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ABSTRACT OF THE DISSERTATION 

 

Identification of Genomic Predictors of Response to the  

CDK4/6 Inhibitor Palbociclib using the UCLATORL Panel of Human Cancer Cell Lines 

 

by 

 

Dylan Francis Conklin 

Doctor of Philosophy in Epidemiology 

University of California, Los Angeles, 2013 

Professor Zuo-Feng Zhang, Co-Chair 
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The landscape of genetic alterations that can lead to cancer is vast and complex. Precancerous 

cells accumulate mutations that affect the various molecular pathways involved in cancer progression. 

In the last two decades, hundreds of novel therapeutics designed to inhibit different molecular targets 

within these oncogenic pathways have recently entered clinical development. The success or failure of 

these compounds will depend on the ability to correctly identify subpopulations of cancer patients likely 

to be sensitive or resistant to these therapies. Patient-specific sensitivity to treatment is likely to be 

determined, at least in part, to the underlying genomic alterations that occurred during the 

development of the patient’s particular cancer. 
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Palbociclib is a highly specific small molecule inhibitor of cyclin-dependent kinases 4 and 6 

currently in clinical development by Pfizer. It is designed to inhibit the cell cycle at the G1/S transition 

via preventing the phosphorylation of Rb by the Cyclin D/CDK4/6 enzyme complex. Our lab previously 

identified the estrogen receptor positive (ER+) subpopulation of breast cancer patients as distinctively 

likely to benefit from treatment with palbociclib. This observation spurred the initiation of a Phase II 

clinical trial in this patient population where remarkable efficacy was observed.  Given this translational 

success, we wished to investigate the molecular determinants of response to palbociclib in several 

additional cancer types. 

To this end, we assayed the in vitro sensitivity to palbociclib across a panel of 416 cancer cell 

lines derived from 12 distinct cancer types. We observed highly differential response to treatment both 

within and between cancer types. IC50s (the concentration of palbociclib required to inhibit 50% of 

population doublings) ranged from the low nanomolar range to above the highest dose tested (1µM). 

This response distribution was much broader than was observed in similar screens performed by the 

Broad and Sanger institutes, where the vast majority of cell lines assayed were listed as having IC50s 

above 1µM. Our ability to identify a higher proportion of palbociclib -sensitive cell lines can likely be 

credited to methodological innovations aimed at optimizing our screening protocol for the detection of 

longer-term cytostatic effects, as opposed to shorter-term cytotoxic effects of treatment. The 

generation of this highly differential response dataset allowed for a unique opportunity to explore the 

possible genetic mechanisms underlying differential sensitivity to treatment with palbociclib in vitro. 

We interrogated two large genomics datasets for genotype-response associations. The first of 

which consisted of whole exome point mutation data downloaded from the Cancer Cell Line 

Encyclopedia’s hybrid capture sequencing database. This data was restricted by various criteria to enrich 

for functional, somatic point mutations that are known to be causally involved in carcinogenesis. From 

this restricted dataset we identified three proto-oncogenes (MLL, TSHR, SMO) where presumptive 
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activating mutations were associated with resistance to treatment with palbociclib across our cell line 

panel. We further identified five recessive cancer genes where likely loss-of-function point mutations 

were significantly associated with palbociclib response. Mutations in two of these genes (CDH1, 

TOPBP1) associated with palbociclib sensitivity, while mutations in the other three (RB1, FANCA, NBN) 

associated with resistance. 

The other dataset interrogated for genotype-response associations was a copy number 

alteration dataset derived from comparative genomic hybridization arrays. This dataset was organized 

by gene and also restricted by various criteria to enrich for amplifications or deletions of genes likely to 

be causally involved in carcinogenesis. From this dataset we identified three chromosomal regions 

(17q12-21, 11q13, 1q32) where amplification was associated with sensitivity to palbociclib. Two 

amplified regions (19q13, 8q13) were found to be associated with resistance. Homozygous deletions of 

the 13q14 chromosomal region were found to be strongly associated with resistance to palbociclib.  

 Following the identification of these candidate palbociclib response biomarkers from the crude, 

semi-supervised screens, several post-hoc analyses were performed to strengthen the argument for 

causation for each of the genotype-response associations. These analyses included: (1) a comprehensive 

literature search to investigate the possible causal mechanism of each biomarker, (2) Pearson 

correlation analysis to identify inter-biomarker associations followed by multiple regression to isolate 

the independent effect of each variable, (3) control of confounding by cell line growth rate and 

histology, and (4) analysis of misclassification in the genomics datasets. 

 Following these extensive post-hoc analyses, we pruned our original set of fourteen biomarkers 

down to the eight most likely to play a causal role in determining sensitivity or resistance to treatment 

with palbociclib. The final set of candidate sensitivity biomarkers included: loss-of-function point 

mutations in CDH1, loss-of-function point mutations in TOPBP1, chromosomal amplification of 17q12-21 

(ERBB2) and chromosomal amplification of 11q13 (CCND1). The final set of candidate resistance 
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biomarkers included: activating point mutations in SMO, chromosomal amplification of CCNE1, loss-of-

function point mutations in RB1 and chromosomal deletion of 13q14 (RB1).  

 This final set of eight candidate biomarkers was analyzed by strata representing each of the 12 

cancer types in our cell line panel. The four candidate sensitivity biomarkers were sufficiently frequent 

and associated with sensitivity in 6 of the 12 cancer types in our panel. These were the breast, colon, 

head/neck, lung, ovarian and upper gastrointestinal strata. The four candidate resistance biomarkers 

were sufficiently frequent and associated with resistance in 6 of the 12 cancer types in our panel. These 

were the breast, colon, kidney, lung, ovarian and upper gastrointestinal strata.  

 The identified palbociclib response biomarkers represent good candidates for clinical 

translation, as we have shown them to be independently associated with palbociclib response in vitro 

and have a strong biologic rationale for causality. Follow-up experiments can further elucidate the 

molecular biology behind these associations and further validate these biomarkers before they are 

applied to the clinical setting. Ultimately, these biomarkers may be clinically implemented across a wide 

range of cancer types to identify patient subpopulations most likely to benefit from treatment with 

palbociclib. 
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CHAPTER 1: Introduction 

1.1. Targeted cancer therapeutics 

For many decades, the primary clinical treatments available to cancer patients were cytotoxic 

chemotherapeutics and radiation therapies1 designed to preferentially kill cells that are dividing rapidly. 

Due to a lack of tumor-specificity, most of these interventions cause severe side effects such as nausea, 

myelosuppression, and neurological problems amongst many others. The efficacy of these traditional 

treatments is disputed for many cancer types2, with some going as far to say that the intervention may 

be doing more harm than good in certain indications3. Due to these limitations, there has been a strong 

push to develop “targeted” cancer drugs that can specifically kill or inhibit the growth of cancerous cells, 

while leaving normal tissue intact. 

Cancer is primarily a genetic disease. Normal cells become cancerous through an accumulation 

of genetic and epigenetic changes that lead to a dysregulation of the balance between cell growth and 

cell death4. Recent advances in the understanding of these molecular hallmarks of human cancer have 

allowed for the development of drugs that have been designed to target specific oncogenic alterations5-

7. Many of these molecularly targeted compounds have shown to be very effective in specific patient 

populations, while having a much more favorable toxicity profile than traditional non-targeted 

cytotoxics. These clinical successes include: Herceptin in HER2-Amplified breast cancer8, Gleevec in 

chronic myeloid leukemia9, and Gefitinib in EGFR-mutant non-small cell lung cancer10 amongst many 

others. 
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1.2. Biomarkers of response to treatment 

Despite the early successes of several targeted therapies, there exists a high degree of 

differential response to treatment that cannot be explained simply by characterization of the 

therapeutic target of the compound. There is strong evidence that tumor-specific, genomic alterations 

may explain a large portion of this variation11-20 for each therapy.  Specific genetic alterations may 

increase or decrease the dependence on the molecular target of inhibition by a certain drug, 

consequently resulting in increased sensitivity or resistance to treatment. 

One striking example of this phenomenon is EGFR-targeted therapies in lung cancer. Activating 

mutations in the oncogene KRAS have been shown to be strongly associated with resistance to EGFR-

targeted therapies in non-small cell lung cancers21. This is likely due to the fact that KRAS is downstream 

of EGFR in its signaling cascade, where constitutively activating alterations circumvent the need for 

activation by the EGFR kinase. 

 A functionally similar argument has been made for the role of PI3K mutations in determining 

response to treatment with the anti-HER2 therapy, Trastuzumab22,23. PI3K is a necessary downstream 

effector of HER2 signaling. A large proportion of HER2-amplified breast cancers also harbor downstream 

activating mutations in PI3K. These cancers presumably have evolved to be independent of the original 

HER2 activating event. As predicted by this mechanistic rationale, HER2-positive breast cancers that also 

harbor PI3K activating mutations have been shown to be less responsive to HER2 targeted therapies. 

 

1.3. Preclinical modeling of differential response to treatment using cell line 

panels 

The overwhelming number of new therapies makes the clinical exploration of these potential 

response biomarkers very difficult. Thus, there is a need for accurate pre-clinical models of the 
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molecular determinants of response to novel targeted therapeutics. These pre-clinical observations can 

be employed to guide treatment decisions for existing therapeutics as well as to enrich clinical trials for 

those patients most likely to respond to treatment. 

To this end, large panels of human cancer cell lines have been developed and used to assess the 

efficacy of new cancer treatments as well as identify subpopulations of tumor types likely to be more 

responsive to treatment. Cell lines are samples that have been derived from human tumors and 

conditioned to grow indefinitely in culture. Panels of these cell lines can be interrogated for their 

response to various cancer treatments in vitro via multiple methods including: 2-dimensional 

proliferation assays, 3-dimensional colony formation assays in gel substrates and mouse xenograft 

models. 

Cell-line based drug screening efforts began with the NCI-6024, where many of the laboratory 

techniques for drug screening were developed. However, it quickly became apparent that 60 cell lines 

was not a large enough sample to adequately capture the huge amount of genetic and epigenetic 

heterogeneity present in clinical cancer populations25.  Screening efforts with significantly larger cell line 

panels (such as the Broad Institute’s Cancer Cell Line Encyclopedia (CCLE)26 and the Wellcome Trust 

Sanger Institute’s Genomics of Drug Sensitivity in Cancer (GDSC)27 project) have already proven 

successful in identifying several novel response biomarkers to certain molecular targeted therapies. 

The UCLA Translational Oncology Research Laboratory (UCLATORL) runs another large-scale, 

pre-clinical screening project. UCLATORL aims to add to this body of knowledge by screening 

compounds that have not yet been looked at by CCLE and GDSC. UCLATORL also implements unique 

experimental protocols and analytical methods that may provide novel perspective.  The UCLATORL 

database currently holds response data for 100+ compounds tested against a diverse panel of 600+ cell 

lines.  
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1.4. The G1/S transition, cyclin D and CDK4/6 

1.4.1 Signaling pathways 

When cells are not actively proliferating they are generally resting in G1 phase.  This non-mitotic 

state is maintained by limiting the expression of pro-growth factors like CDK2 and cyclin E. However, in 

response to mitogenic signals, cells begin to synthesize high levels of cyclin D. Cyclin D forms 

heterodimeric complexes with CDKs 4 and 628. These cyclin D - CDK4/6 complexes facilitate the G1/S 

transition by phosphorylating Rb, which disrupts binding the repressive binding of Rb to the 

transcription factor E2F. E2F activation results in the transcription of many target genes necessary for 

cell cycle progression. 

The G1/S transition is further controlled by positive and negative regulators of the cyclin D – 

CDK4/6 complex. Members of the INK4 family of proteins can associate with CDKs 4 and 6 and cause the 

release of cyclin D and also dissociation of Cip/Kip proteins from the complex. These Cip/Kip proteins 

subsequently associate with cyclin E-CDK2 to cause G1 arrest.  

 

1.4.2. Dysregulation by oncogenic alterations 

Oncogenic genetic alterations that disrupt the G1/S transition are almost omnipresent in human 

cancers. There is a very high prevalence of p16 (INK4a) loss in human cancers29, caused by chromosomal 

deletions, point mutations, transcriptional silencing or some combination of events. Loss of p16 causes 

an increase in CDK4/6 enzymatic activity, which in turn can lead to an increase in cell proliferation. 

CDK4 has been shown to be both genomically amplified or mutated to prevent suppressive INK4 

binding in some cases30,31.  This also has been shown to lead to increased proliferation of the mutant 

cells32.  Overexpression of cyclin-D1 by genomic amplification of the CCND1 gene is also common in 

many cancers33-38. This overexpression is thought to stimulate cell proliferation independently of 
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mitogenic signals. Loss of Rb is another well described genomic abnormality that results in constitutive 

activation of E2F 39-43.  

 

1.5. CDK inhibitors as cancer therapies 

 Several small molecule inhibitors of cyclin-dependent kinases have been developed and tested 

in various stages of clinical development, but to date no CDK inhibitors have been approved for 

commercial use44. Several of the early-generation small molecules were developed as pan-CDK 

inhibitors, meaning they had enzymatic activity against several kinases in the CDK family.  

Flavopiridol (alvociclib) has demonstrated enzymatic activity against CDKs 1, 2, 4, 6, 7 and 9, 

with enzymatic IC50s ranging from 3-400nM for each of these targets45. It has been shown to cause G1 

and G2 arrest as well as apoptosis in cell line models46. It is currently in Phase II testing.  

P276-00 is another pan-CDK inhibitor in development  by Nicholas Piramal47. It has enzymatic 

activity against CDKs 1, 4, 6, 7 and 947. Like Flavopiridol, it has shown promising preclinical activity in cell 

line models48. It is currently in Phase I/II testing for patients with multiple myeloma, mantle cell 

lymphoma, head and neck cancer, and melanoma.  

AG-024322 is a potent inhibitor of CDKs 1, 2 and 4 developed by Pfizer that showed strong 

enzymatic selectivity for these targets over non-CDK kinases49. It also showed strong preclinical activity 

in cell line and animal models50, but was discontinued after early clinical trials failed to showed 

increased benefit over other treatment options51. 

Several other pan-CDK inhibitors that have CDK4 and/or CDK6 among their kinase targets have 

shown similar activity in preclinical models and are at various stages of clinical development. These 

include: Hoffman-LaRoche’s R54752, Shering-AG’s ZK 30470953, and Astex’s AT751954. Most of these pan-

CDK inhibitors have shown little to modest benefit in clinical testing to date51,52,55, and some have had 
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toxicity profiles that have limited their development44. These failures may be due to non-specific, off-

targeting effects that contribute to in vivo toxicity, unfavorable pharmacodynamic profiles that make it 

difficult to achieve and sustain functionally relevant doses of the compound, or some combination of 

the two. 

 

1.6. Palbociclib 

1.6.1 Description of compound 

Among the small molecule CDKis in clinical development, palbociclib is one of the few inhibitors 

that is highly selective for CDKs 4 and 6.  It inhibits the kinase activity of these two targets with very high 

potency (enzymatic IC50 ~ 10nmol/L). It has exhibited little to no activity against a panel of 36 additional 

protein kinases (including other CDKs), indicating that CDK4/6 inhibition is likely the sole mechanism of 

its anti-proliferative action56.   

It has been extensively mechanistically characterized in cell line models56, where it has been 

shown to induce G1 arrest through a concomitant reduction in Rb phosphorylation at Ser780/Ser795. 

Therapeutic doses in vitro have been shown to eliminate phospho-Rb and down-regulate the 

proliferation marker Ki-67 in Western blot analyses. This was further demonstrated to result in the 

down-regulation of E2F target genes. 

1.6.2. Existing preclinical data 

Pre-clinical evidence demonstrates that CDK4/6 inhibition by palbociclib can inhibit cancer cell 

proliferation both in vitro and in mouse xenografts56,57. To date, antiproliferative effects have been 

observed in breast cancer57, ovarian cancer58, rhabdoid59, lymphoma60, glioblastoma61 and myeloma62 

cell line models.  
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Our lab has previously published two papers describing differential sensitivity of palbociclib 

within ovarian58 and breast57 cancer models. These site-specific analyses analyzed candidate genomic 

biomarkers that may explain some of the differential sensitivity in vitro. These candidates included 

breast cancer subtype, Rb expression, p16 expression and genomic gains of CCND1. Since these papers 

were published, we have obtained response data on nine more cancer types and have dramatically 

expanded the available genetic characterization data available for association testing. The purpose of 

this study is to expand these analyses into other cancer types and screen a broader set of genomic 

predictors.  

1.6.3 Clinical trials 

Results from the first Phase I, dose-escalation trial of palbociclib were published in 201163. 

Palbociclib was administered orally once-daily in Rb-positive, advanced solid tumors. The compound was 

tolerated very well at doses up to 100mg/day. Dose-limiting toxicities were observed in five patients at 

the 125mg and 150mg daily dose. Neutropenia was the only dose-limiting effect, and it was non-

symptomatic. Ultimately, 125mg per day was chosen as the suggested dose for Phase II testing. 

Recently, UCLATORL was able to demonstrate that the ER-positive subtype of breast cancer was 

uniquely sensitive to palbociclib in vitro57. This observation served as the basis for the design of a Phase 

II clinical trial where remarkable efficacy was observed64. Post-menopausal women with ER+/HER2- 

advanced breast cancer were randomized 1:1 to receive letrozole with or without palbociclib. There was 

a significant improvement in progression free survival in the letrozole + palbociclib arm (HR = 0.35, 

p=0.006). This clinical efficacy is highly encouraging, and validates the preclinical sensitivity observed in 

ER+ cell line models. 
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1.7. Overview of the study 

Despite its strong therapeutic potential there is likely to be significant heterogeneity in response 

to treatment palbociclib, both between and within cancer types. This differential sensitivity may depend 

on specific genomic alterations that influence a particular cancer’s dependence on cyclin D - CDK4/6 

function. These alterations may act directly within the target pathway, or exert their influence more 

indirectly via complex pathway interactions or redundant ‘escape’ pathways.  The goal of this proposed 

project is to identify genomic alterations that are most strongly associated with response to palbociclib, 

when other potential confounding factors are fully considered and adjusted for. It is our hope that these 

observations may help guide the clinical development of palbociclib by identifying those patients most 

likely to respond to therapy. 

We assayed the in vitro response to palbociclib across a large panel of 400+ cell lines, 

representing tumors derived from 12 different primary sites. We screened two large genomics datasets 

for associations with in vitro response to palbociclib. One dataset consists of somatic point mutations 

identified via whole-exome, hybrid-capture sequencing performed by the Broad Institute. The other 

dataset consists of whole-genome copy number alterations as identified by internally-performed 

comparative genomic hybridization arrays. 

