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SUMMARY

Extracellular growth factors signal to transcription factors via a limited number of cytoplasmic 

kinase cascades. It remains unclear how such cascades encode ligand identities and concentrations. 

In this paper we use live-cell imaging and statistical modeling to study FoxO3, a transcription 

factor regulating diverse aspects of cellular physiology that is under combinatorial control. We 

show that FoxO3 nuclear-to-cytosolic translocation has two temporally distinct phases varying in 

magnitude with growth factor identity and cell type. These phases comprise synchronous 

translocation soon after ligand addition followed by an extended back and forth shuttling; this 

shuttling is pulsatile and does not have a characteristic frequency, unlike a simple oscillator. Early 

and late dynamics are differentially regulated by Akt and ERK and have low mutual information, 

potentially allowing the two phases to encode different information. In cancer cells in which ERK 

and Akt are dysregulated by oncogenic mutation, the diversity of states is lower.
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Eukaryotic transcription factors frequently oscillate between the nucleus and cytosol. We show 

that translocation by human FoxO3 is pulsatile rather than oscillatory and subject to combinatorial 

control by the ERK and Akt pathways. As a result, FoxO3 dynamics can encode the identities and 

concentrations of diverse extracellular growth factors.
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INTRODUCTION

Activation of different growth factor receptors induces distinct phenotypes and cellular 

responses while engaging a common set of kinase cascades. The Ras/ERK and PI3K/Akt 

kinase cascades are particularly important in linking transmembrane receptor activity to 

mitogenic transcription and cell cycle progression. It remains unclear how cells transduce 

information about receptor occupancy to transcription factors using a limited number of 

overlapping signal transduction molecules. Some studies suggest that the identity of growth 

factors is encoded in the dynamics of effector activation (Traverse et al., 1994) or differential 

activation of ERK and Akt pathways (Chen et al., 2012). Theoretical studies predict that 

activation of parallel signaling pathways might serve to increase the accuracy of signaling 

downstream of a receptor input (Cheong et al., 2011).

Signaling kinases and the transcription factors they control often switch between on and off 

states repeatedly over the course of a 12–24 hour response (Levine et al., 2013; Purvis and 

Lahav, 2013). Such switching is frequently asynchronous from one cell to the next and best 

monitored using time-lapse microscopy of fluorescent reporter proteins. Both p53 and NF-

κB undergo nuclear/cytosolic translocation in which the duration of the active (nuclear) state 
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determines promoter selectivity and level of transcription. p53 activation by DNA damage 

was initially thought to involve a few strongly damped oscillations (Lev Bar-Or et al., 2000) 

but live-cell imaging reveals extended asynchronous oscillation at a single-cell level 

(Batchelor et al., 2011; Lahav et al., 2004). Similar long-duration pulsing has been observed 

for NF-κΒ following exposure of cells to inflammatory cytokines such as TNF-α (Nelson et 

al., 2004; Tay et al., 2010).

Pulsing genetic circuits have the potential to encode information in pulse amplitudes, 

frequencies and duration (Levine 2013). For example, the activity of the extracellular signal 

regulated kinase ERK, the downstream effector of the mitogen-activated protein kinase 

(MAPK or MEK/ERK) cascade, is pulsatile when cells are exposed to low concentrations of 

growth factor. The likelihood that a cell will enter S phase correlates with the duration of the 

ERKON state (Albeck et al., 2013). The regulation and coding potential of pulsatile circuits 

is best understood in single-cell organisms. In yeast, both frequency-modulated (FM) and 

amplitude- modulated (AM) encoding has been observed for Msn2, a transcription factor 

involved in general stress response, and the identity and intensity of upstream activators 

appears to be encoded by FM and AM processes working in tandem (Hansen and O’Shea, 

2015). Combinatorial gene regulation is achieved by modulating the relative timing of Msn2 

and Mig1 pulses (Mig1 is a transcriptional repressor that controls metabolic genes) (Lin et 

al., 2015). Eukaryotic cells have long been known to exploit combinatorial transcriptional 

control but the role of pulsing circuits in such control has only recently become a topic of 

interest.

The Forkhead box O3 transcription factor (FoxO3) functions as an integrative node for 

several upstream signaling networks. In mammalian cells, FoxO3 is one of four FoxO 

family-member proteins implicated in biological processes that include cycle arrest, 

apoptosis, oxidative stress, cell migration and cell metabolism. Combinations of upstream 

inputs alter the post-translational modification state of FoxO3 and these changes control 

abundance, subcellular localization and DNA-binding capacity (Calnan and Brunet, 2008; 

Eijkelenboom and Burgering, 2013). Mitogenic growth factors negatively regulate FoxO3 

activity via the MEK/ERK and the PI3K/Akt kinase cascades (Biggs et al., 1999; Brunet et 

al., 1999; Yang et al., 2008) whereas oxidative stress exerts positive regulation via the JNK 

and MST1 kinases (Essers et al., 2004; Lehtinen et al., 2006).

Phosphorylation of FoxO3 by Akt at T32, S253 and S315 promotes interaction with 14–3-3 

proteins, causing nuclear to cytosolic translocation and relieving repression of mitogenic 

genes (Brunet et al., 2002). ERK phosphorylation on S294, S344 and S425 also promotes 

FoxO3 nuclear-to-cytosolic translocation and degradation via MDM2-dependent ubiquitin-

mediated proteolysis (Yang et al., 2008). Other regulators of FoxO3 activity include energy 

stress via the AMPK pathway (Greer et al., 2007), genotoxic stress via CDK proteins 

(Huang et al., 2006) and cytokines via the IκB kinase (Hu et al., 2004). Measuring and 

analyzing such complex signal encoding is fundamental to understanding combinatorial 

control by FoxO-family transcription factors and may be of diagnostic value in cell types 

with misregulated FoxO proteins (van der Horst and Burgering, 2007).
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In this paper we study how the identities and concentrations of growth factors are encoded in 

the dynamics of FoxO3 activity. We find that FoxO3 exhibits complex patterns of nuclear-to-

cytosolic translocation in ligand-activated cells on multiple time scales. Across all cells in a 

population, synchronous cytosolic translocation is observed within 20 min of ligand 

addition, followed by a return to the nucleus and then an extended period of asynchronous 

(and non-oscillatory) shuffling between cytosolic and nuclear compartments. The relative 

magnitude of synchronous translocation and pulsing varies with the identity of the activating 

growth factor and the properties of the cell line with synchronous translocation regulated 

primarily by Akt and pulsing by Akt plus ERK. Our data provide insight into combinatorial 

control of FoxO3 by immediate-early signal transduction cascades pathways and 

demonstrate how a single transcription factor can assume a wide range of possible states in 

response to different upstream inputs.

RESULTS

Design and characterization of the F3aN400-Venus reporter

FoxO localization has been studied in live mammalian cells using fluorescent protein fusions 

(Gross and Rotwein, 2015; Senapedis et al., 2011), but the impact of differences in ligand 

identity and concentration has not been investigated in depth. We therefore constructed a 

FoxO3 translocation reporter responsive to both ERK and Akt that is not expected to perturb 

normal transcription (Figure 1A). A Venus fluorescent protein was fused to a 400-residue 

domain of human FoxO3 containing all three known sites of Akt phosphorylation (T32, 

S253 and S315; Figure 1A, green text) and two of three known ERK phosphorylation sites 

(S294 and S344; blue text) but lacking a transactivation domain. The F3aN400-Venus 

reporter also carried an H212R loss-of-function mutation in the DNA binding domain to 

prevent dominant negative effects on endogenous FoxO3 (Tran et al., 2002); such effects 

were observed with a full-length FoxO3 construct. To determine if F3aN400-Venus 

faithfully captures FoxO3 dynamics, parallel cultures of parental and F3aN400-Venus 

expressing 184A1 cells were treated with EGF at concentrations from near physiological to 

saturating (0.4–100 ng/mL) in combination with the allosteric Akt1/2/3 inhibitor MK-2206 

at varying doses; this protocol was observed to elicit a wide range of FoxO3 states from 

fully nuclear localized to fully cytosolic (Figure 1B). F3aN400-Venus was imaged directly 

and parental cells stained with anti-FoxO3 antibody. When cells were segmented and the 

median nuclear-cytoplasmic translocation value (median of log10(Cnorm/Nnorm)) compared 

for the reporter and endogenous protein, a Pearson’s correlation coefficient of 0.91 was 

obtained, representing a high degree of concordance. The dynamic range estimated for the 

nuclear-cytoplasmic ratio was similar for endogenous FoxO3 (−0.8 to 0; Figure 1B), and 

F3aN400-venus (−0.6 to 0.2); as expected, dynamic range varied depending on how 

background intensity was computed but values were insensitive to the image segmentation 

algorithm used (see STAR Methods for complete definitions; Figure S1A-D). We conclude 

that the localization of the F3aN400-venus report and endogenous FoxO3 are similar across 

a wide range of conditions.

Variability in nuclear-to-cytoplasmic ratio across cells in a culture (as quantified by 

interquartile range; IQR), serves as a surrogate measurement for shuttling between the 

Sampattavanich et al. Page 4

Cell Syst. Author manuscript; available in PMC 2019 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nucleus and cytoplasm in the absence of a reporter (this makes the ergodic assumption that 

difference across many cells at a single point in time are reflective of differences over time 

in a single cell; Figure S1E). Across a range of conditions, the median and IQR of the 

nuclear/cytoplasmic ratio for endogenous FoxO3 and the F3aN400-Venus reporter were 

similar suggesting that the fluorescent sensor recapitulates most but not all of the dynamics 

of endogenous FoxO3 (Figure S1F). The largest discrepancy was observed at low levels of 

cytoplasmic translocation when the endogenous protein is expected to be more completely 

retained in the nucleus than the reporter because only the former is active in DNA binding. 

In common with many live-cell studies of transcription factor shuttling, we were unable to 

distinguish the behavior of FoxO3 that is chromatin bound and FoxO3 that is free in the 

nucleus. Nonetheless, F3aN400-Venus appears to be a faithful reporter of overall FoxO3 

state.

To investigate regulation of F3aN400-Venus by Akt and ERK, serum-starved 184A1 cells 

were treated with one of six growth factors at 100 ng/mL and the levels of phosphorylated 

pAktS473 and pERKT202/Y204 measured by immunoblotting (phosphorylation at these sites, 

henceforth pERK and pAkt, is a surrogate for Akt and ERK kinase activity; Figure S1G). 

