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ABSTRACT

We present three dimensional hydrodynamic simulations of star-disc systems, focusing
on the angular momenta evolution of the central object due to gravitational interac-
tions with the disc. It is found that stellar spin is limited to approximately half its
break-up speed. We suggest this is due to deformation of the star with increasing spin,
which results in larger spin-down torque by the disc. This self-limited spin-up occurs
on a short time-scale when the star is gaining mass. On long time-scales, we find
simulations where m = 1 is the dominant non-axisymmetric mode, there is limited
evolution in stellar spin. The displacement of the star from the centre of mass of the
system appears to inhibit evolution of the stellar spin angular momentum, in this case
the angular momentum exchange between star and disc is primarily in orbital angular
momentum of the star. By contrast, simulations where m = 1 is non-dominant, we
observe a monotonic decrease in stellar spin. Our experiments suggest a necessary
condition for long-term spin down be that the system does not develop significant
m = 1 mode.

1 INTRODUCTION

We consider the collapse of a spherical cloud with initial
rotation, leading to the formation of a star-disc system of
mass Msys = Md + M∗, where Md and M∗ are the disc
and stellar masses respectively. Such systems were recently
studied by Kratter et al. (2010), who found disc properties
are essentially described by two dimensionless parameters
characterising its mass accretion and rotation rates.

Accretion of material onto the disc is described by the
parameter ξ:

ξ ≡ GṀ

c3
, (1)

where Ṁ is the mass accretion rate and c is the sound-
speed. The cloud rotation, responsible for disc formation, is
described by the parameter Γ:

Γ ≡ Ṁ

MsysΩk
, (2)

where Ωk is the Keplerian orbital frequency of material join-
ing the system from the cloud, assumed to occur at cylindri-
cal radius Rk such that Ω2

k = GMsys/R3
k. It can be shown

that

Rk = ξ1/3Γ2/3ct, (3)

where Msys = Ṁt has been used. Using definitions above,
the disc aspect-ratio h at Rk is given by

h =

„

Γ

ξ

«1/3

. (4)

In this work we shall specify h instead of Γ directly. It follows
that Rk = h2ξct.

Our goal is to study the effect of gravitational torques
exerted by the disc on the stellar spin. This paper is organ-
ised as follows. In §2 we describe the governing equations,
model setup and numerics. Diagnostic measurements are the
described in §3. We present simulation results in §4—§6 and
conclude with plans for future work in §7.

2 BASIC EQUATIONS AND MODEL

The evolution of an inviscid, non-magnetic and self-
gravitating fluid is governed by the hydrodynamic equations:

Dρ

Dt
= −ρ∇ · v, (5)

Dv

Dt
= −1

ρ
∇P −∇Φ (6)

ρ
De

Dt
= −ρv · ∇Φ −∇ · (Pv) (7)

∇2Φ = 4πGρ, (8)

where e is the kinetic plus thermal energy density and other
symbols have their usual meanings. The pressure is calcu-
lated explicitly via a customised equation of state (EOS)

P = c2ργ1

"

1 +

„

ρ

ρ∗

«γ2−γ1

#

, (9)

where c is the isothermal sound speed for a gas temperature
of 20K and mean molecular weight µ = 2.33. γ1, γ2 and ρ∗

are fixed parameters so that provided γ2 > γ1, when ρ ≪ ρ∗,
P ∝ ργ1 and when ρ ≫ ρ∗, P ∝ ργ2 . We set γ1 = 1.00001
and γ2 = 5/3 throughout.
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2 Lin, Krumholz & Kratter

This EOS attempts to mimic star formation by halt-
ing gravitational collapse. For ρ ≪ ρ∗, the fluid collapses
isothermally. The core central density increases and the col-
lapse is eventually halted by the increased pressure (relative
to isothermal EOS). The central object is then effectively
a polytrope with polytropic index n = 3/2. Because it has
finite volume, it may be deformed due to its spin. The non-
axisymmetric object may then be spun down due to gravi-
tational torques from the disc.

