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Distributed Degenerate Band Edge Oscillator
Ahmed F. Abdelshafy, Dmitry Oshmarin, Mohamed A. K. Othman, Michael M. Green, and Filippo Capolino

Abstract—We propose a new class of oscillators by engineering
the dispersion of two-coupled periodic waveguides to exhibit a
degenerate band edge (DBE). The DBE is an exceptional point of
degeneracy (EPD) of order four, i.e., representing the coalescence
of four eigenmodes of a waveguide system without loss and gain.
We present a distributed DBE oscillator realized in periodic
coupled transmission lines with a unique mode selection scheme
that leads to a stable single-frequency oscillation, even in the
presence of load variation. The DBE oscillator potentially leads
to a boost of the efficiency and performance of RF sources,
thanks to the unique features associated to the EPD concept. This
class of oscillators is promising for improving discrete-distributed
coherent sources and can be extended to radiating structures to
achieve a new class of active integrated antenna arrays.

Index Terms—Coupled transmission line, dispersion engineer-
ing, degenerate band edge, RF oscillator, ladder oscillator.

I. INTRODUCTION

OSCILLATORS are one of the fundamental components
that exist in any radio frequency (RF) system. Typi-

cally, an RF oscillator is an amplifier with positive feedback
mechanism utilizing a gain device with a selective resonance
circuit that generates a single tone frequency. The negative
conductance, i.e., the gain component, required for positive
feedback can be obtained using transistors as in cross-coupled
transistor pair [1], or by circuit topologies such as Pierce,
Colpitts, and Gunn diode waveguide oscillators [2], [3]. In
pursuance of improving the performance of RF and microwave
sources, many research avenues are currently being investi-
gated [4], [5], [6], [7], [8]. The focus of this paper is on
a new class of oscillators whose architecture features i) a
cavity made of a periodic coupled-mode waveguide utilizing
a special kind of degeneracy in its dispersion diagram, used
as the passive circuit responsible for frequency selection, and
ii) a set of distributed active devices incorporated in the cavity
that provide the sufficient negative conductance to compensate
the losses, thus starting the oscillation.

Generally, electromagnetic guiding structures or resonators
are characterized by evolution equations that describe the spa-
tial evolution of their eigenstates (eigenvalues and eigenvec-
tors). We are interested in a very special degeneracy condition
that occurs when two or more of these eigenstates coalesce
into a single degenerate eigenmode at a certain point in the
parameter space [9], [10], [11], [12], [13]. Such points are
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called exceptional points of degeneracy (EPD), and the order
of the EPD is determined by the number of eigenmodes that
coalese at this point. The dispersion relation of eigenmodes in
such a guiding structure that exhibits an EPD of order n has the
unique behavior in which (ω−ωe) ∝ (β−βe)n in the vicinity
of EPD, where ω and β are the angular frequency and the
propagation constant, respectively, at the EPD they are denoted
by the subscript e. On lossless structures, as in this paper,this
unique degenerate dispersion behavior is accompanied by
supreme characteristics including the vanishing of the group
velocity [14], [15], [16] as well as the dramatic improvement
in the local density of states [17] resulting in a robust increase
in the loaded quality factor of the structure.

In this paper we focus on the degenerate band edge (DBE),
which is a fourth-order EPD manifested at the band edge of a
lossless structure. The motivation behind introducing a DBE-
based oscillator is based on previous work related to high
power microwave devices that has shown an enhancement of
gain in electron beam devices based on waveguide with a
DBE [17], [18] and demonstrates a low starting (threshold)
current and better threshold scaling with length compared to
conventional backward wave oscillators [19], [18].

In this paper, we present an example of a DBE oscillator
based on two periodic, coupled transmission lines (CTLs)
as in one of the configurations proposed in [20] and shown
in Fig.1(a). We first show the dispersion of the coupled
waveguide where the DBE occurs at several points in the
shown frequency range. Then, we consider a cavity made
of a finite-length CTL where discrete distributed gain is
introduced leading to a single-frequency of oscillation. We
show the robustness of this new class of oscillators against
load variation.