IGF1 caused strong and persistent Akt activation whereas EGF, BTC, EPR, HGF and HRG 

caused transient activation. The opposite pattern was observed for ERK, with EGF eliciting 

the strongest ERK activity and IGF1 the least. These differences corresponded well to 

phosphorylation of F3aN400-Venus, as measured by pS294 and pS253 ratios 15–480 

minutes after growth factor addition (Figure 1C & Figure S1G). Use of selective kinase 

inhibitors (MK-2206 for Akt1/2/3 and CI-1040 for MEK1/2) confirmed that F3aN400-Venus 

phosphorylation was ERK-dependent on S294 and Akt-dependent on S253 (Figure S1G; 

right-most immunoblot panel), consistent with the well-established biology of FoxO3 

(Brunet et al., 2001; Yang et al., 2008). We conclude that the F3aN400-Venus reporter 

recapitulates previously described patterns of FoxO3 nuclear translocation and 

phosphorylation.

To study F3aN400-Venus translocation dynamics in response to growth factors, F3aN400-

Venus localization was monitored by live-cell microscopy over a 24-hr period. Following 

exposure to EGF (Figure 1D, red arrowhead), synchronous cytosolic translocation of the 

reporter was observed in all cells, peaking at t=15–20 minutes, followed by a return to the 

nucleus by t= 60–100 minutes. Starting at ~80 minutes after EGF addition (Figure 1D, blue 

arrowhead), shuttling between the cytosol and nucleus was observed every 50–100 minutes. 

Shuttling was not observed in all cells but, when it did occur, continued for up to 24 hours 

and was asynchronous from one cell to the next. Immunofluorescence imaging of 

endogenous FoxO3 in >1000 fixed cells at each time point confirmed translocation from the 

nucleus to the cytosol in >90% of cells at 10–30 minutes after EGF addition (Figure 1E), 

followed by a progressive increase in the IQR of log10(C/N) after 30 minutes, consistent 

with live-cell studies. When 184A1 cells were exposed to one of six growth factors at 

concentrations ranging from roughly physiological to saturating we found that IGF 1 elicited 

sustained nuclear-to-cytosolic translocation while the EGF-like growth factors betacellulin 

(BTC) and epiregulin (EPR) elicited transient translocation followed by varying degrees of 

pulsing (Figure 2; see also Video S1). Thus, FoxO3 translocation exhibits qualitatively 

distinct translocation dynamics depending on growth factor.
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Synchronous FoxO3 translocation dynamics vary with growth factor dose and identity

To quantify differences in F3aN400 trajectories following growth-factor stimulation of 

184A1 cells, >100 trajectories were collected per condition and then separated into early 

synchronous and a later pulsing phases. For the early synchronous phase, functional 

principal component analysis (fPCA) was used to decompose the signal prior to and 

immediately after ligand addition (t = −70 to +80 min) into a weighted set of orthogonal 

harmonic functions. Three harmonic functions explained >95% of variance across growth 

factors and doses, representing excellent performance for a PCA model (Figure 3A & Figure 

S2A). The harmonic corresponding to the first principal component (fPC1) comprised the 

pre-treatment baseline signal, while fPC2 corresponded to a rapid increase in cytoplasmic-

nuclear ratio to a high and constant value by t= 20 minutes; fPC3 was transient, rising 

rapidly to a maximum at t = 15 minutes and then falling below baseline levels by 75 minutes 

(Figure 3A). In the landscape of fPC2 vs. fPC3, BTC, IGF1 and EPR represented extrema: 

BTC scored relatively high in both fPC2 and fPC3, IGF1 scored high in fPC2, and EPR 

scored low in both fPC2 and fPC3 (Figure 3B). These differences were statistically 

significant, but other ligands exhibited intermediate behavior and could not be as cleanly 

distinguished from each other (Figure 3C). For all but IGF1, fPC2 and fPC3 scores varied 

smoothly with dose (Figure 3D) suggesting that differences in loadings reflect qualitative 

differences among ligands and not simply varying degrees of receptor activation. Scores for 

fPC 1 were variable and not significantly different among growth factors whereas fPC2 and 

fPC3 scores discriminated among ligands with high confidence (Figure S2B; p<10−10 based 

on Wilcoxon rank sum test as compared to unstimulated cells). We conclude that different 

growth factors induce significantly different FoxO3 translocation dynamics in the initial 

synchronous phase of response to growth factor.

FoxO3 translocation is pulsatile but not oscillatory

When harmonics comprising fPC1-fPC5 were added together in proportion to their scores, 

the contribution of long-wavelength changes to F3aN400-Venus dynamics could be 

visualized (Figure 3E). In the case of EGF we found that this “trend” response comprised 

both synchronous translocation into the cytoplasm and quick return to the nucleus by t=80 

minutes (as described above) as well as gradual return to the cytosol between t= 200 and 300 

minutes in a majority of cells (Figure 3E, left panel). Subtracting this trend response from 

the original trajectories revealed the pulsatile signal (Figure 3E, right panel). When fPCA 

analysis was performed on trajectories between t= 80 to 1580 minutes the PCA scores were 

significantly different from those of unstimulated cells only in the case of IGF1. Thus, only 

IGF1 is associated with a significant “trend” response at later times, consistent with manual 

inspection showing sustained cytosolic FoxO3 localization. For other ligands, fPCA scores 

for the late response were insignificantly different from each other and from untreated cells. 

Reconstructed late-phase trend lines obtained by adding these fPCA harmonics together 

(Figure S3A) were nonetheless useful in correcting for drift and background fluorescence on 

a trajectory by trajectory basis.

Oscillation is often observed in dynamical systems having strong feedback regulation 

(Elowitz and Leibler, 2000; Lahav et al., 2004). A key characteristic of oscillatory systems is 

stability in the frequency domain (Halford et al., 1973), a property that can be evaluated by 
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computing spectral density, the distribution of power vs. frequency. A purely sinusoidal 

oscillator, when sampled in discrete time, gives rise to a narrow spectral density distribution 

whose width varies with sampling error and signal-to-noise ratio (the blue line in Figure 2B 

represents an oscillator with a frequency of ~0.2 mHz sampled every 5 min. convolved by 

measurement noise). However, detrended trajectories for F3aN400-Venus exhibited an 

inverse relationship between power and frequency in the range of 0.05 to 2 mHz (Figure 

2B); this was true when the data was analyzed either in aggregate or ligand-by ligand. Such 

a relationship is a characteristic of 1/f or “pink” noise (where f is frequency), observed in 

many non-equilibrium physical systems (Hausdorff and Peng, 1996). When the power 

spectrum was computed for trajectories with the greatest degree of pulsing (see below), we 

observed a statistically significant deviation from pure 1/f behavior at ~0.2 mHz, which 

corresponds to a wavelength of 80 ± 30 minutes. This accounts for the apparent periodicity 

of some F3aN400-Venus trajectories. We conclude that the pulsatile component of 

F3aN400-Venus trajectories is not oscillatory in the conventional sense, although it does 

have weak periodicity. Irregular pulsing is a feature of both stochastic and chaotic dynamical 

systems and either or both could be involved in F3aN400-Venus dynamics (Timmer et al., 

2000).

FoxO3 pulsing varies with ligand and carries distinct information

Because F3aN400-Venus trajectories were not oscillatory, we quantified shuttling using a 

“pulse score” schematized in Figure 4A (and described in full in STAR Methods). This score 

comprised a nonlinear combination of (1) the number of pulses, (2) the average interval 

between pulses, (3) the signal-to-noise ratio in the images and (4) the pulse amplitude. We 

quantified the fraction of pulsing cells in different conditions using a threshold of ~0.6 in 

pulse score, which optimally discriminated trajectories in cells exposed to BTC and IGF1 

(the least and the most pulsatile trajectories as judged by the human eye; Figure 4A). We 

found that the fraction of pulsing cells rather than pulse amplitude or duration varied the 

most between conditions, justifying our use of discretization (Figure 4B & Figure S3B). 

Approximately 10% of serum-starved 184A1 cells exhibited pulsing in the absence of 

growth factor (Figure 4B; “0 ng/mL”); addition of IGF1 suppressed baseline pulsing in a 

dose- dependent manner by inducing persistent cytosolic translocation. In contrast, the other 

five growth factors increased the fraction of pulsing cells above the baseline. Exposure of 

cells to BTC, HGF or HRG resulted in a progressive increase in the fraction of pulsing cells 

over a ~ 40-fold concentration range (Figure 4B; blue, green and yellow lines), whereas 

exposure to EGF or EPR resulted in a sudden increase in pulsing over a narrow ~2- fold 

range in ligand concentration (cyan and pink). Similar data were obtained in F3aN400-

Venus expressing MCF10A cells, a second non-transformed mammary epithelial cell line, 

except that these cells were less sensitive to BTC and more sensitive to EGF than 184A1 

cells (Figure S4B). We conclude that differences in identities and concentrations of an 

extracellular ligand result in consistent differences in FoxO3 translocation dynamics, as 

expected for dynamical encoding.

To determine whether the trend and pulsatile components of FoxO3 translocation dynamics 

carry different information (Hansen and O’Shea, 2015), we calculated the mutual 

information between fPCA scores for the synchronous response between t= −70 to 80 
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minutes and the discretized pulse scores between 80–1580 minutes. Variation in early fPCA 

scores typically explained <20% of the variation in the late pulsatile response and was ligand 

dependent (Figure 4C; Figure S3C). In this context, this represents a low level of mutual 

information since trajectories from IGF1-treated cells, in which pulsing is low, exhibited 

over 60% mutual information between early and late phases (Figure S3C). These data 

suggest that early and late FoxO3 translocation dynamics are largely independent of each 

and therefore have the potential to encode different information (except in the case of IGF 1 

in which little pulsing is observed).

Regulation of FoxO3 dynamics by Akt and ERK

Information is transduced from transmembrane receptors to FoxO3 via cytosolic kinase 

cascades, among which those involving Akt and ERK are best understood. Previous work 

from our group has shown that growth factors differentially activate ERK and Akt signaling 

in mammary cells (Niepel et al., 2014) and blotting for FoxO3 phosphorylation on S253 and 

S294 confirmed that differences in kinase activity are transmitted to the F3aN400-Venus 

sensor (Figure 1C). To investigate the functions of posttranslational modification we 

engineered threonine to alanine mutations into the F3aN400-Venus sensor at known 

phosphorylation sites (Figure S4A). Translocation dynamics were quantified by fPCA in the 

early phases (from −70 to 80 min) and pulse score in the late phase (from 80 to 1580 min). 

In 184A1 cells, a triple point mutation in Akt sites (T32A/S253A/S315A) totally inhibited 

cytosolic translocation under all conditions, reducing fPC2 and fPC3 scores to near zero and 

also eliminating pulsing (Figure 5A). In contrast, mutation of ERK-specific sites (S294A/

S344A) had a relatively small effect on either fPCA scores or pulsing, and differences 

among ligands were retained (Figure 5A). Akt inhibition with MK-2206 phenocopied T32A/

S253A/S315A mutation by eliminating all cytosolic translocation and pulsing (Figure 5B). 

Similar data were obtained in F3aN400-Venus expressing MCF10A cells (Figure S4B).

