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Interactions between statistical aggregation and hypothesis testing mechanisms 

during word learning 
 

Alexa R. Romberg and Chen Yu 

{aromberg, chenyu}@indiana.edu 
Department of Psychological and Brain Sciences, 1101 E. 10th Street 

Bloomington, IN 47405 USA 

 

Abstract 

Adults, children and infants are all able to infer likely word 
meanings based on the relative frequency with which labels 
and referents appear together (e.g., Smith & Yu, 2007; Yu & 
Smith, 2008). However, the extent to which learners rely on 
aggregation of co-occurrence statistics vs. test specific 
hypotheses to infer mappings is currently a matter of 
significant uncertainty (Smith & Yu, 2012), exacerbated by the 
different experimental methods used to test learning 
mechanisms. Real world word learning is likely to involve a 
combination of statistical aggregation and active hypothesis 
testing. The current experiment investigates how these two 
learning mechanisms interact during word learning by having 
participants respond to a subset of items during a cross-
situational word learning task. We find that hypothesis-testing 
is most effective when informed by statistical information and 
that the process of hypothesis-testing draws attention away 
from the remaining set of items. 

Keywords: word learning; statistical learning; language 
acquisition; cross-situational learning; learning mechanisms 

Introduction 

In the past several years evidence has accumulated that 

infants, children and adults are able to aggregate information 

across multiple ambiguous contexts to disambiguate a word-

referent mapping (e.g., Scott & Fisher, 2011; Smith & Yu, 

2008; Suanda & Namy, 2012; Trueswell, Medina, Hafri & 

Gleitman, 2013; Yu & Smith, 2007). The learning 

mechanisms that learners use to do this cross-situational 

word learning are currently under debate, contrasting 

hypothesis testing (HT) with associative learning (AL; 

Koehne, Trueswell & Gleitman, 2013; Smith & Yu, 2012; 

Trueswell et al., 2013). 

Within associative theories, statistical computations 

emerge from the strengthening and weakening of 

associations as a function of co-occurrence reliability and 

competition among associations. Within hypothesis testing 

theories, conceptually coherent hypotheses are confirmed or 

disconfirmed through a variety of procedures. While both of 

these frameworks are consistent with learners inferring 

mappings between words and referents that consistently co-

occur, they offer fundamentally different characterizations of 

what it means to be a statistical learner. Accordingly, two 

quite different experimental paradigms have been used to 

investigate cross-situational word learning. In the paradigm 

supporting hypothesis testing, each trial has a One:Many 

structure, providing participants with a single auditory label 

and several (often 5) objects to view (Koehne et al., 2013; 

Trueswell et al., 2013). Versions in which participants have 

responded with a selection of the word’s referent on each trial 

have produced similar results as versions in which they 

simply observe the trials (e.g., Trueswell et al., 2013). 

The findings from the HT paradigm demonstrate clearly 

the power of correctly hypothesizing a word’s meaning: 

Participants who select the correct referent for a label on a 

given trial are more likely to select the correct referent for 

that label on future trials than participants who made an 

incorrect selection (Koehne et al., 2013; Trueswell et al., 

2013; see also Medina, Snedeker, Trueswell & Gleitman, 

2011). Thus, researchers employing the HT paradigm have 

concluded that the participants learn by forming a single 

hypothesis for the likely label-object mapping and do not 

store multiple word-object occurrences at the same time. 

However, overall learning effects are relatively modest. 

Participants responded correctly on approximately 33% of 

the 12 trials in the final block of Experiment 1 (their 5th 

exposure to the label) in Trueswell et al., (2013), correctly 

selecting 1.6 more referents than expected by chance.  

In the “AL” paradigm, each trial has a Many:Many 

structure. Participants are provided with multiple labels and 

objects, often 4 of each when adults are tested (e.g., Romberg 

& Yu, 2013; Suanda & Namy, 2012; Yu & Smith, 2007). The 

paradigm consists of a training phase, during which 

participants do not make any responses, and a test phase 

during which participants select the most likely referent from 

an array of objects presented in the study. Overall learning 

effects are higher in this paradigm compared with the HT 

paradigm. For example, adult participants responded 

correctly on 35% of the 18 test trials in Romberg & Yu 

(2013), correctly selecting 5.3 more referents than expected 

by chance (after 6 exposures to each label). The authors 

employing the AL paradigm have argued that participants 

learn by aggregating co-occurrence statistics across trials and 

encode multiple associations between labels and objects 

presented on individual trials. 