The passive waveguide (before the introduction of dis-
tributed gain) consists of two coupled microstrip over a
grounded dielectric substrate engineered to exhibit a DBE,
as shown in Fig. 1(a). In such a waveguide there are two
modal fields that propagate along the z-direction, and two
in the opposite one. The formulation that describes the field
evolution using a coupled transmission line approach is found
in [10], [20], assuming a time harmonic evolution ejωt. It is
convenient to define a four-dimensional state vector Ψ(z) =
[ V(z), I(z) ]T , which comprises the voltages V(z) =
[ V1(z), V2(z) ]T and currents I(z) = [ I1(z), I2(z) ]T

in the two lines. The first order differential equations that
describe the spatial evolution of the state vector in a uniform
segment of the CTL are written as [10]

∂zΨ(z) = −jMΨ(z) (1)

where

M =

[
0 −jZ
−jY 0

]
(2)
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Fig. 1. (a) Schematic of two coupled microstrip lines on a grounded dielectric
substrate that support a fourth order EPD (the DBE) visible in the (k-ω)
dispersion diagram. (b) Microstrip unit cell of the periodic waveguide that
exhibits the DBE. (c) Real and imaginary parts of the wavenumbers of the
four guided Floquet-Bloch modes obtained using the full-wave finite element
method accounting for radiation, ohmic and dielectric losses.

is the 4×4 CTL system matrix, and Z and Y are the dis-
tributed series impedance and shunt admittance 2×2 matrices
describing the per unit length parameters of the two CTLs
[21], [10]. The solution of 1, assuming a certain boundary
condition at z = z0, is found as Ψ(z1) = T(z1, z0)Ψ(z0)
where T(z1, z0) is the transfer matrix given by T(z1, z0) =
exp(−j(z1 − z0)M).

The periodic structure depicted in Fig. 1(a) has a unit cell
composed of two uniform segments A, B and incorporates
an additional coupling matrix due to the coupling microstrip.
The transfer matrix of a unit cell is expressed as the product of
the individual segments’ transfer matrices as TU = TATCTB,
where TA and TB are the transfer matrices of segments A and
B, and TC is the coupling matrix representing the physical
connection via a microstrip between the two lines.

II. DISTRIBUTED DEGENERATE BAND EDGE OSCILLATOR

The CTL shown in Fig. 1 is designed on a grounded
substrate with relative dielectric constant εr = 2.2, height of
0.508 mm, and with a loss tangent of 0.002. The complex
wavenumber-frequency dispersion diagram shown in Fig. 1(c)
is obtained using the finite element method, implemented in
CST Studio Suite by DS SIMULIA. The dispersion diagram
is constructed by extracting the S-parameters of a four-port
unit cell and calculating the eigenmode using the associated
transfer matrix based on the method discussed in [20]. The
results show that various DBEs occur, at frequencies of 2.75
GHz and 3.02 GHz at kd = π, and 5.33 GHz and 5.59 GHz
at kd = 0, where all four coalescing wavenumbers are almost
real and equal to each other. Losses prevent the realization
of a mathematically perfect DBE [20], which can be noticed
from the non-vanishing imaginary part of the wavenumbers at
the DBE frequencies in Fig. 1(c). However the main feature of
the four coalescing eigenvectors is still retained as discussed

Fig. 2. (a) Loaded DBE oscillator consisting of 8 cascading unit cells
(UCs) of microstrip-based CTLs shown in Fig.1(b). Active devices are placed
between each two adjacent unit cells to the bias line. Two loads of 50 Ω are
attached at the two ends of the lower TL while the upper TL is terminated
in short circuits. The oscillation starts for sufficiently large gm = 3 mS.
(b) Voltage waveform vL(t) monitored at a 50 Ω load where steady state
oscillation is observed in less than 30 ns. (c) The normalized spectrum
VL,N (f) shows that oscillations occur at 3.03 GHz, that is very close to
the DBE frequency of 3.02 GHz in Fig. 1(c). The spectrum is calculated by
applying the Fourier transform in a time window from 35 to 100 nsec.

in [20] using the concept of hyperdistance between the four
eigenvectors.

The distributed DBE oscillator is realized by incorporating
discrete active components in a cavity made of a finite-length
CTL exhibiting a DBE. Each active component is arranged
between two adjacent unit cells to balance small losses, com-
pensate for loads and start the oscillation as shown in Fig. 2(a).
The high quality factor of such DBE cavities and the concept
of DBE resonance has been already explained in [19], [22].
Gain is modeled using the non-linear cubic I-V characteristic
i(t) = −gmv(t) + ζv3(t) of the active device [23] which
can be practically implemented in circuits with amplifying
devices, such as CMOS transistors or op-amps, with positive
feedback. Here −gm is the small-signal slope of the I-V curve
in the negative resistance region, and ζ is the third-order non-
linearity constant that models the saturation characteristic of
the device. The following calculations and simulations are car-
ried out using the time-domain transient solver implemented in
Keysight Advanced Design System (ADS) software by means
of scattering parameters obtained though full-wave simulation,
where the excitation is modeled by thermal noise generation
in the load resistors. The schematic of the proposed distributed
oscillator is shown in Fig. 2(a) where the active devices are
attached to the lower transmission line in between adjacent
unit cells toward the ground (the bias line). For simplicity, we
assumed that the gain −gm is equal in all the active devices.
In fact, the overall performance of this kind of distributed
oscillators can be improved by optimizing the distribution of
the gain values of active devices along the finite structure.

