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Abstract

Advanced Quadrature Selection for Monte Carlo Variance Reduction

by

Kelly L. Rowland

Doctor of Philosophy in Engineering – Nuclear Engineering

University of California, Berkeley

Assistant Professor Rachel N. Slaybaugh, Chair

Neutral particle radiation transport simulations are critical for radiation shielding and
deep penetration applications. Arriving at a solution for a given response of interest can
be computationally difficult because of the magnitude of particle attenuation often seen in
these shielding problems. Hybrid methods, which aim to synergize the individual favorable
aspects of deterministic and stochastic solution methods for solving the steady-state neu-
tron transport equation, are commonly used in radiation shielding applications to achieve
statistically meaningful results in a reduced amount of computational time and effort. The
current state of the art in hybrid calculations is the Consistent Adjoint-Driven Importance
Sampling (CADIS) and Forward-Weighted CADIS (FW-CADIS) methods, which generate
Monte Carlo variance reduction parameters based on deterministically-calculated scalar flux
solutions. For certain types of radiation shielding problems, however, results produced using
these methods suffer from unphysical oscillations in scalar flux solutions that are a product
of angular discretization. These aberrations are termed “ray effects”.

The Lagrange Discrete Ordinates (LDO) equations retain the formal structure of the
traditional discrete ordinates formulation of the neutron transport equation and mitigate
ray effects at high angular resolution. In this work, the LDO equations have been imple-
mented in the Exnihilo parallel neutral particle radiation transport framework, with the
deterministic scalar flux solutions passed to the Automated Variance Reduction Generator
(ADVANTG) software and the resultant Monte Carlo variance reduction parameters’ effi-
cacy assessed based on results from MCNP5. Studies were conducted in both the CADIS
and FW-CADIS contexts, with the LDO equations’ variance reduction parameters seeing
their best performance in the FW-CADIS method, especially for photon transport.
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Chapter 1

Introduction

The work covered in this dissertation includes the implementation of the Lagrange Dis-
crete Ordinates (LDO) equations in the Exnihilo parallel neutral particle radiation transport
framework for the purpose of using the equations’ solutions in Monte Carlo variance reduc-
tion parameter generation via the ADVANTG software to improve the results of simulations
run with MCNP5. We start with an analysis of deterministic scalar flux results from solving
the LDO equations compared against those of standard discrete ordinates quadrature set
types because the LDO equations have never before been implemented in a framework such
as Exnihilo. Then, we assess the performance of the Monte Carlo variance reduction param-
eters generated based on the forward and adjoint solutions from the various quadrature set
types in the contexts of both the Consistent Adjoint-Driven Importance Sampling (CADIS)
and the Forward-Weighted CADIS (FW-CADIS) methods.

1.1 Motivation

Radiation shielding is an important and interesting problem from various perspectives. Sim-
ulation of shielding scenarios is critical for health physics and nuclear security applications,
but arriving at a solution for a given response of interest (e.g., neutron flux at a given loca-
tion) can be computationally difficult in the context of the magnitude of particle attenuation
often seen in shielding problems.

The steady-state neutron transport equation (NTE), introduced below in Section 1.3, is
typically solved using either deterministic methods or stochastic (Monte Carlo) methods.
We will look at each of these solution methods in further detail in Chapter 2, but briefly
note here that both solution methods have individual strengths and weaknesses. So-called
“hybrid” methods aim to combine the favorable aspects of deterministic and Monte Carlo
methods to achieve better results. Although hybrid methods are used to significant effect
in radiation shielding problems, they do not entirely mitigate the negative aspects of the
combined simulation types.

One particular area of study where hybrid methods tend to fall short is in shielding
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problems with highly anisotropic particle movement and particle streaming pathways. This
is because the standard implementation of the CADIS and FW-CADIS methods is based
on scalar particle flux rather than angular particle flux. So, solutions from deterministic
calculations exclude information about how particles move toward a response of interest.
For problems with strong anisotropies in the particle flux, the importance map and biased
source developed using the standard space/energy treatment may not represent the real
importance well enough to sufficiently improve efficiency in the Monte Carlo calculation.

This work aims to gauge the performance of Monte Carlo biasing parameters based
on scalar flux solutions from solving the LDO equations. We will be employing the LDO
equations’ solutions in the standard CADIS and FW-CADIS methods to assess how well the
LDO representation’s unique treatment of scattering and asymmetry in angle incorporate
angular information into the resultant scalar flux solutions and corresponding Monte Carlo
biasing parameters.

1.2 Goals and Impacts

The primary goal of this work is to assess the forward and adjoint scalar flux solutions
of the Lagrange Discrete Ordinates equations as input for Monte Carlo variance reduction
parameter generation in the contexts of the CADIS and FW-CADIS methods. Additional
research objectives in support of the primary goal for this work include:

• Implement the LDO equations in a neutral particle radiation transport framework
designed to solve the traditional discrete ordinates form of the NTE.

• Choose a small variety of test cases in which to assess the various quadrature types’
deterministic scalar flux solutions for efficacy in Monte Carlo variance reduction pa-
rameter generation.