2.1 Simulation setup

Simulations are initialised with an isothermal sphere of ra-
dius rc, within which the density is

ρ =
Ac2

4πGr2
, (10)

where r is the spherical radius. The dimensionless parameter
A relates to the accretion rate ξ, such that ξ = (2A)3/2/π
for A ≫ 2. We use tabulated values of A-ξ pairs from Shu
(1977). The region r 6 r∗ ≡ qrc is designated as the initial
star, where q is a dimensionaless parameter. This sets ρ∗ =
ρ(r∗) and is fixed throughout the simulation. The sphere is
initalised with a azimuthal velocity

vφ = 2Ach ×
(

R/r∗ R 6 r∗

1 R > r∗,
(11)

where R is the cylindrical radius. The initial star has solid
body rotation. Given the stellar mass M∗ and initial radius
r∗ we require at initialisation that

vφ(r∗) <

r

GM∗

r∗
≡ vbreak, (12)

so the star is below break-up speed at its equitorial plane
(R = r∗). Equivalently, the requirement is

f ≡ vφ(r∗)

vbreak

= 2h
√

A < 1. (13)

The initial energy density e inverted from

P = (γ − 1)ρ(e − |v|2/2), (14)

where P is given by our equation of state and γ ≡ ∂ ln P
∂ ln ρ

.
The latter calculation of γ is also used in the evolutionary
equations.

2.2 Numerics

The hydrodynamic equations are evolved using the
Godunov-type ORION code (Truelove et al. 1998; Klein
1999; Fisher 2002) in Cartesian co-ordinates (x, y, z). The
computational domain is a cube of length L = 4rc. ORION
offers adaptive mesh refinement, a key advantage for the
multi-scale flow considered here. We use a base grid of 1283

with 6 levels of refinement, giving the highest effective res-
olution of 81923. We find this an acceptable compromise
between resolving the central object and computation time.

A characteristic length-scale for self-gravitating prob-
lems is the Jeans length,

λJ = cs

r

π

Gρ
, (15)

where c2
s = γP/ρ is the density-dependent sound-speed. For

a grid spacing δx, a measure of resolution is δx/λJ . For our
equation of state and parameters, we have:

λJ

δx
=

c

δx

r

π

Gρ
×

"

1 +
5

3

„

ρ

ρ∗

«2/3
#1/2

. (16)

For example, if ρ/ρ∗ ∼ 10 then the linear resolution is a
factor of ∼ 3 better than isothermal EOS. The increased
pressure for high densities (relative to isothermal) increases
λJ because a larger mass is now required for gravitational
activity, giving more cells-per-Jeans length for fixed δx.

For refinement, we use the Jeans number NJ to define
a maximum resolvable density ρJ

ρJ ≡
„

cNJ

δx

r

π

G

«2

, (17)

and we refine if ρ > ρJ at each grid level. The above is the
Jeans density for isothermal equation of state. The Jeans
density corresponding to our physical set-up, ρJ,real is, for
large ρ/ρ∗,

ρJ,real

ρJ
=

„

5

3

«3 „

ρJ

ρ∗

«2

, (18)

thus we see that refinement based on the isothermal Jeans
density is a conservative approach. The code will refine at
a lower density than the real Jeans density, ensuring the
central object is resolved. In our higher resolution runs,
more aggressive refinement conditions are imposed, refin-
ing if ρ > 0.5ρ∗ and also refine to the highest level within
the theoretical disc radius Rk and one scale-height in z.

It is important to consider the effect of numerical vis-
cosity when studying rotating fluids in a Cartesian grid.
Krumholz et al. (2004) found the numerical dissipation of
ORION corresponds to an α viscosity of

αN ≃ 78
GM∗

c2
sδx

„

∆r

δx

«

−3.85

, (19)

where ∆r is the distance from the centre of mass (of the star
in our case). This numerical viscosity diverges as ∆r → 0
(Kratter et al. 2010) and could be a source of angular mo-
mentum loss for small objects. We tested this by excluding
few innermost cells of the central object when computing an-
gular momenta and found little difference to the case when
these cells are included. Angular momentum conservation
for self-gravitating, inviscid fluids implies the loss of angu-
lar momentum in some volume V only depends on the an-
gular momentum flux out of its surface due to advection
and gravitational torques. In order to conclude the angular
momentum loss of an object is carried by physical fluxes,
the numerical viscosity at the surface must not be too large.
Hence, when required, Eq. 19 should be evaluated at the
stellar surface and compared to α’s due to advection and
gravity.

