albumin-to-creatinine ratio, microalbuminuria, 

and eGFR were derived from CKD Genetics Consortium101–103. Finally, summary 

statistics of blood cell traits (for example platelet count, albumin, white blood cells, 

basophils, eosinophils, neutrophils, hemoglobin, hematocrit, immature reticulocyte fraction, 

lymphocytes, monocytes, reticulocytes, mean corpuscular hemoglobin, mean corpuscular 

volume, mean platelet volume, platelet distribution width, and red cell distribution width) 

were derived from a large-scale GWAS report performed in UK Biobank and INTERVAL 

studies104. A colocalization test was performed for all 77 cALT loci spanning 500-kb region 

around the lead SNP for all 36 compiled traits. For each association pair, COLOC was 

run with default parameters and priors to obtain posterior probabilities (PPs). Evidence of 

colocalization105 was defined by PP3 + PP4 ≥ 0.99 and PP4/PP3 ≥ 5. Results are shown in 

Supplementary Table 33.

GRSs and histologically characterized NAFLD.

We constructed GRSs in four histologically characterized cohorts (e.g., Lundquist whites 

and HISPs, EPoS Consortium whites and BioVU whites) by calculating a linear combination 

of weights derived from the MVP dataset of lead 77 multiancestry cALT variants that 

passed conventional genome-wide significance (GRS-77, P < 5.0 × 10−8). The GRS-77 

was standardized and the risk of histologically characterized NAFLD was assessed using 

a logistic regression model together with the potential confounding factors of age, gender 

and the first three to five PCs of ancestry. The regression coefficient (e.g., effect estimate) 

for GRS-77 represents the log odds change in NAFLD for each weighted unit of increase 

in effect alleles while holding the other independents in the model constant. To delineate 

the potential driving effects of known NAFLD loci, we divided the 77 loci into two sets 

and generated one PRS consisting of nine known NAFLD SNPs only (GRS-9), and one 

of newly identified 68 cALT SNPs (GRS-68). Both GRSs were added as independent 

predictors in a logistic regression model to explain histologically characterized NAFLD 

with the confounders of age, gender and PCs of ancestry. The individual effect sizes for 

each study were then meta-analyzed using the metagen package in R with random effects 

model comparing the standardized mean difference (SMD, mean differences divided by 

their respective standard deviations) (Supplementary Table 9). A forest plot was created 

to visualize the effect estimates between the studies (Supplementary Fig. 10). In similar 

fashion, SNPs were divided into three groups according to replication power, where 

SNPs were divided into a Bonferroni-replicated GRS consisting of 17 SNPs, a nominally 

significant with directional concordance GRS with 25 SNPs and nonreplicated GRSs with 

35 SNPs (Supplementary Table 9 and Supplementary Fig. 11). Finally, a GRS subset was 

created based on the pleiotropy analysis and Venn diagram, where we generated a subset 

GRS that reflects liver + metabolic (17 SNPs), liver + metabolic + inflammation (38 SNPs), 

liver + inflammation (5 SNPs) and liver-only strata (17 SNPs) (Supplementary Table 9 and 

Supplementary Fig. 14).
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TF analysis.

We identified nominated genes (Supplementary Table 28) that encode for TFs based on 

known motifs, inferred motifs from similar proteins and likely sequence-specific TFs 

according to literature or domain structure106. Target genes for these TFs were extracted 

using DoRothEA database107 in OmniPath collection108 using the associated Bioconductor 

R package OmnipathR109, a gene set resource containing TF–TF target interactions curated 

from public literature resources (such as chromatin immunoprecipitation with sequencing 

peaks, TF binding site motifs and interactions inferred directly from gene expression.

Directional pleiotropy and gene cluster analysis.

We used the R package ‘pheatmap’ for a stratified agglomerative hierarchical clustering 

method named ‘complete linkage’, where each element is its own cluster at the beginning, 

and two clusters of the shortest distance in between them are sequentially combined into 

larger clusters until all elements are included in one single cluster, where distance is 

measured in Euclidean distance. We used the 77 lead SNPs and their corresponding single-

trait effect estimates for 20 traits corresponding to three biological super groups (e.g., lipids, 

inflammation and metabolic) as input, with the sign of each cell determined by direction 

of effect and the strength by the –log10(P value). The alleles were oriented as such that the 

cALT-increasing allele was set to the effect allele, which allows for direct comparison of 

the various association profiles. We selected the default ‘complete’ method and ‘Euclidean’ 

distance options to perform hierarchical clustering, stratified by the three super groups of 

metabolic, inflammation and lipid traits. The results of the clustering gene set are visualized 

with a dendrogram on the left side of the heatmap, which is broadly grouped into seven 

distinct gene clusters.