To further investigate the role of MEK/ERK signaling in pulsing, 184A1 and MCF10a cells 

were exposed to PD0325901 and EGF in combination over a range of concentrations and 

pulse score was measured (Figure 5C). In both cell types low-dose MEK inhibitor increased 

pulse scores above the level observed with EGF alone (to a maximum of 0.8) but as drug 

concentration increased above 2 nM, pulse score then fell monotonically to a minimum of 

~0.3. Because CI-1040 and PD0325901 are among the most selective kinase inhibitors 

known (they are non ATP-competitive) off-target effects are unlikely. We conclude that 

MEK and ERK are likely to regulate F3aN400-Venus pulsing indirectly or via unmapped 

modification sites.

To examine the interplay between pulsing and early synchronous translocation, cells were 

exposed to growth factors in combination with inhibitors of Akt or MEK inhibitors over a 

range of concentrations. Dynamics were then analyzed on a landscape of early fPC2 score vs 

pulse score. In 184A1 cells treated with IGF1, fPC2 score varied with ligand dose, pulse 

score was low, and addition of Akt inhibitor resulted in a dose-dependent shift along the 

fPC2 axis, showing that IGF1 primarily regulates FoxO3 via Akt (Figure 5D, orange and 

yellow data points). Exposure of cells to different levels of EGF changed both fPC2 and 

pulse scores (Figure S5A; this was true of other ligands as well; Figure S5B). Complete 
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inhibition of the Akt pathway reduced fPC2 and pulse score to zero (Figure S5A; black 

square dot). The effects of MEK inhibition were more complex: in 184A1 cells exposed to 

20 ng/mL EGF, MEK inhibitor increased pulsing two-fold at intermediate drug 

concentrations and then reduced it at higher concentrations. At lower EGF concentrations, 

progressively higher doses of MEK inhibitor resulted in a monotonic decrease in pulsing. 

Taken together, these data suggest that (i) complete inhibition of Akt blocks cytosolic 

translocation of F3aN400-Venus under all conditions, (ii) partial inhibition of Akt 

suppresses both the trend and pulsing responses, (iii) pulsing is also regulated by MEK/ERK 

signaling, although not via known sites of FoxO3 modification, and (iv) at high ligand 

levels, fractional inhibition of MEK/ERK can increase pulsing implying that signaling is 

saturated.

FoxO3 integrates ERK and Akt dynamics

To study the relationship between ERK and FoxO3 dynamics in single cells we constructed 

a dual reporter in which F3aN400-mCherry was linked to EKAREV, a FRET-based reporter 

of ERK kinase activity (Albeck et al., 2013; Aoki et al., 2013), via a type 2A self-cleaving 

peptide (Figure 6A). Trajectories were normalized using trend lines derived from fPCA or 

spline-fitting and scaled individually by the max-min range for that reporter (to correct for 

differences in reporter-intrinsic intensity and dynamic range). In MCF10A cells we found 

that ERK activity and nuclear-to-cytosolic translocation of F3aN400-mCherry cells tracked 

each other before and after stimulation with BTC (typical pairs of F3aN400 and EKAREV 

activity trajectories are shown in the upper left panel of Figure 6B; more examples are 

shown in Figure S6). Across a set of ~30 F3aN400 and EKAREV trajectories, a median 

Pearson’s correlation coefficient of R ~0.83 was obtained for the two trajectories using a 

sliding 90-minute window (Fig 6B, upper right panel). When cells were stimulated with 

BTC for 4 hr and then treated with the Akt inhibitor (1μΜ of MK2206), F3aN400-mCherry 

stopped pulsing, but EKAREV dynamics were not appreciably altered, causing the two 

trajectories to decorrelate (median R = −0.03; Figure 6B, middle panels). When BTC-

stimulated cells were treated with MEK inhibitor (1μΜ of CI1040) at t=4 hr, pulsing by both 

EKAREV and F3aN400-mCherry was largely eliminated and trajectories became 

decorrelated (median R = 0.17; Figure 6B, bottom panels). We conclude that the EKAREV 

and F3aN400-mCherry undergo synchronous pulsing in a manner that requires both Akt and 

ERK activity. When growth factors were compared, EKAREV and F3aN400-mCherry were 

most highly correlated when pulse scores were high (e.g. with BTC, EPR and EGF as 

ligands; p <0.01 using Wilcoxon rank sum test against unstimulated cells) and least 

correlated when pulse scores were low (e.g. with IGF1; Figs. 6C and 6D). Thus, FoxO3 

pulsing appears to originate from the dynamics of ERK activity while also requiring 

activation of the Akt pathway.

Exploring the connectivity of ERK, Akt and FoxO3 in breast cancer cell lines

To determine how FoxO3 translocation varies across cell lines, we selected, from a panel of 

widely studied breast cancer cells, seven lines that include HER2AMP, hormone-receptor 

positive, and triple negative subtypes (the ICBP43 set (Li et al., 2013)); 184A1 and 

MCF10A cells were included as examples of normal mammary epithelial controls. 

Mutations in mitogenic signaling networks are common in breast cancer, and multiple cell 
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lines in our collection carry oncogenic mutations in HRAS, KRAS, BRAF and PIK3CA. To 

study FoxO3 localization in these cells we used fixed cell immunofluorescence at 7 time 

points 15 to 240 minutes following exposure of cells to one of seven growth factors at 100 

ng/mL. The average level of FoxO3 activation was captured by the median value of the 

FoxO3 C/N ratio; the median IQR of the C/N ratio served as a proxy for pulsing compatible 

(as described above; Figure 7A). Across all ligands and time-points, normal mammary 

184A1 and MCF10A exhibited the widest range of signaling states whereas breast cancer 

cells exhibited narrower ranges (Figure 7B). BT20 and T47D cell lines, which carry 

activating mutations in the catalytic p85 subunit of PI3K (PIK3CA), were confined to the 

fully active state (high C/N ratio) even in the absence of ligand whereas BRAFG464V/

KRASG13D MDA231 cells exhibited intermediate median C/N ratios and low IQR, 

suggesting reduced pulsing (Figure 7B). We infer that activating mutations in either the Akt 

or ERK pathways reduce the accessible dynamic range over which FoxO3 can respond to 

growth factors.

Based on current understanding of immediate-early signaling, ERK could either regulate 

FoxO3 directly by phosphorylating it on S294, S344 or S425 (Yang et al., 2008) or it could 

act indirectly via negative cross-talk on Akt (Moelling et al., 2002; Yu et al., 2002). To begin 

to distinguish between these possibilities we measured cross-regulation between ERK and 

Akt in different cell lines exposed to one of seven growth factors. The effect of MEK/ERK 

on AKT was assessed by measuring pAktS473 levels in the presence and absence of MEK 

inhibition and the effect of AKT on MEK/ERK by pERKT202/pY204 levels was measured in 

the presence and absence of Akt inhibition (Figure 7C-E). This experiment revealed a wide 

range of possible interactions between Akt and ERK depending on ligand and cell type. For 

example, inhibition of Akt with MK2206 following IGF1 exposure significantly increased 

pERKT202/pY204 levels in 184A1 cells but had little effect in MCF10A cells (Figure 7D).

We then used dynamic Bayesian network analysis (Friedman et al., 2000; Hill et al., 2012) 

to infer the connectivity of ERK, Akt and FoxO3 as assessed by either the median or IQR of 

the C/N ratio under 32 different conditions (4 inhibitor conditions × 8 ligand conditions) for 

each cell line (Figure S7A). We found that the probability of edges corresponding to Akt→ 
FoxO3, ERK → FoxO3 and Akt ↔ERK varied to a significant degree with cell line and 

ligand (Figure 7F). Probability values also varied with the learning method, as expected for 

probabilistic analysis of noisy data, but overall agreement was quite good: BGe and BDe 

scoring algorithms exhibited 94% and 81% agreement with DBN results (Figure S7B-D), 

suggesting that inferred edge probabilities are likely to be reliable in aggregate (Heckerman 

et al., 1995b). In all cell lines we found strong evidence of an Akt → FoxO3 interaction, 

and in HCC1806, HS578T, BT20 and T47D the probability of an ERK → FoxO3 

interaction was high. Akt ↔ ERK interactions were strongest in MCF7 cells (Figure 7F). 

Comparison of FoxO3 translocation in MCF10a and HCC1806 cells exemplified this 

difference. ERK ^ FoxO3 interaction was inferred to be substantially stronger in HCC1806 

than MCF10 cells and MEK inhibition had a substantially greater effect on the distribution 

of FoxO3 C/N values in HCC1806 than MCF10a cells (Figure 7G). We conclude that 

networks regulating FoxO3 differ in topology from one cell type to the next and that ERK 

can probably control pulsing via both Akt-dependent and Akt-independent mechanisms.
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DISCUSSION

In this paper we analyze the temporal regulation of FoxO3, a mammalian transcription factor 

controlled in a combinatorial manner by multiple signal transduction pathways. We focused 

on nuclear-cytosolic translocation induced by growth factors and its regulation by the ERK 

and Akt kinase cascades. Relocalization plays an important role in the regulation of 

transcription factors and has recently been shown by live cell imaging to involve pulses of 

active and inactive states. In the case of mammalian transcription factors such as NF-kB and 

p53 (Batchelor et al., 2008; Tay et al., 2010) and yeast Msn2 and Crz1 (Cai et al., 2008; Hao 

and O’Shea, 2011), modulation of the timing and duration of nuclear-cytosolic translocation 

carries information about the strength and identity of the initiating stimulus (Hansen and 

O’Shea, 2016; Tay et al., 2010). We build on these concepts by demonstrating that FoxO3 

dynamics comprise early and late phases that respond independently to differences in the 

relative activities of ERK and Akt kinases, which are determined in turn by growth factor 

identity and concentration (all data are available for reanalysis in an NIH LINCS format at 

http://lincs.hms.harvard.edu/sampattavanich-cellsyst-2018/). The early FoxO3 response to 

ligand is synchronous across all cells and relatively short-lived; the late phase is pulsatile 

and can last for 24 hr or more. The synchronous response is strongest for ligands such as 

IGF and weakest for EPR and BTC; the opposite is true of the pulsatile response. These 

features of FoxO3 appear to be reflective of the interplay between ERK and Akt signaling 

and provide FoxO3 with significant information encoding capacity. Although we have not 

yet linked differences in FoxO3 dynamics to differential transcriptional activity, we 

speculate that the diversity of dynamical responses is relevant to the diverse biological 

activities of FoxO class of transcription factors.

Ligand identity is transmitted by relative Akt and ERK activities and encoded in FoxO3 
dynamics

Across a wide range of ligand types and concentrations, FoxO3 translocation dynamics have 

two distinct temporal phases. Within 15–20 minutes of growth factor addition, FoxO3 moves 

from the nucleus to the cytoplasm in near-synchrony across all ligand-activated cells in the 

population. FoxO3 then shuttles back and forth between the two compartments for up to 24 

hr. Early synchronous translocation of FoxO3 appears to be regulated primarily by the 

intensity of Akt activity. Subsequent pulsing is asynchronous and occurs in phase with 

pulses of ERK activity; when Akt is active, pulses of ERK activity correspond to periods of 

FoxO3 cytosolic localization. For many ligands, mutual information between early and late 

dynamics is low (<20%) suggesting that the two temporal phases can carry distinct 

information.