After a set of candidate biomarkers was identified from these semi-supervised screens, we 

carefully restricted this list to create a final predictor cassette. These restriction criteria included: a 

strong mechanistic rationale for the role in palbociclib response, independence of other predictors in 

the model and robustness to control of confounding factors in multiple regression models. 
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CHAPTER 2: The UCLATORL cell line panel 

2.1. Description of the panel 

2.1.1. Distribution of cell lines by primary site 

UCLATORL maintains a large panel of 612 human cancer cell lines from 14 different tissue types.  

A large majority of the cell lines have been obtained from commercial vendors (ATCC, DSMZ, JCRB, 

ECACC) and academic collaborations. A small subset of the lines has been established internally from 

patient samples. Many of the cell lines in UCLATORL’s panel have growth characteristics that make them 

difficult or impossible to assay reliably for drug response. UCLATORL was able to generate palbociclib 

dose-response data on 416 cell lines (detailed in Chapter 3). These 416 cell lines served as the study 

population in all of the analyses presented in this paper. A quantification of these cell lines by primary 

site is presented in Figure 1.   

2.1.2. Confirmation of cell line identity 

 Misidentification of cell lines is a very common problem65-69 and can lead to serious information 

bias in cell line based screening studies. To minimize this concern, all UCLATORL cell lines have been 

verified as unique via mitochondrial DNA sequencing. Where possible, STR profiling of cell lines has been 

performed to match cell line identity to published profiles from vendors as well as public 

characterization databases such as COSMIC and the CCLE. 

2.1.3. Other quality control measures 

 Cell lines are maintained in T75 culture flasks using the appropriate growth media specified by 

the vendor. Cell lines are subcultured every 3 to 5 days. Cell lines are grown for at least three passages 

before proliferation assays are performed to ensure log-phase growth at the time of experiment. Cell 
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lines are never grown for more than 20 passages to prevent clonal selection effects from altering the 

characteristics of the line. All cell lines have been verified to be free of Mycoplasma contamination at 

the time of use in proliferation experiments via PCR with Mycoplasma -specific primers. 

 

2.2. Genomic characterization datasets 

2.2.1. UCLATORL copy number alteration data 

Genome-wide characterization of copy number alterations has been performed on 317 of the 

cell lines in UCLATORL’s palbociclib response panel. The distribution of the cell lines by primary site is 

presented in  

Table 1. 

 Genomic DNA for each cell line was labeled and hybridized to an Agilent 105K CGH array chip 

according to the manufacturer’s protocols. Data was subsequently extracted using Agilent Feature 

Extraction Software and analyzed using Agilent’s CGH analytics software.  Log2(Ratio)s larger than 1 (i.e. 

a 2 fold copy number gain) were classified as amplified.  Log2(Ratio)s less than -2 were classified as 

homozygous deletions. 

2.2.2. CCLE copy number alteration data 

 CCLE CNA data was downloaded from the Broad Institute’s publicly available database and 

incorporated into UCLATORL’s database for those cell lines where the two panels overlap. This data was 

available on 262 of the 416 cell lines in UCLATORL’s palbociclib response panel. The coverage of this 

data by primary site to date is also presented in  

Table 1.  

Again, Log2(Ratio)s larger than 1 (i.e. a 2 fold copy number gain) were classified as amplified.  

Log2(Ratio)s less than -2 were classified as homozygous deletions. UCLATORL treats copy number 
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alterations as a categorical variable rather than a continuous variable because the Log2(Ratio)s output 

from the array software correspond to discrete genomic states. 

2.2.2. CCLE hybrid capture sequencing data 

The Cancer Cell Line Encyclopedia project has sequenced 4059 protein-coding genes via solution 

phase hybrid capture and massively parallel sequencing. This point mutation data was downloaded from 

the Broad Institute’s publicly available database26 and incorporated into UCLATORL’s database for those 

cell lines where the two panels overlap. Data was available on 240 of the 416 cell lines in UCLATORL’s 

palbociclib response panel. The coverage of this data by primary site is also presented in  

Table 1. 

2.2.4. UCLATORL Agilent microarray data 

Transcript microarray analyses have been performed on 396 of the 416 cell lines in UCLATORL’s 

palbociclib response panel. The distribution of these cell lines by primary site is presented in  

Table 1.  

Cells were grown to log phase in T75 culture flasks. RNA was extracted using Qiagen’s RNeasy 

kit. Purified RNA was quantified using a Nanodrop Spectrophotometer, and quality was determined via 

capillary electrophoresis using the Agilent 2000 Bioanalyzer. Microarray hybridizations were performed 

using the Agilent Human 44K array. 

 Characterization of transcripts will be performed by comparison to a human mixed reference 

pool on a single chip where the reference cRNA was stained using cyanine-3 and the sample RNA was 

labeled with cyanine-5. The mixed reference pool will be primary site-specific, to minimize the signature 

of tissue-specific differential transcription and to allow for the identification of clustered subtypes within 

each primary site. Each mixed reference pool is constructed using a carefully selected subset of cell lines 

within each primary site. 
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 Microarray slides were read using an Agilent Scanner. Agilent Feature Extraction software 

(version 7.5) was used to calculate gene expression values. These feature extracted files were 

subsequently imported into Rosetta Resolver software (version 7.1) for gene expression data analysis. 

The intensity ratios between the sample and mixed reference were calculated for each transcript based 

on the Agilent error model. 
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CHAPTER 3: Determination of in vitro response to palbociclib 

3.1. UCLATORL proliferation assay protocol 

Cell lines were grown and maintained as an adherent monolayer in plastic 75cm2 flasks with 

growth media. During log phase growth, the adherent cells were harvested via trypsinization then 

homogenized and suspended in growth media. The concentration of suspended cells was determined by 

running a 100µL aliquot through a Beckman Coulter Z1 particle counter. The suspension was then 

diluted to a target concentration such that the desired number of cells could be plated out into each 

well of a 24 well tissue culture plate. The cells were given one day to adhere to the plastic wells and 

begin logarithmic growth. 24 hours after seeding, six control wells were harvested via trypsinization and 

counted on a particle counter. These counts were averaged and served as a baseline control count at 

time of treatment (Day0).  

At this point, the remaining wells were treated with palbociclib starting at 1µM and reduced by 

6 to 12 two-fold dilutions. Each concentration was treated in duplicate. The plates were allowed to grow 

under treatment for five days after which all wells were counted on the Z1 particle counter. Six wells 

were left untreated to serve as Day5 controls. The raw treated counts at each concentration were 

compared to Day0 and Day5 controls to generate dose response data. The entire protocol has been 

repeated for each cell line at least twice within four weeks of the initial assay to generate duplicate 

dose-response data for error estimation.  Figure 2 describes the overall protocol. 

 

3.2. Calculation of generational percent inhibition 

Palbociclib’s inhibitory effect on cell proliferation was calculated at each point on the dose-

response curve. The most commonly used metric used on the y-axis of in vitro dose-response curves is 
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“percent inhibition”. UCLATORL uses a novel method of calculating percent inhibition that differs from 

other large scale, in vitro screening efforts. 

 Percent inhibition was calculated as a function of the number of cell population doublings from 

baseline. Average “Day 0” control counts were quantified at time of treatment. This baseline cell count 

was used to calculate how many generations of logarithmic growth occurred over the 5-day treatment 

time at each dose using the exponential growth equation below: 
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Percent Inhibition at each dose was then calculated using the following formula: 
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3.3. Dose-response curve fitting 

Curves were fit to the data points from each dose-response assay using the PROC NLIN function 

in SAS. The basic four-parameter sigmoid model below was implemented: 
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 Estimates for each of the starting parameters (max, min, slope and ec50) were chosen using a 

log-stepped grid search. The residuals were weighted inversely by the square root of generational 
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percent inhibition to reduce the pull of extreme high points on the more informative, lower region of 

the curve. The resulting parameters were exported and stored for later analysis. Similarly, the r-squared 

values were exported and stored as a measure of goodness of fit. 

 

3.4. Summary outcome measures 

Once curves are fit to the dose-response data sets, there are several response statistics that can 

be calculated in order to determine the relative sensitivity or resistance to treatment for each cell line. 

The most widely used of these response measures is the IC50: the concentration of drug that causes 

50% inhibition. Since UCLATORL has a novel method of calculating percent inhibition, the IC50 has a 

unique interpretation for our assays: It is the concentration at which the drug prevents 50% of cell 

population doublings from occurring. Palbociclib IC50s were interpolated from the fitted dose-response 

curve. Average IC50s were calculated for each cell line as the geometric mean of individual IC50s from 

duplicate experiments.  

 Unlike traditional survival-fraction based percent inhibition, UCLATORL’s “generational” percent 

inhibition is free to vary above the 100% threshold. In our experiments, inhibition exceeding 100% 

indicates that there was a decrease in the cell population count from baseline. The IC100 can be 

interpreted as the concentration of drug necessary to completely inhibit any new growth in vitro (i.e. 

100% inhibition). Any concentration above this threshold value will result in a cross over into the region 

of the dose response curve where there is clear cell death from baseline. At these concentrations there 

is an implied cytotoxic effect of the drug rather than a purely inhibitory or cytostatic effect. It is 

important to note, however, that percent inhibition values below 100% do not necessarily imply a lack 

of cytotoxic effects in the drug’s mechanism of action.  IC100s were calculated via interpolation from the 
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dose-response curve. Average IC100s were calculated as the geometric mean of individual IC100s from 

duplicate experiments. 

 Some compounds are characterized by very flat dose-response curves. This can often be the 

case with irreversible, allosteric inhibitors as well as antibodies where the molecular target can be fully 

saturated over a large dose range. In these cases, the ‘moving’ portion of the curve is often at very low 

concentrations that may not be biologically or clinically relevant. It thus may be more appropriate to use 

a different summary outcome measure for these compounds. When flat curves can be expected based 

on drug mechanism, UCLATORL uses I[x] as a summary outcome measure. UCLATORL defines I[x] as the 

generational percent inhibition at a specified concentration of compound as interpolated from the fitted 

dose-response curve. Average I[x] is calculated as the linear mean of the individual I[x] values from 

duplicate experiments. 

3.5. Palbociclib response distribution 

 We were able to generate reliable dose-response data for palbociclib on 416 cancer cell lines 

representing tumors derived from 12 distinct primary sites. There was highly differential response to 

treatment across the panel, with IC50 values ranging from 3nM to well above the highest dose tested 

(1µM). The interquartile range for the entire panel was found to be 143nM to 1µM. Figure 3 shows this 

distribution of IC50s across the entire panel. Here it can be seen that there are many lines where 

palbociclib is highly effective at inhibiting cell proliferation, even at very low doses. However, there are 

also many cell lines whose IC50 is above 1µM, indicating strong resistance to treatment.   

 Figure 4 shows the cell lines rank ordered by sensitivity to palbociclib using a different outcome 

measure: percent inhibition at 1µM. Using this measure we also observed wide variation in sensitivity to 

palbociclib across the panel. Palbociclib had very little to no effect on a subset of lines, even at this 

maximum palbociclib concentration. Those cell lines that had inhibition < 50% are by definition the same 
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lines whose IC50s were off scale in Figure 3. There was also a subset of lines whose maximum inhibitory 

values were above 100%, indicating that there was cell death from baseline at this dose of palbociclib. 

Both Figure 3 and Figure 4 show that there is a spectrum of response to palbociclib, rather than a simple 

dichotomy of sensitivity and resistance. This observation will be explored further in section 4.1. 

 Supplemental Table S1 is a complete description of palbociclib response data, averaged by cell 

line. Average (geometric mean) values for IC20, IC50, IC80 and IC100 are provided. Also provided is the 

average (linear mean) number of doublings in the control (untreated) cell population over the five day 

treatment period for each cell line.  

IC50 box-and-whisker plots were generated to examine the differential sensitivity to palbociclib 

by primary site (Figure 5). The blue box represents the interquartile range of each panel. The top and 

bottom whiskers stretch to the maximum and minimum IC50 values, respectively. The left most plot 

represents the IC50 distribution of the entire 416-line panel. The rest of the plots represent the IC50 

distribution for a particular cancer type (by primary site of origin). The plots are ranked by median IC50 

from lowest (more sensitive) to highest (more resistant). There is clear differential sensitivity both 

between and within cancer types. While some types were more resistant than others on average, there 

were at least some cell lines in every primary site panel that were highly sensitive to palbociclib. 

3.6. Comparison with Sanger and Broad Institute palbociclib response 

datasets 

 UCLATORL is not the only large scale, in vitro screening project to have worked with palbociclib. 

The Sanger Institute’s Genomics of Drug Sensitivity in Cancer project27 as well as the Broad Institute’s 

Cancer Cell Line Encyclopedia (CCLE) project26 have both assayed response to palbociclib in their own 

panels of cell lines. While the underlying concepts of the screening protocols are similar between 

UCLATORL, CCLE and Sanger, there are several methodological distinctions between the labs. 
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 In contrast with our five-day proliferation experiments, Sanger and CCLE both perform 72-hour 

assays. While UCLATORL performs direct cell counting on a Z1 particle counter, CCLE and Sanger 

measure cell proliferation indirectly with fluorescent stains. Sanger stains with Syto60 (a nucleic acid 

stain), while CCLE uses Cell Titer Glo (an indirect measurement of ATP). Both Sanger and CCLE plate 

fewer cells in smaller wells than UCLATORL. Sanger plates in 96 or 384 well microplates at 15% 

confluency, CCLE plates 250 cells per well in 1536-well plates. In contrast, UCLATORL plates 20,000 cells 

per well in 24 well plates. Both Sanger and CCLE calculate percent inhibition using a ‘survival fraction’ 

model where raw counts are compared to controls at the end of treatment only. In contrast, UCLATORL 

uses the generational method described in section 3.2 which is based on population doublings from 

baseline.  

 These variations in experimental protocols and analytical methods suggest that it may be useful 

to compare the response distributions to palbociclib between labs to quantify how much outcome 

misclassification there may be in these datasets. Figure 6 shows box-and-whiskers plots comparing the 

IC50 distributions between the three screening projects. The three labs have similarly sized cell line 

panels, where some but not all of the cell lines overlap. The left plot compares the full datasets for each 

lab, while the right plot only shows IC50 data for overlapping cell lines. It is clear from the figure that 

there were more sensitive lines and a broader range of activity in the UCLATORL dataset as compared to 

Sanger and CCLE. In the Sanger dataset over half of the panel had IC50s above the highest dose tested 

(4µM). In the CCLE dataset over 75% of the lines had IC50s above the highest dose tested (8µM). 

Possible explanations for these discrepancies will be explored in the following discussion section. 

 Next, we performed a correlation analysis directly comparing matched cell lines between the 

Sanger and CCLE datasets. There were 159 cell lines where IC50 values were available in both datasets. 

Pearson correlation between log(IC50)s was performed using PROC CORR in SAS. For IC50s that were 

above the highest dose tested, this maximum dose was used as the IC50 value. The correlation between 
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the matched log(IC50)s was weak, but significant (Pearson’s r = 0.47537, p < 0.0001). A scatter plot 

comparing log(IC50) values between the Sanger and CCLE datasets is presented as Figure 7. 

 This correlation analysis may be skewed by the fact that such a high proportion of each panel 

had IC50s above the maximum dose, and therefore did not have a true quantitative value to use in the 

analysis. To account for this, a secondary Kappa test was performed to determine the measure of inter-

rater agreement on a dichotomous measure of response to palbociclib. Of the 159 overlapping lines, the 

CCLE only reached IC50s for 25 lines. Thus, we rank ordered the panels on response by IC50 and 

classified the 25 most sensitive cell lines in each dataset as ‘responders’ (1) while the rest were classified 

as ‘nonresponders’ (0). The agreement between labs on identifying these 25 greatest ‘responders’ was 

very low (kappa = 0.16). 

3.7. Discussion 

We were able to demonstrate a broad differential response to palbociclib in vitro, both within 

and between cancer types. Every cancer type (except liver) had a subset of cell lines that were highly 

sensitive to palbociclib (IC50 < 100nM). This intra-type variation is encouraging towards the hope of 

identifying palbociclib -sensitive subpopulations of cancers within several cancer types. 

The UCLATORL dataset had a much broader distribution of palbociclib IC50s as compared to 

similar datasets from Sanger and CCLE, even on the exact same cell lines that were assayed 

independently by each group. On the whole, UCLATORL was able to identify many more lines that were 

“sensitive” to palbociclib in clinically relevant dose ranges. This discrepancy in outcome classification 

between parallel screening efforts is disconcerting, and warrants a detailed discussion on the 

methodological and analytical differences that may have given rise to the inter-lab differences observed. 

It is our belief that the major factor underlying this discrepancy is the difference in treatment 

time between labs. The 72-hour, fluorescence-based assays implemented by CCLE and Sanger were 
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originally optimized to observe the effect of cytotoxic agents on cell populations. Palbociclib, however, is 

assumed to act predominantly through a cytostatic mechanism.  In order to see this predominantly 

cytostatic effect of palbociclib, cell populations must be treated for a long enough period of time such 

that the cell population has time to grow significantly from baseline. Three days of treatment may not 

allow for enough growth in the control wells to see a difference in the treated wells, especially for slow 

growing cell lines. 

The mathematical formulae used to calculate percent inhibition (the response variable in dose-

response data) may compound this problem in the CCLE and Sanger datasets. Both labs use a “survival 

fraction” method to calculate percent inhibition, as opposed to the “generational” method employed by 

UCLATORL. It is our belief that the “survival fraction” method likely underestimates the effect of 

treatment on slow growing lines and overestimates the effect of treatment on fast growing lines. To 

highlight this problem consider the following hypothetical examples. 

Figure 8 compares the two methods using hypothetical response data at one dose of drug for a 

slow-growing cell line. Figure 9 compares the two methods for a hypothetical fast-growing cell line. In 

the slow-growing example, the dose of drug was enough to completely inhibit and new growth from 

baseline. In the fast-growing example, the dose of drug had very little effect and allowed several rounds 

of population doublings from baseline. The drug very clearly had a stronger cytostatic effect on the 

slow-growing cell line; however the “survival fraction” method would calculate a 50% inhibitory effect 

for both examples. In contrast, the generational method calculates an effect of 100% in the slow-

growing example and 25% in the fast-growing example. We believe these “generational” inhibition 

values are much more indicative of the true cytostatic effect of the drug in each example. 

Ultimately, we believe that the combination of short treatment windows and ‘survival-fraction’-

based analytical methods has led to a severe underestimation of the cytostatic effect of palbociclib for a 

large portion of the cell lines in the Sanger and CCLE response datasets. Almost none of the IC50s 



21 
 

observed in vitro by either lab below the clinically achievable plasma levels of palbociclib (~100nM). 