3 DIAGNOSTICS

In this section we define diagnostic measures describing our
results. The main stellar measurements are summarised in
Table 1. We regard fluid with ρ > ρ∗ as stellar material. This
is potentially problematic because once stellar material ex-
pands (e.g. due to deformation of the star) such that ρ 6 ρ∗

c© 0000 RAS, MNRAS 000, 000–000



Star-disc interactions 3

it is immediately discounted as stellar. However, in simula-
tions we observe little stellar material becomes non-stellar
after reaching ρ > ρ∗. As we are primarily concerned with
stellar spin, the characteristic stellar radius S∗ is defined
from its moment of inertia. The boundary where ρ = ρ∗

will generally be non-spherical (non-circular in the equito-
rial plane). The stellar spin angular momentum is defined
with position and velocities of fluid elements with respect
to x∗, v∗. The stellar spin frequency follows naturally from
jspin = S2

∗
Ωspin.

The evolution of stellar angular momenta shall be re-
lated to the rest of the fluid. For simplicity, the exterior
fluid is regarded as a two-dimensional disc in cylindrical co-
ordinates centred on the star. It is assumed both the normal
to the disc plane and stellar spin axis is parallel to the z axis
of the inertial frame. Because the star can move, disc fluid

velocities are defined relative to the star, although we find
using relative velocities or velocities in the inertial frame
makes no noticeable difference. The disc is described by the
surface density Σ and vertically averaged velocities U :

Σ ≡
Z

ρdz, U =
1

Σ

Z

ρ(v − v∗)dz, (20)

and we integrate over a slab of constant thickness. Our re-
sults are insensitive to the extent of vertical integration.

To analyse various disc modes, the surface density is
Fourier transformed in azimuth,

am ≡
Z

Σ exp imφdφ, (21)

where m is the azimuthal wave-number. The pattern speed
Ωp is then Ωp ≡ ˙φm/m with tanφm = −ℑ(am)/ℜ(am). The
integrated amplitude Cm =

R

amdr is used to examine time
evolution of non-axisymmetric modes.

The central theme of this work is star-disc angular mo-
mentum transport. We therefore define advective and grav-
itational angular momentum fluxes

FA = rΣδUφδUR, (22)

FG =

Z

dz∂RΦ∂φΦ/4πG (23)

FA is the angular momentum flux due to Reynolds stress, so
δUφ = Uφ−〈Uφ〉 where 〈·〉 is an azimuthal average. FG is the
angular momentum flux associated with self-gravitational
torques. These fluxes can be non-dimensionalised into an α
viscosity (Kratter et al. 2010), denoted αR, αG for Reynolds
and gravity respectively. We also calculate the torque ex-
erted by the star on the disc. The stellar potential Φ∗ is
obtained from ∇2Φ∗ = 4πGρstar where ρstar is the part of
the density field with ρ > ρ∗. The torque exerted on the disc
per unit area is then −Σ∂φΦ∗.

4 CASE 1

We begin by examining a reference case with physical pa-
rameters ξ = 5.58 (or A = 4.0), h = 0.1, q = 0.005. We use
a Jeans number of NJ = 0.25, which is a relatively low res-
olution with the finest grid cells dedicated to the star. The
star is typically resolved by 20 cells in diameter in the x− y
plane.

Table 1. Definition of stellar measurements

Name Symbol Definition

Mass M∗

R

ρdV
Position x∗

R

xρdV/M∗

Velocity v∗

R

vρdV/M∗

Size S∗

˘R ˆ

∆x2 + ∆y2
˜

ρdV/M∗

¯1/2

Orbital ang. mom. jorb x∗ ∧ v∗ · ẑ
Spin ang. mom. jspin

R

ρ∆x∧ ∆v · ẑdV/M∗

Spin freq. Ωspin jspin/S2
∗

Break-up freq. Ωbreak

p

GM∗/S3
∗

Volume integrals are taken over ρ > ρ∗. Symbols preceded by

‘∆’ are relative to the star, e.g. ∆x = x − x∗. Components
of the stellar position and velocity are sometimes expressed
in cylindrical polar co-ordinates, so that x∗ = (R∗, φ∗, z∗),

for example. The quantity
ˆ

∆x2 + ∆y2
˜1/2

represents a fluid
element’s cylindrical distance from the stellar position.