Different growth factors induce Akt and ERK to different degrees (Niepel et al., 2014) and 

this correlates well with the degree of phosphorylation of FoxO3 on Akt and ERK-

dependent sites and the extent to which a ligand provokes the two phases of FoxO3 

dynamics. For example, IGF1 signals strongly through Akt and primarily induces a 

harmonic in the principal component decomposition of FoxO3 trajectories that remains high 

for an extended period of time, whereas BTC signaling is biased toward ERK rather than 

Akt and primarily induces a harmonic that peaks at t=15 minutes and then falls back to 
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baseline. Because individual target genes can respond preferentially to constant or 

oscillatory patterns of transcription factor activity (Purvis et al., 2012; Tay et al., 2010), we 

speculate that FoxO3 dynamics are read out at the level of target genes involved in cell 

death, cell cycle progression, ROS detoxification etc. (Jensen et al., 2011; Purvis et al., 

2012; Tay et al., 2010). However, our data do not address how this might be achieved; in 

well-characterized systems such as p53, kinetically related genes do not fall neatly into 

clusters of similar function (Porter et al., 2016).

Pulsatile regulation of transcription factors is often described as oscillatory, but in the case of 

FoxO3, spectral density analysis does not reveal a dominant frequency, a key characteristic 

of a conventional oscillator. Thus FoxO3 does not exhibit either AM or FM encoding 

(Levine et al., 2013). Instead, we observe a 1/f spectrum (where f is frequency), a common 

characteristic of multi-scale dynamical systems. In F3aN400-Venus trajectories, the 1/f 
power spectrum (also known as pink noise) is convolved by a relatively weak but statistically 

significant periodic signal with a wavelength of 80 ± 30 minutes (~0.2 mHz), considerably 

faster than the oscillations of p53 (which have a periodicity of 3–5 hours) (Purvis et al., 

2012) but similar to NF-kB (periodicity ~1.5 hr) (Kellogg and Tay, 2015). The origins of 1/f 
and periodic components of FoxO3 trajectories remain unknown.

Combinatorial control over FoxO3 activity

The relationship between FoxO3 pulsing and Akt or ERK activity is complex and non-

monotonic. For example, in two cell lines we studied in detail, the highest pulse scores for 

EGF are observed when ligand concentrations are sub-saturating or ERK is partially 

inhibited. This effect may be indirect, as the Akt and ERK kinase cascades are known to 

have multiple mechanisms of cross-regulation, involving both ERK-dependent inhibition of 

Akt (Yu et al., 2002) and PI3K/Akt-dependent inhibition or stimulation of ERK (Moelling et 

al., 2002). Our data suggest that ERK regulation of FoxO3 kinetics is at least partly indirect, 

perhaps via modulation of Akt activity. However, the strength of such cross-talk (as 

measured by the effect of Akt inhibition on ERK activity and vice-versa) varies with cell 

line and with ligand. Moreover, whereas our experiments artificially vary FoxO3 dynamics 

over a range of states using ligands and ERK and Akt inhibitors in combination we speculate 

that this is achieved physiologically by the combined activities of multiple activating and 

inhibitory signal transduction cascades.

In tumor cells carrying mutations in ERK and Akt signaling proteins, such as the p85 

subunit of PI3K (PIK3CA), HRAS, PTEN phosphatase etc., the range of dynamical states 

that can be accessed for FoxO3 in response to growth factors is lower (often much lower) 

than in non-transformed epithelial cells. In some cell types (BT20 for example) FoxO3 is 

chronically localized in the cytosol and growth factors have little or no effect. In HCC1806 

or SKBR3 cells multiple ligands can promote cytosolic translocation, but the range of 

dynamical states is less than in normal epithelial cells. This suggests that FoxO3 trajectories 

encode less information in cancer than normal cells. However, more complete understanding 

of the effects of oncogenic mutations on FoxO3 will require dynamical data from both 

transformed and non-transformed cell types rather than the fixed cell imaging used to 

compare tumor cells in the current study.

Sampattavanich et al. Page 12

Cell Syst. Author manuscript; available in PMC 2019 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusion

In the past few years it has been shown that multiple transcription factors and signal 

transduction kinases alternate between active and inactive states on time scales of minutes to 

hours. It has been suggested that such systems can encoded information via variation in 

amplitude (AM encoding) or frequency (FM encoding). FoxO3 dynamics do not conform to 

either of these possibilities but instead involve independently regulated early and late phases. 

Late-phase pulsing by FoxO3 is non-oscillatory and synchronous with ERK pulsing, which 

has been proposed to originate from the stochastic release of autocrine factors among 

adjacent cells (Sparta et al., 2015). Alternatively, FoxO3 might be regulated by an excitable 

intracellular feedback circuit subject to stochastic fluctuation (although a pure oscillator 

degraded by Poisson noise is not expected to have a 1/f power spectrum) or a chaotic 

feedback oscillator (Novak and Tyson, 2008). Regardless, multi-part dynamical trajectories 

represent a potential mechanism for combinatorial control over transcription. It will be 

interesting to determine whether other transcription factors, including other members of the 

FoxO family, also have multi-part dynamical trajectories controlled by ligand identity.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Peter Sorger (peter sorger@hms.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tissue culture cell lines—The different cell lines were obtained from the following 

sources: 184A1 were a gift from the Lauffenburger lab; MCF10A (ATCC® CRL-10317) 

from ATCC; HCC1806(ATCC® CRL-2335) from ATCC; BT-20 (ATCC® HTB-19) from 

ATCC; MDA-MB-231 (ATCC® HTB-26) from ATCC; T47D (ATCC® HTB-133) from 

ATCC; Hs578T (ATCC® HTB-126) from ATCC; MCF7 (ATCC® HTB-22) from ATCC; 

SKBR3 (ATCC® HTB-30) from ATCC. All cells are quarantined before they are used for 

experiments and are tested for mycoplasma and other microbial contamination. All cell lines 

were authenticated by profiling highly- polymorphic short tandem repeat loci (STRs) by the 

Dana Farber Cancer Institute (DFCI) Molecular Diagnostics Laboratory. The sex of the cell 

lines are as follows; Female:184A1, MCF10A, HCC1806, BT-20, MDA-MB-231, T47D, 

Hs578T, MCF7, SKBR3. MCF-10A and 184A1 cells were cultured at 37°C with 5% CO2 in 

DMEM/F12 (Invitrogen) supplemented with 5% horse serum, 20 ng/mL EGF, 10 μg/mL 

insulin, 0.5 μg/mL hydrocortisone, 100 ng/mL cholera toxin, 50 U/mL penicillin and 50 

μg/mL streptomycin; all other cells were grown according to ATCC recommendations.

METHOD DETAILS

Tissue culture—For experiments involving growth factor stimulation cells were plated 

and cultured in full growth media for 24 hours. At time of experiment, cells were washed 

twice with PBS and then placed in serum-free medium (DMEM/F12 with Penicillin/

Streptomycin but no phenol red) for 5 hr, followed by washing and replenishing in fresh 

serum-free medium for 1hr. Cells were then exposed to growth-factors in serum-free 
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medium, resulting in a ~5% volume increase. In experiments with kinase inhibitors, drugs 

were added 1 hr prior to growth factors, unless indicated otherwise.

Construction of plasmids and reporter cell line establishment—The complete 

coding sequence of human FoxO3 was inserted into pBabe-puro upstream of mVenus and an 

H212R mutation introduced into the DNA binding domain (Tran et al., 2002). When 

transduced into MCF10A cells with retroviruses, this construct translocated into the cytosol 

upon insulin treatment. However, expression levels were uneven among clonal cell 

populations and cells grew poorly. Thus, a region of FoxO3-H212R corresponding to amino 

acid residues 1–400 was inserted into pMSCV-puro, upstream of a Venus sequence, to 

generate pMSCV-puro-F3aN400-Venus. When introduced stably into MCF-10A cells by 

retroviral transduction, this construct displayed translocation from the nucleus to the cytosol 

upon insulin treatment, and translocation to the nucleus in response to inhibitors of AKT or 

PI3K.

To clone fluorescently tagged FoxO3 constructs containing mutations at known sites of 

phosphorylation a pUC57 plasmid was designed and synthesized by GENEWIZ (Figure 

S8A), containing an ERK-silent F3aN400- FLAG-mCerulean (with S294A/S344A 

mutations in FoxO3 sequences), an AKT-silent F3aN400-HA-Venus (with T32A/S253A/

S315A in FoxO3) sequences and an NLS-Myc-mCherry, separated by self-cleaving P2A 

sites. Silent mutations were introduced to create unique restriction sites for generating the 

following constructs: ERK-silent F3aN400-HA-Venus-P2A-NLS-Myc-mCherry (NaeI) 

(Figure S8B) or AKT-silent F3aN400-HA- Venus-P2A-NLS-Myc-mCherry (XhoI). To 

create a FoxO3 construct without AKT- or ERK-specific mutations (F3aN400-HA-Venus-

P2A-NLS-Myc-mCherry) from this synthetic construct, a PCR fragment from wildtype- 

FoxO3 was introduced into the NotI/NaeI sites of ERK-silent F3aN400-HA-Venus-P2A-

NLS-Myc-mCherry. All FoxO3 constructs were subsequently subcloned into the EcoRI/SalI 

restrictions sites of pPB-CAG.EBNXN (A. Bradley, Sanger Institute) containing a 

puromycin selection cassette.

To create the dual reporter construct pPB-CAG-EKAREV-P2A-F3aN400-HA-mCherry 

containing the ERK reporter EKAREV (Albeck et al., 2013; Komatsu et al., 2011) and a 

F3aN400-mCherry separated by a self-cleaving P2A site, PCR fragments were generated 

from pPB-CAG-EKAREV using the EKAREV primer pairs, pPB-CAG-F3aN400-HA-

Venus-P2A-NLS-Myc-mCherry using the F3aN400 primer pairs and pcDNA3-H2B- 

mCherry, Addgene plasmid 20972 (Nam and Benezra, 2009) using the mCherry primer pairs 

(Key Resources Table) were cloned into the EcoRI/SalI restriction sites of pPB-CAG-

EKAREV using Gibson Assembly (New England BioLabs).

To create stable cell lines and minimize recombination between highly similar fluorescent 

protein sequences, piggyBac transposon-mediated gene transfer was used; the pPB-CAG 

expression vectors were co-transfected with a pCMV-hyPBase transposase vector (A. 