Nearly a quarter of UCLATORL’s cell lines were below this cutoff. We believe the UCLATORL response 

dataset is therefore uniquely suited for the identification of palbociclib sensitivity biomarkers, an 

assertion already partially borne out through the successful phase II clinical trial results based on our in 

vitro breast cancer observations. 

There was very little correlation between the Sanger and CCLE palbociclib IC50 datasets, either 

as a continuous measure or by agreement on the most sensitive lines. This may be a consequence of the 

aforementioned biases induced by their inhibition calculations, or may be due to random experimental 

error. UCLATORL has incorporated many features into our proliferation protocols towards the end of 

reducing experimental error in our response data. Our experiments are set up in 24 well plates as 

opposed to the 96, 384 or 1536 well microtiter plates used in other screening efforts. The larger surface 

area allows UCLATORL to seed more cells at baseline, lessening the chance for the accidental 

enrichment of a specific subpopulation of cells. CCLE, in contrast, seeds only 250 cells/well in their 

experiments. It is our belief that this low seeding number could lead to clonal selection effects that may 

influence outcome.  

 UCLATORL also implements direct particle counting to assess cell number, rather than 

measuring cell proliferation indirectly with fluorescent stains. The need to interpolate cell counts from a 

fluorescent standard can cause error in these estimates. The Cell Titer-Glo assay employed by CCLE uses 

a luciferase reaction to indirectly measure ATP levels in cell cultures, and then generalizes ATP levels to 

cell count.  However it is well known that ATP levels per cell can vary considerably from cell line to cell 

line70,71. This imprecise relationship between cell number and fluorescence can cause considerable noise 

in inter-cell line comparisons.
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CHAPTER 4: Association testing methodology 

4.1. Dichotomous classification of in vitro response to palbociclib:  

Following the fitting of dose-response curves and interpolation of summary outcome measures, 

response to treatment with palbociclib was then dichotomized using cutoffs in the continuous summary 

outcome measures (1 - “sensitive”, 0 - “resistant”). This decision to treat outcome as dichotomous, 

rather than continuous, is another distinction between UCLATORL’s analytical approach as compared to 

other large screening efforts. We believe that dichotomizing response is mathematically appropriate and 

has interpretational benefits. 

In a clinical setting, palbociclib is prescribed at one specified dose. Any differential effects above 

or below this dose cannot be clinically observed.  In our in vitro work, IC50s at either very high or low 

extremes are often observed and could exert a strong pull on a continuous analysis in one direction, 

even though these concentrations are likely to be clinically irrelevant. It is important to note, however, 

that clinical concentrations of drug may not be directly generalizable to the in vitro setting. This problem 

will be discussed further in section 4.4. 

 Another major benefit of a categorical analysis is that it makes it unnecessary to extrapolate 

summary outcome measures (such as IC50 or IC100 values) when they lie outside the tested 

concentration range. This is often the case for resistant cell lines. Over 25% of our cell lines had 

palbociclib IC50s above the tested concentration range. CCLE and Sanger had even higher proportions of 

these highly resistant lines. We believe that inputting an extrapolated IC50 value for these lines into a 

regression model is statistically inappropriate. These very high, extrapolated IC50s may artificially 

increase the significance of observed associations, even though these concentrations may be well above 

a clinically meaningful dose.  
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The relative risks (response ratios) that result from the dichotomized response analysis are also 

more easily interpreted into clinical analogy than the coefficients from a continuous response analysis. 

These response ratios relate whether a subpopulation of cancers with a particular genetic alteration will 

have a higher proportion of responders at a set dose. A linear coefficient relating the difference in the 

average IC50s of the two populations may be less useful, both intuitively and practically. 

4.2. Modified Poisson regression analysis 

The in vitro proliferation experiments conducted by UCLATORL can be modeled like a 

prospective cohort study where the outcome (response to treatment) is common and person-time is the 

same for all subjects. To quantify the association between individual biomarkers and a dichotomized 

response variable, UCLATORL uses a modified Poisson regression model with robust error variance. This 

method was first introduced in a 2004 paper by Zou72, and recommended by Greenland73 later that year. 

Advantages of this approach include better estimation of confidence intervals and lower likelihood of 

convergence problems as compared to other available models. 

 This analysis was implemented using the PROC GENMOD feature in SAS using a Poisson 

distribution, a log link function and with the ‘repeated’ statement added. The model can accommodate 

categorical predictors such as mutation or copy number status, as well as continuous variables such as 

cell line growth rate or gene expression level. This model was used in all association studies whose 

results are presented in later sections. 

 The primary output from this analysis is a relative risk estimate for each of the independent 

variables in the model. In the context of UCLATORL’s genotype-response association studies, these 

relative risk estimates will be referred to as “response ratios” and can be interpreted as the average fold 

increase in likelihood to be classified as sensitive to treatment for cell lines that have a particular genetic 

alteration compared to those that do not. 
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 Many of the genomic alterations used as independent predictors in these regression models are 

relatively rare in UCLATORL’s cell line panel. Over the course of the study, there were several occasions 

where all cell lines with a particular alteration were classified as resistant to palbociclib, corresponding 

to a crude response ratio of zero. Under these conditions, the Poisson regression model run by PROC 

GENMOD failed to converge. When this occurred, a dummy entry was added to the association testing 

dataset coded as mutant (1) and sensitive (1). This entry was down-weighted relative to the true data in 

proportion to the frequency of the alteration in the cell line population. 

4.3. Controlling the false discovery rate 

The large number of tests being performed increases the likelihood of false positive predictors 

falling out of the analysis. To address this concern UCLATORL will control the false discovery rate using 

the two-stage linear step up model introduced by Benjamini, Krieger, and Yekutieli in 200674. These 

adjustments will be performed separately for each genomic dataset that is interrogated for associations 

with palbociclib response using the PROC MULTTEST function in SAS. 

4.4. Sensitivity analysis 

Section 4.1 outlined the justification for classifying response to palbociclib as a dichotomous, 

rather than continuous, variable. However, there are many non-generalizable experimental conditions 

that differ between in vitro proliferation assays and in vivo pharmacodynamics. There will necessarily be 

some level of arbitrariness in the choice of the palbociclib dose cutoff used to categorize response.  To 

account for this, all crude association tests will be performed using three separate cutoffs for palbociclib 

sensitivity. 

The cutoffs used in association testing was informed by the range of dose-response summary 

outcome measures observed, as well as known molecular characteristics of the compound. Palbociclib 

has been shown to have on-target inhibitory effects at concentrations above 15nM56. No known off-
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target effects exist at concentrations < 2µM. A cell proliferation dose-response curve based on target-

specific effects can be expected to exist within this range. The slope, ec50 and maximum of this curve 

are expected to be variable between cell lines and depend on cytoplasmic/nuclear drug availability, 

enzyme kinetics and relative dependence on the target. 

A phase I, dose-escalation study of PD 0332991 has shown that the compound is tolerable at 

moderate to high doses in patients, and has a relatively long half-life in serum. The recommended phase 

II dose of PD 0332991 was concluded to be 125mg orally once a day. Pharmacodynamic analysis 

demonstrated that this resulted in sustainable serum levels >50ng/mL (>112nM) with maximum 

concentrations reaching significantly higher levels. 

The first cutoff used in the analysis was the most conservative, and was primarily based on these 

clinical pharmacodynamic observations. Cell lines were classified as sensitive to palbociclib if they had 

an average in vitro IC50 above 100nM. Those cell lines with average IC50s above 100nM were classified 

as resistant. The second and third cutoffs were informed by the IC50 distribution across the entire panel. 

Cutoff 2 was set at an IC50 above or below the lower quartile (144nM). Cutoff 3 was set at an IC50 

above or below the median (365nM).
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CHAPTER 5: Somatic point mutations versus in vitro palbociclib 

sensitivity 

Once response to treatment with palbociclib was classified and a regression model was 

established, we began to interrogate our genomic characterization datasets with the intention of 

identifying candidate genetic alterations that predict for palbociclib sensitivity in vitro. The first 

genotype-response association screen was performed using the CCLE’s whole-exome, hybrid-capture 

sequencing data. The intention of this analysis was to identify somatic, acquired point mutations in 

genes that code for proteins that may play a functional role in palbociclib sensitivity. 

5.1. Restriction of point mutation dataset  

Genomic instability is a hallmark of most cancers. Cancer genomes are usually highly complex 

with many acquired alterations existing on top of the normal genetic background of the patient. The 

genetic alterations that accumulate during oncogenesis may be broadly separated into two groups:  

“driver” alterations that play some causal role in cancer, versus neutral “passenger” alterations that 

have neither a strong oncogenic effect nor are actively selected against. When attempting to identify 

acquired alterations that may play a functional role in response to treatment, it is important to take 

steps to enrich the predictor dataset for “driver” mutations where possible. Otherwise, there is the risk 

of identifying “passenger” mutations as false positives or missing true “driver” effects due to overly 

stringent multiple testing corrections. 

Recognizing this issue, the Cancer Cell Line Encyclopedia has pre-restricted its whole-exome 

sequencing dataset for several inclusion criteria with the intention of enriching for “driver” alterations26. 

First, they list the following criteria for genes to be included in the dataset: “(1) genes identified as 

somatically altered in cancer based on (A) occurrence in at least 4 instances, collectively, from recently 
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published literature, (B) occurrence in 2 – 3 instances from the aforementioned studies and also present 

in a significantly amplified or deleted focal peak in primary tumors or cell lines (this study), (C) 

membership in the Cancer Gene Census, or (D) significant mutation frequency across  441 tumors; (2) 

genes identified in either the literature, or meeting abstracts and presentations, as putative oncogenes, 

tumor suppressors, members of cancer related pathways, or having a cancer-related function(s); or (3) 

protein kinases.” 

 The CCLE also had several post-sequencing exclusion criteria for the types of alterations that are 

included in their final dataset. The following variants were excluded by CCLE: (1) variants with allelic 

fractions lower than 0.25, (2) common germline variants (>0.1%) listed in dbSNP134, (3) putative neutral 

variants, and (4) variants observed in a panel of 278 whole ‘normal’ exomes. CCLE claims that these 

steps help to eliminate “…common false positives that originate predominantly from alignment 

artifacts” and enrich the dataset for putatively oncogenic functional mutations. At the time of 

integration into UCLATORL’s internal database, this list from the CCLE contained sequencing information 

on 4059 genes. Of these, alterations in 2380 genes were found to be present in at least one cell line in 

UCLATORL’s panel. 

 This number of genes was still far too large to be used for association testing considering the 

relatively small number of cell lines available for the genotype-response screen. Therefore, UCLATORL 

had its own internal further restriction criteria for inclusion in our final dataset to be used for association 

testing. We wished to limit the dataset to only those genes where a strong causal role in cancer has 

been established. To this end, genes were included in our restriction dataset only for those genes listed 

in the Sanger Institute’s COSMIC gene census75. The COSMIC gene census is a continuously updated list 

of cancer genes where the literature has suggested a causal implication in oncogenesis. The gene census 

lists the following inclusion criteria for point mutations: “Genes have been included in the census if 

there exist at least two independent reports showing mutations in primary patient material. In 
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considering somatic mutations for inclusion in the census, we included only genes for which there was 

evidence of the somatic origin of at least a subset of mutations, based on analysis of normal tissue from 

the same individuals.” To date, the gene census includes somatic mutations in 452 genes. Alterations in 

many of these 452 genes were either absent in our cell line panel, or were present at such a low 

frequency that we did not have sufficient power to test for associations (< 6 out of 240 cell lines). This 

further limited our list to just 84 genes. 

The COSMIC gene census also distinguishes between dominant, likely activating point mutations 

in oncogenes versus recessive, likely loss-of-function mutations in tumor suppressor genes. We 

separated these two functionally distinct groups into separate datasets where the false discovery rate 

was controlled independently for each gene set. One dataset consisted of 27 oncogenes where likely 

activating mutations existed in our cell line panel. The other consisted of 57 recessive cancer genes 

where likely loss-of-function point mutations existed. These were the final datasets used for association 

testing. The full gene sets are presented in Supplemental Table S2. 

5.2. Results 

5.2.1. Dominant, likely-activating point mutations 

The 27-gene, dominant, likely-activating point mutation dataset was interrogated for 

associations with palbociclib response using the modified Poisson regression model outlined in section 

4.2. Alterations were grouped by gene and classified as a dichotomous variable: 1 = mutant, 0 = wild 

type. Each gene was run independently in the regression model to obtain a crude response ratio. Three 

separate association screens were performed using the three dichotomous palbociclib response 

variables generated using the IC50 cutoffs described in section 4.4. 

The outcome statistics for each of the three screens performed were visualized using volcano 

plots. Figure 10 shows the resulting volcano plot for the genotype-response screen using a cutoff for 
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sensitivity where palbociclib IC50 = 100nM. Each circle on the volcano plot represents a separate 

regression analysis for a particular gene’s association with palbociclib response. The x-axis plots the 

effect size (response ratio) of the association. The further to the left of the plot a circle lies, the more the 

gene predicted for sensitivity to palbociclib whereas the right-most circle represent genes that predicted 

for resistance. The y-axis plots the p-value on a reverse log scale, such that the more significant the 

association the higher the circle falls on the y-axis. The relative size of the circles represents the 

frequency of the alteration in our panel.  

After the crude response ratios, confidence-intervals and p-values were calculated, the list of 

significant associations was restricted via controlling the false discovery rate using the method described 

in section 4.3. The false discovery rate was controlled separately in each of the three screens 

representing the three palbociclib sensitivity cutoffs. In order to be classified as a significant predictor, 

the gene must have been identified as significant (post multiple test correction) in at least one of the 

three screens and must have predicted in a consistent direction using all three cutoffs. This limited our 

results to just three significant associations, all of which predicted in the direction of resistance. Table 2 

relates the response ratios, confidence intervals and p-values for the significant associations at each of 

the three cutoffs used for palbociclib response classification. 

The first of these genes, MLL, encodes for a histone-methyltransferase protein called “Mixed-

Lineage Leukemia” that plays a critical role in early embryonic development. This gene was found to be 

mutated in 14 of the 240 lines in UCLATORL’s panel where point mutation data was available. It was 

highly correlated with resistance to palbociclib at the 100nM IC50 cutoff. It also predicted in the 

resistant direction using the other two response cutoffs, but did not reach statistical significance. The 

causal role MLL may play in determining palbociclib response will be discussed in detail in Chapter 8. 

Alterations in the TSHR gene were also found to be associated with in vitro resistance to 

palbociclib. The TSHR gene encodes for thyroid stimulating hormone receptor, a membrane protein that 
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controls thyroid cell metabolism. This gene was found to be mutated in 10 of the 240 lines in 

UCLATORL’s panel where point mutation data was available. Again, alterations in this gene were found 

to be highly associated with resistance to palbociclib at the 100nM IC50 cutoff, but less significantly at 

the other two cutoffs. The causal role TSHR may play in determining palbociclib response will be 

discussed in detail in Chapter 8. 

The SMO gene also fell out of our screen as a candidate resistance biomarker. The SMO gene 

codes for the Smoothened protein; a G-protein coupled receptor that interacts with patched (Ptc) 

protein as part of the Hedgehog (Hh) signaling pathway. This gene was found to be mutated in 9 of the 

240 lines in UCLATORL’s panel where point mutation data was available. Alterations in SMO were 

strongly associated with resistance to palbociclib at both Cutoff 1 (IC50 = 100nM) and Cutoff 2 (IC50 = 

Q3), but were less significantly associated at Cutoff 3 (IC50 = Median). The causal role SMO may play in 

determining palbociclib response will be discussed in detail in Chapter 8. 

5.2.2. Recessive, likely-loss-of-function point mutations 

Next we tested the 57-gene, loss-of-function, point mutation dataset for associations with 

palbociclib response in vitro. The same methods were used as for the activating mutations. One extra 

complicating factor in the loss-of-function dataset is that zygosity is more of a concern. For activating 

mutations, one altered allele is enough to grant the oncogenic phenotype. In contrast, loss-of-function 

mutations typically require all alleles to be lost, as one functional allele is often enough to maintain a 

normal phenotype. 

The point mutation data provided by CCLE does not contain definitive calls on zygosity, but 

rather provides “read counts” for normal versus alternative alleles. In a typical Mendelian setting with a 

homogenous cell population, the alternative read counts would be 0% for wild-type, 50% for 

heterozygous mutations and 100% for homozygous mutations. However, the CCLE read count data 
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varies continuously between these discrete, Mendelian values. This deviation from the Mendelian 

expectation can reflect several scenarios.  

First, many cancer cell lines are polyploid, meaning they have chromosomal duplications of large 

portions of their genome. Having more than two alleles at certain loci can lead to non-Mendelian 

mutant fractions. Second, the cell population that was genotyped may have not been completely 

homogenous for a given genotype.  While the phenomenon is rare, cultured cell lines may contain 

subpopulations of cells that differ in their mutation status for a given gene. Third, there are common 

epigenetic means of silencing the wild-type allele in a cell line that harbors a heterozygous mutation, 

leading to a homozygous phenotype. Finally, there is a certain amount of “noise” in any chip-based 

genotyping platform due to mechanical error in the assay. Considering these complicating factors we 

chose to classify any cell line where CCLE discovered a likely functional alteration as mutated, 

independent of read count.  

After association testing was performed and the false discovery rate was properly controlled, we 

found that loss-of-function alterations in two genes (CDH1, TOPBP1) were significantly associated with 

sensitivity to palbociclib whereas loss-of-function alterations in three genes (FANCA, RB1, NBN) were 

significantly associated with resistance. The response ratios, confidence intervals and p-values for these 

associations at each of the three dichotomous response cutoffs are presented in Table 2. A 

representative volcano plot for all association tests performed at dichotomous response cutoff 1 is 

presented as Figure 11. 

CDH1 encodes a calcium-dependent cell adhesion protein, E-Cadherin. Presumptive loss-of-

function alterations in CDH1 were present in 13 cell lines out of the 240 that were genotyped. CDH1 

mutant cell lines were significantly more likely to be classified as sensitive to palbociclib at all three 

dichotomous response cutoffs, with the strongest association occurring at the IC50=100nM cutoff. The 
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mechanistic role that alterations in CDH1 may play in conferring palbociclib sensitivity will be discussed 

in Chapter 8. 

The TOPBP1 gene codes for Topoisomerase II Binding Protein 1. This protein interacts with the 

C-terminal region of topoisomerase II beta and is necessary for DNA replication. Presumptive loss-of-

function alterations in TOPBP1 were found in 8 cell lines out of the 240 that were genotyped. Alterations 

in TOPBP1 predicted in the direction of sensitivity for all three dichotomous response cutoffs, but only 

reached statistical significance at cutoff 3 (IC50 < Median). The mechanistic role that alterations in 

TOPBP1 may play in conferring palbociclib sensitivity will be discussed in Chapter 8. 