Ethics oversight.

All participating studies were conducted in compliance with the Declaration of Helsinki 

and comply with all relevant ethical and local regulatory requirements. Specifically, the 

contributing genetic association studies were approved by the Department of Veteran’s 

Affairs central IRB (VA MVP), the Vanderbilt University Medical Center IRB (BioVU), 

the IRB of Perelman School of Medicine at the University of Pennsylvania (Penn Medicine 

Biobank), the North West Multi-centre Research Ethics Committee (UK Biobank) and the 

IRB at the Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center 

(Long QT Screening study). The IRB at the University of Maryland School of Medicine 

approved the Old World Order Amish study, and the IRBs of six field centers (Wake 

Forest University School of Medicine, University of Minnesota, Northwestern University, 

Columbia University, Johns Hopkins University and University of California, Los Angeles) 

have approved the study protocol of the Multi-Ethnic Study of Atherosclerosis. The 

Framingham Heart Study is approved by the IRB of the Boston University Medical Center. 

The EPoS Consortium obtained ethical approval from all participating field centers (North 

East - Tyne & Wear South Research Ethics Committee, Inselspital Direktion Lehre und 

Forschung Bestätigung, Universiteit Antwerpen ethisch comité, Les Comités de Protection 

des Personnes Ile-de-France VI, Ethics committee at University Hospital in Linköping, 

Landesärztekammer Rheinland-Pfalz Ethik Kommission, Comitato Etico Interaziendale, 
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Comitato Etico Palermo and IRB of the Fondazione Ca’Granda IRCCS of Milan). The 

STELLAR-3 and STELLAR-4 clinical trials were approved by IRBs or independent ethics 

committees at all participating sites in the United States, Japan, Canada, France, South 

Korea, Australia, Hong Kong, Spain, Taiwan, United Kingdom, India, Germany, Singapore, 

Brazil, Israel, Belgium, Mexico, Italy, Argentina, Austria, Poland, Puerto Rico, Switzerland, 

Malaysia, Portugal, Netherlands and New Zealand. The NASH Boys study, FLINT trial 

and PIVENS trial were approved by local IRBs of each clinical center participating in the 

NASH-CRN (Case Western Reserve University; Duke University Medical Center; Indiana 

University School of Medicine; Saint Louis University; University of California, San Diego; 

University of California, San Francisco; Virginia Commonwealth University; and Virginia 

Mason Medical Center) and a central data safety and monitoring board appointed by the 

National Institute of Diabetes and Digestive and Kidney Diseases. The NASH Women 

study was reviewed and approved by the NASH-CRN Steering Committee and the IRB at 

the Cedars-Sinai Medical Center Los Angeles. The Cholesterol and Pharmacogenetics trial 

obtained approval from the Children’s Hospital and Research Center IRB, University of 

California, San Francisco Committee on Human Research and University of California, Los 

Angeles Office of the Human Research Protection Program. The Geisinger Health System 

bariatric surgery biobank Regeneron collaboration study was approved by the Geisinger 

Health System IRB. In all pediatric studies (NASH boys and Long QT Screening study), 

all parents provided informed consent, and children older than 7 years provided assent for 

participation in the respective study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Overview of analysis pipeline.
The flow diagram shows in the red box our study design with initial inclusion 

of 430,400 MVP participants with genotyping and ancestry classification by HARE, 

exclusion of individuals with known liver disease or alcohol dependence and inclusion 

of participants based on cALT (case) or normal ALT (control). This resulted in 90,408 

proxy NAFLD cases and 128,187 controls with EA, AA, HISP and ASN ancestries that 

were examined in primary multiancestry and ancestry-specific genome-wide association 

scans. The orange box of the flow diagram highlights our results of multiancestry and 

ancestry-specific meta-analyses identifying 77 multiancestry loci + 1 EA-specific locus 