Bradley, Sanger Institute). All FoxO3 sensors were co-expressed with the nuclear reporter 

NLS-mCherry to facilitate image segmentation, either by double delivery using retroviral 

infection or by joining the nuclear reporter with the FoxO3 sensor using the P2A ribosomal 

skipping sequence.
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Analysis of total cellular lysates—Cells grown and starved as described above were 

lysed using RIPA-Buffer (Sigma) supplemented with Complete Protease Inhibitor Cocktail 

(Roche) with sonication on ice. Extracts were analyzed using SDS-Page followed by transfer 

to PVDF membranes (Millipore), blocking with Odyssey Blocking Buffer (LI-COR) for 1h, 

washing with PBS/0.1% Tween and incubation with primary antibody overnight at 4°C in 

Odyssey Blocking Buffer. Blots were developed and scanned following the Odyssey 

protocol (LI-COR).

Fixed and live-cell microscopy—For live time-lapse microscopy, cells expressing 

reporter constructs were plated in 96-well plates at ~ 6 × 105 cells/cm2 and then imaged 

using a 10× objective on a Nikon Eclipse inverted fluorescence microscope fitted with an 

environmental chamber maintained at 37°C with 5% CO2. Images were collected at 5–10 

minutes intervals for a period of 24 hr using the Hamamatsu ORCA-ER cooled CCD camera 

and Spectra-X light engine (Lumencor). Filter sets used in this study included the polychroic 

mirror (251050, Chroma), CFP (Ex:440/20, Em:475/20), FRET (Ex:440/20, Em:540/21), 

YFP (Ex:508/24, Em:540/21) and RFP (Ex:575/22, Em:632/60).

For fixed cell assays for immunostaining, cells were fixed for 10 minutes at room 

temperature with 2% paraformaldehyde in PBS and then permeabilized with 100% methanol 

for 10 minutes. After blocking with Odyssey blocking buffer (LI-COR) for 1 hour, cells 

were incubated with primary antibodies overnight at 4°C. Samples were washed, stained 

with secondary antibodies at room temperature for 1 hour and counter-stained with DAPI 

and a whole cell stain (Thermo Scientific) at room temperature for 1 hour. After washing, 

plates were imaged at 10X using an Operetta high-content imaging system (Perkin Elmer).

QUANTIFICATION AND STATISTICAL ANALYSIS

Calculation of FoxO3 translocation activity—For fixed immunostained cells, image 

segmentation was performed using cellProfiler (Kamentsky et al., 2011) and extracted 

features analyzed using MATLAB scripts. For live imaging, cell tracking and segmentation 

were performed using MATLAB scripts. Image segmentation was performed on the nuclear 

image of each field using NLS-mCherry signal. Cell tracking was performed by cross-

correlation between adjacent frames and validated manually. To calculate FoxO3 

translocation dynamics, we first identified nuclear compartment of each cell using either 

DAPI staining of fixed cells or the NLS-mCherry channel for live microscopy. We then 

determined the cell boundary either by thresholding to detect the outer cell boundary or by 

expanding 4 pixels from the nuclear boundary (Figure S1A). We quantified FoxO3 

translocation by calculating the ratio between the mean pixel intensity in the cytosolic and 

nuclear compartments (C/N). For fixed cell studies, FoxO3 intensity was determined by 

immunostaining cell with anti-FoxO3 antibody. For live microscopy, FoxO3 intensity was 

derived from direct imaging of the F3aN400 reporter. We often report FoxO3 C/N ratios as 

log base 10 transformed values (log10(C/N)) so that trajectories with equal FoxO3 intensity 

inside the nuclear and the cytosolic compartments are centered at 0. To minimize variability 

in background fluorescence arising from variation in light source or camera drift over time, 

we first subtracted the mean pixel values in each compartment by the mean pixel value of 

the background, followed by calculating the log base 10 ratios; this gives rise to the 
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normalized ratio logio(Cnorm/Nnorm) (Figure S1A). For EKAREV, the background signal 

was first subtracted, and the FRET/CFP ratio calculated at the single pixel level. ERK 

activity was then calculated from the mean value from the cytosolic compartment of the 

normalized FRET/CFP values.

Scaling of Western Blots; Error propagation; Total least squares—Protein 

concentrations were estimated using Western blotting; each measurement (e.g. pAktS473 

intensity from blotting) was normalized to its maximum value across an entire experiment. 

To account for systematic variation within each gel, the intensity of actin staining was used 

as a calibration standard (Schilling et al., 2005). The following computational analysis was 

performed to obtain a merged data set. For Immunoblotting, measurement noise is usually 

log-normal distributed (Kreutz et al., 2007) hence data was log-transformed.

Observations from multiple experiments were merged by assigning each data-point yobs (cij, 

tik) for condition cij and timepoint tik a common scaling factor s i for each observable and 

experiment, i.e. yi jk = s i ⋅ yobs ci j, tik , or

yi jk = si + log2 yobs ci j, tik (1)

in the log space. Different gels performed within a single experiment were assumed to be 

comparable and therefore assigned the same scaling factors. For N experiments, there are N 
−1 degrees of freedom in terms of scaling; therefore, s1 was set to 1 without loss of 

generality. To merge data-sets from multiple experiments, the objective function

RSS1 = ∑
i, j, k

ym c j, tk − yi jk
2

(2)

was minimized, yielding the maximum likelihood estimates

si*, y* c j, tk = argmin
i

RSS1 (3)

for scaling factors si* and merged values y* (cj,tk)). For numerical optimization of RSS1, the 

MATLAB function lsqnonlin was applied using the trust-region method (Coleman and Li, 

1996). Using the Jacobian matrix J, we then calculated the uncertainty of estimates from

σ = diag((J†J)−1) . (4)

Ratios (or differences in log-space) of the merged values
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r jlk = y* c j, tk − y* cl, tk (5)

were calculated as final readout of the analysis. Uncertainties were propagated using the 

following equation:

σ r jlk = σ(y*(c j, tk))2 + (σ(y*(cl, tk))2 . (6)

Eq. 6 was used to determine propagated errors for the pERK/pAKT ratios in Fig. 1C. For 

any indexed sets M = {jlk1, jlk2, jlkM} and Q = {opq1, opq2, ·, opqM } with samples that 

share a linear relationship, we assume a linear model ax + b for the relationshipof (rM, rQ ), 

and can apply total least squares to determine estimates and uncertainties of both dependent 

and independent variables simultaneously. For this purpose, the following objective function

RSS2 = ∑
M Q

1
σ r jkl

r jkl −
ropq − b

a + 1
σ ropq

ropq − a ⋅ ropq − b (7)

was numerically optimized as disscussed in Eq. (3). Using this formula, the constraint of 

relative data having an unknown scaling factor with respect to concentration level does not 

influence the slope a, but only offseting b. Different experiments are scaled in reference with 

each other, resulting in merged y* and corresponding uncertainties. Ratios of normalized 

parameters were then calculated. In our study (Figure 1C), we applied this approaches to the 

ratios of pERK/pAKT and pS294/pS253, and a linear model was fitted to their relationship 

using total least squares.

Functional principal component analysis (fPCA)—To analyze the underlying trends 

of the reporter translocation trajectories, we implemented functional principal component 

analysis (fPCA). Similar to classical principal component analysis, this technique generates 

an empirical set of orthogonal basis functions ψi(t) that comply with

ψ i, ψ j = ∫ ψ i(t)ψ j(t)dt = 0 (8)

and these basis functions also yield maximal variance for any i ≠ j. We first applied this 

technique for the early synchronous response, with t ∈ [—70,80] min. Equidistantly spaced 

cubic b-splines (De Boor, 2001) were used to convert the input signals to continuous time-

courses. We smoothed the signals using 1.5 data-points per basis function to avoid 

overfitting. Artifacts at the edges, normally arising at the beginning and at the end of each 

trajectory, were not an issue here because of the high number of trajectories for basis 

calculation (total of over 5000 trajectories). Using the implementation described by Ramsay 

(Ramsay et al., 2009; Ramsay and Silverman, 2005), we identified three orthonormal basis 
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functions (harmonics) that together explain over 95% of the observed variance. To make 

biologial senses of the observed basis functions, we rotated the three basis functions using 

the following transformation:

R =
1 0 0
0 cosθ3 sinθ3
0 −sinθ3 cosθ3

cosθ2 0 −sinθ2
0 1 0

sinθ2 0 cosθ2

cosθ1 sinθ1 0
−sinθ1 cosθ1 0

0 0 1
(9)

using Euler angles θ1 = −25°, θ2 = 5° and θ3 = −5°. The first harmonic, fPC1 corresponds to 

a steady-state value prior to ligand addition and is not significantly different between growth 

factor stimuli (Figure 3C). The second harmonic fPC2 corresponds to a sustained 

translocation starting at t=0 min and the third harmonic fPC3 corresponds to a transient 

function that falls below baseline at t=60 min. For t > 80 min, all harmonics converge to the 

Fourier basis, implying that trajectories from late-response are truely asynchronous.

Pulse score and fraction ofpulsing cells—Trajectories artifacts such as spikes 

resulting from cell division or loss of cell tracking were first removed by interpolation. 

Missing values were added by interpolation for fPCA and dropped in subsequent analysis. 

For F3aN400-Venus translocation trajectories, the first three fPCA harmonics were 

employed to detrend the signals (as shown in Figure 4A) and an additive model of slow 

trend and fast pulsing assumed. The detrended signal was smoothed using N/3 bsplines for 

N data points. For EKAREV traces, an averaged trend determined from average sliding 

window was first applied to detrend the signal. Peaks were then detected on smoothed and 

detrended trajectories. Due to overfitting, pulsatile traces often contain small peaks. We 

dropped small peaks with edge height less than 0.005. The final detrended, interpolated, and 

peak adjusted signals were used for detecting edges that connect from peak to peak of each 

trajectory. As a result, we can define edges into two finite sets: Tstart = {ts(1),…,ts(Nedge)} 

and Tend = {te(1),…, te(Nedge)}, depicting the starting and ending points of all edges, 

respectively. The index set I ⊂ {1,…, Nedge} with NI elements contains indices of edges that 

are directly connected to a neighboring edge. Superscripts + and - denote ascending and 

descending edges and Npeakthe total number of peaks. The deviation of the smoothed signal 

y and data yD is quantified with RSS = ∑k = 1
N y tk − yD tk

2
.