 The two paradigms set up very different processing tasks 

for the participants, as illustrated in Figure 1. The HT 

paradigm is characterized by repeated oscillation between 

processing and retrieval. The task structure either explicitly 

or implicitly encourages participants to engage in some 

computation (e.g., updating representations of statistical 

structure) and retrieval (i.e., bringing a hypothesis to explicit 

awareness) on every trial. The fact that only 1 label is 

provided means that participants have limited ability to 

“control” information flow because they have no choice 

about which label to select for attention and can only 

associate objects with 1 label on each trial. The AL paradigm, 

in contrast, is characterized by a continuous sequence of 
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information during which time participants are unconstrained 

as to both which subset of items they select for attention or 

when or how they engage in computations on data collected. 

Participants may or may not engage in explicit hypothesis-

testing in the AL paradigm, but they have the opportunity to 

encode associations between multiple objects and multiple 

labels, unlike the HT paradigm. Thus, one reason why 

researchers employing these different paradigms have 

reached different conclusions about the mechanisms that 

support learning is that the paradigms themselves vary in the 

extent to which they afford the  different mechanisms. 

 

 
 

Figure 1. Schematic of the “Hypothesis Testing” (a) and the 

“Associative Learning” (b) experimental paradigms from a 

processing perspective. 

 

Given that participants’ data encoding and computations 

are influenced by the task structure, we sought to create a new 

cross-situational word learning paradigm that afforded both 

hypothesis testing and statistical aggregation. A task that 

clearly affords both mechanisms is necessary to study how 

these mechanisms might influence one another. In addition, a 

hybrid paradigm is highly appealing as a more ecologically 

valid model of word learning. After all, it is not the case that 

leaners must actively guess a word’s meaning every time they 

hear it, or that they passively compute statistics without 

committing to particular mappings. Rather, real world 

learning involves both the implicit collection of statistical 

structure as well as explicit hypothesis testing.  

A schematic of the hybrid (Mixed) paradigm from a 

processing perspective is provided in Figure 2. The task is 

structured so that One:Many trials are interleaved with 

Many:Many trials. This provides learners with opportunities 

to aggregate information across trials to potentially inform 

their hypotheses on the One:Many trials. Experiment 1 

compares overall learning outcomes from the hybrid 

paradigm with those of the AL paradigm. Experiment 2 

investigates the interaction between statistical aggregation 

and hypothesis testing within the hybrid paradigm. 

 
 

Figure 2. Schematic of the novel hybrid paradigm. 

Experiment 1 

The different learning rates from the HT and AL paradigms 

discussed in the introduction raises the question of whether 

the modest learning results reported by Trueswell et al. 

(2013) are because the One:Many trial structure reduces 

participants’ ability to efficiently use co-occurrence 

information available to them. If this is true, we would expect 

poorer performance in our hybrid paradigm than in a fully 

Many:Many paradigm. In Experiment 1 our goal was to test 

for differences between these paradigms while giving 

participants sufficient exposure that good performance 

should be attainable.  

Method 

Participants Thirty undergraduates participated for course 

credit (16 females). 

 

Materials Auditory stimuli consisted of 36 nonce words 

synthesized with the Ivona voice Jennifer using the 

TextSpeaker program. Nonce words consisted of one or two 

syllables (264 ms to 795 ms in duration) and followed 

English phonotactics (e.g., rud, vot, koom, vamey, genism, 

feddy). Visual stimuli were 36 color photographs or 3D 

models of novel or real objects that were not readily 

nameable. Images, approximately 3” square, were displayed 

on a white background in the corners of a 17” monitor. 

 

Experiment Design Each participant completed 2 cross-

situational word learning tasks within the 40 minute session. 

Each task included 18 different label-object pairs and 

consisted of a training phase, whose structure varied between 

tasks, and a test phase, whose structure was the same across 

tasks. Examples of the training phases are given in Figure 3. 

The Mixed Condition had 2 identical blocks of 35 training 

trials. Within each block, there were 27 “4x4” (i.e., Many: 

Many) trials on which 4 objects were shown and 4 labels were 

played. Participants were told that the order of the labels did 

not correspond in any way with the positions of the objects 

on the screen. Eight trials within each block were “1x4” trials 

(i.e., One:Many) on which 4 objects were shown and 1 label 

was played. On 1x4 trials only, the word “Select” appeared 

in the middle of the screen, instructing participants to select 

the object they thought was the most likely referent of the 

word. No feedback was given on their selection. The 1x4 

trials were interleaved with the 4x4 trials, with approximately 

3 4x4 trials between each 1x4 trial. A different label was 

played on every 1x4 trial, so that 8 labels in total were 
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“probed”. For all training trials, the referent for the label(s) 

played was always present. 