+ 2 AA-specific loci that met genome-wide significance. The green box summarizes 

the results from external replication cohorts, whereas the blue box indicates all the 

post-GWAS annotation analyses that we performed, which include secondary signal 

analysis, fine-mapping (95% credible sets), (tissue-specific) heritability estimation, genetic 
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correlations analysis, variant-to-gene-mapping and pleiotropy analysis. ATAC-seq, assay 

for transposase-accessible chromatin with high-throughput sequencing; FHS, Framingham 

Heart Study; GRS, genetic risk score; MESA, Multi-Ethnic Study of Atherosclerosis; 

NASH-CRN, Non-Alcoholic Steatohepatitis Clinical Research Network; PMBB, Penn 

Medicine Biobank; PPI, protein–protein interaction; QTL, quantitative trait locus; UKBB, 

UK Biobank; HARE, harmonized ancestry and race/ethnicity; BioVU, the DNA databank 

at Vanderbilt; Regeneron/DiscovEHR, collaboration between the Regeneron Genetics Center 

and Geisinger Health System; DEPICT, data-driven expression prioritized integration for 

complex traits; ldhub, a centralized database and web interface to perform LD score 

regression; Amish, University of Maryland Old Order Amish Study.
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Fig. 2 |. Manhattan plot of GWAS of 90,408 cALT cases and 128,187 controls in multiancestry 
meta-analysis.
Nominated genes are indicated for 77 loci reaching genome-wide significance (P < 5 

× 10−8). Previously reported NAFLD loci with genome-wide significant association are 

indicated in green font. Red asterisks indicate the SNPs that have been replicated with liver 

biopsy and/or radiologic imaging.
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Fig. 3 |. Venn diagram depicting overlapping liver, metabolic and inflammatory traits among 
cALT-associated loci.
Overlapping liver (black), metabolic (purple) and/or inflammatory (green) traits are shown 

in association with 77 multiancestry and additional ancestry-specific lead SNPs. The trait 

categorizations reflect significant SNP–trait associations identified by (1) LabWAS of 

clinical laboratory results in MVP, (2) PheWAS with UK Biobank data using SAIGE, (3) 

SNP lookup using the curated data in the IEU OpenGWAS projects and (4) cross-trait 

colocalization analyses using colocalization analysis in EA, AA and HISP lead loci with 

36 other GWAS statistics of cardiometabolic and blood cell-related traits. Genes denoted in 

bold and color-coded in red refer to the loci also associated with qHF on imaging analyses or 

histologically characterized NAFLD from liver biopsies. *Locus identified in European-only 

GWAS. **Locus identified in AA-restricted analysis. +Secondary signal from EA analysis 

(e.g., HNF1A/P2RX7).
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Fig. 4 |. Seven gene clusters with distinct biomarker association profiles.
The 77 loci cluster along seven groups using stratified linkage hierarchical clustering. 

Each cluster has a distinct biomarker association profile, which is visualized with a 

heatmap. The 26 traits are clustered within their biological strata (e.g., lipids, inflammation, 

metabolic and liver). The color coding corresponds to the direction of association of the 

cALT-increasing allele (red, positive association; blue, negative association) and the strength 

of the association based on the P value. DBP, diastolic blood pressure; SBP, systolic 

blood pressure; T2D, type 2 diabetes; GLU, glucose; HbA1c, hemoglobin A1c; LYM, 

lymphocyte count; MONO, monocyte count; CRP, C-reactive protein; EOS, eosinophil 

count; GRANU, granulocyte count; WBC, white blood cell count; NEU, neutrophil count; 

SHBG, sex hormone binding globulin; ApoA-1, apolipoprotein A1; TRIG, triglycerides; 

ApoB-1, apolipoprotein B1; TCHOL, total cholesterol.
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Table 1 |

Gene nominations at loci with strongest evidence for coding variants

SNP Position Gene Amino Acid 
change SIFT/PolyPhen-2

a Expression/

splicingQTL
b Other

c
Pleiotropy

d

rs6541349 1:93787867 CCDC18 p.Leu1134Val +/− + . M

rs2642438 1:220970028 MTARC1 p.Thr165Ala −/− + (A) + M

rs11683409 2:112770134 MERTK p.Arg466Lys −/− . ++ .

rs17036160 3:12329783 PPARG p.Pro12Ala −/− + ++ M

rs17598226 4:100496891 MTTP p.Ile128Thr −/− + + .