• Compare forward and adjoint scalar flux solutions resultant from the LDO equations
against those generated with standard discrete ordinates quadrature sets for the chosen
test scenarios.

• Test the impact of biasing parameters’ angular mesh refinement on Monte Carlo results
across various quadrature types.

In meeting these objectives as progress towards accomplishing the primary research goal, we
verify the relative accuracy of the deterministic solutions of the LDO equations and then
examine how they perform as the deterministic solver for hybrid methods. The test problems
used are those that challenge hybrid methods in general, and so we have generated a variety
of results of interest to the community at large.
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1.3 The Neutron Transport Equation

The way in which neutrons move, known as “neutron transport”, is governed by the time-
dependent neutron transport equation (NTE) [1]:

1

v

∂

∂t
ψ(r, E,Ω, t) + Ω · ∇ψ(r, E,Ω, t) + Σt(r, E)ψ(r, E,Ω, t) =∫ ∞

0

∫
4π

Σs(r, E
′ → E,Ω′ ·Ω)ψ(r, E ′,Ω′, t)dΩ′dE ′ +Q(r, E,Ω, t), (1.1)

where r is the neutron position, E is the energy of the neutron, Ω is the direction of travel of
the neutron, and t is the time. The combination of (r, E,Ω, t) is generally referred to as the
“phase space” of the particles. ψ denotes angular neutron flux, Σ represents the cross section
of a material, and Q is any additional source (fission, a fixed source, etc.) of neutrons.

We are often interested in situations in which the particle flux is not a function of time.
In these cases, we solve the time-independent (steady-state) neutron transport equation,
written as

Ω · ∇ψ(r, E,Ω) + Σt(r, E)ψ(r, E,Ω) =∫ ∞
0

∫
4π

Σs(r, E
′ → E,Ω′ ·Ω)ψ(r, E ′,Ω′)dΩ′dE ′ +Q(r, E,Ω). (1.2)

The steady-state neutron transport equation can be thought of as a balance equation
in which the neutron losses represented on the left-hand side of the equation are equal to
the neutron gains represented on the right-hand side of the equation [1]. The first term on
the left-hand side of the steady-state NTE accounts for all neutrons lost by streaming out
through the surface of the system being considered. The second term in the left-hand side
of the steady-state NTE accounts for all neutrons lost to collisions; this includes neutrons
lost via absorption as well as neutrons that exit the phase space of interest by scattering
into a different energy and angle. The right-hand side of the equation totals system gains by
summing up all neutrons that scatter into the phase space of interest from different energies
and angles along with neutrons created from the source. The scattering term depends not
on the individual angles Ω and Ω′ but on their dot product.

The derivative in the first term of the steady-state NTE suggests that we must prescribe
appropriate boundary conditions for the equation in order to solve the problem. The bound-
ary conditions depend on the given problem of interest and will be discussed in more detail
later. The following chapter will provide in-depth explanations of various solution methods
for the time-independent NTE.
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1.4 Dissertation Outline

The remainder of this dissertation is structured so as to provide a relevant theoretical back-
ground and discussion as a prelude to the eventual presentation of the results and analysis
arrived at in meeting the sundry and ultimate objectives listed above in Section 1.2. Chapter
2 provides a theoretical basis of the foundation of solution methods for the NTE, followed
by a discussion of pertinent work in the area of hybrid methods. Specific attention is given
to developments that aimed to incorporate angular information into Monte Carlo biasing
parameters; we will see in Section 2.3 that the interest in using the LDO equations’ solu-
tions for Monte Carlo variance reduction parameter generation stems from the unique way
in which the LDO equations treat particle scattering.

Transitioning from theory to practice, Chapter 3 examines the traditional discrete or-
dinates equations and the LDO equations from the perspective of implementing both sets
of equations in a neutral particle radiation transport software framework. Specific focus is
given on the differences in implementing the contrasting equations; a discussion of details
regarding the solution of the LDO equations in a framework designed to solve the conven-
tional discrete ordinates equations concludes the chapter. We note that the discussion in
Chapters 2 and 3 focuses on neutron transport, but the solution methods can be leveraged
for photon transport as well; Chapter 4 presents the test case scenarios examined in this work
with results from the various hybrid methodologies for both neutron and photon transport
problems. Chapter 5 concludes the dissertation with a summary review of the results and
analysis followed by a brief discussion of future work paths.
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Chapter 2

Background

This chapter provides information relevant to the core parts of this research, with a particu-
lar focus on areas relevant to the novel work presented. We start by discussing the two main
approaches to solving the NTE, Monte Carlo methods and deterministic methods, as the
hybrid methods that are described next incorporate both types of solutions. Then, a dis-
cussion of previous work in the field of hybrid methods is given, with a specific focus on the
CADIS method and variants on that method as well as significant historical work that has
incorporated angular information into hybrid methods. Finally, we present a mathematical
background for and derivation of the LDO equations.