For calculating the pulse score, the following features fi were extracted (See also Figure 4B)

1. Number of pulse edges: f1 = Nedge ≈ 2Npeak

2. Pulse amplitude: f 2 = maxy(t) − miny(t)

3.
Signal to noise ratio: f 3 =

f 2
1/(N − 1) RSS

4. Peak duration: f 4 = 1
NI

∑i ∈ I ts(i) − te(i + 1)
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5. Peak distance: 

f 5 = 1
Nedge − 1 ∑i = 1

Nedge − 1
ts(i + 1)
± − ts(i)

± + 1
Nedge − 1 ∑i = 1

Nedge − 1
te(i + 1)
± − te(i)

±

Whenever no peaks were detected, peak duration and peak distance were set to 300 min. A 

reference value ri and a set of weights wi was defined for all features fi. Positive values for 

wi represent features for which a larger value corresponds to more pulsing, i.e. number of 

edges, amplitude, and signal to noise ratio. Respectively, a negative number for wi depicts a 

feature for which a larger value indicates less pulsing, namely peak duration and peak 

distance. Using the features fi, the reference values ri, and the weights wi, the pulsatory score 

was calculated for each trajectory based on the following formula:

p = ∏
i

f i
ri

wi
. (10)

Reference values and weights were adjusted by sorting trajectories by their pulse score p to 

achieve visual ordering of pulsing. Resulted reference values and weights are r = (90, 0.04, 

40, 300, 300) and w = (2, 1, 1.5, - 1.5, −1.5), for all five characteristics of pulse score, 

respectively. A threshold pulse score of 0.6 was used for assigning each trajectory into the 

pulsing or non-pulsing groups. The choice of 0.6 was supported by visual inspection that 

this threshold can best separate BTC-stimulated cells from IGFl-stimulated condition 

(Figure 4A). Finally, the fraction of pulsing cells was calculated for each condition based on

fp =
Npulsing

Nall
. (11)

Power spectrum analysis—Time-course measurements from single cells were ordered 

according to their pulsatory score and subsequently grouped based on their percentile 

ranking into 4 bins: <10th, 25th-50th, 50th-75th and >90th. For each trace y(tn) the 

corresponding periodogram

|Y( f ) |2 = Δt
N ⋅ ∑

n = 1

N
y tn e−i f n

2
(12)

was calculated. To minimize leakage effects due to the finite time-window of observation, 

signals were tapered using a triangular window. The power spectrum was finally calculated 

by averaging periodograms from all traces in each bin. Spectra of simulated time-courses 

were also included as references, namely 1) pink noise (Bak et al., 1987) and 2) white noise 

added to a sinusoidal wave

ysin tn = s1sin 2πtn/r f + s2e (13)
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using an independent and identically distributed random variable e ∈ N (0,1), weighting 

factors s i to adjust the scales, and the reference frequency rf of 80 min.

Mutual information—To assess the predictability of pulsing classification from the early 

PC scores, we applied the concept of mutual information (MI). Specifically, the MIxnyn 

implementation of the MILCA algorithm (Kraskov et al., 2004) was used to determine the 

MI score between the discretized pulse score (0 = non-pulsing; 1 = pulsing) and the 

corresponding early fPC scores for each trajectory. MI scores were determined for individual 

fPC score as well as for combined fPC scores. As reference, we used the entropy of pulsing 

classification H(fp) = MI(fp,fp). Fixed-cell analysis of ERK-AKT-FoxO3 connectivity

Data of phosphorylated ERK-T202/Y204 or AKT-S473 and the nuclear translocation of 

FoxO were collected in 9 cell lines (MCF10A, 184A1, HS578T, BT20, SKBR3, MDA231, 

MCF7, HCC1806, and T47D) at 8 time points. Several perturbation conditions were 

measured consisting of stimulation with one of 7 growth factors and no treatment control (8 

ligand options), with or without AKT and/or MEK inhibitors (4 inhibitor conditions). This 

results in a total of 32 perturbation conditions.

Because the activity of endogenous FoxO3 was obtained from different cell populations at 

different time points, it was not possible to learn a dynamical model directly using 

measurement at single-cell resolution. We therefore chose quantities representing the 

characteristics of the population distribution of each measured signal. For the measurement 

of pERK and pAKT, we chose to use their medians (ERK μ, AKT μ) as measures of the net 

level of signal activation at the cell population level. These values were normalized by their 

maximal values on a per-cell line basis. For FoxO3, we found that perturbations affect both 

the position (median) and the spreading (inter-quartile range, IQR) of the C/N ratio. We 

therefore used positions along the curve of FoxO3 C/N translocation ratios in the median vs. 

IQR landscapes (Figure 7B) as the representative value of FoxO3 activity. In what follows, 

we will denote this value by FoxO3 ∅. With this approach we expect to show a dependence 

of FoxO3 on ERK and AKT both in terms of its level and its variability (see Figure S9A).

Quantifying ERK, AKT and FoxO3 response to inhibitors—To quantify the effect 

of MEK inhibition on AKT phosphorylation, we calculated the difference in the median 

values for AKT, AKT μ, at each time point (separately for each combination of cell line and 

growth factor), in two different inhibitor conditions: with the MEK inhibitor pre-treatment 

and without any inhibitor pretreatment (DMSO). This resulted in a vector of difference 

values across the 8 time points, which we deduced using the corresponding area under the 

curve. This gives a lumped measure of the overall effect of MEK inhibition on AKT 

phosphorylation for each cell line/growth factor pair (Figure 7C). To further summarize this 

effect across all ligand conditions, we took the mean of the AUC values across all ligands to 

obtain a single representative value for each cell line (red crosses in Figure 7E). 

Quantification on the effect of AKT inhibition on ERK phosphorylation (ERK μ) was also 

done in the same manner (Figure 7D and black crosses in Figure 7E).
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To quantify the effect on FoxO3 by either MEK or AKT inhibition, we used the same AUC-

based method but on the position along the parabola in the median vs. IQR landscape 

(FoxO3 ∅), as described above.

Approach to Bayesian model comparison—We used the above fixed-cell data from 

various cell lines to perform Bayesian model discrimination in comparing hypotheses that 

can best describe the contribution of ERK and AKT activity in FoxO3 translocation. We 

applied three different dynamic Bayesian network scoring schemes to compare these model 

hypotheses: two based on a conditionally Gaussian probabilistic model and the third using a 

discretized approach. From the Bayesian scores obtained from each model we derive 

probabilities for the support for each individual causal edge between ERK, AKT and FoxO3.

When using the Gaussian-based scoring schemes, we directly used the values described 

above. For the scoring scheme relying on discrete data, we first performed data 

discretization as follows. We took data points for each of the 3 variables and independently 

applied Otsu’s discretization technique (Otsu, 1979), which calculates for the optimum 

threshold such that the intra-class variance is minimized between two groups to which the 

values are discretized.

Comparing model topologies—We were interested in evaluating causal dependencies 

representing the relationships between ERK, AKT and FoxO3. We considered four 

relationships of interest:

1. AKT controlling FoxO3 independent of ERK

2. ERK controlling FoxO3 independent of AKT

3. ERK controlling AKT

4. AKT controlling ERK.

These mechanisms are represented as edges shown in Figure S9B.

We translated these model hypotheses into probabilistic model structures and used Bayesian 

scoring schemes to quantitatively assess the plausibility of each hypothesis with respect to 

experimental data. Since there are a total of 4 allowed edges in each model, there are a total 

of 24 = 16 possible overall topologies to consider.

Given a data set D and a set of model topologies Mk, 1 ≤ k ≤ 16, we first calculate the 

posterior probability of each model,

P Mk D =
P(D Mk)P Mk

P(D) . (14)

Here P(D | Mk) is the marginal likelihood of model Mk, and P(Mk) is the prior probability 

assigned to the model. We assign equal prior probability to all four models, that is, P(M1) = 

P(M2) = P(M3) = P(M4). Consequently, we can calculate the posterior odds of two models 

as:
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P Mk D

P M j D
=

P(D Mk)P Mk

P(D M j)P M j
=

P(D Mk)
P(D M j)

, 1 ≤ j ≠ k ≤ 4. (15)

This shows that models can be compared through their marginal likelihoods. We now turn to 

the methods for calculation of the marginal likelihood for each model hypothesis. 

Calculating the marginal likelihood depends on the type of probabilistic model and the 

assumed parametrization. For model parameters Mk summarized in a vector 𝜃k, the marginal 

likelihood is expressed as

P(D Mk) = ∫ P(D Mk, θk)P θk Mk dθk . (16)

A score is thereby assigned to a model by integrating over all possible parametrizations. In 

many cases the parametrization of the model is such that this integral can be solved 

analytically (we will consider three such methods), in other cases numerical methods can be 

used to calculate it. For a general introduction to learning Bayesian networks, we refer the 

reader to (Neapolitan, 2004).

Computing dynamic Bayesian networks—Assume a network on a set of n variables 

X = {X1,..., Xn}. The edges representing the model structure can then be described through 

the parenthood relationship Pa : X → 2X. Namely, an edge exists from Xi to Xj if and only 

if Xi ∈ Pa(Xj), with 1 ≤ i, j ≤ n. The model is parameterized through a set of conditional 

probability distributions specifying the distribution of a variable given the value of its 

parents, or P(Xi | Pa(Xi)). Through this parenthood relationship, the joint distribution can be 

written as

P X1, …, Xn = ∏
i = 1

n
P Xi Pa Xi . (17)

The above equation shows that the joint distribution of the variables can be derived from the 

local parenthood structure of each node.

Dynamic Bayesian networks are a special case of Bayesian networks and are used to 

represent a set of random variables across multiple time points (Murphy, 2002). There are at 

least two important advantages of using a dynamic Bayesian network compared to static 

Bayesian network in our setting. First, DBNs allow us to use the available time resolved 

experimental data directly to learn the model. Second, due to the fact that DBN edges point 

forward in time, it is possible to model feedback effects (that would normally result in 

disallowed loops in Bayesian network graphs). Assuming there are a total of T time points of 

interest in the process, a DBN will consist of a node representing each of n variables at each 

of the T time points. For instance Xi
t will denote the i -th variable at time point t. Per the 
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standard assumption in the context of DBNs, we assume that the each variable at time t is 

independent of all previous variables given the value of its parent variables at time t — 1. 

Hence the edges in the network point forward in time and only span a single time step.

We represented as variables the median (μ) of the single-cell measured values of 

phosphorylated ERK and AKT and the position along the median vs. IQR landscape (ϕ) of 

FoxO3 activity at each experimental time point, yielding three random variables. We 

represented each random variable at each time point where experimental data was available, 

resulting in a network with a total of 24 random variables. We assume that the structure of 

the network does not change over time and also that the parameterization is time-invariant. 

This allows us to use all data for pairs of subsequent time points to score models. Figure 

S9C shows the DBN representation of one model topology (the topology with all possible 

edges present). Assuming that the prior probability of each model topology is equal, from 

these marginal likelihood values, we can calculate the marginal probability of a specific edge 

e being present as follows

P(e) =
∑i P Mi D e ∈ Mi

∑iP Mi D
. (18)

We applied three different approaches to scoring DBN models and thereby obtaining 

individual edge probabilities.