To determine the oscillation threshold, which is the mini-
mum value of the gain conductance gm to start oscillations,
we tested the finite-length loaded cavity shown in Fig. 2(a)
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Fig. 3. (a) Voltage and current distributions on top and bottom TLs of
the distributed DBE oscillator shown in Fig. 2(a), when the bottom TL is
terminated in two 50 Ω loads, while the top TL is short circuited at its two
ends. (|Vn| and |In| represent voltage and current time-harmonic waveform
peak values, which are phasors’ amplitudes, at steady state regime).

with both ends of the lower TL terminated with 50 Ω and
both ends of the upper TL terminated by short circuits to
ground. The oscillation threshold is obtained by sweeping the
gain −gm value until the oscillation starts. Accordingly, we
report that the oscillation threshold is gm,th = 1 mS for the
8 unitcell oscillator in Fig. 2(a). Note that, the oscillation
threshold value depends on the length of the finite structure
(i.e. number of unit cells) and the load values RL. Therefore,
since we analyze the effect of load variation, for the rest of the
paper we choose gm = 3 mS to be sufficiently larger than the
oscillation threshold gm,th for a large value of RL = 1 MΩ.
The waveform vL(t) at either load reaches a steady state in less
than 30 ns as shown in Fig. 2(b). The oscillation frequency is
determined by Fourier transforming vL(t) in the time window
from 35 to 100 ns, shown in Fig. 2(c), and it clearly confirms
the single-frequency oscillatory behavior despite the length of
the cavity and the presence of seven active devices.

Fig. 3 shows the magnitude of voltage and current distri-
butions in the loaded CTL cavity in Fig. 2(a). These voltages
and currents are evaluated at nodes n = 1, 2, . . . , 8, in the
presence of the active devices with gm = 3 mS. It can be
observed that the voltage reaches its peak magnitude in the
middle of the cavity; the voltage magnitudes in the lower TL
are approximately four times larger than those in the upper
TL.

An important advantage of the proposed DBE oscillator
is the robustness of the oscillation frequency against a large
variation in the load. This advantage has been shown only for
a DBE-based double ladder lumped-element circuit oscillator
with only one active device [23]. Typically, the oscillation
behavior is very sensitive to the output termination resistance
variation resulting in a significant shift in oscillation frequency
(e.g. mode jumping in ladder oscillators [4], [24]); in some
cases the oscillation stops. Fig. 4 shows the effect of varying
the load resistance on the oscillation frequency and on the
average output power in the proposed distributed DBE oscil-
lator, for gm = 3 mS. The result shows a stable frequency
of oscillation with a change of only 1% over a change of
load resistance over 7 orders of magnitude. The same plot
also shows the total output power on both loads as a function

Fig. 4. Average output power and oscillation frequency versus load resistance
for the distributed DBE oscillator shown in Fig. 2(a), for gm = 3 mS and
gm = 1.5 mS. The stability of the oscillation frequency over a huge variation
of the load resistance shows an important advantage of the proposed oscillator:
the frequency of oscillation is almost the same, i.e. ~3 GHz, with a very slight
shift that does not exceed ±1% (~30 MHz).

of the load resistance, where the maximum output power
corresponds to RL = 150 Ω. Note that, the distributed DBE
oscillator also shows a stable frequency of oscillation when
changing the gain as long as it exceeds the threshold to start
oscillation. This is shown by plotting again the output power
and frequency of oscillation for the smaller conductance of
gm = 1.5 mS. For gm = 1.5 mS, the maximum output power
occurs when RL = 50 Ω and the oscillation stops when the
loads RL ≥ 100 Ω (as 1.5 mS < gm,th|RL=100 Ω). The stability
analysis was repeated using a single load resistance, with the
other end short circuited, which leads to very similar results
and an even high stability of the oscillation frequency over
load variation.

III. CONCLUSION

It has been shown that the DBE in coupled periodic
waveguides is useful to conceive new schemes for arrays of
coupled oscillators. The DBE structure in the cavity made of
a periodic waveguide strongly synchronizes a discrete set of
oscillators resulting in an overall single mode of oscillation.
The single oscillation frequency, in close proximity to the DBE
frequency, has been theoretically demonstrated through full-
wave transient simulations. Results demonstrate the stability of
the oscillation frequency over a very wide range of load or gain
variation, to confirm the stable single-frequency oscillation
scheme dictated by the modal degeneracy.

This new scheme of operation is promising for boosting the
overall performance of RF sources, where potential benefits
include spectral purity and high power efficiency. This scheme
based on the DBE concept would be valuable in devices that
require several coherent sources, in power combining, with a
possible extension to distributed radiating active antenna arrays
at microwaves and millimeter waves.
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