2.1 Approaches to Solving the Neutron Transport

Equation

2.1.1 Monte Carlo Methods

Solving the NTE using Monte Carlo methods approximates “following” the individual par-
ticles from birth to death. The purpose of particle tracking is to calculate the expectation
or mean value x̄ of some quantity of interest, often the neutron scalar flux. The estimate of
this quantity takes the form of the average of N samples:

x̂ =
1

N

N∑
n=1

xn, (2.1)

where xn is the contribution from the nth particle history to the quantity of interest. As
the calculation proceeds, xn is tallied from each neutron history in order to calculate the
estimated or sample mean x̂ at the end of the calculation. Errors in Monte Carlo calculations
take the form of stochastic uncertainties, as the independent variables of the NTE are treated
continuously. Taking this into consideration, it is useful to quantify how good of an estimate
the sample value x̂ is to the true mean value x̄.
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For some property of a Monte Carlo history x sampled from a continuous probability
density function f(x), the variance of that property is defined to be

σ2(x) = x2 − x̄2, (2.2)

where

xn ≡
∫ ∞
−∞

xnf(x)dx. (2.3)

The standard deviation of the property is calculated as the square root of the variance:

σ(x) =
(
x2 − x̄2

)1/2

(2.4)

and provides a measure of the spread of x about the mean value x̄ [2]. With this, the variance
and standard deviation of x̂ can be expressed in terms of the variance and standard deviation
of x as

σ2(x̂) =
1

N
σ2(x) (2.5)

and

σ(x̂) =
σ(x)√
N
, (2.6)

respectively. A low standard deviation indicates that the values of x are closely clustered
near x̄, while a high standard deviation indicates a large spread in the values of x. If x̂,
constructed from N values of xn, is used to estimate x̄, then the spread in the results of x̂
about x̄ is proportional to σ(x) and falls off as the square root of the number of histories in
the sample, as seen in Equation 2.6 [2]. This is to say, generally, that a greater number of
histories contributing to the property of interest being calculated results in a lower standard
deviation of the estimate of that property.

For a given Monte Carlo calculation, the sample variance is defined as

S2 =
1

N − 1

N∑
n=1

(xn − x̂)2 (2.7)

and is considered to be an unbiased estimator of the variance; the expectation value of the
sample variance is equal to the variance, σ2(x) [2]. Because it is an unbiased estimator of the
variance, the sample variance allows us to estimate the spread in x̂; this is useful because x̂
is the value that actually results from the Monte Carlo calculation. In practice, the sample
variance and standard deviation are calculated as

S2 =
N

N − 1

(
x̂2 − x̂2

)
, where x̂2 ≡ 1

N

N∑
n=1

x2
n, (2.8)
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and

S =

(
N

N − 1

)1/2
[

1

N

N∑
n=1

x2
n − x̂2

]1/2

, (2.9)

respectively [2]. For large numbers of histories, N
N−1

is often set equal to one.
The simplest Monte Carlo model for particle transport problems is the “analog” model

that uses the real probability that various events occur [3]. In the analog model, particles
are followed from event to event, and the next event is always sampled from a number of
possible events according to the real event probabilities. This is called the analog Monte
Carlo model because it is directly analogous to the naturally occurring transport; it works
well when a significant fraction of the particles contribute to the tally estimate and can be
compared to detecting a significant fraction of the particles in the physical situation.

To quantify the efficiency of calculating a given quantity of interest, a metric known as
the “figure of merit” is often used.

2.1.1.1 The Figure of Merit

The figure of merit (FOM) is defined as

FOM =
1

R2T
, (2.10)

where R is the estimated relative error, defined as S/x̂, and T is the computer time taken
to complete the calculation [3]. This value should be approximately constant for any one
Monte Carlo calculation, as R2 is proportional to 1/N and T should be directly proportional
to N .

As stated earlier, estimates for quantities of interest with the lowest statistical error are
usually obtained for quantities to which a substantial fraction of the histories contribute.
That is to say, in order to get estimates for quantities of interest that are statistically
meaningful (have sufficiently low statistical error), a sizable number of the particle histories
tracked should contribute to the estimate. This can be difficult to achieve in a reasonable
amount of computational time for certain analog Monte Carlo calculations. That is to say,
if these analog calculations were allowed to continue until convergence, they would have a
very small FOM because of the sheer amount of calculation time needed for the calculation
to finish. A pertinent example of this type of problem is a neutron shielding scenario, in
which the neutron scalar flux varies by orders of magnitude through the shield and over the
problem geometry. In these cases, “non-analog” techniques are introduced.

Non-analog Monte Carlo attempts to follow “interesting” particles more often than un-
interesting ones, where an interesting particle is one that contributes much more to the
quantity that needs to be estimated. Non-analog techniques are meant to increase the odds
that a given particle contributes to the quantity of interest. To ensure that the average score
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is the same in the non-analog model as in the analog model, the score is modified to remove
the effect of biasing the natural odds.