DBN learning with the BGe score—In the BGe scoring approach (results shown in 

Figure S7C) (Geiger and Heckerman, 1994; Grzegorczyk, 2010) data is assumed to be 

generated from a conditionally Gaussian distribution with a normal-Wishart prior 

distribution on the model parameters. The observation is assumed to be distributed as N (μ, 

Σ) with the conditional distribution of μ defined as N(μ0,(νW)–1) and the marginal 

distribution of W as W(α,T0), that is, a Wishart distribution with α degrees of freedom and 

T0 covariance matrix. We define the hyperparameters of the priors as follows. We set

ν: = 1, α: = n + 2

μ0, j: = 0, 1 ≤ j ≤ n,

T0: = ν(α − n − 1)
ν + 1 In, n,

where n is the total number of modeled species. The marginal likelihood of a model for a 

subset of the data D′ on n′ nodes with these assumptions can be expressed as follows.

P D′ Mk = (2π)−n′m/2 ⋅ ν
ν + m

n′/2
⋅ c n′, α

c n′, α + m ⋅ det T0
α/2 ⋅ det TD′, m

−(α + m)/2, (19)
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With

TD, m = D0 + (m − 1) ⋅ Cov(D) + νm
ν + m μ0 − D μ0 − D T, (20)

and

c(n, α) = 2αn/2 ⋅ πn(n − 1)/4 ∏
i = 1

n
Γ α + 1 − i

2

−1
. (21)

The full marginal likelihood is then calculated as

P(D | Mk) = ∏
i = 1

n P D
i, πi Mk

P D
πi Mk

, (22)

where D
i, πi denotes the subset of the data for the i -th node and its parents and D

πi the subset 

of data for the i -th node’s parents only. Note that these subsets of data are constructed such 

that the data for the i -th node is shifted forward by one time-step to align with the parents’ 

data.

DBN learning with g-prior based Gaussian score—We adapted the DBN learning 

approach developed by Hill et al. (results shown in Figure 7F) (Hill et al., 2012). This 

approach is similar to the BGe approach in that it assumes a conditional Gaussian 

probability distribution for the variables in the model. It, however, chooses a different prior 

parametrization leading to desirable properties including the fact that parameters don’t need 

to be user-set and that the score is invariant to data rescaling. One shortcoming of this 

method is that it requires matrix inversion and is therefore prone to conditioning problems, 

Here we only present the formula for the marginal likelihood calculation and refer to Hill et 

al. (2012) for the details of the conditional probability model. The formula for calculating 

the marginal likelihood for node i is

P Di Mk = (1 + m)−(2
πi − 1)/2 Di

TDi − m
m + 1Di

TBi Bi
TBi

−1Bi
TDi

−m/2
, (23)

where Dt is the subset of the data for the i -th variable, shifted forward by one time step, Bi 

is a design matrix containing the data for the i -th node’s parents and possibly the higher 

order products of the parents’ data to model upstream interactions. We do not use higher 

order interaction terms in the current study. The full marginal likelihood is expressed as
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P(D Mk) = ∏
i = 1

n
P Di Mk . (24)

DBN learning with the BDe score—The BDe scoring metric (results shown in Figure 

S7D) (Friedman et al., 1998; Heckerman et al., 1995a) relies on the assumption that each 

random variable is binary, that is, Xt ∈ {0,1}. Consequently, the model is parametrized by a 

set of conditional probability tables containing the probabilities that a node takes the value 1 

given all possible combinations of values assigned to its parents. For instance, in a specific 

topology, the conditional probability table of FoxO3 ϕ could consist of the entries 

P(FoxO3aϕt = v1 ǀ AKTμt−1 = v2) for all combinations of v1, v2 ∈ {0,1}. Note that the 

conditional probability distributions have to sum to one, that is, 

∑
v1 ∈ 0, 1 P Foxo3aϕt = v1 AKTμt = v2 = 1.

The BDe score assumes a beta distribution as the prior for the model parameters. Using beta 

priors, Heckerman et al. (1995 a) shows that the marginal likelihood can be expressed as

P(D | Mk) = ∏
i = 1

n
∏
j = 1

qi Γ si j

Γ di j + si j
∏

ℓ ∈ 0, 1

Γ di jℓ + si jℓ
Γ si jℓ

, (25)

where i refers to a node Xi, j is a value configuration of the parents of node Xi, with qi the 

total number of parent value configurations, and ℓ indicates the value of node Xi under parent 

configuration j. For each combination of indices, dij· and dijℓ represent the observed count, 

while sij and sijℓ are the prior counts. To make priors consistent among different DAG 

structures, we choose a fix equivalent sample size S = 1, and set sijℓ = S / (2qi). For instance, 

assume we want to score the model M1, and that we denote X3 = AKT μ and X5 = FoxO3 μ, 

with which Pa(X5) = {X3}, and q5 = 2. Then, for instance, d510 is the number of experiments 

in which AKT μ takes the value 0 and FoxO3 μ takes the value 0. Similarly, d51 corresponds 

to the number of experiments in which AKT μ takes the value 0.

DATA AND SOFTWARE AVAILABILITY

Raw images and LINCS-compatible CSV datasets can be accessed at http://

lincs.hms.harvard.edu/sampattavanich-cellsyst-2018/.

Extracted data in other formats are available at https://doi.org/10.17632/65fkdzt9x5.1.

Scripts used to generate all figures are available at https://github.com/sorgerlab/

sampattavanich-cellsvst-2018.
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HIGHLIGHTS

• Ligand-stimulated FoxO3 nuclear-cytosolic shuttling is pulsatile not 

oscillatory

• FoxO3 dynamics can encode growth factor identities and concentrations

• FoxO3 dynamics are under combinatorial control by the ERK and Akt 

pathways

• Diversity of FoxO3 dynamics is lost in cells with ERK and AKT pathway 

mutations
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Figure 1. Design and characterization of the F3aN400 reporter with growth-factor stimulation.
(A) Schematic of the F3aN400-Venus reporter and its upstream activators. mVenus 

Fluorescent Protein was fused to residues 1–400 of native human FoxO3, which contained 

Akt-dependent T32, S253 and S315 (green) and ERK-dependent S294 and S344 (blue) 

phosphorylation sites but lacked the transactivation domain. An H212R mutation inactivated 

DNA binding and prevented dominant negative effects on endogenous FoxO3.

(B) Comparison of endogenous FoxO3 and F3aN400-Venus localization. Parental and 

reporter-expressing cells 184A1 cells were pre-treated with Akt1/2/3 inhibitor (MK2206; at 
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8 doses from 0–1μΜ) for 1 hour prior to EGF stimulation (at 6 doses from 0.4–100 ng/mL). 

Parental cells were immunostained with anti-FoxO3 antibody and reporter-expressing cells 

imaged directly. Data were collected at 15 (red datapoints), 45 (yellow), 90 (green), and 120 

(blue) minutes. Each datapoint represents the median of translocation, calculated from log10 

of the normalized cytoplasmic/nuclear intensity ratio (Cnorm/Nnorm). Right panels show 

example images for both types of cells treated with DMSO or MK2206 (at 1 μΜ) prior to 

EGF stimulation (100 ng/mL).

(C) Relationship between the pERKT202/Y204-to-pAktS473 phosphorylation ratio, a surrogate 

for relative ERK and Akt activity and the relative phosphorylation of the reporter (the 

pF3aN400S294-Venus to pF3aN400S253-Venus ratio) in cells exposed to 100 ng/mL growth 

factor at four time points from 15–480 minutes. Error bars represent propagated errors from 

two biological replicates (See STAR Methods for complete details). Also refer to Figure 

S1G and Table S1 for complete dataset.

(D) Single-cell trajectories of F3aN400-Venus translocation in 184A1 cells imaged every 5 

minutes following exposure to 100 ng/mL EGF. Red arrowhead marks the time of ligand 

addition (t=0). Ten randomly selected of ~100 total trajectories are highlighted in color. Blue 

arrowhead at t=80 minutes denotes end of synchronous translocation.

(E) Density plots (>1000 cells per time point) showing the localization of endogenous 

FoxO3 based on immunostaining at different times after 100 ng/mL EGF addition. 

Percentages of cells with log10(C/N) above the cutoff (dotted line) are shown above.

Sampattavanich et al. Page 32

Cell Syst. Author manuscript; available in PMC 2019 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Growth-factor stimulated dynamics of F3aN400-Venus translocation.
F3aN400-Venus translocation dynamics following exposure of 184A1 cells to IGF1, HRG, 

HGF, BTC and EPR at 100 ng/mL. Top-left panel depicts the average of >100 trajectories 

per ligand and other panels show single-cell trajectories; 10 randomly selected trajectories 

are highlighted in color.
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Figure 3. Early synchronous response of F3aN400-Venus translocation varies with growth factor 
identity.
(A) Schematic of fPCA performed on F3aN400-Venus trajectories between t = −70 to 80 

minutes. Three example trajectories are shown on the left, fPC1, fPC2 and fPC3 harmonics 

in the middle and score plots on the right. fPC1 corresponds to a pre-treatment baseline 

harmonic, fPC2, a post-treatment sustained harmonic and fPC3, a post-treatment transient 

harmonic. fPC1–3 explain 58%, 35% and 3% of observed variance across all ligands 

(respectively).
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(B) Plot of fPC2 vs. fPC3 scores for six growth factors at 100 ng/mL. Large oval regions 

represent 95% confidence intervals for scores computed for all trajectories on a per-growth 

factor basis.

(C) Pair-wise comparison of fPCA scores by growth factor; significant differences are 

highlighted in gray (p- value <10−10; Wilcoxon rank sum test).

(D) Median values of fPCA scores from different growth factors at various concentrations, 

fitted with linear models (solid lines). Datapoints with significantly different scores from 

untreated controls are depicted as solid points while those with p-value>10−10 are depicted 

as unfilled points. See also Figure S2B.

(E) Heat maps of 40 randomly chosen F3aN400 trajectories in 184A1 cells treated with 

100ng/mL EGF. Left panel shows ‘trend’ response generated by combining the first 5 

harmonics from fPCA analysis on a per-trajectory basis. Right panel subtracts the computed 

trend from experimental trajectories revealing pulsing. Red and blue arrowheads denote t=0 

and t=80 minutes (see Figure 1D for comparison).

(F) Spectral density analysis of detrended F3aN400 trajectories ranked by pulse score (grey 

lines; see Figure 4 for method used to calculate pulsing). The spectrum for a simple sinusoid 

with sampling noise similar to that of experimental data is shown in light blue line and 

simulated pink noise in pink line are shown for comparison.
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Figure 4. Late pulsing of F3aN400 translocation also exhibits ligand-dependent dynamics.
(A) Schematic of method used to compute pulse scores. Right panel: F3aN400-Venus 

trajectories for three ligands (each at 100 ng/mL) detrending between t=80 and 1580 min by 

fPCA on a per-trajectory basis (dotted lines represents the computed trends). Upper left 

panel: Computing pulse score using a peak detection algorithm and pulse score calculated 

from a nonlinear combination of the (1) number of edges, (2) amplitude, (3) signal-tonoise 

ratio (not shown), (4) peak duration and (5) peak distance. See details in STAR Methods. 