This design means that the 8 label-object pairs that were 

probed in the 1x4 trials were presented 14 times during the 

training, 12 times on 4x4 trials and twice on 1x4 trials. The 

10 unprobed label-object pairs (i.e., whose labels were not 

played on 1x4 trials) were presented on 12 4x4 training trials. 

All 18 objects were distributed as evenly as possible as foils 

across the 1x4 trials: Within each block, all 8 of the probed 

objects appeared as a foil on another 1x4 trial, 6 of the 

unprobed objects were foils on two 1x4 trials and 4 unprobed 

objects were foils on  a single 1x4 trial. 

The Many-Only Condition had two identical blocks of 29 

training trials. All trials were 4x4 trials and no responses were 

collected during training. These two within-subjects 

conditions were designed to be as parallel as possible. Each 

label and object within each condition was randomly 

assigned to a number from 1 to 18. These 18 items were 

pseudo-randomly grouped into the 27 4x4 training trials with 

the constraint that no more than 1 pair was presented on 

consecutive trials. Thus, while the actual objects and labels 

were unique to each task, the same sequence of 27 4x4 trials 

were used across both conditions (e.g., pair 1 was presented 

on the same 4x4 trials and the label and object were presented 

in the same positions within each of those trials for both 

tasks). To equalize the number of repetitions for each pair 

across conditions, the 8 pairs in the Many-Only condition that 

corresponded to the Probed items in the Mixed condition 

were presented on one additional 4x4 trial within each block. 

These two extra 4x4 trials were inserted 1/3 and 2/3 of the 

way through the 27 other trials. 

  Training was followed immediately by test for both 

conditions. On each test trial, 1 label was played and 

participants selected its most likely referent from an array of 

all 18 objects presented in that condition. Each label was 

tested once with the order randomized for each participant. 

To control for item effects each participant was randomly 

assigned to one of 2 different stimulus sets. The stimulus sets 

contained the same 36 label-object pairs, but the pairs were 

distributed between the conditions in different random 

assignments for each set. Additionally, participants were 

randomly assigned to one of 2 different trial orders. The trial 

orders varied both in the order of items within and across 

trials and in the exact placement of the 1x4 trials. 

 

Procedure Participants were tested individually. They were 

given an overview of the experiment and informed consent 

was obtained. The order of the conditions was randomized 

for each participant. Each word-learning task was preceded 

by a set of slides with the specific instructions for that task. 

All participants completed all conditions. 

Results and Discussion 

Accuracy in both conditions was close to ceiling, with 1/3 of 

the participants getting 17 or 18 of the 18 mappings correct 

for each task. There was no difference between conditions in 

proportion of mappings learned (Response: M=0.861,  

 
Figure 3 Schematic of the sequence of training trials used in 

Experiments 1 & 2 in the (a) Mixed and Mixed-No Response 

conditions and (b) Many-Only condition. “4x4” trials 

presented 4 words and 4 objects and “1x4” trials presented 1 

word and 4 objects. 

 

SD=0.29; No-Response: M=0.889, SD=0.35). The number of 

training trials in the current experiment was approximately 

double that used in previously reported studies using the 

Many:Many paradigm (e.g., Yu & Smith, 2007; Romberg & 

Yu, 2013). The performance is a marked increase over the 

mean of 35% reported by Romberg & Yu (2013), even 

though all training trials were highly ambiguous.  

These results demonstrate that statistical learning can be a 

highly efficient process. The training phase lasted less than 

15 minutes, yet many participants were able to learn 18 new  

mappings. Also important is that performance across the two 

conditions was very similar, demonstrating that rapid 

learning is possible from both Many:Many trials alone and 

from a mixture of One:Many and Many:Many.  

Experiment 2 

The ceiling level performance in Experiment 1 prevented 

investigation into how associative learning and hypothesis-

testing mechanisms might interact. Experiment 2 addresses 

this question by reducing the number of training trials so that 

any potential differences would be detectable, either between 

the conditions or between the different types of items within 

each condition. We also include a third condition, Mixed-

NoResponse, with the same structure as the Mixed condition 

but in which participants are not asked to actually select a 

referent on the 1x4 Probe trials. This condition addresses the 

possibility that the act of responding in itself may drive any 

observed differences between the Mixed and the Many-Only 

conditions.  