A non-analog Monte Carlo technique will have the same expected tallies as an analog
technique if the expected weight executing any given random walk is preserved. These
variance reduction techniques can often decrease the relative error by sampling naturally
rare events with an unnaturally high frequency and weighting the tallies appropriately. In
the following subsection, several variance reduction methods are described and discussed.

2.1.1.2 Variance Reduction

Commonly used classes of variance reduction techniques are truncation methods, population
control methods, and modified sampling methods [3]. Some variance reduction methods
are generally applicable, while others are more specialized and carry high risk in use. Some
variance reduction techniques cause an increase in computational time, but variance typically
decreases faster than the increase in time, so these techniques still result in a net increase of
the FOM [4].

Truncation Methods

Of the classes listed above, truncation methods are the simplest; they aim to accelerate
calculations by truncating parts of phase space that do not contribute significantly to the
problem solution. One example of this is geometry truncation, in which unimportant parts
of the problem geometry are not modeled. Truncation methods may also be applied to other
independent variables such as energy; when using energy cutoff, particles whose energy is
out of the range of interest are terminated so that computation time is not spent following
them.

Population Control Methods

Population control methods use particle splitting and Russian roulette to control the
number of samples taken in various regions of phase space. In important regions, many
samples of low weight particles are tracked, and in unimportant regions, few samples of high
weight are tracked. Weight adjustments are made to the particles to ensure that the problem
solution remains unbiased. Specific population control methods include geometry splitting
and Russian roulette, energy splitting and roulette, weight cutoff, and weight windows [3].

Using geometry splitting with Russian roulette, particles transported from a region of
higher importance to a region of lower importance undergo Russian roulette. Some of the
particles will be killed a certain fraction of the time, but survivors will be counted more
by increasing their weight the remaining fraction of the time. In doing this, unimportant
particles are followed less often, yet the problem solution remains undistorted. If a particle is
transported to a region of higher importance, it may be split into two or more particles, each
with less weight and therefore counting less. In this case, important particles are followed
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more often, yet the solution is again undistorted because, on average, the total weight is
conserved.

In general, when a particle of weight w0 is split into k particles, the resulting particles
are each given a weight of w0

k
, conserving the expected weight. When a particle is subject to

Russian rouletting, it is turned into a particle of weight w1 > w0 with probability w0

w1
and is

killed with probability 1− w0

w1
, again conserving the expected weight.

Geometry splitting with Russian roulette can be used to great advantage in deep penetra-
tion shielding problems. Splitting helps maintain the particle population, which diminishes
rapidly in analog simulations. Conversely, geometry splitting with Russian roulette does
not work well in problems that have severe angular dependence. In the most extremely
anisotropic case, a particle may never enter a geometric region in which it may be split [3].

Energy splitting and Russian roulette are generally used in combination but may be
employed separately. When using energy splitting, once a neutron drops below a given energy
threshold, it may be split into multiple neutrons, each with an appropriately adjusted weight.
This is useful when particles are more important in some energy ranges than in others. In
the case of using energy rouletting, if a particle drops below a certain energy, a roulette game
is played and the particle is either killed or survives with a weight increased by a factor of
the reciprocal of the survival probability (to conserve overall particle population weight).
These two energy-based variance reduction techniques are independent of spatial location,
so a space-energy weight window (discussed below) is usually a better choice for problems
with strong space-energy dependence.

When weight cutoff is employed, Russian roulette is played if a particle’s weight drops
below a specified cutoff value. The result of the roulette is that the particle is either killed or
survives with its weight increased to a given level. Weight cutoff is most efficient when used
in combination with geometry splitting (discussed above) and implicit capture (discussed
below). It is important to note that, unlike in the case of the energy cutoff, the weight cutoff
does not bias the solution because the particles that survive do so with increased weight.

The last population control method discussed here is the weight window, which is a
phase space splitting and Russian roulette technique. The phase space may be space-energy
or solely space. Each phase space cell is bounded by upper and lower weight bounds. If
a particle is above the upper weight bound, it is split such that the resultant particles are
all within the bounds of the weight window. If a particle is below the lower weight bound,
Russian roulette is played and the particle is either terminated or permitted to survive with
an increased weight within the bounds of the weight window. If a particle’s weight is within
the window, no action is taken. All of these scenarios are depicted in Figure 2.1, a cartoon
of the weight window concept.

The weight window may be used alone to good effect, but it is particularly powerful when
used in conjunction with other variance reduction techniques that introduce large variations
in particle weight. Well-specified weight windows keep the Monte Carlo solution from severe
perturbations resulting from high-weight particles and simultaneously keep computational
resources from wasting time on low-weight particles by rouletting them.
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Figure 2.1: Weight window phase space splitting and Russian roulette [3].

Modified Sampling Methods

Modified sampling methods alter the statistical sampling of a problem to increase the
number of tallies per particle. For a given Monte Carlo event, it is possible to sample
from an arbitrary distribution rather than the physical probability as long as the particle
weights are adjusted to compensate. With modified sampling methods, sampling is done from
distributions that send particles in desired directions or into other desired regions of phase
space such as time or energy. Modified sampling methods may also change the location or
type of collisions. Categories of modified sampling methods include implicit capture, forced
collisions, and source biasing.