FANCA codes for a DNA repair protein called fanconi anemia, complementation group A. 

Presumptive loss-of-function point mutations in FANCA were present in 12 cell lines of the 240 that 

were genotyped. Alterations were significantly associated with resistance to palbociclib at two of the 

three dichotomous response cutoffs used in the analysis. It also predicted in the resistant direction for 

the third cutoff (IC50 < Median), but did not reach statistical significance. The mechanistic role that 

alterations in FANCA may play in conferring palbociclib sensitivity will be discussed in Chapter 8. 

NBN encodes a protein called nibrin that is involved in several cellular processes including: DNA 

damage signaling, double-strand break repair, telomere maintenance and cell-cycle checkpoint control. 

Presumptive loss-of-function mutations in NBN were present in 9 cell lines of the 240 that were 

genotyped.  Alterations were significantly associated with resistance to palbociclib at two of the three 

dichotomous response cutoffs used in the analysis. It also predicted in the resistant direction for the 

third cutoff (IC50 < Median), but did not reach statistical significance. The mechanistic role that 

alterations in NBN may play in conferring palbociclib sensitivity will be discussed in Chapter 8. 

RB1 encodes retinoblastoma 1, a protein that is directly downstream of the target of palbociclib 

inhibition, CDK4/6. It is a tumor suppressor that negatively regulates the G1/S transition. Presumptive 

loss-of-function alterations in RB1 were present in 12 cell lines of the 240 that were genotyped. 
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Alterations predicted in the direction of resistance for all three dichotomous response cutoffs, but only 

reached statistical significance at cutoff 1 (IC50 = 100nM). The mechanistic role that alterations in RB1 

may play in conferring palbociclib sensitivity will be explored further in Chapter 8.
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CHAPTER 6: Copy number alterations versus in vitro palbociclib 

sensitivity 

 Duplications and/or losses of large parts of chromosomal DNA are a very common type of 

genomic alteration during oncogenic transformation. UCLATORL has assayed our cell line panel for copy 

number alterations via high-throughput comparative genomic hybridization. Copy number alterations 

resulting in the amplification of oncogenes or the deletion of tumor suppressor genes were interrogated 

for their association with in vitro response to palbociclib. 

6.1. Restriction of copy number alteration dataset 

  The comparative genomic hybridization dataset generated by UCLATORL provides genome-wide 

copy number data.  As was the case for point mutations, many of the alterations discovered may be 

“passenger” mutations that are unlikely to play a causal role in determining response to treatment with 

palbociclib. Leaving these likely-neutral alterations in our dataset could either increase the risk for false 

positives, or increase the chance of missing a true effect due to overly stringent multiple testing 

corrections. This restriction process is philosophically similar to what has been discussed for the point 

mutation dataset; however there are many logistical considerations that are unique to the copy number 

alteration dataset. 

 Genomic amplification events often create amplicons that often encompass the coding region of 

many genes. Many of these amplicons may be neutral, passenger alterations that do not contain an 

oncogenic target gene. Others may include multiple candidate oncogenes, making it difficult to identify 

a single driver. In 2010, Santarius et al76 published a review in Nature that outlined a set of criteria that 

may be used to identify genes where amplification is likely to be causally linked to cancer. UCLATORL 
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used the same “weight-of-evidence” selection criteria to create the gene set used for association 

testing.  

First, amplification was defined as having a log2(ratio) > 1 for at least two adjacent probes on the 

CGH chip platform. This corresponds to a gain of at least twice as many copies of the amplified DNA as 

compared to centromeric DNA on the same chromosome. If a chromosomal region was amplified in 

several distinct cell lines, the amplicons were mapped and cross-compared to establish a minimal region 

of amplification (MRA). Genes that were within this MRA were considered more likely to be oncogenic 

drivers and up-weighted for inclusion into the final dataset. Genes were excluded if they were amplified 

in less than six of UCLATORL’s cell lines. 

 Another criterion that was used to justify inclusion was whether the amplification event is 

known to lead to overexpression of the mRNA transcripts from genes within the amplicon.  This was 

determined either from historical observations in the literature, of from UCLATORL’s own mRNA 

expression microarray data. 

 Several other criteria from the Santarius76 paper were also utilized in the restriction process 

including: correlation of amplification with clinical outcome data, biological investigations of function as 

well as drug response data targeting an amplified gene product. Ultimately, 107 genes from 26 distinct 

amplicons were included in the final dataset used for association testing.  

 Chromosomal deletion events are often smaller in size than amplifications, making it easier to 

determine the deleted gene most likely to be causally implicated in oncogenesis. However, there are 

many deletions that occur in known fragile sites, where the deletion event is likely non-oncogenic. We 

used criteria similar to those outlined in another 2010 Nature article by Bignell et al77 to restrict our 

chromosomal deletion dataset. 

 First, the gene must be completely (homozygous) deleted rather than partially (hemizygous) 

deleted in each cell line in order to be classified as mutant in our association screen. We used a cutoff of 
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log2(ratio) < -2 from at least 2 adjacent probes to identify these homozygous deletions. Next, deleted 

regions were investigated for overlap with known recessive cancer genes. Using these criteria, we 

identified 17 genes from 14 distinct deleted regions for inclusion in our association screen. 

6.2. Results 

6.2.1. Chromosomal amplification of oncogenes 

Our 107-gene, chromosomal amplification dataset was interrogated for associations with 

palbociclib response using the modified Poisson regression model described in section 4.2. 

Amplifications were grouped by gene classified as a dichotomous variable: amplified (1) versus non-

amplified (0). Each gene was run independently in the regression model to obtain a crude response 

ratio. Again, three separate association screens were performed using the three dichotomous 

palbociclib response variables generated using the IC50 cutoffs described in section 4.4. 

The volcano plot in Figure 12 shows the outcome measures for all association tests performed at 

dichotomous response cutoff 1. The large number of significant associations reflects the fact that 

significantly predictive amplicons often contain several co-amplified candidate oncogenes whose 

amplification status are strongly correlated with one another. The strong correlation of co-amplified 

genes has several consequences on our subsequent analyses. 

The false discovery control methods used for the point mutation dataset assumed 

independence of the predictor variables for which crude effect estimates were calculated. This is clearly 

not the case for the copy number amplification dataset. Using the same method would likely result in 

too stringent corrections for multiple testing. Therefore we chose to base our multiple test corrections 

on the number of distinct amplicons tested (N = 26) rather than the number of candidate genes (N = 

107). 
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After controlling the false discovery rate by this method, we found genes on three amplicons 

(17q12-q21, 11q13, 1q32) to be significantly associated with sensitivity to palbociclib and genes on three 

amplicons (19q13, 8q13, 5q33) to be associated with resistance.  Table 3 relates the response ratios, 

confidence intervals and p-values for the significant associations at each of the three palbociclib 

response cutoffs used. In most cases, several genes on each amplicon were found to be significantly 

associated with palbociclib response. For each amplicon, we attempted to identify a candidate gene that 

was most likely to casually underlay the association with palbociclib response. This rationale is discussed 

at length in Chapter 8. 

6.2.2. Homozygous deletion of tumor suppressor genes 

Our 17-gene, chromosomal deletion dataset was interrogated for associations with palbociclib 

response using the modified Poisson regression model described in section 4.2. Homozygous deletions 

were grouped by gene classified as a dichotomous variable: amplified (1) versus non-amplified (0). Each 

gene was run independently in the regression model to obtain a crude response ratio. Again, three 

separate association screens were performed using the three dichotomous palbociclib response cutoffs 

generated using the IC50 cutoffs described in section 4.4. 

Figure 13 shows a volcano plot representing the outcome statistics for each of the association 

tests performed using dichotomous response cutoff 3 (IC50 < Median). Most genes in the dataset were 

the only candidate recessive cancer gene discovered in the deleted region. Therefore, each gene was 

treated as an independent predictor and the false discovery rate was controlled using the same method 

as for the point mutations dataset. 

After controlling for the false discovery rate, only one deleted region was associated with 

response to palbociclib in vitro. Small, focused deletions at 13q14 strongly predicted for sensitivity to 

palbociclib at all three dichotomous response cutoffs. One candidate recessive cancer gene was 



38 
 

identified on this amplicon: RB1. The mechanism describing the role of RB1 loss in determining 

palbociclib response will be discussed further in Chapter 8. 
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CHAPTER 7: Investigation of candidate genomic predictors proposed in 

existing literature 

 Several clinical and preclinical analyses of palbociclib and other functionally similar compounds 

have been performed. Many more are currently ongoing. Many of these studies have either postulated 

or identified several candidate biomarkers that may have predictive utility in determining response to 

CDK4/6 inhibition. We wished to test these candidate biomarkers from existing literature for their 

performance in predicting response to palbociclib in our in vitro response dataset. 

7.1. Selection of previously implicated candidate genomic predictors 

 We performed an extensive literature search to identify candidate genomic biomarkers that 

have been proposed as potential mediators of response to CDK4/6 inhibition. We focused our search to 

include genomic alterations that have been mechanistically implicated as biomarkers in preclinical 

models and/or that have been used as selection criteria for clinical trials.  Table 4 relates a list of the 

biomarkers we chose to include in our association screen based on our literature search. All of the 

alterations on this list were included as part of the semi-supervised screens performed in sections 5 and 

6, however many did not fall out of the analysis as independent predictors of palbociclib response. We 

felt it was appropriate to re-run a regression on these candidate biomarkers with more lenient multiple 

testing corrections, as each has a strong mechanistic rationale for a causal role in determining 

palbociclib sensitivity. 

7.1.1. CDK4 amplification 

 The CDK4 gene codes for a Serine/Threonine kinase that phosphorylates and inhibits RB1, 

allowing for the dissociation of E2F from the RB/E2F complex. This ultimately allows for the transcription 

of E2F target genes that are needed for cell-cycle progression through the G1/S transition. 
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 CDK4 amplification is known to occur as a somatic mutation in several cancer types, including 

gliomas78, certain types of sarcomas79, breast80, esophageal81 and pancreatic82 cancers. It has been 

shown to be a prognostic biomarker of increases cell proliferation and poor outcome in several cancer 

types80,82.  

CDK4 is part of the protein complex that serves as the molecular target of palbociclib. Cell lines 

whose proliferation is at least partly driven by CDK4 amplification may be dependent on this oncogenic 

effect, and therefore may be more sensitive to inhibition with a CDK4 inhibitor such as palbociclib. 

However, to our knowledge there have been no empirical observations in preclinical testing that have 

validated this hypothesis. 

Despite the relative lack of preclinical evidence, several clinical trials are currently recruiting in 

populations that are enriched for CDK4 amplified patients. The Memorial Sloan-Kettering Cancer Center 

is running Phase II trial in advanced or metastatic liposarcomas83 where CDK4 alterations are common. 

The Abramsom Cancer Center is running a phase II trial where CDK4 amplified melanoma lines are listed 

in the inclusion criteria84. 

7.1.2. CDK6 amplification 

 The CDK6 gene also codes for a Serine/Threonine kinase that is part of the same complex as 

CDK4. It also interacts with cyclin D and Rb to stimulate cell-cycle progression. CDK6 amplification has 

been shown to occur somatically in T-cell lymphomas85, gliomas86, esophageal adenocarcinomas81 as 

well as myxofibrosarcomas87. It has been shown to be a negative prognostic biomarker in several cancer 

types81,87. 

 CDK6 amplification may play a similar causal role as CDK4 in determining response to 

palbociclib. It is part of the target complex of palbociclib inhibition. As with CDK4, amplification may 
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increase the cellular dependence on cyclin D - CDK4/6 function and therefore sensitize cells to 

palbociclib inhibition. 

 However, to our knowledge no preclinical studies have demonstrated an empirical association 

between CDK6 amplification and sensitivity to CDK4/6 inhibitors. Nor have any clinical trials have yet 

used CDK6 amplification status as a selection criterion for inclusion. This may be due to the rarity of the 

alteration in human cancers. However, we believe that because it is part of the target complex there is a 

strong enough causal link to justify including in the candidate analysis. 

7.1.3. CCND1 amplification 

 The CCND1 gene codes for cyclin D1, which is also part of the palbociclib target complex. CCND1 

amplifications are quite common in several cancer types including breast88, ovarian89, colorectal37, head 

and neck90, esophageal91 and gastric91 cancers.  CCND1 has been shown to be a prognostic biomarker36 

as well as a predictor of response to chemotherapy92 in certain cancers. 

 Similar to the rationale for CDK4/6, CCND1 amplification may drive proliferation and therefore 

increase cellular dependence on cyclin D – CDK4/6 function. CCND1 amplification was one of the 

biomarkers identified in the semi-supervised screen performed in section 6. To our knowledge, until this 

study no preclinical analysis had demonstrated this association empirically. The Abramsom Cancer 

Center is running a phase II trial where an inclusion criterion is CCND1 amplified patients from several 

cancer types including: esophageal cancers, head and neck cancers, breast cancers and liposarcomas84.  

7.1.4. CDKN2A homozygous deletions 

 The CDKN2A gene codes for the p16 (INK4A) protein. It acts as a tumor suppressor protein that 

induces cell cycle arrest at G0/G1 by inhibiting the CDK4 kinase. It is one of the most commonly deleted 
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genes in human cancers77,93,94 and has been shown to be a negative prognostic biomarker in many 

cancer types95,96.  

Deletion of CDKN2A has been hypothesized to play a causal role in determining response to 

CDK4/6 inhibitors. CDKN2A deletion relieves the repressing effect on CDK4 kinase, effectively activating 

CDK4/6-driven cell proliferation. Loss (or low expression) of p16 has been shown to be associated with 

sensitivity to palbociclib in vitro within panels of ovarian58 and glioblastoma61 cell lines. This year, a 

palbociclib clinical trial was opened by the Jonsson Comprehensive Cancer Center for ovarian cancer 

patients, using low p16 expression as a selection criterion97. 

7.1.5. RB1 homozygous deletions and loss-of-function point mutations 

 RB1 codes for the retinoblastoma (Rb) protein. It acts as a negative regulator of the cell cycle via 

repression of E2F1. Unbound E2F acts as a transcriptional activator on many genes necessary for cell 

cycle progression. Loss of RB1 expression via homozygous deletion occurs in several cancer types77. Loss 

via deleterious point mutations has also been observed98. 

Loss of Rb protein via deletion or point mutation has been hypothesized to play a crucial role in 

determining response to CDK4/6 inhibition. Palbociclib was designed to prevent phosphorylation of Rb 

by CDK4/6, and therefore enhance its role as a tumor suppressor. If Rb is missing from cancer cells, it 

may induce resistance to CDK4/6 treatment as the necessary downstream effector is missing.  

Both homozygous deletions in RB1 as well as loss-of-function point mutations were identified as 

independently associated with resistance to palbociclib in our semi-supervised screens. This year, a 

palbociclib clinical trial was opened by the Jonsson Comprehensive Cancer Center for ovarian cancer 

patients, using Rb proficiency as a selection criterion97. 
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7.2. Results 

All six candidate alterations discussed in this section were listed in the COSMIC gene census, and 

therefore included in our genomic alteration datasets. Of the six, alterations of RB1 and CCND1 had 

already fallen out of our semi-supervised screen as significant resistance and sensitivity biomarkers, 

respectively. The other three candidate biomarkers were also tested for associations as part of the 

previous screens, but did not fall out as significant. The response rations, confidence intervals and p-

values for each of these candidate biomarkers are given in  Table 4. 

Amplification of CDK4 and CDK6 did not significantly predict for response to palbociclib in either 

direction at any of the three response cutoffs, even when multiple test corrections were not applied. It 

should be noted that these alterations were very rare in our panel. A larger number of mutant lines may 

be necessary to observe an association if it exists. 

Loss of p16 via homozygous deletion of the CDKN2A gene did not significantly predict for 

sensitivity or resistance at the lower two cutoffs. It did, however, have a small but significant association 

with palbociclib sensitivity at response cutoff 3 (IC50 = Median). We ultimately chose not to include 

CDKN2A deletions in our final predictor cassette. This rationale will be discussed at length in Chapter 9.
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CHAPTER 8: Creation of final predictor set and confounder control 

8.1. Restriction criteria for inclusion in final predictor set 

 The genotype-response association screens discussed in sections 5 and 6 yielded fourteen 

candidate biomarkers that were associated with either sensitivity or resistance to in vitro treatment with 

palbociclib. Several measures were undertaken to minimize the occurrence of false-positive 

associations, including careful restriction of the genomic characterization datasets as well as post-hoc 

control of the false discovery rate. However, there is still a reasonable concern that several of these 

associations may have arisen by chance or alternatively by a strong association with one of the other 

independent biomarkers. We wished to restrict our list of candidate biomarkers to a “final predictor set” 

where each biomarker had been verified to have a strong mechanistic rationale for the association with 

palbociclib response, and that this association was independent of the other biomarkers in the set. 

 A literature search was performed on each prospective biomarker to build a mechanistic 

rationale for its inclusion in the final predictor set. Several criteria were used to strengthen the case for 

causality and potential for clinical translatability. First, the distribution of each candidate biomarker by 

primary site in our cell line was compared to the distribution in patient samples from the literature. 

Certain genetic alterations can occur de novo during the establishment of a cell line, and did not exist in 

the primary tumor from which it was derived. However, for any particular alteration it is impossible to 

know this for certain without original tumor material for comparison. Thus, the only validation that 

could be reasonably performed at this step is to confirm the existence of the alteration in patient 

samples for each cancer type where the alteration was found in our cell line panel. We primarily used 

the comprehensive patient sample genotyping information made public by the Cancer Genome Atlas 

project99. 
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 Next, we carefully investigated each candidate biomarker for correlations with the other 

biomarkers that were identified as crudely associated with palbociclib response in our screen. Though 

oncogenic somatic alterations are “random” events, clonal selection pressures in early development of a 

tumor can increase or decrease the likelihood of co-occurrence of certain alterations. These inter-

correlations between genetic alterations in nature may have led to the identification of a non-causal 

biomarker through a strong correlation with the “true” driver of response to treatment. To this end, a 

Pearson correlation table was created for all fourteen candidate biomarkers that were identified in our 

screen. These results are presented in Table 6 and will be discussed independently for each biomarker in 

Chapter 8. When a potentially confounding correlation was present, a multiple regression model was 

constructed to isolate the independent effect of the biomarker or interest on palbociclib response. The 

same modified-Poisson model was implemented in these analyses, using a dichotomous response 

variable at the cutoff where the strongest crude effect was observed. 

Finally, existing literature was consulted to establish a mechanistic rationale for the role each 

alteration may play in determining response to palbociclib. Generally, a case was made for each 

sensitivity biomarker to describe how the alteration may increase the cancer cell’s dependence on cyclin 

D - CDK4/6 activity. Conversely, each resistance biomarker was investigated for a role in subverting or 

lessening cellular dependence on cyclin D - CDK4/6 activity. 