A second way to test for interactions between the two 

learning mechanisms is to compare learning within and 

between conditions on the Probed items (for which 

participants are encouraged to form hypotheses in the two 

Mixed conditions) and the Unprobed items (for which no 

hypothesis-testing was encouraged in any condition). If 

hypothesis-testing is the primary mechanism that participants 

are using regardless of trial structure, then performance on 

the Probed and Unprobed items should be equivalent within 

the Mixed conditions. However, if participants rely on both 

hypothesis-testing and associative learning there may be a 
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difference in learning outcome across the two item types 

within the Mixed conditions.  

Method 

Participants Eighty-seven undergraduates participated for 

course credit. Three participants were excluded for scoring 

less than 6% correct in each of the three conditions. Data 

from 4 participants was lost due to technical error. The final 

sample consisted of 80 participants (42 females). 

 

Materials The stimuli included the 36 words and objects 

used in Experiment 1 as well as 18 additional words and 

objects created in the same manner. 

 

Experimental Design and Procedure Participants each 

completed 3 cross-situational word learning tasks within the 

45 minute session. The Mixed and Many-Only conditions 

were identical to those in Experiment 1, but participants were 

only given 1 block of training trials for a total of 35 and 29 

training trials, respectively. The third condition, Mixed-

NoResponse was identical to the Mixed condition except that 

participants were not instructed to make a selection on the 

1x4 trials. The procedure was the same as Experiment 1.  

Results and Discussion 

Hypothesis-testing influences associative learning 

In contrast to Experiment 1, participants learned more 

mappings in the Many-Only condition than those that 

encouraged hypothesis-testing. Participants learned the 

highest proportion of mappings in the Many-Only condition 

(M=0.456, SD=0.312) and lowest in the Mixed condition 

(M=0.394, SD=0.300). The Mixed-NoResponse condition 

fell between the other two (M=0.403, SD=0.294). A logistic 

mixed-effect model was fit to the raw data with Condition as 

a fixed effect and random effects of Subject on the intercept 

and on the slope of Condition. Condition was dummy coded 

with Many-Only as the reference. The model confirmed a 

significant contrast between the Mixed and Many-Only 

conditions (b=-0.428, z=2.34, p=0.02) and a marginally 

significant contrast between the Mixed-NoResponse and 

Many-Only conditions (b=-0.336, z=1.84, p=0.07).  

Within the Mixed conditions, however, hypothesis-testing 

was related to better learning. The mean proportion of items 

correct for the Probed and Unprobed items for each condition 

is provided in Figure 4. Note that in the Many-Only condition 

the Probed items were not actually probed (i.e. labels 

presented on 1x4 trials) but were presented one extra time 

relative to the Unprobed items, as in the other conditions. 

Thus, the advantage for Probed items in the Mixed conditions 

cannot be due to the extra exposure. 

                                                           
1 There are fewer Probed items (8) than Unprobed items (10), 

raising the concern that the lower accuracy for Unprobed items is 

driven by the smaller gain for each correct item.  To address this, a 

series of logistic mixed effect models were fit to responses for the 8 

Probed items and each of the 45 unique subsets of 8 Unprobed items 

 
Figure 4. Mean proportion of correct test responses (SE) for 

each condition and item type in Experiment 2.  

 

Accuracy on Probed items is equivalent across the 3 

conditions while accuracy on Unprobed items is lower in the 

Mixed conditions. A logistic mixed-effect model confirms 

this result. The model had Item Type (Probed vs. Unprobed) 

and Condition (Mixed, Mixed-NoResponse and Many-Only) 

as fixed effects and random effects of Subject on the intercept 

and on the Item Type X Condition interaction. A significant 

contrast between the Many-Only and Mixed conditions (b=-

0.654, z=3.56, p=0.004) was qualified by a significant 

interaction between  that contrast and Item Type (b=0.534, 

z=2.02, p=0.043).  The contrast between Many-Only and 

Mixed-NoResponse was also significant (b=-0.410, z=2.26, 

p=0.024), but the interaction between that contrast and Item 

Type was not (b=0.187, z<1). Models fit to the individual 

conditions confirm a significant difference between item 

types for the Mixed condition (b=0.481, z=3.70, p<0.001), a 

marginal difference for the Mixed-NoResponse condition 

(b=0.219, z=1.71, p=0.09) and no difference in the Many-

Only condition (b=0.043, z<1).1 

The decrement in overall learning, and specifically in 

learning of the Unprobed mappings, suggests that 

encouraging hypothesis-testing on a subset of items 

negatively influenced learning of the rest of the set. This 

implies that the processes participants used on the 1x4 trials 

were different than those used on the 4x4 trials. The fact that 

the Mixed-NoResponse condition was consistently in 

between the other two suggests that being asked to respond 

exacerbated effects of the 1x4 trials, perhaps by making 

hypotheses more explicit or by limiting other processing that 

participants could do. 