Using implicit capture (also called implicit absorption or survival biasing), particles are
never killed by absorption. Instead, a particle’s weight is reduced by the absorption probabil-
ity at each collision, allowing important particles to survive by not being lost to absorption.
Implicit capture can be thought of as a splitting process in which a particle of weight w0 is
split into two particles: one of weight w0(1− Σa

Σt
) that survives and is subsequently followed,

and one of weight w0
Σa

Σt
that is instantaneously killed [3].

The forced collision method increases sampling of collisions in specified spatial cells.
Particles undergoing forced collisions are split into collided and uncollided parts. The collided
part of the particle is forced to react within the current cell, while the uncollided part of the
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particle exits the cell without collision. When the track of the uncollided particle portion is
continued, it is followed with weight w0e

−Σtd, where w0 is the original particle weight and d
is the distance traveled between the splitting site and the cell boundary. The collided part
of the particle thus reacts with weight w0

(
1− e−Σtd

)
. These resultant weights are chosen to

reflect the actual physics of the problem; e−Σtd is the probability of exiting the cell without
collision, and 1 − e−Σtd is the probability of colliding in the cell. One of these two things
must happen to the original particle of weight w0, so we observe that the starting weight is
preserved.

Finally, particle sources may be biased with respect to one or more variables. This
allows for greater numbers of particles to be produced in more important ranges of each
biased variable, with the particles’ weights reduced accordingly. In the relevant example
of the neutron shielding problem, one may start more particles at high energies and in
strategic directions in order to get more particles to contribute to the desired solution. The
corresponding weights of the particles are altered to correct the statistical distribution.

2.1.2 Deterministic Methods

In the case of deterministic methods, each of the six independent variables of the steady-state
NTE is discretized, relevant boundary conditions are imposed, and the resulting system of
linear algebraic equations is iterated over until an acceptable solution has been reached. We
limit the discussion here to the discretization of the integro-differential form of the NTE and
the finite-volume discrete ordinates method.

These discretizations introduce some errors into the calculations, with the discretiza-
tion of some variables being more problematic than others. For example, it is functionally
straightforward to discretize the energy and spatial variables, while discretizing angular space
using the discrete ordinates method is more mathematically intricate and often brings dele-
terious errors (“ray effects”) into problem solutions. Deterministic methods may converge
more quickly than Monte Carlo methods, especially in the case of shielding problems, though
the solutions are often plagued by the aforementioned inaccuracies.

2.1.2.1 Discretization of the Neutron Transport Equation

Energy Discretization - The Multigroup Approximation

Discretization of the energy variable is known as the “multigroup” approximation; it
is relatively straightforward from a mathematical standpoint. Energy is broken up into G
groups, where the gth group has an upper bound of energy Eg and a lower bound of energy
Eg+1 as shown in Figure 2.2. The highest energy group has g = 0 and the lowest energy
group has g = G− 1. This convention is used because neutrons are generally born at higher
energies (starting in group 0 or 1) and scatter down to lower energies before undergoing an
absorption reaction.
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Figure 2.2: Discretized energy grid.

Discretizing the NTE with respect to energy on this grid gives the G multigroup equations

Ω · ∇ψg(r,Ω) + Σg
t (r)ψg(r,Ω) =

G−1∑
g′=0

∫
4π

Σg′→g
s (r,Ω′ ·Ω)ψg

′
(r,Ω′)dΩ′ +Qg(r,Ω),

g = 0, 1, . . . , G− 1. (2.11)

Here it is assumed that, within each energy group, the angular flux may be approximated
as the product of some known function of energy f(E) and the group flux ψg(r,Ω) as

ψ(r, E,Ω) ≈ f(E)ψg(r,Ω), Eg+1 < E ≤ Eg , (2.12)

where f(E) is normalized such that
∫ Eg

Eg+1
f(E)dE = 1. With this, the multigroup cross

sections and the group source are similarly defined [2] as

Σg
t (r) =

∫ Eg

Eg+1

Σt(r, E)f(E)dE, (2.13)

Σg′→g
s (r,Ω′ ·Ω) =

∫ Eg

Eg+1

∫ Eg′

Eg′+1

Σs(r, E
′ → E,Ω′ ·Ω)f(E ′)dE ′dE, (2.14)

Qg(r,Ω) =

∫ Eg

Eg+1

Q(r, E,Ω)dE. (2.15)

Spatial Discretization

In the interest of completeness, we will briefly discuss the discretization of space. The
LDO equations are inherently three-dimensional [5], so we will restrict the discussion to
three-dimensional space with point positions specified by Cartesian coordinates. A general
mesh cell is shown in Figure 2.3.

The mesh cell is centered at the ith position along the x-axis, the jth position along the
y-axis, and the kth position along the z-axis. Indexing is such that there are I mesh cells with
I + 1 grid points in the x-direction, J mesh cells with J + 1 grid points in the y-direction,
and K mesh cells with K + 1 grid points in the z-direction. It is assumed that all material
properties are constant within a given cell. In order to eventually solve for the scalar flux in
a given system, we are interested in solving for the angular flux at the center of each mesh
cell, resulting in the G× I × J ×K equations shown in Equation 2.16.
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(xi, yj , zk)

Figure 2.3: General three-dimensional mesh cell [6].