8.2. Palbociclib response biomarkers included in “final predictor set” 

8.2.1. 11q13 (CCND1): chromosomal amplifications associate with palbociclib sensitivity 

Chromosomal amplification of the region mapping to 11q13 is a common feature of many 

cancer types including breast88, ovarian89, colorectal37, head and neck90, esophageal91 and gastric91 
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cancers.  Several candidate oncogenes on 11q13 have been identified including CCND1, ORAVO1, EMS1, 

FGF3/4/19, RPS6KB2, and PAK1 amongst others100-103. Of these candidates, CCND1 has accumulated the 

most compelling evidence for being the oncogenic ‘driver’ on the amplicon. CCND1 amplification has 

been shown to be a prognostic biomarker36 as well as a predictor of response to chemotherapy92 in 

certain cancers. 

CCND1 amplification was the most common sensitivity biomarker to fall out of our semi-

supervised genotype-response association screen. Amplification was discovered in 38 out of 317 

genotyped lines in our panel. Amplification events were present in all but three (colon, liver, pancreas) 

of the ten cancer types that have been genotyped. Table 5 shows the distribution of these alterations by 

primary site, compared with the same distribution in the clinical samples genotyped by TCGA. The 

distribution of CCND1 amplifications was very similar between cell lines and patient samples. 

CCND1 amplification was found to be significantly associated with sensitivity to palbociclib at 

two of the three response cutoffs used in our screen ( Table 3). There was a small correlation between 

ERBB2 amplification and CCND1 amplification in our panel. 5 out of 38 CCND1-amplified lines were also 

ERBB2 amplified. However, CCND1 was still a significant predictor of response when added to a multiple 

regression model with a variable for ERBB2 amplification included (ARR= 1.74, 95% CI: 1.06-2.86). 

The hypothesized role of CCND1 amplification in determining response to palbociclib has 

already been discussed in section 7.1.3, but will be reiterated here. The CCND1 gene codes for the cyclin 

D1 protein. Cyclin D1 is part of the palbociclib target complex, where it serves to regulate the activity of 

CDKs 4 and 6. Cyclin D - CDK4/6 phosphorylates Rb, causing in the release of the transcription factor E2F 

and the upregulation of E2F target genes. These transcriptional changes allow for cell cycle progression 

from G1 into S-phase.  
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Other cyclins such as cyclin E can play a redundant role to cyclin D in promoting the G1/S 

transition, and it has been shown that certain cancers can be preferentially dependent on the activity of 

one cyclin versus the other104,105. Amplification of CCND1 often leads to overexpression of cyclin D 

protein88, which could be a marker for increased dependence on cyclin D rather than cyclin E towards 

Rb-dependent cell cycle progression.  Cyclin D-preferring cancers would thus be expected to be more 

sensitive to the inhibitory effects of palbociclib. 

8.2.2. 19q12 (CCNE1): chromosomal amplifications associate with palbociclib resistance 

 Amplification of the 19q12 chromosomal region is common oncogenic alteration in many cancer 

types including: breast106, ovarian107, endometrial108, lung109, bladder110, esophageal111 and gastric112 

cancers. The CCNE1 gene is thought to be the most likely ‘driver’ of amplification on this amplicon, as it 

is the only well-established dominantly acting oncogene in the minimally amplified region. 

Strengthening this claim, transgenic mouse models with induced overexpression of CCNE1 have been 

shown to form hyperplasias and carcinomas at higher rates than non-amplified controls113. CCNE1 

amplification has also been shown to be a negative prognostic biomarker in many cancer types107,109,114. 

 Amplification of CCNE1 was discovered in 14 out of 317 genotyped cell lines in UCLATORL’s 

panel. These mutants were enriched for breast, ovarian and lung cancer cell lines; but at least one 

mutant was also found in the melanoma, colon, upper GI and head and neck panels. Table 5 shows the 

distribution of these alterations by primary site, compared with the same distribution in the clinical 

samples genotyped by TCGA. CCNE1 amplifications were similarly distributed in both datasets. 

Amplification of CCNE1 was found to be significantly associated with resistance to palbociclib in 

our semi-supervised genotype-response association screen. 12 of the 14 amplified lines were resistant 

at all three dichotomous response cutoffs. The response ratios, confidence intervals and p-values are 

given in  Table 3.  Alterations in CCNE1 overlapped slightly with alterations in SGK3 and FGFR4, however 
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both of these genes were dropped from the final model for reasons to be discussed in section 8.2.9. 

CCNE1 amplification was not significantly correlated with any of the other remaining response 

biomarkers (Table 6). 

Both cyclin D1 - CDK4/6 and cyclin E - CDK2 drive cellular proliferation via the phosphorylation of 

Rb115. Hyperphosphorylated Rb subsequently releases E2F, which in turn results in the transcriptional 

activation of many factors involved in cell cycle progression. Normally, cyclin D - CDK4/6 acts prior to 

cyclin E/CDK2. However, it has been shown that cancer cells may preferentially use one cyclin over the 

other to phosphorylate Rb, indicating that there is redundancy in their functions104,105. Cyclin E has also 

been shown to promote entry into S phase via mechanisms that bypass Rb phosphorylation. These 

mechanisms are not fully understood, but are hypothesized to involve activation of non-E2F 

transcriptional regulators of cell cycle proteins such as B-MYB116 and NPAT117. 

 We propose the following mechanism for the role CCNE1 amplification plays in determining 

response to palbociclib: Amplification of CCNE1 as part of the 19q12 amplicon results in overexpression 

of the cyclin E protein. In amplified cancers, cyclin E overexpression is a marker of preferential utilization 

of cyclin E over cyclin D in promoting S-phase entry. CCNE1-amplified cells may therefore progress 

through the cell cycle independently of cyclin D - CDK4/6 activity. These cells are consequently resistant 

to the inhibition of cyclin D - CDK4/6 activity by palbociclib. 

8.2.3. 17q12-q21 (ERBB2): chromosomal amplifications associate with palbociclib 

sensitivity 

 Amplification of 17q12-q21 is a common genetic event in several cancer types including: 

breast118, ovarian119, endometrial120, gastric121, esophageal122 and non-small cell lung123 cancers. The 

amplicon contains several proto-oncogenes including GRB7, T2A, RARA and THRA1, but it is largely 

accepted that ERBB2 is the primary oncogenic actor on the amplicon124. ERBB2 amplification has been 
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shown to be correlated with overexpression and to serve as an independent prognostic biomarker in 

several cancer types118,125-128, although these associations are by far the strongest in breast cancer. 

 ERBB2 amplifications were identified in 25/317 genotyped lines in our panel. Table 5 shows the 

distribution of these alterations by primary site, compared with the same distribution in the clinical 

samples genotyped by TCGA. The distribution of ERBB2 amplification by primary site in our panel of cell 

lines largely reflected the distribution in patient samples.  At least one ERBB2 amplified cell line was 

identified in each of the breast, ovarian, lung, and upper GI panels.  

 ERBB2 amplification was found to be highly associated with sensitivity to palbociclib at all three 

response cutoffs used in our semi-supervised genotype-response association screen ( Table 3). There 

was some overlap observed with CCND1 amplification as well as CDH1 mutations. After controlling for 

these co-alterations in a multiple regression model, ERBB2 amplification was still found to be 

independently associated with palbociclib (ARR= 1.95, 95% CI: 1.01 – 3.74) 

 The ERBB2 gene encodes the human epidermal growth factor receptor 2 (HER2) protein. HER2 

has no known ligand that binds its extracellular domain, and thus forms obligate heterodimers with 

EGFR or HER3/4 for ligand-dependent signaling activity129. HER2 signaling has been implicated in many 

distinct cell processes including: proliferation, differentiation, migration and apoptosis. Mouse models  

of HER2 overexpression have been used to conclusively demonstrate that ERBB2 amplification or 

overexpression can play a causal role in oncogenesis130.  

The cyclin D - CDK4/6 complex has been shown to be a necessary mediator of the proliferative, 

oncogenic effect of HER2 overexpression. Several studies have shown that intact cyclin D1 function is 

necessary for oncogenic transformation by HER2 overexpression in transgenic mouse and cell line 

models131-133. Cell lines whose growth is predominantly driven by HER2 signaling may therefore be 
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distinctly sensitive to the downstream inhibition of cyclin D - CDK4/6 by palbociclib, as it would also 

abrogate the oncogenic effect of HER2 signaling.  

8.2.4. RB1: loss-of-function point mutations and chromosomal deletions associate with 

palbociclib resistance 

The role of Rb loss in determining sensitivity to CDK inhibitors has already been well established 

and was previously discussed in section 7.1.5., but will be reiterated here.  RB1 codes for the 

retinoblastoma protein. It acts as a negative regulator of the cell cycle via repression of E2F. Unbound 

E2F acts as a transcriptional activator on many genes necessary for cell cycle progression. Chromosomal 

deletion events resulting in the loss of the RB1 gene are known to occur in several cancer types77. Rb 

loss via deleterious point mutations has also been observed98. 

Palbociclib was originally designed to exert its anti-proliferative effect through the prevention of 

Rb phosphorylation by the cyclin D - CDK4/6 complex. When Rb is missing, this action by the cyclin D - 

CDK4/6 complex is no longer necessary to activate E2F and drive the cell cycle. It is expected that these 

cancers would be resistant to CDK4/6 targeted therapies as they are missing the necessary downstream 

effector. 

RB1 loss by chromosomal deletion was relatively rare in our panel. 10 out of 317 genotyped cell 

lines were found to have homozygous deletions of the Rb gene. The deleted region in most of these 

lines was very small such that RB1 could be easily identified as the driver recessive cancer gene within 

the deleted region. Presumptive loss-of-function point mutations in RB1 were identified in 12 out of 240 

genotyped cell lines. Loss of RB1 was most common in the breast and lung panels, but alterations were 

also identified in each of the ovarian, liver, kidney, lymphoma, melanoma and upper GI panels. Table 5 

shows the distribution of these alterations by primary site, compared with the same distribution in the 

clinical samples genotyped by TCGA. RB1 alterations were similarly distributed in both mutational 
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datasets. RB1 alterations were not significantly correlated with any of the other response biomarkers 

(Table 6). 

Rb loss by either genetic mechanism was strongly associated with resistance in our semi-

supervised genotype-response screen. In fact, every cell line with homozygous deletion of the RB1 gene 

was classified as resistant at every dichotomous response cutoff. Table 2 and  Table 3 give the relative 

risks, confidence intervals and p-values for RB1 point mutations and RB1 homozygous deletions, 

respectively. 

8.2.5. CDH1: loss-of-function point mutations associate with palbociclib sensitivity 

 The CDH1 gene encodes the E-Cadherin protein. It is involved in various mechanisms regulated 

proliferation, mobility, and adhesion of epithelial cells. It is a substrate of the anaphase-promoting 

complex (APC). CDH1 is listed in the COSMIC gene census as a known recessive cancer gene that acts a 

tumor suppressor. Germline mutations in CDH1 have shown to increase lifetime risk of colorectal134 and 

gastric135 cancers. Somatic mutations have also been shown to occur in lobular invasive breast 

cancers136,137 as well as gastric cancers138,139.  

 CDH1 point mutations were found in 13/240 of UCLATORL’s cell lines that were genotyped by 

the Broad institute. Table 5 shows the distribution of these alterations by primary site, compared with 

the same distribution in the clinical samples genotyped by TCGA. Our in vitro prevalence mirrored the 

clinical data in that alterations were primarily observed in breast, colorectal and gastric (upper GI) 

cancers.  

Alterations in CDH1 were strongly associated with sensitivity to palbociclib in our semi-

supervised genotype-response screen. The crude response ratio at the IC50=100nM cutoff was found to 

be 3.25, meaning that cell lines harboring CDH1 alterations were 3.25 times as likely to be classified as 
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sensitive to palbociclib. The response ratios were slightly lower for the other two cutoffs, but the 

association was statistically significant at all three (Table 2). 

There was some overlap between CDH1 alterations and ERBB2 amplification in our panel. 5 out 

of 13 CDH1 mutants were also ERBB2 amplified. The Pearson correlation statistics and associated p-

values are presented in Table 6. We were concerned that the observed association may have been 

driven by the ERBB2 effect so we created a multiple regression model with both predictors included. The 

independent CDH1 effect size at Cutoff 1 was slightly lower (ARR = 1.70, 95% CI: 0.95– 3.05), but still 

strongly in the direction of sensitivity. All of the ERBB2/CDH1 co-mutated lines were sensitive at all 

response cutoffs.  

CDH1 plays an essential role in the regulation of the G1/S transition140. APCCDH1 works to 

maintain cells in G1 phase by keeping levels of cyclin D low, and consequently preventing 

phosphorylation of Rb. This effect on cyclin D levels is mediated through the Ets2 protein. Cdh1 

ultimately acts a tumor suppressor that keeps a check on cell proliferation by preventing entry into S-

phase. If Cdh1 function is abrogated via genetic alteration or loss of expression, this check on the cell 

cycle is lost and cell proliferation is stimulated.  

 We propose the following mechanism for the role of CDH1 alterations in determining palbociclib 

sensitivity: Loss-of-function mutations in CDH1 result in the overexpression of Ets2 which in turn 

stimulates the expression of cyclin D. This has the effect of driving cell cycle progression through the 

G1/S transition via increased cyclin D - CDK4/6 activity. Cell lines harboring these alterations are 

consequently more dependent on CDK4/6 function, as it is likely one of the major genetic drivers of cell 

proliferation in these lines. Thus, these lines are uniquely sensitive to the inhibition of CDK4/6 kinase 

activity by palbociclib. ERBB2/CDH1 co-mutated cancers may be even more sensitive to palbociclib 
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treatment, as they have two upstream alterations that may serve as drivers of cyclin D - CDK4/6-

mediated cell proliferation. 

8.2.6. TOPBP1: loss-of-function point mutations associate with palbociclib sensitivity 

 The TOPBP1 gene codes for the topoisomerase II-beta-binding protein. It is required for DNA 

replication and plays a role in cell cycle checkpoint control in response to DNA damage via direct 

interaction with E2F1141. Germline alterations in TOPBP1 have been shown to associate with hereditary 

susceptibility to breast and ovarian cancer142. Studies examining models of TopBP1-deficiency in mice 

have indicated that it may behave as a tumor suppressor143. Aberrant TopBP1 expression has been 

implicated in breast cancer tumorigenesis144. 

TOPBP1 point mutations were relatively rare in our panel. Alterations were discovered in 8/240 

genotyped cell lines. Table 5 shows the distribution of these alterations by primary site, compared with 

the same distribution in the clinical samples genotyped by TCGA. Though somewhat rare, these 

alterations were broadly distributed throughout different cancer types, with at least one mutant cell line 

present in each of the breast, liver, colon, melanoma, upper GI, lymphoma and sarcoma panels. The 

distribution in TCGA patient samples did not entirely mimic the distribution in vitro, but a similar 

broadly-distributed pattern was observed. 

 TOPBP1 mutant cell lines were found to be significantly associated with sensitivity to palbociclib 

treatment in our genotype-response association screen, especially at the highest sensitivity cutoff (Table 

2). 7/8 of these mutants had palbociclib IC50s less than the median value.  There were no significant 

correlations between alterations in TOPBP1 and any of the other sensitivity-associated alterations in our 

biomarker set. 
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Normal TopBP1 protein has been shown to play a necessary, dual role in the G1/S transition145. 

First, TopBP1 activates the cyclin E/CDK2 complex via the down-regulation of cell cycle inhibitor proteins 

p21 and p27. Second, TopBP1 recruits replication components to chromatin during initiation of DNA 

synthesis. Models of TopBP1 deficiency have shown down-regulation of cyclin E/CDK2 activity, G0/G1 

arrest and induction of cellular senescence143. 

 We propose the following mechanism for the role of TOPBP1 alterations in determining 

palbociclib sensitivity: Loss-of-function alterations in the TOPBP1 gene result in abrogated function of 

the TopBP1 protein. This leads to the up-regulation of the cell cycle inhibitors p21 and p27. High levels 

of p21 and p27 cause significant down-regulation of cyclin E/CDK2 complex. Cancer cells with this 

alteration are consequently more dependent on cyclin D - CDK4/6 activity, as it plays a semi-redundant 

role to cyclin E - CDK2. When TOPBP1-mutant cells are treated with palbociclib, cyclin E/CDK2 is unable 

to compensate for the loss CDK4/6 activity, leading to cell cycle arrest. 

8.2.7. SMO: activating point mutations associate with palbociclib resistance 

 The SMO gene codes for the smoothened protein; a G-protein coupled receptor that is 

normally bound and repressed by patched, the receptor for the hedgehog ligand. Upon hedgehog-

patched binding, smoothened is released and activated via phosphorylation146. This triggers a signaling 

cascade that ultimately results in the activation of GLI transcription factors. Several GLI transcriptional 

targets are involved in cell proliferation and cell cycle regulation147 including: cyclin D1, cyclin E, and 

IGF2 amongst others. Activating mutations in SMO have been discovered in basal cell carcinomas148, 

medulloblastomas149, and gastric150 cancers. Transgenic mouse models with constitutively active SMO 

produce legions similar to basal cell carcinomas151.  

 In UCLATORL’s cell line panel, 9 out of 240 genotyped cell lines were found to have 

presumptively activating point mutations in SMO. These mutants were found in diverse cancer types 
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with at least one mutant in each of the colon, ovarian, kidney, liver and lung cell line panels. Table 5 

shows the distribution of these alterations by primary site, compared with the same distribution in the 

clinical samples genotyped by TCGA. Point mutations in SMO were more common in our cell lines than 

in the TCGA patient samples, especially in the colon, kidney and liver cell line panels. The consequence 

of these discrepancies will be discussed in detail in section 9.2.  

 Point mutations of SMO were found to be significantly associated with resistance to palbociclib 

in our semi-supervised genotype-response screen (Table 2). In fact, all nine mutated cell lines were 

classified as resistant to palbociclib at the lower two response cutoffs. Mutations in SMO were not 

mutually exclusive with other resistance biomarkers that fell out of our screen. Five out of nine SMO-

mutated lines also had mutations in MLL, TSHR, FANCA or NBN. However, all four of these alterations 

were excluded from our final predictor set for reasons outlined in section 8.2.9.  

 We propose the following mechanism for the role that activating mutations in SMO play in 

determining response to palbociclib: point mutations in SMO lead to constitutive activation of the 

hedgehog signaling pathway. This signaling cascade bypasses the cyclin D-Rb-E2F axis for S phase entry 

and directly results in the transcription of factors involved in cell cycle progression (notably cyclin E). 