4.1 Star evolution and relation to disc structure

The evolution of the stellar mass, angular momenta and spin
frequency is shown in Fig. 1. The star gains most of its
final mass within the first ∼ 150kyr. After this, mass gain
occurs on a much longer time-scale: between t = 150kyr and
t = 400kyr, M∗ grows by 25%. During the initial phase of
rapid mass accretion, Ωspin rises rapidly, but does not exceed
0.55Ωbreak. This initial phase of self-limited spin-up will be
examined more closely with a higher resolution run.

After reaching 0.55Ωbreak , Ωspin drops rapidly to ∼
0.495Ωbreak where spin evolution stops abruptly. The evo-
lution of Ωspin/Ωbreak after t ∼ 100kyr is somewhat er-
ratic with no clear trend of spin up or down, though its
variation decreases with time. Compared to initial phases,
Ωspin/Ωbreak is effectively constant towards the end of the
simulation. The long term non-evolution of Ωspin is also re-
flected in jspin in Fig. 1(c). Fig. 1(c) show the evolution of
orbital angular momentum is much more active than jspin.
jorb oscillates between positive and negative values but note
that |jorb| and |jspin| are comparable. Notice also the start
of the oscillations in jorb, near t ∼ 100kyr, coincides with
the abrupt stopping in spin evolution. This suggests that if
the star begins to gain significant orbital motion compared
to its spin, then its spin evolution may be inhibited.

There are correlations between evolutionary plots above
and the disc morphology, shown in Fig. 2. At t = 43kyrs
(when Ωspin/Ωbreak maximises) the star is highly deformed
because it has acquired angular momentum from the disc.
It is subsequently spun down by the disc.

Gravitational activity in the disc is apparent at t =
108kyr. This is associated with the abrupt stopping in the
evolution of Ωspin/Ωbreak, but marks the beginning of oscil-
lations in jorb (i.e. |jorb| starts to increase). The density map
shows two spiral arms but the arm to the left of the star is
more open, whereas the right arm is more tightly wound.
Note that the star is no longer as deformed compared to
t = 43kyr. Because the disc-on-star torque increases in mag-
nitude with non-axisymmetry of the star, at t = 108kyr this
torque will be relatively smaller than that in t = 43kyr,
hence the limited evolution in Ωspin/Ωbreak afterwards. If
the star is perfectly axisymmetric, large-scale spirals can
not alter jspin, but may still affect jorb.

c© 0000 RAS, MNRAS 000, 000–000



4 Lin, Krumholz & Kratter

(a) M∗ (b) Ωspin/Ωbreak (c) jorb and jspin

Figure 1. Case 1: stellar mass, spin frequency (scaled by break-up frequency) and angular momenta evolution.

The last two density snapshots in Fig. 2 show decreased
gravitational activity in the disc, although an m = 2 mode
exists close to the star. The m = 2 spirals are more promi-
nent at this point than at t = 43kyr, but early evolution
is associated with large variations in Ωspin/Ωbreak whereas
for t > 250kyr, Ωspin/Ωbreak is approximately constant. This
suggests it is difficult to spin down the star well below 50%
break-up speed because at t > 250kyr the star is not very
deformed. However, there may be additional hindrance from
other spiral modes, discussed in the next subsection.

Vertically averaged velocity fields and Toomre Q pa-
rameter at t = 393kyr is shown in Fig. 3. One-dimensional
profiles are also shown. UR shows strong non-axisymmetry,
with velocities up to twice the isothermal sound speed, and
can be either sign, resulting in a subsonic azimuthally av-
eraged radial velocity and close to is zero in the disc. Note
that 〈UR〉 changes sign at 0.045L. The pattern speed of spi-
ral modes is Ωp ∼ 0.3 − 0.5 × 10−11, putting co-rotation at
∼ 0.03L—0.04L from the star and is outside Rk. It is known
that self-gravitating discs support modes with co-rotation
outside their domain (Papaloizou & Savonije 1991). This is
consistent with outwards transport of angular momentum
across co-rotation. Material inside co-rotation lose angular
momentum and accretes onto the star, while material out-
side carries that angular momentum outwards. The rota-
tional speed |Uφ| is typically an order of magnitude larger
than |UR|. Uφ is consistent with the Q, where lower |Uφ|
regions corresponding to Q < 1. The two-dimensional maps
show lopsidedness of the various quantities, particularly in
Uφ. This indicates the presence of a m = 1 mode, though
this is not visible in the density plots.