rs115038698 7:87024718 ABCB4 p.Ala934Thr +/+ + + M,I

rs799165 7:73052057 MLXIPL p.Gln241His −/+ + + M,I

p.Ala358Val −/− + + M,I

rs7041363 9:117146043 AKNA p.Pro624Leu +/− + + M

rs10883451 10:101924418 ERLIN1 p.Ile291Val −/− . ++ M

rs4918722 10:113947040 GPAM p.Ile43Val −/− + ++ M

rs11601507 11:5701074 TRIM5 p.Val112Phe −/− . ++ M,I

rs1626329 12:121622023 P2RX7 p.Ala348Thr −/− + + .

rs11621792 14:24871926 NYNRIN p.Ala978Thr −/− + (L,A) + M,I

rs28929474 14:94844947 SERPINA1 p.Glu366Lys −/+ +++ M,I

rs7168849 15:90346227 ANPEP p.Ala311Val −/− + (L) + .

rs1801689 17:64210580 APOH p.Cys325Gly +/+ . ++ M,I

rs132665 22:36564170 APOL3 p.Ser39Arg −/− + (A) + .

rs738408 22:44324730 PNPLA3 p.Ile148Met +/+ . +++ M,I

Genes nominated with various sources of evidence are listed as follows.

a
Before the slash symbol, ‘+’ indicates ‘deleterious’ in SIFT (‘−’ otherwise). After the slash symbol, ‘+’ denotes probably damaging in PolyPhen-2 

(‘−’ otherwise).

b
The ‘+’ indicates colocalization between NAFLD GWAS variant and GTEx QTL variant (posterior probability (PP) PP4/(PP3 + PP4) > 0.9). (L) 

denotes QTL effect in liver, (A) denotes QTL in adipose.

c
Each ‘+’ represents evidence from DEPICT or PPI data, or if the lead SNP is within the transcript; coding variants also include ‘+’ from 

hQTLs/Capture-C evidence.

d
Pleiotropy is limited to association with metabolic (M) or inflammatory (I) traits.
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Table 2 |

Gene nominations at loci with strongest evidence for noncoding variants

SNP Position Gene hQTL Capture-C Expression/splicingQTL
a

Other
b

Pleiotropy
c

rs36086195 1:16510894 EPHA2 . + + (L,A) + M

rs6734238 2:113841030 IL1RN . + + (A) ++ I

rs10201587 2:202202791 CASP8 . + + + M

rs11683367 2:233510011 EFHD1 + . + (L) + .

rs61791108 3:170732742 SLC2A2 . + . +++ M

rs7653249 3:136005792 PCCB . . + ++ M,I

rs12500824 4:77416627 SHROOM3 . + + (L) + M

rs10433937 4:88230100 HSD17B13 . . + (L,A) + M,I

rs799165 7:73052057 BCL7B . + + + M,I

rs687621 9:136137065 ABO . . + + M,I

rs35199395 10:70983936 HKDC1 . + + (L,A) + M

rs174535 11:61551356 FADS2 + . + (A) ++ M,I

rs56175344 11:93864393 PANX1 . . + (L,A) ++ .

rs34123446 12:122511238 MLXIP . + + + M,I

rs12149380 16:72043546 DHODH . + + + M,I

HP . + + (A) . M,I

rs2727324 17:61922102 DDX42 . + + + M

SMARCD2 . . + + M

rs5117 19:45418790 APOC1 . . + ++ M,I

Genes nominated with various sources of evidence are listed as follows.

*
Prior to the slash symbol: ‘+’ indicates ‘deleterious’ in SIFT and ‘−’ otherwise. After slash symbol: ‘+’ denotes probably damaging in PolyPhen-2 

and ‘−’ otherwise.

a
The ‘+’ indicates colocalization between NAFLD GWAS variant and GTEx QTL varint (PP4/(PP3 + PP4) > 0.9). (L) denotes QTL effect in liver, 

(A) denotes QTL in adipose.

b
Each ‘+’ represent evidence from DEPICT, PPI data, or if the lead SNP is within the transcript; coding variants also include ‘+’ from hQTLs/

Capture-C evidence.

c
Pleiotropy is limited to association with metabolic (M) or inflammatory (I) traits.
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