This relieves the dependence on cyclin D - CDK4/6 activation for S-phase entry. When cyclin D - CDK4/6 

is inhibited by palbociclib in SMO-mutant lines, the GLI-mediated upregulation of cyclin E and other 

proliferative factors compensates to drive the cell cycle through the G1/S transition. Consequently, 

SMO-mutant lines are more resistant to the inhibitory effects of palbociclib. 

8.3. Candidate predictors excluded from “final predictor set” 

 Of the fourteen original candidate biomarkers identified in the preceding genotype-response 

association screen, six were rejected for failing to meet the criteria for predictive/translational capacity 

presented in section 8.1.  
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 Amplifications in the chromosomal region mapping to 1q32 were found to be associated with 

sensitivity to palbociclib. However, this alteration was strongly inter-correlated with other sensitivity 

biomarkers including: CCND1 amplification, ERBB2 amplification and CDH1 mutation (Table 6). In fact 

only three of the nine 1q32 amplified lines lacked co-mutation of other sensitivity genes. The 

independent effect of 1q32 alterations was found to be non-significant when added to a multiple 

regression model with the other biomarkers (ARR=0.70 , 95% CI: 0.27–1.88). Furthermore, no clear 

proto-oncogene could be identified within the amplified region that had a plausible mechanistic 

relationship to CDK4/6 inhibition. 

Amplifications in the chromosomal region mapping to 8q13 were found to be associated with 

resistance to palbociclib. This association was significant at only one of the three response cutoffs 

analyzed (Table 2). 8q13 amplification was strongly inter-correlated with 19q13 (CCNE1) amplification 

(Table 6) and overlapped slightly with RB1 loss as well. The independent effect of 8q13 amplification was 

no longer found to be significant (and in fact switched direction) when added to a multiple regression 

model with the other biomarkers (ARR= 1.33, 95% CI: 0.71-2.49). Furthermore, no clear proto-oncogene 

could be identified within the amplified region that had a plausible mechanistic relationship to CDK4/6 

inhibition. 

 Presumptive activating point mutations in the MLL gene were found to be crudely associated 

with resistance to treatment with palbociclib in our original screen. This association was significant at 

only one of the three response cutoffs analyzed (Table 2). Alterations in MLL were found to be 

significantly associated with TSHR mutations, and overlapped with several other of the resistance 

biomarkers including: SMO mutations, FANCA mutations, RB1 loss and CCNE1 amplification. When 

added to a multiple regression model with these extra variables, the independent effect of MLL1 

mutation was no longer significant (ARR= 0.97, 95% CI: 0.55-1.73). No clear mechanism for the role of 
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MLL activation in determining response to CDK4/6 inhibition could be elucidated from the literature. 

MLL point mutations have not been identified in patient tumor samples outside of hematological 

malignancies, where rearrangements seem to be more common than point mutations152. 

 Presumptive activating mutations in the TSHR gene were found to be crudely associated with 

resistance to treatment with palbociclib in our original screen. This association was significant at only 

one of the three response cutoffs analyzed (Table 2). Mutations of TSHR were significantly correlated 

with other resistance biomarkers including: MLL mutations, SMO mutations, FANCA mutations, NBN  

mutations and RB1 mutations. Only three of the ten TSHR mutants were not co-mutated with another 

resistance gene. When added to a multiple regression model with these extra variables, the 

independent effect of TSHR mutation was no longer significant (ARR= 1.13, 95% CI: 0.57-2.24). 

Additionally, no clear relationship between TSHR activation and CDK4/6 biology could be elucidated 

from the literature.  

 Presumptive loss-of-function alterations in the NBN gene were found to be crudely associated 

with resistance to treatment with palbociclib in our original screen. Mutations of NBN were significantly 

correlated with other resistance biomarkers: including TSHR and SMO. When added to a multiple 

regression model with these extra variables, the independent effect of NBN mutation was no longer 

significant (ARR= 1.31, 95% CI: 0.69-2.49). No clear relationship between NBN loss and CDK4/6 biology 

could be elucidated from the literature. 

Presumptive loss-of-function alterations in the FANCA gene were found to be crudely associated 

with resistance to treatment with palbociclib in our original screen. Mutations of FANCA were 

significantly correlated with TSHR and overlapped slightly with other resistance biomarkers: including 

SMO mutations, NBN mutations, RB1 loss, and CCNE1 amplification. When added to a multiple 

regression model with these extra variables, the independent effect of FANCA mutation was no longer 
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significant (ARR=0.94, 95% CI: 0.52-1.68). No clear relationship between FANCA loss and CDK4/6 biology 

could be elucidated from the literature. 

 

8.4. Creation of collapsed biomarker variables and performance by cancer 

type 

 Sections 8.1-3 described the restriction of the list of candidate biomarkers to just those that had 

a plausible biologic mechanism and whose association with response was independent from the other 

biomarkers in the set. This limited the list to four genes (ERBB2, CCND1, CDH1, TOPBP1) where genetic 

alterations were associated with sensitivity and three genes (SMO, CCNE1, RB1) where genetic 

alterations were associated with resistance. These associations were made in a pooled analysis where all 

cancer types were included and given equal weight. However, clinical development of novel cancer 

therapeutics is often conducted in a cancer-type specific setting. Clinical trials are generally restricted to 

just one or few cancer types. 

 Given this consideration, we wished to describe how well our cassette of candidate biomarkers 

performed in a cancer type-specific analysis. To accomplish this, we first created indicator variables for 

“any sensitivity biomarker” or “any resistance biomarker” for the 387 cell lines where genomic data was 

available. One logistical concern that arose during this step was the handling of missing data. We have 

copy number data on 317 cell lines and point mutation data on 240 cell lines. 362 cell lines had either 

dataset available and 196 had both datasets. Since each individual genetic alteration was rare in our 

panel, we chose to keep those cell lines that were missing one of the two datasets and impute ‘wild-

type’ for their mutational status. These collapsed indicator variables were then tested for association 
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with palbociclib response using the same modified Poisson regression model that was used for the semi-

supervised biomarker screens. 

 Overall, 71 out of 362 lines that had genetic data available harbored at least one of the four 

sensitivity biomarkers included in our final set. Table 8 gives the response ratios and p-values for this 

collapsed biomarker variable for each cancer type and at each of the three dichotomous response 

cutoffs. This collapsed set of biomarkers associated in the direction of sensitivity in almost every cancer 

type where enough data was available to run the regression. However, sparse data made difficult to 

achieve statistical significance in many of the cancer type sub-strata. The overall, pooled, crude 

association was highly significant at all three cutoffs, with the highest effect size at the 100nM IC50 

cutoff for response (RR = 2.66, 95% CI: 1.79-3.97). 

 44 out of 362 cell lines where genotyping data was available harbored at least one of the four 

resistance biomarkers included in our final set. Table 9 provides the response ratios and p-values for the 

indicator variable representing “any resistance biomarker” for each cancer type and at each of the three 

dichotomous response cutoffs. This collapsed variable predicted strongly in the direction of resistance in 

nearly every cancer type where there was enough data to run the regression, the only exceptions being 

cancer types with very small numbers of biomarker positive cell lines. The pooled effect across all 

primary sites was highly significant at all three response cutoffs. The effect size was highest at the 

100nM IC50 cutoff (RR = 0.22, 95% CI: 0.08 – 0.58).  

 

8.5. Control of confounding variables 

 To this point all of the response ratios presented for each biomarker association in our results 

tables have been crude, unadjusted risk estimates. The only covariate control performed so far was for 
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the inter-correlation between candidate biomarkers (sections 8.1-3). This analysis was performed as 

part of a model building schema, and not as a post-hoc adjustment to our effect estimates. The highly 

inter-correlated biomarkers were removed from our model, the remaining biomarkers are largely 

independent of one another. However, there are two additional covariates that have a potential biasing 

effect on our biomarker-response associations. 

 The first of these potential confounders is the differential growth rate between cell lines. We 

have already described unique methods (section 3.2) to minimize the mathematical artifact of these 

differential growth rates in our outcome measure calculations. However, there remains the possibility 

that growth rate itself may be causally involved in response determination, especially to a cell cycle 

inhibitor like palbociclib. Indeed, growth rate (measured as untreated population doublings per five 

days) was found to be significantly associated with response to palbociclib within many cancer types 

(Supplemental Table S3). Slow growing cell lines tended to be more sensitive to treatment with 

palbociclib on average than faster growing lines. To the extent that growth rate is also associated with 

any of the biomarkers in our model; this could directionally bias our results.  

 The second potentially biasing covariate is the primary site of origin of the tumor from which 

each cell line was derived. Different cancer types arise from epigenetically distinct progenitor cells. 

There can be considerable differences in the phenotypic characteristics of cancer cells due to the 

developmental epigenetic processes that occur during cellular differentiation. These broad 

morphological and histologic characteristics of certain cell types may themselves have a causal 

relationship with palbociclib sensitivity. To the extent to which each biomarker in our model is 

differentially distributed between cancer types; this could directionally bias our effect estimates. 

 There is also the possibility that either of these covariates could be an intermediate, rather than 

a confounder of the genotype-response association. For example, slower growth rate may be a 
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phenotype determined by an underlying genotype. If genetics determine growth rate, which in part 

determines response to treatment with palbociclib, than this intermediary effect should not be adjusted 

out of our effect size estimates. The same argument can apply to primary site. If a certain cancer type 

with high prevalence of sensitivity biomarkers is more sensitive to treatment with palbociclib, it could be 

that the sensitivity biomarkers are solely responsible for the association, and not any histological or 

epigenetic characteristics of that cancer type. We chose to present the adjusted effect estimates with 

the caveat that they may reflect an over-adjustment away from the crude estimate if either covariate 

behaves partially as an intermediate rather than a confounder. 

 Table 10 shows the crude and adjusted response ratios and confidence intervals for the two 

indicator variables representing “any sensitivity biomarker” and “any resistance biomarker” after 

controlling for growth rate and cancer type. Here it can be seen that the adjusted effect estimates for 

the “any sensitivity biomarker” variable moved significantly towards the null, while the adjustments did 

not appreciably change the effect estimates for “any resistance biomarker.” 

 

8.6. Quantification of misclassification in genomics datasets 

 The genotyping technologies used to assay the genetic alterations harbored by our cell lines are 

known to have some level of inaccuracy. Imperfect probes, noise in the readout, threshold choices and 

other limitations can result in genotype misclassification. Therefore there is a reasonable concern that 

some of the cell lines in our analysis have been misclassified on their biomarker status. We wished to 

quantify this potential for misclassification in our characterization datasets. 

 The Broad Institute’s Cancer Cell Line Encyclopedia project has performed redundant 

genotyping of copy number alterations on a large fraction of cell lines in our panel. This affords the 

opportunity of multiple source comparison to quantify the likely level of misclassification in each of our 
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biomarkers. There exist 192 overlapping cell lines where both the CCLE and UCLATORL have performed 

whole-genome copy number alteration genotyping. CCLE implemented a different array technology 

(SNP6.0 arrays) than we did for our internal genotyping (comparative genomic hybridization arrays). 

However the readouts of the two assays are comparable.  

First both datasets were reclassified from continuous log2(ratio) data to dichotomized calls on 

amplification or deletion status. The thresholds used for this classification were described in sections 

2.2.1. and 2.2.2. The inter-rater agreement for calls in each dataset was quantified using Cohen’s kappa 

coefficient. Table 11 provides the frequency of each copy number alteration in both datasets, the 

frequency of overlap as well as kappa coefficients. There was generally very good agreement between 

the CCLE and UCLA genotyping calls. The kappa coefficients for CCND1 amplification, ERBB2 

amplification and RB1 deletion were all around 0.9. 

CCNE1 amplification was the only copy number alteration in our biomarker set to have 

significant disagreement between labs. Are closer analysis of the raw data revealed that this was mostly 

due to threshold effects. There were six cell lines that UCLATORL classified as CCNE1 amplified that the 

CCLE did not. These six lines all had log2(ratio)s just under to the cutoff for classification as amplified in 

the CCLE SNP6.0 dataset, while they were just above the threshold in our CGH dataset. The fact that the 

log2(ratio)s were directionally biased for only this gene likely indicates that the probe-binding stringency 

in this particular region varied between the two different chips used in the respective assays. A follow-

up assay such as FISH probing would definitively answer which labs genotype calls more accurately 

reflect the discrete amplification state of these cell lines. 

The point mutation dataset could not be investigated for misclassification by multiple source 

comparison, as only one whole-exome sequencing dataset was available on the cell line panel. The 

misread rate inherent to the hybrid capture technology used for exome sequencing has been shown to 
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be quite low153. It is likely that the majority of misclassification present in this dataset is not due to 

sequencing errors, but rather the difficulty in functionally validating the point mutations as truly 

activating or loss-of-function alterations.  Section 5.1 described many of the restriction criteria used to 

enrich our dataset for likely functional alterations, but there remains a strong possibility that many of 

the point mutations in our dataset do not have a strong functional effect on the proto-oncogene in 

which they reside. The CCLE plans to add functional validation data to their publically available hybrid 

capture dataset. In the future, this data can be incorporated to further reduce misclassification rates in 

this context.
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CHAPTER 9: Discussion 

9.1. Palbociclib response in vitro and genomic predictors of differential 

sensitivity 

Palbociclib is a potent and highly selective inhibitor of the cyclin D - CDK4/6 complex. It belongs 

to an exciting class of cell-cycle targeted compounds that may have significant clinical utility in slowing 

the growth of human cancers. The success of these compounds hinges on the ability to accurately 

identify subpopulations of patients whose cancers may be comparatively sensitive or resistant to 

treatment.  Our lab previously published the observation that ER-positive breast cancers may be 

uniquely sensitive to CDK4/6 inhibition57. This discovery led to the initiation of a Phase II clinical trial 

where remarkable efficacy was observed64. However, to our knowledge no clear biomarker (or set of 

biomarkers) exists in other cancer types that may be similarly used to enrich future clinical trials and 

open up new indications for CDK4/6 inhibitors. We wished to explore the sensitivity profile of palbociclib 

across several cancer types in an in vitro, preclinical setting and use the observed response distribution 

to inform the development of candidate biomarkers of palbociclib sensitivity and resistance. 

To this end, we modeled differential sensitivity to palbociclib across a panel of 416 human 

cancer cell lines derived from 12 distinct cancer types. We observed remarkable anti-proliferative 

activity in a subset of sensitive cell lines within nearly every cancer type tested, suggesting that there is 

potential for very diverse clinical application of this compound. This response profile was unique to the 

UCLATORL dataset; parallel screening efforts run by the Broad26 and Sanger27 institutes failed to identify 

this large palbociclib-sensitive cohort. We employed unique proliferation assay protocols and analytics 

that have been optimized for the identification of long-term cytostatic effects. We believe our 

methodology allowed for superior in vitro response characterization in this context. The primary factors 
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differentiating UCLATORL’s protocols (as discussed in detail in section 3) included: longer treatment 

windows, seeding of larger cell populations at baseline, incorporation of day 1 counts and 

implementation of logarithmic (generational) formulae for calculation of percent inhibition. 

This response data was incorporated into a custom-designed database for the high-throughput 

identification of genotype-response associations. This database also holds highly-detailed genetic 

characterization data on each subject. This genomic data has been curated by UCLATORL to enrich for 

somatic alterations likely to be causally involved in the cellular mechanisms of cancer development. This 

genomics dataset was interrogated for biomarkers of sensitivity and resistance in a large, semi-

supervised screen. The statistical models employed for the identification of genotype-response 

associations was generalized from epidemiological tools used in the analysis of prospective cohort 

studies. Namely, a modified Poisson regression model with robust error handling was used. After 

controlling the false discovery rate, alterations in thirteen genes were found to be significantly 

associated with either sensitivity or resistance to palbociclib in vitro.  

These crude associations were further investigated via extensive post-hoc analyses. This 

included: analysis of biomarker inter-correlation, comparison of biomarker distribution in cell lines 

versus clinical samples, and a literature search to develop hypothetical mechanisms of response 

determination. Overall, six of the fourteen crude associations were rejected for use as candidate 

biomarkers due to strong inter-correlations with other alterations that had a more defined mechanistic 

role in CDK4/6 biology. 

Several biomarkers identified in our screen validated some of the existing hypotheses based on 

a priori knowledge of palbociclib’s mechanism of action. Loss of retinoblastoma protein function by 

point mutation or chromosomal deletion had been long-presumed to confer resistance to CDK4/6-

targeted therapies, as it is the immediate downstream effector of CDK4/6. Indeed, we found that nearly 
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every cell line with a genetic alteration in the RB1 gene was highly resistant to palbociclib treatment. 

Conversely, amplification of the CCND1 gene has been hypothesized to confer increased dependence on 

cyclin D - CDK4/6 activity and therefore sensitivity to CDK4/6 inhibition. We verified that CCND1 

amplification was strongly associated with, but not completely sufficient for in vitro sensitivity to 

palbociclib. 

We were not able to validate several other a priori assumptions from the literature in our in 

vitro models. CDK4 amplification, CDK6 amplification and CDKN2A/B deletion have been previously 

hypothesized to confer sensitivity to CDK4/6 inhibitors, and in some cases are already being used as 

inclusion criteria for clinical trials. The crude association with palbociclib sensitivity was modest or non-

existent for these biomarkers in our genotype-response screen. The lack of an association with CDK4 

and CDK6 amplification may simply be that we were underpowered to observe an association due to the 

relative rarity of these alterations in our cell lines. However, the lack of an association with CDKN2A 

deletion may be a more complicated story. 

 Loss of CDKN2A by genetic or epigenetic mechanisms is one of the most common somatic 

alterations in human cancers77,93,94. Even so, mutation frequencies in cell lines have been discovered to 

be significantly higher than patient samples from the same cancer type99. Indeed, frequency of 

homozygous deletion of CDKN2A UCLATORL cell line panel is significantly higher than the clinical rates 

listed by the TCGA in most cancer types (Supplemental Table S4). The very high prevalence of CDKN2A 

alteration in cell lines makes its utility as a clinical biomarker difficult to analyze, especially when 

sensitivity to treatment is comparatively rare. Therefore, the lack of an association in our dataset may 

not imply that a true association does not exist; rather it was difficult and inappropriate to model using 

our cell line panel. 
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 In addition to confirming some of the a priori assumptions regarding palbociclib response 

biomarkers, we found several novel genotype-response associations that no previous literature had 

hypothesized. In retinoblastoma-competent cell lines, these biomarkers appear to exert their influence 

on palbociclib response through affecting the molecular preference of cyclin D versus cyclin E. The 

mechanistic result of alterations associated with palbociclib sensitivity (CCND1 amplification, ERBB2 

amplification, CDH1 loss-of-function and TOPBP1 loss-of-function) is the activation and resulting 

dependence on cyclin D or the deactivation and resulting independence of cyclin E.  Conversely, the 

shared mechanism between alterations associated with palbociclib resistance (CCNE1 amplification, 

SMO activating mutations) is the activation and resulting dependence on cyclin E over cyclin D.  