4.2 Dominance of m = 1

The evolution of stellar properties can be related to non-
axisymmetric modes in the disc. Fig. 4 show radial depen-
dence of surface density Fourier amplitudes with m = 1—3
(at t = 393kyr) and their time evolution. At t = 393kyr, Eq.
3 implies a disc radius of Rk/L ≃ 0.023, (or 0.46l, where
l = 0.05L), consistent with the surface density map in Fig.
2.

Fig. 4(a) show that m = 2 is dominant close to the star,
consistent with 2D maps. However, m = 1 dominates in the
remainder of the disc, and also well beyond Rk. Although
m = 2 dominates again in the outermost region (but its
amplitude is still smaller than the interior m = 1), it is
ineffective in spinning the star down because far away, the

(a) UR/c (b) Uφ/c (c) log Q

(d) UR/c (e) Uφ/c

Figure 3. Case 2: vertical averaged velocities relative to the star
and the Toomre Q distribution. Contour lines in the Toomre Q
plot indicate the Q = 1 curve.

star resembles a point mass, hence the far field m = 2 has
little influence on Ωspin.

Fig. 4(b) show the time evolution of radially integrated
mode amplitudes. Dominance of m = 2 occurs early on when
the star gains most of its mass. During this phase, the star
spins up, deforms, then spin down (see §5). However, m = 1
over-takes around t ∼ 100kyr, which is also when spin-down
from max(Ωspin/Ωbreak) stops and |jorb| begins to increase.
At t > 100kyr, the m = 2, 3 modes decays, while the m =
1 mode remains approximately constant in strength; and
Ωspin/Ωbreak, jspin evolves very little (Fig. 1).

There is clear correlation between dominance of m = 1
and non-evolution of Ωspin. One effect of the m = 1 mode is
to displace the central star away from the centre of mass of
the box (Adams et al. 1989; Heemskerk et al. 1992). Indeed,
the star does exhibit a somewhat complex orbital motion
(Fig. 5). Its displacement over the simulation is a few per
cent of of the box size L, comparable to the theoretical disc
size of 0.02L and its characteristic size S∗. When treated as
a point mass the star only has angular momentum in the
form of orbital motion. In our case the star has finite size,
but the m = 1 still preferentially modifies jorb instead of
jspin.

Another difference between our simulations and early
theoretical work is that, in the latter the orbital frequency
of the star about the centre of mass of the domain is com-
parable to the mode pattern speed. In our case, the orbital
frequency is less than Ωp. This suggest that the m = 1 mode
is not primarily driven by the star.

c© 0000 RAS, MNRAS 000, 000–000



Star-disc interactions 5

Figure 2. Case 1: evolution of log ρ. In the first two snapshots, contour lines indicate region within which ρ > ρ∗. In the other plots,
additional contour lines are shown to highlight the spiral structures. These plots are to be compared to evolutionary plots above.

(a) |am/a0|

(b) |Cm/C0|

Figure 4. Case 1: mode amplitudes as a function of cylindrical
distance from the star and time-evolution of the integrated mode
amplitudes. The star has size S∗/L ≃ 1.75 × 10−3.

Figure 5. Case 1: star motion in an inertial frame.

5 CASE 1: SELF-LIMITED SPIN UP

We re-examine early evolution 30kyr 6 t 6 70kyr of Case
1 with improved resolution (see §2.2). Fig. 6 show snap-
shots of the density field, spin and angular momenta evo-
lution. As seen in the lower resolution run, early on there
is rapid increase in jspin and Ωspin/Ωbreak until t = 40kyr.
Until this time the star is highly deformed but no spiral
arms are present. During 40kyr < t < 50kyr, jspin remains
approximately constant and spiral arms develop in the disc
(t = 47kyr). From t = 52kyr t = 67kyr spiral arms are al-

ways present and jspin is decreasing. Ωspin/Ωbreak also max-
imise around t = 40kyr, it then oscillations with decreasing
amplitude and by t = 70kyr it is just below 50% of break-up.
Notice that |jorb|/|jspin| ∼ 10−3 and the star is essentially
fixed in the inertial frame.