Associative learning influences hypothesis-testing 

To examine the interactions between associative learning 

and hypothesis-testing further, the Mixed condition was 

for the Response-Mixed and Many-Only conditions. P-values for 

the interaction were < 0.05 in 33 of the 45 models. All 45 models fit 

to each the individual conditions found a significant difference 

between Probed and Unprobed items for the Mixed condition and 

no difference for the Many-Only condition.  
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analyzed in detail. Prior findings suggest that forming a 

correct hypothesis can be an important step in word learning 

(Medina et al., 2011; Trueswell et al., 2013; Yu, Zhong & 

Fricker, 2012). Consistent with this, in the Mixed condition  

participants ’test  accuracy on the 8 Probed items was 

influenced by whether they had selected the correct object on 

the corresponding 1x4 trial during training. Overall, 

participants selected the correct object on half the 1x4 trials 

during training (M=0.516, SD=0.229). Participants were 

significantly more accurate on the test for Probed items they 

had gotten correct during training (M=0.550, SD=0.389) than 

on Probed items they had gotten incorrect (M=0.333, 

SD=0.367). A logistic mixed-effects regression model 

confirms this difference (b=1.54, z=7.47, p < 0.001).  

The test mean for Probed items that participants got 

incorrect during training is very close to the test mean for the 

Unprobed items in this condition and well above the chance 

baseline of 0.056 (random selection from the 18 items present 

at test). This result demonstrates that incorrect hypotheses are 

not as fatal as prior studies have suggested (Medina et al., 

2011). Rather, participants draw on the co-occurrence 

structure to infer likely mappings regardless of whether they 

were encouraged to form a hypothesis for that item. 

If the hypotheses learners made on 1x4 trials were 

informed by the co-occurrence statistics of the items present 

on the trial, two effects should be present. First, the number 

of prior exposures to the probed label-object pair should 

positively predict accurate selection, since learners would 

have accrued more examples of the pairing. Second, the 

number of times the probed pair had previously co-occurred 

with each of the other objects present on the trial should 

negatively predict accurate selection, since those objects have 

a partial association with the probed label. Both of these 

effects were found in the current data. A logistic mixed-

effects model was fit to participants’ accuracy on the 8 1x4 

training trials. Probe Exposure (the number of repetitions of 

the probed label-object pair up to that point in the 

experiment) and Total Foil Co-occurrence (the sum of the 

number of times each of the 3 foil objects had co-occurred 

with the probed item up to that point in the experiment) were 

entered as fixed effects and random effects of Subject and 

Order on the intercept were included (Order was included 

because the values of Probe Exposure and Foil-Co-

occurrence vary between the two different trial orders used). 

As predicted, Probe exposure had a significant positive effect 

on accuracy (b=0.486, z=5.56, p< 0.001) and Total Foil Co-

occurrence had a significant negative effect (b=-0.256,  

z=2.14, p= 0.032). 

General Discussion 

Interactions between learning mechanisms 

In Experiment 1, participants performed close to ceiling on 

both the Mixed and the Many-Only conditions. However, 

decreasing the amount of training in Experiment 2 resulted in 

significant differences between the conditions. This pattern 

suggests that encouraging hypothesis-testing during 

statistical word learning initially slows learning but that this 

disadvantage disappears with sufficient training. 

The initial decrement in learning rate may be due to the 

process of hypothesis-testing interfering with participants’ 

more implicit associative learning. Participants learned a 

smaller proportion of the Unprobed items in the Mixed 

condition than in the Many-Only condition, indicating that 

forming explicit hypotheses about some items influenced 

how effectively participants tracked co-occurrences for the 

other items. When participants were not required to actually 

click on a referent on the One:Many trials, the negative 

effects of hypothesis testing were partially ameliorated. The 

specific reason for this effect of clicking depends on the 

pathway for the influence of hypothesis-testing on 

associative learning (considered below). However, the most 

general explanation is that because participants had no 

specific task on the One:Many trials when a response was not 

required, the processes they used on the One:Many trials 

were more similar to those used on the Many:Many trials. 