  The final set of candidate biomarkers was unevenly distributed amongst the cancer types 

represented in the UCLATORL cell line panel. The strength of the genotype-response associations also 

varied between cancer types. However, there are several cancer types that have high enough biomarker 

frequencies in both cell lines and clinical samples that a justifiable clinical development strategy could 

be implemented. In the context of breast cancer, our data suggest that there may be cause for 

expanding use of palbociclib to HER2-positive (ERBB2-amplified) patient populations, as cyclin D is a 

necessary intermediate of the oncogenic effect of HER2 pathway activation. 

 Our biomarker set may be used to develop similar treatment rationales in other cancer types. 

The upper gastrointestinal (stomach, esophageal) cancer cell lines were the second most sensitive 

cancer type on average in our screen. The upper GI cell line panel also had high frequencies of sensitivity 

biomarkers (CDH1 mutation, CCND1/ERBB2 amplification) that were relatively consistent to clinical 

frequencies. The head and neck cancer cell line panel was also comparatively sensitive on average 

compared to other cancer types. Head and neck cancers have a high frequency of CCND1 amplification, 

whereas resistance biomarkers are relatively rare both in our cell line panel and in clinical samples.  
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The lung and ovarian panels were not as sensitive on the whole as compared to the breast, head 

and neck and upper GI panels. However, the sensitivity and resistance biomarkers in our final cassette 

performed very well in these panels. Ovarian and lung are among the most common cancer types 

worldwide.  Even if just a small fraction of palbociclib-sensitive lung or ovarian cancers could be 

identified, these would represent sufficiently large patient cohorts to justify the clinical development of 

palbociclib for use in these subpopulations. 

 

9.2. Limitations of the study 

There are several limitations that should be considered when interpreting the results of our in 

vitro genotype-response association screen. First, there is the potential for misclassification in both the 

response and genomic characterization datasets used in our analysis. Second, there is the potential for 

residual confounding by unmeasured genetic or epigenetic effects. Third, the in vitro models used in the 

analysis have many limitations on generalizability to the more complex biological systems that govern 

response to treatment in vivo. 

Misclassification of palbociclib sensitivity and resistance is likely the largest single source of 

error and/or bias in our study. The proliferation assays performed by UCLATORL to quantify the 

cytostatic effect of palbociclib have an inherent ‘noisiness’ in their output. Tissue culture work is 

notoriously imprecise, though UCLATORL has made many modifications to our protocol to minimize this 

inherent error. We have also implemented several unique analytic tools that distinguish UCLATORL from 

other large, cell line-based screening efforts. These protocol and analytic distinctions have been 

discussed at length in Chapter 3.  
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Despite our effort, there likely remain many cell lines where IC50s and other summary outcome 

measures have been estimated with non-negligible error, and therefore do not exactly reflect the true 

biology of response. Furthermore, the dichotomous response cutoffs used to classify sensitivity and 

resistance are necessarily somewhat arbitrary. To account for these limitations, we built a sensitivity 

analysis into our genotype-response screen where three separate dichotomous cutoffs were used. This 

methodology was discussed in detail in Section 4.  

There is also likely to be some misclassification of the genomic data used in our screen. The chip 

technology used for both the copy number and point mutation genotyping are known to have very low 

read error rates, but it is not impossible for some of our mutant/wild-type calls to be misclassified. An 

issue of higher concern is threshold effects in the copy number datasets. Copy number calls for 

amplification and deletion represent discrete genomic states within a particular cancer, but the calls are 

made from somewhat imprecise continuous data. In addition, probe quality can bias these continuous 

measurements in one direction or the other, leading to a systematic under- or overestimation of rates of 

amplification or deletion for that gene. Finally, the copy number data has yet to be functionally verified 

(gene amplification leads to overexpression, deletion leads to loss of expression) for every biomarker-

positive cell line identified in our screen.  

The point mutation dataset obtained from the Cancer Cell Line Encyclopedia also may have 

similar misclassification issues. In this context, the lack of functional verification of each mutation is a 

potentially larger problem. While some of the specific mutation loci included in our dataset are 

functionally verified “hotspots”, the majority of the putative activating or loss-of-function mutations in 

the dataset have an unverified functional consequence on the resulting protein. Chapter 5 discusses the 

criteria used for enriching this mutation dataset for likely functional alterations, though it is possible 

that some non-functional mutations were included. 
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The majority of the misclassification issues discussed so far would likely have the effect of 

biasing our results towards the null. As a result, we may have missed some genotype-response 

associations with rare alterations or small effect size. As we further refine our genomic and response 

datasets to reduce this noise, it is possible that we will have the ability to identify more biomarkers of 

palbociclib response.  

One major source of directional bias in our study could be confounding by unmeasured 

epigenetic variation between cell lines.  Cancer cells can share epigenetic similarities based on their cell 

type of origin, owing to the molecular processes underlying cellular development and differentiation. 

Some of these epigenetic similarities and differences may affect response to palbociclib. To the extent 

that they also correlate with the genetic alterations in our analysis, they may confound the genotype-

response associations we identified. We attempted to control for this potential source of confounding 

by including cancer type (or primary site) in a multiple regression model with our candidate biomarkers. 

However, cancer type is an imperfect surrogate for the complex epigenetic variation between cancers. 

As the field of cancer epigenetics progresses, we may be able to better account for this source of 

confounding in future analyses using data sources such as mRNA expression, DNA methylation, histone 

acetylation, etc. 

Another potential source of confounding is non-random genetic variation between individual 

cancers. It is well known that clonal selection effects can lead to co-enrichment of certain genetic 

alterations. We performed a correlation analysis to investigate this possibility in our set of candidate 

biomarkers, and adjusted for these effects when they were observed. However, there remains the 

possibility that other unmeasured genetic alterations could be confounding our analyses. If one of these 

unmeasured alterations is strongly correlated with one of our biomarkers as well as response to 

palbociclib, it could confound our genotype-response associations. 
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It should be noted that these directional biases may be of slightly less concern in this context 

than they would be in traditional exposure-disease epidemiologic analyses. For biomarkers of response 

to treatment, true causality in the genotype-response association is a secondary concern to its 

performance towards successfully identifying sensitive and/or resistant patients. As long as the factors 

that caused the directional bias in our preclinical work are similarly distributed in the clinical setting, 

non-causal biomarkers can still be clinically useful. However, we realize this is a fairly strong assumption 

and therefore we attempted to limit our list of candidate biomarkers to those most likely to play a 

causal role in response determination. 

Finally, there are many experimental conditions in our cell-line based modeling that may limit 

the generalizability of our results to the clinical setting. In vitro experiments performed on cell line 

panels can only model molecular and cellular level effects of drug response. Higher-level biologic effects 

such as tumor micro-environment, vascularization, immune involvement, drug metabolism, etc. cannot 

be modeled in our limited, in vitro platform. It is likely that some or all of these factors may effect 

palbociclib sensitivity in the clinic. The cellular and molecular associations described in our analysis must 

ultimately be combined with whole organism-level observations made in the clinical setting. 

Another limit on the generalizability of our genotype-response associations may be that the 

distribution/frequency of genetic alterations in our cell line panel may not reflect the true distribution in 

patients. Certain alterations may confer a growth advantage in vitro and therefore be enriched in cell 

lines. Furthermore, certain alterations may have even spontaneously occurred de novo in the 

development of the cell line. We attempted to quantify these in vitro / in vivo differences by comparing 

the frequency of alterations in our sample to those in the clinical samples genotyped as part of the 

Cancer Genome Atlas. 
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 In general, we observed higher rates of alteration than were seen in clinical samples. However, 

these differences may be partially attributed to the sampling and genotyping methods employed be the 

TCGA. Contamination by surrounding non-cancerous tissues may also be a concern in genotyping 

patient samples. This contamination may reduce the ability to identify a point mutation, and may also 

affect the sample-averaged log2(ratio)s from copy number data. Overall, this would have the effect of 

lowering the mutation call rate in patient samples below what the true rate may be, and may partially 

explain the higher rates observed in cell lines. Despite slight discordances, all of the biomarkers in our 

final set were sufficiently frequent in patient samples to be considered for use as inclusion/exclusion 

criteria for future clinical trials. 

 

9.3. Future directions 

 There are still many unanswered questions that should be investigated before any of the 

genotype-response associations identified in this study are translated to the clinical setting. First, the 

specific genomic alterations present in our cell lines must be functionally verified. For copy number 

alterations, this would entail verification that DNA-level changes correlate with RNA expression level 

changes, and that this in turn causes downstream activation/deactivation of the proto-oncogene’s 

signaling pathway. Point mutations must also be functionally confirmed to be truly activating or loss-of-

function via molecular and biochemical assays. 

 Next, causation in the genotype-response relationship can be explored for each candidate 

biomarker via carefully designed engineered cell line models. Alterations can be engineered into a wild-

type background in order to see if the addition of the alteration induces a change in palbociclib 

sensitivity. Similarly, siRNA knockdowns of activated oncogenes can be performed to see if palbociclib 

sensitivity is affected.  In vivo models can also be developed to verify that the genotype-response 
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associations observed in our 2-dimensional tissue culture assays hold up in the context of 3-dimensional 

mouse xenografts.  

 Finally, the ultimate confirmation of the utility of these biomarkers will have to come from 

human clinical data. This may be difficult to achieve in practice, as many clinical trials are already being 

enriched for candidate genomic biomarkers and therefore lack sufficient controls for the investigation of 

the efficacy of these biomarkers. However, there are some ‘all-comer’ trials with palbociclib currently 

underway where some of these questions may be investigated. However, the ability to explore our 

candidate biomarker associations in these clinical datasets may be hindered by the sample collection 

and genotyping practices employed by each clinical study.
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TABLES AND FIGURES: 

Figure 1: Distribution of cell lines in the UCLATORL panel organized by primary site of tumor from which cell line was established. UCLATORL: UCLA Translational Oncology 

Research Laboratory. GI: Gastrointestinal. 
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Figure 2: Flowchart for the UCLATORL 5-day proliferation assay protocol used to determine in vitro response to palbociclib. 
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Figure 3: Palbociclib response distribution by IC50. Each bar in the chart represents the average (geometric mean) IC50 value for one cell line in the UCLATORL panel. Cell 

lines are rank ordered from most sensitive (left) to most resistant (right). 
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Figure 4: Palbociclib response distribution by effect at 1µM. Each bar in the chart represents the average percent inhibition value at 1µM for one cell line in the UCLATORL 

panel. Cell lines are rank ordered from most resistant (left) to most sensitive (right). 
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Figure 5: Box plot of average palbociclib IC50s by Cancer Type. 
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Figure 6: Box plots comparing palbociclib IC50 distributions between UCLATORL, the Sanger Institute, and the Broad Institute Cancer Cell Line Encyclopedia (CCLE). Left: IC50 

distribution for each screening project’s entire cell line panel. Right: IC50 distribution for each screening project comparing only overlapping cell lines. 
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Figure 7: Scatterplot comparing IC50 distribution between the Sanger Institute and the Broad Institute’s Cancer Cell Line Encyclopedia. Each point represents a cell line where 

IC50 data was generated independently by each lab.  X-coordinate: IC50 from Sanger. Y-coordinate: IC50 from CCLE. 
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Figure 8: Comparison between “survival fraction” and “generational” methods for calculating percent inhibition for a hypothetical, slow growing cell line 
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Figure 9: Comparison between “survival fraction” and “generational” methods for calculating percent inhibition for a hypothetical, fast growing cell line 
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Figure 10: Volcano plot of observed associations between presumptive activating point mutations and palbociclib response. Cutoff for sensitivity at IC50 = 100nM. Each circle 

represents one genotype-response association statistic. Size of circles represents frequency of alteration. DomActs: Dominant Activating Point Mutations. 
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Figure 11: Volcano plot of observed associations between presumptive loss-of-function point mutations and palbociclib response. Each circle represents one genotype-

response association statistic. Size of circles represents frequency of alteration. Cutoff for sensitivity at IC50 = 100nM. LOF PointMuts: Loss-Of-Function Point Mutations. 
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Figure 12: Volcano plot of observed associations between chromosomally amplified genes and palbociclib response. Each circle represents one genotype-response 

association statistic. Size of circles represents frequency of alteration.  Cutoff for sensitivity at IC50 = 100nM. 
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Figure 13: Volcano plot of observed associations between chromosomally deleted (homozygous) genes and palbociclib response. Each circle represents one genotype-

response association statistic. Size of circles represents frequency of alteration. Cutoff for sensitivity at IC50 = 365nM 
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Table 1: Cell line characterization data coverage by cancer type. CNAs: Copy Number Alterations. CGH: Comparative Genomic Hybridization. Affy: Affymetrix. SNP: Single 

Nucleotide Polymorphism. UCLATORL: UCLA Translational Oncology Research Laboratory. CCLE: Cancer Cell Line Encyclopedia. 

 

Data Type: Palbociclib Response CNAs CNAs mRNA Expression Point Mutations 

Assay Method: 5-day proliferation CGH Chip Affy SNP6.0 Array Agilent 44K Hybrid Capture 

Data Source: UCLATORL UCLATORL CCLE UCLATORL CCLE 

Breast 47 47 39 47 36 

Colon 28 23 23 27 21 

Head and Neck 30 30 5 30 5 

Kidney 29 25 7 27 7 

Lung 54 48 50 53 48 

Liver 20 20 20 20 16 

Melanoma 47 44 15 42 15 

Ovarian 40 39 22 40 22 

Pancreas 29 29 27 29 21 

Sarcoma 25 0 7 14 5 

Upper GI 14 12 14 14 13 

Lymphoma 53 0 33 53 31 

Total: 416 317 262 396 240 
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Table 2: Significant associations from both point mutation datasets. LOF: Loss-Of-Function. ACT: Activating. 

        CUTOFF 1 
IC50 < 100nM 

CUTOFF 2 
IC50 < Q3 

CUTOFF 3 
IC50 < Median 

Gene Frequency 
Type of 

Alteration 
Direction of 
Association RR 95% CI p-value RR 95% CI p-value RR 95% CI p-value 

CDH1 13/240 LOF Sensitivity 3.25 1.96 - 5.39 < 0.0001 2.71 1.77 - 4.14 < 0.0001 1.81 1.38 - 2.37 < 0.0001 
TOPBP1 8/240 LOF Sensitivity 1.18 0.35 - 4.03 0.79 1.36 0.54 - 3.41 0.51 1.85 1.37 - 2.48 < 0.0001 

MLL 12/240 ACT Resistance 0.04 0.005 - 0.28 0.002 0.29 0.04 - 1.9 0.20 0.85 0.43 - 1.68 0.63 
TSHR 10/240 ACT Resistance 0.05 0.006 - 0.35 0.003 0.35 0.05 - 2.26 0.27 0.81 0.38 - 1.76 0.60 
SMO 9/240 ACT Resistance 0.05 0.006 - 0.39 0.004 0.04 0.005 - 0.30 0.002 0.91 0.43 - 1.91 0.80 

FANCA 12/240 LOF Resistance 0.04 0.005 - 0.28 0.002 0.03 0.004 - 0.21 0.0006 0.50 0.19 - 1.34 0.17 
NBN 9/240 LOF Resistance 0.05 0.006 - 0.39 0.004 0.04 0.005 - 0.30 0.002 1.15 0.63 - 2.1 0.66 
RB1 12/240 LOF Resistance 0.04 0.005 - 0.28 0.002 0.58 0.16 - 2.11 0.41 0.50 0.19 - 1.34 0.17 
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 Table 3: Significant associations from both copy number alteration datasets. AMP: Amplification. HD: Homozygous Deletion. 

          CUTOFF 1 
IC50 < 100nM 

CUTOFF 2 
IC50 < Q3 

CUTOFF 3 
IC50 < Median 

Chromosomal 
Region 

Candidate 
Gene 

Type of 
Alteration Frequency Direction of 

Association RR 95% CI p-value RR 95% CI p-value RR 95% CI p-value 
17q12-21 ERBB2 AMP 25/317 Sensitivity 3.23 2.04 - 5.11 < 0.0001 2.50 1.71 - 3.66 < 0.0001 1.69 1.38 - 2.08 < 0.0001 

11q13 CCND1 AMP 38/317 Sensitivity 2.45 1.52 - 3.94 0.0002 1.70 1.11 - 2.61 0.01 1.24 0.95 - 1.62 0.12 
1q32 ??? AMP 9/317

 
Sensitivity 3.11 1.65 - 5.85 0.0004 2.60 1.58 - 4.28 0.0002 1.51 1.05 - 2.17 0.03 

19q13 CCNE1 AMP 14/317
 

Resistance 0.37 0.05 - 2.46 0.30 0.52 0.14 - 1.91 0.32 0.26 0.07 - 0.96 0.04 
8q13 ??? AMP 9/317

 
Resistance 0.06 0.007 - 0.44 0.006 0.82 0.24 - 2.84 0.76 0.63 0.24 - 1.60 0.33 

13q14 RB1 HD 10/217 Resistance 0.05 0.007 - 0.39 0.004 0.04 0.005 - 0.28 0.001 0.02 0.002 - 0.14 0.0001 
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 Table 4: Candidate predictive biomarkers implicated in previous literature. AMP: Amplification, HD: Homozygous Deletion, LOF: Loss-of-function, NS: Not Significant. 

          CUTOFF 1 
IC50 < 100nM 

CUTOFF 2 
IC50 < Q3 

CUTOFF 3 
IC50 < Median 

Chromosomal 
Region 

Candidate 
Gene 

Type of 
Alteration Frequency Direction of 

Association RR 95% CI p-value RR 95% CI p-value RR 95% CI p-value 
12q13 CDK4 AMP 7/317 NS 0.75 0.12 - 4.67 0.76 1.07 0.33 - 3.49 0.91 1.09 0.57 - 2.10 0.79 
7q21 CDK6 AMP 15/317 NS 0.34 0.05 - 2.30 0.27 0.49 0.13 - 1.79 0.28 1.15 0.75 - 1.77 0.51 
9p21 CDKN2A HD 99/317 NS 0.80 0.48 - 1.35 0.40 0.92 0.61 - 1.37 0.67 1.24 1.01 - 1.54 0.04 

11q13 CCND1 AMP 38/317 Sensitivity 2.45 1.52 - 3.94 0.0002 1.70 1.11 - 2.61 0.01 1.24 0.95 - 1.62 0.12 
13q14 RB1 HD 9/317

 
Resistance 0.05 0.007 - 0.39 0.004 0.04 0.005 - 0.28 0.001 0.02 0.002 - 0.14 0.0001 

 
RB1 LOF Point 12/240 Resistance 0.04 0.005 - 0.28 0.002 0.58 0.16 - 2.11 0.41 0.50 0.19 - 1.34 0.17 
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Table 5: Distribution of candidate predictive genomic alterations by primary site in the UCLATORL cell line panel and the Cancer Genome Atlas patient sample database. 