Lower left panel. Discretization of pulse scores; dotted line depicts a threshold at ~0.6.

(B) Fraction of cells with pulsing F3aN400-Venus reporter based on ligand dose and 

identity, as scored by the algorithm described in panel A. Solid lines show fitted trends based 

on Hill’s equation.

(C) Comparison of fPC2 versus pulse score for trajectories collected from cells exposed to 

IGF1, BTC and EPR. Shading represents ligand concentration, ranging from lowest (0 

ng/mL, black dots) to highest (100 ng/mL, colored dots). Light gray data points represent all 

other conditions. Dotted lines depict the pulse threshold for discretization.
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Figure 5. ERK/Akt combinatorial regulation on FoxO3 dynamical encoding.
(A, B) Effects on F3aN400-Venus dynamics in 184A1 cells with (A) mutations in 

phosphorylation sites or (B) MEK and AKT inhibitors. Top panels: early response in an 

fPC2-vs-fPC3 landscape for multiple ligands; arrows depict change from wild type to 

mutant reporter (or with and without drug). Middle panels: trajectories for reporters without 

(gray) or with (blue) phospho-site mutants or drugs in BTC-treated cells. Lower panels: 

pulse scores for multiple ligands (error bars represent standard deviations from 

bootstrapping). See Figure S4B for MCF10A data.
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(C) Averaged pulse scores (for >100 trajectories per condition) in F3aN400-Venus 

expressing 184A1 and MCF10A cell lines pre-treated with the MEK inhibitor PD0325901 at 

0–100 nM for 1 hour and subsequently exposed to EGF at 0–100 ng/mL.

(D) Plot of fPC2 vs. pulse score for 184A1 or MCF10a cells pre-treated with the MEK 

inhibitor PD0325901 at five doses (0.39, 1.56, 6.25, 25, 100 nM) or Akt inhibitor MK-2206 

at four doses (6.25, 25, 100, 500 nM) and then with EGF at 4 ng/mL (cyan diamond) or 20 

ng/mL (blue diamond) or IGF 1 at 20 ng/mL (yellow circles) or 100 ng/mL (orange circles), 

respectively. Directional arrows and the thickness of the outlines denote increasing drug 

concentration.
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Figure 6. In-phase pulsing of ERK activity and FoxO3 translocation.
(A) Schematic of a dual reporter for ERK (EKAREV) and FoxO3 (F3aN400) linked via a 

P2A self-cleaving peptide. EKAREV activity was quantified from the FRET/CFP signal 

ratio and F3aN400-mCherry by C/N ratio.

(B) Detrended trajectories (scaled by max-min range to facilitate comparison) for EKAREV 

(black) and F3aN400-mCherry (red) in serum-starved MCF10A cells expressing the dual 

reporter construct. Cells were exposed at t= 0 hr (denoted by green arrowhead) to 100 ng/mL 

BTC followed at t = 4 hr (blue arrowhead) by DMSO, Akt inhibitor (1 μΜ MK-2206), or 
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MEK inhibitor (1 μΜ CI-1040). Correlation coefficients (middle panels) were calculated 

using a ~90 min. sliding window and median scores across all trajectories (right panels) 

were compared prior to (yellow) and after drug exposure (green).

(C) Correlation coefficients for EKAREV activity and F3aN400 translocation pulsing in 

cells exposed to different growth factors at 100 ng/mL.

(D) Fraction of pulsing cells based on the EKAREV reporter following stimulation with 

different growth factors and doses.
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Figure 7. Diversity of interactions among ERK, Akt and FoxO3 in breast cancer cell lines.
(A) Schematic of FoxO3 analysis in cancer cell lines by immunofluorescence imaging. 

Median C/N ratio captures overall activity and interquartile range (IQR) the extent of cell-to-

cell variability, which arises in part from pulsing. Values were obtained from >1000 fixed 

cells per condition; see STAR Methods for details on normalization methods.

(B) Relationship between median values and IQR of FoxO3 C/N ratios across breast cancer 

cell lines. Cells were serum-starved and pre-treated with DMSO or 10 μΜ MK2206 for 1 

hour and then exposed to growth factors at 100 ng/mL followed by immunostaining with 
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anti-pERKT202/Y204, anti-pAktS473 or anti-FoxO3 antibodies. Each datapoint corresponds to 

one post-treatment time point.

(C-D) Heatmap showing effect of MEK inhibition (CI1040, 10 μΜ) on the area under the 

curve of pAKTS473 levels or of AKT inhibition (MK2206, 10 μM) on the area under the 

curve of pERKT202/Y204 levels 0–240 min for each cell line/ligand combination.

(E) Crosstalk between the ERK and Akt pathways. Changes in pERKT202/Y204 levels caused 

by Akt inhibitor (black data points) or changes in pAKTS473 levels caused by MEK inhibitor 

(red data points) for each ligand and cell line combination.

(F) Dynamic Bayesian network (DBN) modeling of data described in panels B and E to infer 

the probability of Akt→ FoxO3, ERK → FoxO3 and Akt ↔ ERK edges. The resulted 

edge probabilities are shown in the bottom panel with error bars indicating the standard 

deviation of predictions across multiple independent runs with noise added to the data. See 

also Figure S7 for similar analyses using BGe and BDe scoring methods.

(G) Comparison of FoxO3 translocation dynamics between HCC1806 and MCF10A cells 

exposed to 100 ng/mL EGF with and without MEK inhibitor. Diagrams on the right show 

corresponding probabilities from DBN analysis for each edge interaction as calculated in 

panel F.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-phospho-Akt (Ser473) (D9E) Cell Signaling (CST) Cat#4370

Rabbit monoclonal anti-phospho-Akt (Ser473) (D9E) Cell Signaling (CST) Cat#4060

Rabbit polyclonal anti-phospho-FoxO3a (Ser253) Cell Signaling (CST) Cat#9466

Rabbit polyclonal anti-phospho-FoxO3a (Ser294) Cell Signaling (CST) Cat#5538

Rabbit monoclonal anti-FoxO3a (75D8) Cell Signaling (CST) Cat#2497

Mouse monoclonal anti-ß-Actin (Clone AC-74) Sigma-Aldrich Cat#A2228

Goat polyclonal anti-Rabbit IgG (H+L) conjugated with Alexa Fluor 680 Thermo Fisher Cat#A32734

Goat polyclonal anti-Mouse IgG (H+L) conjugated with Alexa Fluor 800 Thermo Fisher Cat#A32730

Bacterial and Virus Strains

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

Recombinant Human Epidermal growth factor PeproTech Cat#AF-100–15

Recombinant Human Betacellulin PeproTech Cat#100–50

Recombinant Human Epiregulin PeproTech Cat#100–04

Recombinant Human HGF PeproTech Cat#100–39

Recombinant Human Heregulin PeproTech Cat#100–03

Recombinant Human IGF-1 PeproTech Cat#AF-100–11

MK-2206 AKT 1/2/3 inhibitor Selleck Chemicals Cat#S1078

Cholera Toxin Sigma-Aldrich Cat#C8052

Hydrocortisone Sigma-Aldrich Cat#H0888

Insulin Sigma-Aldrich Cat#I9278

Bovine Serum Albumin Sigma-Aldrich Cat#A7906

Heat Inactivated Horse Serum Life Technologies Cat#26050

Puromycin Life Technologies Cat#A113803

Fugene HD Promega Cat#E2311

DMEM/F-12 1:1 Life Technologies Cat#11320

CI-1040 MEK1/2 inhibitor Selleck Chemicals Cat#S1020

PD0325901 MEK1/2 inhibitor Selleck Chemicals Cat#S1036

Critical Commercial Assays

Gibson Assembly New England BioLabs E2611

Deposited Data

Raw images This paper; OMERO https://omero.hms.harvard.edu/webclient/?show=screen-761

Raw data for generating all plots in the paper This paper doi:65fkdzt9×5

Experimental Models: Cell Lines

184A1 Gift from D. 
Lauffenburger

MCF10A ATCC ATCC CRL-10317
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REAGENT or RESOURCE SOURCE IDENTIFIER

HCC1806 ATCC ATCC CRL-2335

BT-20 ATCC ATCC HTB-19

MDA-MB-231 ATCC ATCC HTB-26

T47D ATCC ATCC HTB-133

Hs578T ATCC ATCC HTB-126

MCF7 ATCC ATCC HTB-22

SKBR3 ATCC ATCC HTB-30

Experimental Models: Organisms/Strains

Oligonucleotides

EKAREV-forward PCR primer :CTGTCTCATCATTTTGGCAAAG This paper N/A

EKAREV-reverse PCR 
primer :CACGTCGCCGGCCTGCTTCAGCAGGCTGAAGTTGGTGGCGCCGCTGCCATCCAGAGTCAGGCGTTCC

This paper N/A

mCherry-forward PCR primer:CCCATACGATGTTCCAGATTACGCTGGAGGATCCGGGGGTTCTATGGTGAGCAAGGGCGAGG This paper N/A

mCherry-reverse PCR primer:CTGACACACATTCCACAGGGTCGACTTACTTGTACAGCTCGTCCATG This paper N/A

F3aN400-forward PCR primer:TTCAGCCTGCTGAAGCAGGCCGGCGACGTGGAGGAGAACCCCGGCCCCATGGCCGAAGCCCCC This paper N/A

F3aN400-reverse PCR primer: CTCCAGCGTAATCTGGAACATC This paper N/A

Recombinant DNA

Plasmid: pPB-CAG-EKAREV (Albeck et al., 2013; 
Komatsu et al., 2011)

Plasmid: pMSCV-puro-F3aN400-Venus This paper Pending for submission to Addgene

Plasmid: pPB-CAG-F3aN400-HA-Venus-P2A-NLS-Myc- mCherry This paper Pending for submission to Addgene

Plasmid: pPB-CAG-EKAREV-P2A-F3aN400-HA- mCherry This paper Pending for submission to Addgene

Plasmid: ERK-silent F3aN400-HA-Venus (with S294A/S344A) This paper Pending for submission to Addgene

Plasmid: an AKT-silent F3aN400-HA-Venus (with T32A/S253A/S315A) This paper Pending for submission to Addgene

Plasmid: pPB-CAG.EBNXN A. Bradley, Sanger 
Institute

Plasmid: pCMV-hyPBase transposase vector A. Bradley, Sanger 
Institute

Plasmid: pcDNA3-H2B-mCherry (Nam and Benezra, 
2009)

Addgene Plasmid#20972

Software and Algorithms

Scripts for all quantitative analysis in this paper This paper https://github.com/sorgerlab/sampattavanich-cellsyst-2018

Functional data analysis MATLAB package J. Ramsay http://www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/Matlab/

MATLAB Mathworks

CellProfiler (Kamentsky et al., 
2011)

http://cellprofiler.org/

Other

Resource website for data public sharing of LINCS compatible dataset This paper http://lincs.hms.harvard.edu/sampattavanich-cellsyst-2018/
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