As the star accretes material and therefore angular mo-
mentum, its spin increases (provided S∗ does not decrease
significantly, which is expected because the EOS prevents
further collapse). However, as it spins up, it becomes de-
formed by centrifugal forces. The object has high m = 2
symmetry, analogous to a bar, which exerts a positive gravi-
tational torque on the surrounding material because it spins
faster than the disc. The star must then lose spin angular
momentum. Thus the initial spin-up is limited by the fact
that spin-down torques from the disc increases as the star
spins up and deform into a bar.

The torque exerted by the star on the disc is shown
in Fig. 7(b), for the snapshot at t = 60kyr during spin-
down. The star exerts a positive torque on the disc, and is
largest just outside its surface. Spin angular momentum lost
by the star is mostly deposited in this material. Fig. 7(c)
show angular momentum fluxes due to Reynolds stresses
and gravity torques. At the stellar interface, these sum to
α ∼ 0.3 with positive contribution from gravity (αG ∼ 0.7)
and negative contribution from Reynolds stresses. Replacing
the Reynolds stress by the total advection rΣUrUφ results in
a total α ∼ 0.7 at the same radius. The large-scale advection
is nearly zero at the interface, indicating no flow of material
across its surface (hydrostatic object). The numerical viscos-
ity is αN ∼ 0.03 at the interface, so the angular momentum
carried away from the star is largely due to gravitational
torques.

6 CASE 2

We now consider a case where m = 1 is not dominant
over the simulation time-scale, using physical parameters
ξ = 2.74 (or A = 2.8), h = 0.05 and q = 0.01. Displace-
ment of the star by the m = 1 mode require massive discs
(Md > M∗, Heemskerk et al. (1992)), so a lower ξ is used,
corresponding to a smaller core mass compared to Case 1. A
smaller h indicates smaller angular momentum in the core.
q is increased, corresponding to a larger initial star, which
should be more vulnerable to deformation. Overall, this set-
up produces a quieter evolution. We use NJ = 0.125 for this
run.

c© 0000 RAS, MNRAS 000, 000–000



6 Lin, Krumholz & Kratter

(e) Spin frequency (f) Angular momenta

Figure 6. Case 1 high resolution: density field (top panel), spin frequency relative to break-up and angular momenta (bottom panel).
The time interval corresponds to early evolution where the initial spin-up is self-limited by deformation of the star (outlined by thick
lines in the top figures).

(a) Density field (b) Star-disc torque (c) Angular momentum flux

Figure 7. Case 1 high resolution: density field during initial spin down phase (left), the corresponding star-on-disc torque (middle) and
angular momentum fluxes (right). Vertical lines in the last two plots indicate the semi-major axis of the deformed star when regarded as
an ellipse.

6.1 Star evolution and relation to spiral modes

Fig. 8 show the evolution of stellar measurements in con-
junction with results from Fourier analysis of the surface
density. Despite changing more than one parameter from
Case 1, early evolution is indifferent. The star acquires most
of its final mass by t = 400kyr, M∗ then remain approxi-
mately constant. During mass growth, Ωspin/Ωbreak also in-
crease rapidly but again does not exceed ∼ 50% break-up.
However, there is now a clear monotonic decrease in ro-
tation after Ωspin maximises, whereas Case 1 experienced
multiple episodes of brief spin-up (Fig. 1). For Case 2, the
final Ωspin/Ωbreak is about 92% of max(Ωspin/Ωbreak) and in
Case 1 it is ∼ 90%, i.e. more overall spin-down in Case 1.
However, in Case 1 most of the spin-down was attributed to
the phase just after max(Ωspin/Ωbreak), whereas in Case 2
there is continued spin-down on the simulation time-scale,
suggesting Case 2 could spin down more if continued. No
obvious future trend could be speculated for Case 1. The
angular momenta plot show that |jorb| is an order of mag-
nitude smaller than |jspin|, and is correlated to the presence
of long term spin down, unlike Case 1.

The Fourier amplitudes also differ to Case 1. Fig. 8(d)

show the time evolution of the m = 1—3 modes. This phys-
ical setup allows m = 2 to become dominant. Fig. 8(e) show
the radial dependence of Fourier modes at the end of the sim-
ulation and m = 1 no longer dominates the system through-
out. The extent of m = 2 is also larger than Case 1, cor-
responding to the non-axisymmetric (and larger) star. This
shows that a star-disc system with dominated by m = 2
non-axisymmetry is more prone to spin down.