TCGA: The Cancer Genome Atlas. AMP: Chromosomal Amplification. HD: Homozygous Deletion. DAPM: Dominant, Activating Point Mutation. RLOFPM: Recessive Loss-Of-

Function Point Mutation. 

Gene: CDH1 TOPBP1 ERBB2 CCND1 SMO CCNE1 RB1 RB1 
Alteration: RLOFPM RLOFPM AMP AMP DAPM AMP RLOFPM HD 

  UCLA TCGA UCLA TCGA UCLA TCGA UCLA TCGA UCLA TCGA UCLA TCGA UCLA TCGA UCLA TCGA 
Breast 0.14 0.09 0.03 0.02 0.34 0.13 0.26 0.16 0.00 0.01 0.09 0.04 0.03 0.02 0.09 0.03 
Colon 0.10 0.03 0.04 0.01 0.00 0.03 0.00 0.01 0.14 0.01 0.04 0.01 0.00 0.02 0.00 0.00 

Head and Neck 0.00 0.03 0.00 0.02 0.00 0.03 0.40 0.27 0.00 0.00 0.03 0.02 0.00 0.03 0.00 0.01 
Kidney 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.14 0.01 0.00 0.00 0.14 0.00 0.00 0.00 
Liver 0.00 ND 0.06 ND 0.00 ND 0.20 0.09 0.13 0.01 0.00 0.01 0.00 ND 0.10 0.05 
Lung 0.00 0.04 0.00 0.03 0.06 0.02 0.08 0.12 0.00 0.02 0.06 0.06 0.10 0.06 0.04 0.01 

Lymphoma 0.00 ND 0.03 ND ND ND ND ND 0.00 ND ND ND 0.06 ND ND ND 
Melanoma 0.00 0.03 0.13 0.01 0.00 0.00 0.05 0.06 0.07 0.04 0.02 0.01 0.07 0.04 0.00 0.01 

Ovarian 0.00 0.06 0.00 0.01 0.08 0.03 0.05 0.07 0.05 0.00 0.08 0.21 0.05 0.03 0.05 0.09 
Pancreas 0.00 ND 0.00 ND 0.03 0.00 0.00 0.00 0.00 ND 0.00 0.02 0.00 ND 0.00 0.00 
Sarcoma 0.00 0.01 0.25 0.00 ND 0.00 ND 0.08 0.00 0.00 ND 0.00 0.00 0.01 ND 0.09 
Upper GI 0.46 0.09 0.08 0.04 0.17 0.13 0.17 0.07 0.07 0.04 0.08 0.10 0.08 0.03 0.00 0.03 
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Table 6: Pearson correlation statistics for inter-correlations between candidate palbociclib response biomarkers. r: Pearson correlation coefficient, p: p-value, N: number of 

cell lines used to determine correlation. 

 

 

CDH1 TOPBP1 17q12-21 11q13 1q32 MLL TSHR SMO FANCA NBN RB1 19q13 8q13 13q14

RLOFPM RLOFPM AMP AMP AMP DAPM DAPM DAPM RLOFPM RLOFPM RLOFPM AMP AMP HD

CDH1 r 1 -0.04444 0.23875 0.08761 0.21678 0.02956 0.04222 0.04966 -0.0549 -0.04724 -0.0549 -0.06844 -0.04762 -0.05157

RLOFPM p 0.4932 0.0008 0.2233 0.0023 0.6486 0.5151 0.4438 0.3971 0.4664 0.3971 0.3418 0.5086 0.474

N 240 240 195 195 195 240 240 240 240 240 240 195 195 195

TOPBP1 r -0.04444 1 0.04831 -0.06077 -0.02632 -0.0426 -0.03872 -0.03665 -0.0426 -0.03665 -0.0426 -0.04154 -0.0289 -0.0313

RLOFPM p 0.4932 0.5025 0.3987 0.715 0.5113 0.5505 0.572 0.5113 0.572 0.5113 0.5642 0.6883 0.664

N 240 240 195 195 195 240 240 240 240 240 240 195 195 195

17q12-21 r 0.23875 0.04831 1 0.10821 0.09092 -0.01324 -0.07642 -0.07642 0.02189 0.00243 -0.07642 -0.00593 0.09092 -0.05281

AMP p 0.0008 0.5025 0.0543 0.1061 0.8543 0.2883 0.2883 0.7613 0.9731 0.2883 0.9162 0.1061 0.3487

N 195 195 317 317 317 195 195 195 195 195 195 317 317 317

11q13 r 0.08761 -0.06077 0.10821 1 0.22929 -0.0916 -0.00801 -0.08241 0.01162 0.06638 -0.08241 -0.07933 0.05386 -0.06661

AMP p 0.2233 0.3987 0.0543 <.0001 0.2028 0.9115 0.2521 0.8719 0.3565 0.2521 0.1588 0.3391 0.237

N 195 195 317 317 317 195 195 195 195 195 195 317 317 317

1q32 r 0.21678 -0.02632 0.09092 0.22929 1 -0.03966 -0.03568 -0.03568 -0.0313 -0.03568 -0.03568 0.0557 0.08514 -0.03085

AMP p 0.0023 0.715 0.1061 <.0001 0.582 0.6204 0.6204 0.664 0.6204 0.6204 0.3229 0.1304 0.5842

N 195 195 317 317 317 195 195 195 195 195 195 317 317 317

MLL r 0.02956 -0.0426 -0.01324 -0.0916 -0.03966 1 0.23918 0.05535 0.12281 -0.04528 0.03509 0.02988 0.08515 0.0723

DAPM p 0.6486 0.5113 0.8543 0.2028 0.582 0.0002 0.3933 0.0575 0.485 0.5886 0.6784 0.2366 0.3152

N 240 240 195 195 195 240 240 240 240 240 240 195 195 195

TSHR r 0.04222 -0.03872 -0.07642 -0.00801 -0.03568 0.23918 1 0.17835 0.14351 0.17835 0.14351 -0.05633 -0.03919 -0.04245

DAPM p 0.5151 0.5505 0.2883 0.9115 0.6204 0.0002 0.0056 0.0262 0.0056 0.0262 0.4341 0.5864 0.5557

N 240 240 195 195 195 240 240 240 240 240 240 195 195 195

SMO r 0.04966 -0.03665 -0.07642 -0.08241 -0.03568 0.05535 0.17835 1 0.05535 0.19192 -0.04528 -0.05633 -0.03919 -0.04245

DAPM p 0.4438 0.572 0.2883 0.2521 0.6204 0.3933 0.0056 0.3933 0.0028 0.485 0.4341 0.5864 0.5557

N 240 240 195 195 195 240 240 240 240 240 240 195 195 195

FANCA r -0.0549 -0.0426 0.02189 0.01162 -0.0313 0.12281 0.14351 0.05535 1 0.05535 0.03509 0.06529 -0.03438 0.11094

RLOFPM p 0.3971 0.5113 0.7613 0.8719 0.664 0.0575 0.0262 0.3933 0.3933 0.5886 0.3645 0.6333 0.1226

N 240 240 195 195 195 240 240 240 240 240 240 195 195 195

NBN r -0.04724 -0.03665 0.00243 0.06638 -0.03568 -0.04528 0.17835 0.19192 0.05535 1 -0.04528 -0.05633 -0.03919 -0.04245

RLOFPM p 0.4664 0.572 0.9731 0.3565 0.6204 0.485 0.0056 0.0028 0.3933 0.485 0.4341 0.5864 0.5557

N 240 240 195 195 195 240 240 240 240 240 240 195 195 195

RB1 r -0.0549 -0.0426 -0.07642 -0.08241 -0.03568 0.03509 0.14351 -0.04528 0.03509 -0.04528 1 -0.05633 -0.03919 -0.04245

RLOFPM p 0.3971 0.5113 0.2883 0.2521 0.6204 0.5886 0.0262 0.485 0.5886 0.485 0.4341 0.5864 0.5557

N 240 240 195 195 195 240 240 240 240 240 240 195 195 195

19q13 r -0.06844 -0.04154 -0.00593 -0.07933 0.0557 0.02988 -0.05633 -0.05633 0.06529 -0.05633 -0.05633 1 0.14814 0.04905

AMP p 0.3418 0.5642 0.9162 0.1588 0.3229 0.6784 0.4341 0.4341 0.3645 0.4341 0.4341 0.0082 0.3841

N 195 195 317 317 317 195 195 195 195 195 195 317 317 317

8q13 r -0.04762 -0.0289 0.09092 0.05386 0.08514 0.08515 -0.03919 -0.03919 -0.03438 -0.03919 -0.03919 0.14814 1 0.07781

AMP p 0.5086 0.6883 0.1061 0.3391 0.1304 0.2366 0.5864 0.5864 0.6333 0.5864 0.5864 0.0082 0.167

N 195 195 317 317 317 195 195 195 195 195 195 317 317 317

RB1 r -0.05157 -0.0313 -0.05281 -0.06661 -0.03085 0.0723 -0.04245 -0.04245 0.11094 -0.04245 -0.04245 0.04905 0.07781 1

HD p 0.474 0.664 0.3487 0.237 0.5842 0.3152 0.5557 0.5557 0.1226 0.5557 0.5557 0.3841 0.167

N 195 195 317 317 317 195 195 195 195 195 195 317 317 317
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Table 7: Final set of candidate biomarkers of palbociclib sensitivity and resistance. AMP: Chromosomal Amplification. HD: Homozygous Deletion. DAPM: Dominant, 

Activating Point Mutation. RLOFPM: Recessive Loss-Of-Function Point Mutation. 

SENSITIVITY RESISTANCE 

DAPMS RLOFPMS AMPS HDS DAPMS LOFPOINTS AMPS HDS 

 
CDH1 ERBB2   SMO RB1 CCNE1 RB1 

 
TOPBP1 CCND1   
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Table 8: Genotype-response associations for “any sensitivity biomarker” by cancer type. RR: Response Ratio. DNC:  Regression Model Did Not Converge. 

 

    
CUTOFF 1 CUTOFF 2 CUTOFF 3 

IC50 < 100nM IC50 < Q3 IC50 < Median 
Cancer Type Frequency RR 95% CI p-value RR 95% CI p-value RR 95% CI p-value 

Breast 23/47 3.07 1.34 - 6.98 0.01 2.46 1.27 - 4.75 0.01 1.62 1.11 - 2.36 0.01 
Colon 3/25 1.83 0.34 - 10.44 0.52 1.47 0.29 - 7.89 0.67 1.05 0.45 - 2.36 0.92 

Head and Neck 12/30 1.50 0.37 - 6.20 0.57 0.86 0.33 - 2.29 0.76 1.25 0.83 - 1.87 0.29 
Kidney 0/25 DNC DNC DNC DNC DNC DNC DNC DNC DNC 
Liver 5/20 DNC DNC DNC DNC DNC DNC DNC DNC DNC 
Lung 7/52 1.84 0.51 - 6.94 0.38 1.29 0.38 - 4.56 0.70 1.07 0.44 - 2.66 0.88 

Lymphoma 1/31 DNC DNC DNC DNC DNC DNC DNC DNC DNC 
Melanoma 4/45 DNC DNC DNC DNC DNC DNC DNC DNC DNC 

Ovarian 5/39 1.70 0.28 - 11.39 0.60 1.70 0.28 - 11.40 0.60 1.70 0.52 - 5.64 0.40 
Pancreas 1/29 DNC DNC DNC DNC DNC DNC DNC DNC DNC 
Sarcoma 1/5 DNC DNC DNC DNC DNC DNC DNC DNC DNC 
Upper GI 8/14 1.50 0.40 - 5.61 0.55 1.25 0.48 - 3.24 0.65 1.31 0.70 - 2.42 2.45 
Overall 71/362 2.63 1.75 - 3.96 < 0.0001 2.02 1.44 - 2.82 < 0.0001 1.56 1.29 - 1.89 < 0.0001 
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Table 9: Genotype-response associations for “any resistance biomarker” by cancer type. RR: Response Ratio. DNC:  Regression Model Did Not Converge. 

 

    
CUTOFF 1 CUTOFF 2 CUTOFF 3 

IC50 < 100nM IC50 < Q3 IC50 < Median 
Cancer Type Frequency RR 95% CI p-value RR 95% CI p-value RR 95% CI p-value 

Breast 8/47 0.02 0.003 - 0.18 < 0.01 0.22 0.04 - 1.18 0.08 0.15 0.03 - 0.82 0.03 
Colon 4/25 0.10 0.01 - 0.96 0.05 0.08 0.009 - 0.78 0.03 0.75 0.28 - 2.00 0.57 

Head and Neck 1/30 DNC DNC DNC DNC DNC DNC DNC DNC DNC 
Kidney 2/25 0.26 0.02 - 2.96 0.28 0.15 0.01 - 1.55 0.11 0.67 0.18 - 2.46 0.55 
Liver 4/20 DNC DNC DNC DNC DNC DNC 0.13 0.01 - 1.35 0.01 
Lung 10/52 0.05 0.006 - 0.38 < 0.01 0.03 0.004 - 0.28 < 0.01 0.02 0.002 - 0.15 < 0.01 

Lymphoma 2/31 0.66 0.05 - 9.09 0.76 0.33 0.03 - 3.76 0.37 1.61 0.41 - 6.39 0.40 
Melanoma 3/45 2.41 0.05 - 12.38 0.30 1.20 0.26 - 5.60 0.81 0.53 0.12 - 2.35 0.41 

Ovarian 7/32 0.09 0.01 - 0.81 0.03 0.09 0.01 - 0.81 0.01 0.54 0.09 - 3.12 0.09 
Pancreas 0/29 DNC DNC DNC DNC DNC DNC DNC DNC DNC 
Sarcoma 0/5 DNC DNC DNC DNC DNC DNC DNC DNC DNC 
Upper GI 3/11 0.06 0.006 - 0.54 0.01 0.54 0.12 - 2.49 0.43 0.38 0.09 - 1.65 0.20 
Overall 44/362 0.11 0.02 - 0.75 0.02 0.32 0.12 - 0.80 0.02 0.36 0.20-0.66 0.001 
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Table 10: Crude and adjusted genotype response associations for the collapsed biomarker variables. Adjusted by growth rate and cancer type. 

  
CUTOFF 1 

IC50 < 100nM 
CUTOFF 2 
IC50 < Q3 

CUTOFF 3 
IC50 < Median 

  Crude (95% CI) Adj (95% CI) Crude (95% CI) Adj (95% CI) Crude (95% CI) Adj (95% CI) 
Any Sensitivity Biomarker 2.63 (1.75-3.96) 1.38 (0.86-2.24) 2.02 (1.44-2.82) 1.15 (0.79-1.68) 1.56 (1.29-1.89) 1.21 (0.96-1.51) 
Any Resistance Biomarker 0.11 (0.02-0.75) 0.24 (0.08-0.68) 0.32 (0.12-0.80) 0.42 (0.20-0.88) 0.36 (0.20-0.66) 0.42 (0.25-0.72) 
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Table 11: Kappa test of inter-rater agreement for genotyping calls in UCLA and CCLE copy number alteration datasets. CAN: Copy Number Alteration. Amp: Amplification. HD: 
Homozygous Deletion. CCLE: Cancer Cell Line Encyclopedia. 

CNA 
# Cell Lines Altered 

in UCLA Dataset 
# Cell Lines Altered 

in CCLE Dataset 
Overlapping Kappa 

CCND1 Amp 25 21 20 0.87 

CCNE1 Amp 12 6 6 0.65 

ERBB2 Amp 21 20 19 0.92 

RB1 HD 7 6 6 0.92 
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Supplemental tables: 
 

Supplemental Table S1 (attached as excel file): Palbociclib response data for all UCLATORL cell lines. IC values are 

the geometric mean of duplicate runs. 
 

Supplemental Table S2 (attached as excel file): List of candidate oncogenes included in all four genomics datasets 

used in genotype-response association testing. AMP: Chromosomal Amplification, HD: Chromosomal Homozygous 

Deletion, DAPM: Dominant Activating Point Mutation, RLOFPM: Recessive Loss-Of-Function Point Mutation. 
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Supplemental Table S3: Association between growth rate and palbociclib sensitivity by cancer type. 
 

  
CUTOFF 1 CUTOFF 2 CUTOFF 3 

IC50 < 100nM IC50 < Q3 IC50 < Median 
PrimarySite RR 95% CI RR 95% CI RR 95% CI 

Breast 0.55 0.39 -0 .78 0.64 0.49 - 0.83 0.88 0.75 - 1.04 
Colon 0.43 0.24 - 0.76 0.59 0.33 - 1.06 0.94 0.75 - 1.19 

Head and Neck 0.23 0.10 - 0.50 0.52 0.29 - 0.93 0.82 0.58 - 1.16 
Kidney 0.46 0.23 - 0.92 0.42 0.27 - 0.65 0.72 0.53 - 0.97 
Liver DNC DNC 3.27 1.67 - 6.39 0.89 0.40 - 1.99 
Lung 0.38 0.20 - 0.73 0.51 0.23 - 0.88 0.63 0.47 - 0.85 

Lymphoma 0.29 0.14 - 0.57 0.43 0.22 - 0.82 0.65 0.41 - 1.02 
Melanoma 0.54 0.34 - 0.85 0.67 0.47 - 0.96 0.78 0.66 - 0.91 

Ovarian 0.61 0.32 - 1.17 0.61 0.32 - 1.17 0.99 0.61 - 1.59 
Pancreas 0.35 0.16 - 0.77 0.35 0.16 - 0.77 0.47 0.30 - 0.74 
Sarcoma DNC DNC 0.25 0.12 - 0.52 0.25 0.12 - 0.52 
Upper GI 0.51 0.22 - 1.18 0.7 0.38 - 1.29 0.81 0.56 - 1.17 

Total: 0.48 0.41 - 0.56 0.59 0.52 - 0.68 0.78 0.72 - 0.84 
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Supplemental Table S4: Frequency of CDKN2A deletion in UCLATORL and TCGA datasets 
 

Gene: CDKN2A 

Alteration: HD 

  UCLA TCGA 

Breast 0.20 0.04 

Colon 0.00 0.02 

Head and Neck 0.44 0.28 

Kidney 0.59 0.03 

Liver 0.15 0.03 

Lung 0.36 0.20 

Lymphoma ND ND 

Melanoma 0.45 0.31 

Ovarian 0.23 0.06 

Pancreas 0.48 0.22 

Sarcoma ND 0.15 

Upper GI 0.46 0.10 
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