Ω · ∇ψgi,j,k(Ω) + Σg
t,i,j,kψ

g
i,j,k(Ω) =

G−1∑
g′=0

∫
4π

Σg′→g
s,i,j,k(Ω

′ ·Ω)ψg
′

i,j,k(Ω
′)dΩ′ +Qg

i,j,k(Ω),

g = 0, 1, . . . , G− 1,

i = 1, 2, . . . , I,

j = 1, 2, . . . , J,

k = 1, 2, . . . , K.

(2.16)

To solve for these cell-centered flux quantities in practice, auxiliary equations are introduced.
As these are specific to the spatial discretization employed in a given solution and do not
differ between the classical discrete ordinates equations and the LDO formulation, we refer
the reader to Reference [7] for more detail on spatial differencing and solution methods.

Angular Discretization - Discrete Ordinates

The last part of phase space to discretize in the time-independent NTE is angle. The
discrete ordinates method is the most common angular discretization method incorporated
into general-purpose neutron transport codes [2]. It is a collocation method that requires
the solution of the NTE to be exact at a distinct number of angles Ωn:
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Ωn · ∇ψg,ni,j,k + Σg
t,i,j,kψ

g,n
i,j,k =

G−1∑
g′=0

P∑
`=0

Σg′→g
s,`,i,j,k

[
Y e
`0(Ωn)φg

′

`0 +
∑̀
m=1

(
Y e
`m(Ωn)φg

′

`m

+ Y o
`m(Ωn)ϑg

′

`m

)]
+Qg,n

i,j,k,

g = 0, 1, . . . , G− 1,

i = 1, 2, . . . , I,

j = 1, 2, . . . , J,

k = 1, 2, . . . , K,

n = 1, 2, . . . , N.

(2.17)

Here, ψn ≡ ψ(Ωn) and the angles are integrated by a quadrature rule such that their
corresponding weights wn sum to 4π. Weights and ordinates (“quadrature sets”) are chosen in
such a way as to provide good approximations to angular integrals used to evaluate scalar flux
[2, 6]. The upper limit of summation for the scattering term spherical harmonic expansion,
denoted as P in Equation 2.17, is known as the “PN order”. The scattering cross section
coefficient values Σg′→g

s,`,i,j,k come from data libraries based on experimental measurements.
The scattering source is expanded in terms of spherical harmonics:

φg`,i,j,k =
N∑
n=1

Y e
`m(Ωn)wnψ

g,n
i,j,k and ϑg`,i,j,k =

N∑
n=1

Y o
`m(Ωn)wnψ

g,n
i,j,k, (2.18)

where φ and ϑ are referred to as the “flux moments”. Here, Y e
`m(Ωn) and Y o

`m(Ωn) are the
“even” and “odd” real components of the spherical harmonic functions, defined as [6]

Y e
`m(Ωn) = (−1)m

√
(2− δm0)

2`+ 1

4π

(`−m)!

(`+m)!
P`m(cos θ) cos(mϕ), (2.19)

Y o
`m(Ωn) = (−1)m

√
(2− δm0)

2`+ 1

4π

(`−m)!

(`+m)!
P`m(cos θ) sin(mϕ). (2.20)

In Equations 2.19 and 2.20, P`m(cos θ) is the associated Legendre polynomial and (θ, ϕ) are
the components of Ω as shown in Figure 2.4 and Equations 2.21a – 2.22. It is assumed
that the double differential scattering cross section depends only on the dot product of the
incoming and outgoing angles of the particle undergoing scattering.

To summarize Equations 2.17 – 2.20, we note that the double differential scattering cross
section is expanded into the real components of the spherical harmonic functions, which can
be represented with Legendre polynomials; these are then multiplied with the angular flux
moments expanded into spherical harmonic functions.
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Figure 2.4: Angular coordinate system [6].

ξ = cos θ (2.21a)

µ =
√

1− ξ2 cosϕ (2.21b)

η =
√

1− ξ2 sinϕ (2.21c)

µ2 + η2 + ξ2 = 1 (2.22)

Commonly-used quadrature sets include level-symmetric, Gauss- Legendre product, quad-
ruple range (QR) product, and linear-discontinuous finite element (LDFE). The various
quadrature set types have different properties with each being better for certain classes of
problems. For example, relatively coarse (sixteen angles per octant) QR product quadratures
are generally sufficient for generating variance reduction parameters for neutron transport
problems, but more finely resolved quadrature sets are recommended for photon transport
problems [8]. Level-symmetric quadrature sets are widely applied for general applications [2]
but tend to exhibit far more ray effects than QR product quadratures [8]. In the following
subsection, we will discuss ray effects in greater detail.