Case 2 compliments Case 1, in that we have suppressed
m = 1, thereby allowing spin-down torques to operate ef-
fectively on an object that has small orbital motion. Spin
down is easier in this case because the disc (which provides
the torque) need not be moving with stellar motion. Spin-
down torques can not act on the star for an extended period
of time if it were moving around.

6.2 Star-disc torques

We need to idenfity the origin of the torque responsible for
spin angular momentum loss. We consider the density field
at t = 486kyr shown in Fig. 8(f), which marks the start of
long term spin down. It clearly shows two spirals associated
with the star. In Fig. 9 show the star-on-disc torque per
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(a) M∗ (b) Stellar rotation (c) Specific angular momenta

(d) |Cm/C0| (e) |am/a0| (f) ρ

Figure 8. Case 2: stellar mass, spin frequency and angular momenta evolution (top panel); evolution of disc mode amplitudes and their
radial dependence at the end of the simulation (bottom panel). The last plot is the density at the beginning of long term spin down, and
the stellar interface is indicated by the solid line.

unit area at t = 486kyr. The star exerts a positive torque on
material just outside its surface, itself losing spin angular
momentum. The torque density is not much smaller than
Case 1 high resolution (Fig. 7(b)). Note the lack of ‘spikes’
in this plot, which one may expect if there are resonance
effects between tides on the star (from deformation) and
disc modes. Dominant spin-down torques occur close to the
stellar interface.

In Fig. 10 we compare angular momentum flux carried
by Reynolds stresses and gravitational torques. There is a
positive gravity flux throughout the disc, but its amplitude
is small (αG = O(10−2)) compared to values expected for
gravito-turbulence (αG ∼ 0.1—1). Positive gravity flux at
the stellar interface is consistent with the star exerting a
positive torque on the disc. The figure show at stellar in-
terface, which is only approximate because the star is not
spherical , gravity flux is slightly larger than the (negative)
Reynolds stress. The total viscosity is α ∼ 2.5 × 10−3.

At the stellar interface indicated in Fig. 10 the numer-
ical viscosity is αN ∼ 0.06. Hence, loss of spin angular mo-
mentum may largely be attributed to numerical viscosity.
Nevertheless, there is a positive gravity flux at the stel-
lar interface due to a negative disc torque acting on the
star. If we lower the numerical viscosity by increasing res-
olution and/or increase the core mass to increase gravita-
tional torques, then it is conceivable at some point gravity
flux out of the star dominates over numerical dissipation. In
that case, we would conclude long-term spin down is due to
gravitational torques.

Although spin-down here is attributed to numerics,
when compared to Case 1 this run demonstrates that, for
spin-down torques to be effective, it is desirable not to have
significant hindrance from m = 1 moving the star.

Figure 9. Case 2: azimuthally averaged star-on-disc torque. The
horizontal axis is the cylindrical distance from the star and the
vertical dashed line indicates the stellar interface (see Fig. 8(f)).

Figure 10. Case 2: angular momentum fluxes non-
dimensionalised into α viscosities associated with Reynolds
stresses and gravitational torques. The vertical dashed line is
where ρ ≃ ρ∗, obtained by inspection from Fig. 8(f).

7 CONCLUSIONS AND FUTURE WORK

We have performed three dimensional hydrodynamic sim-
ulations star-disc systems self-consistently formed by cloud
collapse. Our goal was to assess whether or not gravitational
torques can be responsible in spinning down the central star.
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The initial spin-up of the star is limited to ∼ 50% of break-
up speed because increasing spin also increases the star’s
deformation into a bar-like object, on which the disc exerts
a negative torque.

While the present low resolution simulations do not
show strong evidence for gravitational spin-down on long
time-scales, we do find a necessary requirement for spin
evolution is that m = 1 be non-dominant. Otherwise, the
displacement of the star from the centre of mass (of the box)
results in significant and complex orbital motion, which
inhibits spin evolution. In order to explicitly demonstrate
gravitational torque spin-down in the later evolutionary
stages, higher resolution simulations are required to resolve
the star-disc interface, since this is where most of the torque
is exerted on the star.

This work was carried out at the ‘International Sum-
mer Institute for Modelling in Astrophysics’ at the
University of California Santa Cruz from July—August
2010. MKL is grateful for support from UCSC, St. John’s
College Cambridge, the Isaac Newton Trust and helpful
discussions with MRK and KMK.
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