Why might hypothesis-testing be detrimental to associative 

learning? One possibility is that having participants make a 

response to a subset of items caused them to focus their 

attention primarily on that subset. Less attention to the other 

items would result in learning less about them. While 

intuitively appealing, this explanation is inconsistent with the 

current data. Participants did not know ahead of time which 

labels would be presented on the One:Many trials. This 

account would therefore make two predictions: First, that 

participants best learn the items that were probed first, since 

participants would have the most exposures to those items 

post-probe. Second, that accuracy in the test phase would be 

independent of response on the probe trials, since the primary 

contribution of the probe trial would be to spur participants 

to attend to the probed label. However, both of these 

predictions are opposite what was found. Accuracy at test 

depended strongly on the accuracy of participants’ responses 

on the One:Many trials. Participants were more likely to 

respond correctly on later-probed items, suggesting that 

much of the learning occurred before the actual probe trial, 

rather than after. 

A second possible explanation is that the process of 

explicit hypothesis testing interferes with information 

aggregation in some way. As each trial unfolds, participants 

encode (at least some) of the labels and objects presented and 

presumably do computations to update the associative 

strength between various label-object pairs. Such updating 

likely involves not just the items present on the current trial, 

but extends to possible inferences about other items 

(Romberg & Yu, 2013). When no response is required, 

participants can spend the entire trial duration in these 

processes (see Figure 1b). In such cases participants receive 

a fairly uniform flow of information. Requiring a response 

punctuates this information processing with additional 

retrieval and response (motor) processes (see Figure 1a).   

The current data cannot tell us exactly how retrieval and 

response interfere with information processing. Many non-

mutually exclusive possibilities exist. Retrieval and response 
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may interfere with encoding and updating directly by 

interrupting the other processes. Retrieval of incorrect 

information may cause incorrect updating (e.g., 

strengthening an unattested association or one that the current 

evidence should weaken). Such incorrect updating may be 

one reason that forming an incorrect hypothesis had such a 

negative effect on learning in both the present study and prior 

work (Koehne et al., 2013; Medina et al., 2011; Trueswell et 

al., 2013). It is also possible that focusing attention on a 

response causes forgetting of previous associations. 

Additional experiments are required to explore these 

possibilities.  

Internally directed attention facilitates learning 

While it seems reasonable to infer likely learning 

mechanisms, such as hypothesis-testing and associative 

learning from the affordances of the different paradigms, our 

current data cannot ultimately tell us what  processes learners 

employed. However, the structure of each paradigm and the 

instructions participants received are completely known and 

the data reveal clear differences between paradigms. 

Our results suggest that learning is facilitated when 

participants freely choose how to allocate their attention and 

computational processing. While the Mixed condition was 

designed to encourage explicit hypothesis testing for a subset 

of items, participants may very well have formed and tested 

hypotheses in the Many-Only condition as well. The primary 

difference between the conditions was the extent to which 

participants 1) controlled the distribution of their attention 

between the items and 2) selected which items to form 

explicit hypotheses about.  

On Many:Many trials, participants could decide whether to 

attempt to retrieve specific labels for objects during the trial 

or to make an explicit link between a particular label and 

object. They could choose to select some labels and objects 

for attention while ignoring others. Or they could attempt to 

store as much information from each trial as possible. In 

contrast, on One:Many trials participants had to focus their 

attention on the one label provided and (when a response was 

required) attempt to match the label with one of the objects 

present. 

There is strong evidence from Experiment 2 that 

participants’ hypotheses are informed by co-occurrence 

statistics. The lack of explicit structure on Many:Many trials, 

as well as the large amount of information available, allows 

learners to (consciously or unconsciously) flexibly adapt 

their attention to particular information levels. For example, 

they may neglect labels/objects that are already known  or 

“out of reach” and attend largely to those for which they have 

some partial knowledge. There is evidence from other 

domains that attention is biased toward input with a moderate 

rate of information (e.g., Kidd et al., 2012).  

The faster learning rate does not necessarily make the AL 

paradigm a better experimental model for word learning. 

Indeed, the Mixed condition was specifically designed to 

more closely model the type of information gathering 

punctuated by retrieval that is involved in word learning in 

the real world (as well as learning in other domains). The 

present results illustrate how incredibly sensitive learners are 

to the statistical structure of their environment. 

Understanding how hypotheses influence and are informed 

by statistical computations is a critical step for advancing the 

science of learning. 
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