2.1.2.2 Ray Effects

Ray effects are unphysical computational anomalies in the scalar flux solution that arise from
the discrete ordinates formulation. Because the NTE is only evaluated at a finite number of
discrete angles, the number of directions in which particles may stream is restricted. As a
consequence of this, contributions to the scalar flux from uncollided particles are limited to
those from the discrete angles along which particle sources are “visible” [9]. A demonstrative
example of ray effects is shown in Figure 2.5. The plot shows results from the PARTISN [10]
code using a triangular Pn− Tn quadrature with 48 points and a scattering ratio of c = 0.25
[5]. Although the point source emits neutrons isotropically, the scalar flux calculated at a
given radius out from the source sees contributions only from the discrete angles along which
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particles may stream. That is, the flux at a given distance from the point source is actually
equal in all directions and so the figure should appear to be a sphere, but the discrete angles
restrict streaming pathways to the rays shown in the image.

Figure 2.5: Isosurface plot of scalar flux from a point source [5].

The severity of ray effects in a given simulation depends on the properties of the sources.
The largest consequences tend to occur in scenarios with localized sources and relatively
minimal scattering. When using the discrete ordinates approximation in a purely absorbing
medium, regardless of the accuracy of the angular flux calculations and the number of discrete
angles used, it is always possible to get far enough away from a localized source such that
a poor value of the scalar flux is obtained at that point [9]. In a scattering medium with
localized sources, angular flux values are incorrect because they depend on integrals that are
poorly approximated by the quadrature formulation. In contrast to this, neutrons exiting
scattering reactions are generally less localized and consequently tend to mitigate ray effects.
As we will see later in the chapter, one key point of interest in using the LDO equations
as part of a hybrid method calculation is that the LDO equations mitigate ray effects when
higher-order quadrature sets are used [5].

2.1.3 Hybrid Methods

Hybrid methods aim to combine the previously described Monte Carlo methods and de-
terministic methods in such a way as to perform calculations that result in statistically
meaningful results within a tractable period of computation time. Generally, these hybrid
methods are implemented such that the solution(s) from a deterministic code are used to
inform a Monte Carlo code. When this is done well, the Monte Carlo code converges more
quickly than without the information from the deterministic solution(s).



CHAPTER 2. BACKGROUND 17

Specifically, an adjoint and/or forward flux solution generated by a deterministic trans-
port solver is used to make a weight window map for a Monte Carlo run. As was noted earlier,
weight windows are most effective when specified well and when used in conjunction with
other variance reduction techniques. Because developing effective weight window maps can
be labor-intensive and require a user to have significant a priori knowledge about the prob-
lem being solved, automated hybrid methods have been developed to couple deterministic
solutions to Monte Carlo transport calculations.

2.2 Previous Work

Substantial effort has been placed into the development and automated execution of hybrid
methods. This section will discuss previous work in this field with a particular emphasis
on the present state of hybrid methods as well as hybrid methods that incorporate neutron
direction of travel.

Here we begin by describing the CADIS (consistent adjoint driven importance sampling)
and FW-CADIS (forward-weighted consistent adjoint driven importance sampling) methods,
which are the current state of the art of Monte Carlo variance reduction parameter genera-
tion. These are introduced first because, as will be described in more detail later, this work
employs solutions of the LDO equations in combination with the CADIS and FW-CADIS
methods via the ADVANTG software. Following this, we present a discussion of selected
work in angle-informed hybrid methods, focusing on variants of CADIS and FW-CADIS.

2.2.1 CADIS and FW-CADIS

2.2.1.1 CADIS

The CADIS method was introduced by Wagner and Haghighat in 1997 to automate Monte
Carlo variance reduction parameter generation [11]. CADIS is based on the source biasing
and weight window techniques described above, does not depend heavily on user experience,
and was implemented as described in Reference [11] in the MCNP [3] code. Most importantly,
the CADIS method produces source biasing parameters and weight window target values such
that particles are born with the target weights. Since CADIS is used heavily in this work,
it is pertinent to describe the theory behind the method.

The goal of most Monte Carlo neutron transport problems is to calculate some response
(scalar flux, dose, etc.) at some location in phase-space. This can be posed as solving the
following integral equation:

R =

∫
P

ψ(P )σd(P )dP, (2.23)

where R is the response of interest, ψ is the neutron angular flux, and σd is some objective
function in the phase-space (r, E,Ω) ∈ P . We now introduce the adjoint identity
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〈ψ†, Hψ〉 = 〈ψ,H†ψ†〉 (2.24)

where H is the transport operator and the dagger superscript indicates an adjoint quantity.
Using Equation 2.24 and some algebraic manipulations, it can be shown that

R =

∫
P

ψ†(P )q(P )dP, (2.25)

where ψ† and q are the adjoint neutron angular flux function and the particle source density,
respectively. For a given problem with a vacuum boundary condition, Equations 2.23 and
2.25 are equivalent expressions for R. The adjoint neutron angular flux function ψ† has
physical meaning as the expected contribution to the response R from a particle in phase-
space P . In other words, the adjoint flux function is significant because it represents the
importance of those source particles to the response of interest.

To calculate the response with the Monte Carlo method, the independent variables are
sampled from the probability density function (PDF) q(P ). However, this may not be the
best PDF from which to sample, so an alternative PDF q̂(P ) can be introduced into the
integral:

R =

∫
P

[
ψ†(P )q(P )

q̂(P )

]
q̂(P )dP, (2.26)

where q̂(P ) ≥ 0 and the integral of q̂(P ) over P is normalized to unity. Then, the alternative
PDF q̂(P ) that will minimize the variance of the response is given by

q̂(P ) =
ψ†(P )q(P )∫

P
ψ†(P )q(P )dP

. (2.27)

Looking at Equation 2.27, we see that the numerator is the response from phase-space P
and the denominator is the total response R. Thus, this definition of q̂(P ) is a measure of
the contribution from phase-space P to the response. It is useful to bias the sampling of
source particles by this ratio of their contribution to the detector response.

Because the source variables are sampled from this new biased PDF, the statistical weight
of the source particles must be corrected such that

w(P )q̂(P ) = w0q(P ), (2.28)

where w0 is the unbiased particle starting weight and is set equal to 1. Substituting Equation
2.27 into Equation 2.28 and solving for w(P ) gives the following expression for the statistical
weight of the particles:

w(P ) =

∫
P
ψ†(P )q(P )dP

ψ†(P )
=

R

ψ†(P )
. (2.29)



CHAPTER 2. BACKGROUND 19

Equation 2.29 demonstrates an inverse relationship between this adjoint (importance) func-
tion and the statistical particle weight.

Now, let us consider the transport process in this context. The integral transport equation
for particle density in the phase-space P is given by

ψ(P ) =

∫
K(P ′ → P )ψ(P ′)dP ′ + q(P ) (2.30)

where K(P ′ → P ) is the expected number of particles entering dP about P from an event
in P ′. Given the preceding discussion, we would like to transform Equation 2.30 to be in
terms of the biased source distribution q̂(P ). Defining

ψ̂(P ) =
ψ(P )ψ†(P )∫
ψ†(P )q(P )dP

, (2.31)

we can write Equation 2.30 in terms of q̂(P ) as

ψ̂(P ) =
ψ†(P )∫

ψ†(P )q(P )dP

∫
K(P ′ → P )ψ(P ′)dP ′ + q̂(P ). (2.32)

Equation 2.32 can also be written as

ψ̂(P ) =

∫
K(P ′ → P )ψ̂(P ′)

[
ψ†(P )

ψ†(P ′)

]
dP ′ + q̂(P ) , (2.33)

which allows us to define

K̂(P ′ → P ) = K(P ′ → P )

[
ψ†(P )

ψ†(P ′)

]
(2.34)

and finally write

ψ̂(P ) =

∫
K̂(P ′ → P )ψ̂(P ′)dP ′ + q̂(P ). (2.35)

Because K(P ′ → P ) is unknown, we simulate neutron transport in the usual unbiased
way and change the number of particles emerging in P from an event in P ′ by the ratio of
importances ψ†(P )/ψ†(P ′). When this ratio is above one, splitting occurs, and rouletting
occurs when the ratio is less than one. The statistical weights of the particles resulting from
splitting and/or rouletting are then corrected such that

w(P )K(P ′ → P )

[
ψ†(P )

ψ†(P ′)

]
= w(P ′)K(P ′ → P ) (2.36)

or

w(P ) = w(P ′)

[
ψ†(P )

ψ†(P ′)

]
. (2.37)
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With this, reduced variance can be achieved when all source and transport sampling is
proportional to its importance. The source particles’ energy and position are sampled from
the biased source distribution

q̂(r, E) =
φ†(r, E)q(r, E)∫

V

∫
E
φ†(r, E)q(r, E)dE dr

=
φ†(r, E)q(r, E)

R
. (2.38)

Here, the physical meaning of the numerator is the detector response from space-energy
element (dr, dE) and the denominator is the total detector response R. As in the preceding
derivation, this ratio is a measure of the particles’ relative contribution to the detector
response.

To bias particles undergoing the transport process, the weight window technique is ap-
plied. Weight window lower bounds w` must be calculated such that the statistical weights
defined in Equation 2.29 fall at the center of the weight window intervals. The width of a
given interval is denoted by cu = wu/w`, the ratio of upper and lower weight window values.
The weight window lower bounds are then given by

w`(r, E) =
w(
cu+1

2

) =
R

φ†(r, E)

1(
cu+1

2

) . (2.39)

Using this definition, the weight window technique then performs particle splitting and/or
rouletting consistent with the statistical weight given in Equation 2.37.

The key result of the foregoing discussion is that the statistical weights of the source
particles are within the bounds of the weight windows. In other words, the source-biasing
parameters and the weight window target values are consistent. This circumvents the po-
tential of particles being immediately split or rouletted upon birth and avoids the resultant
degradation in computational efficiency. We refer the reader to Reference [11] for a complete
discussion of results and analysis of the initial implementation of the CADIS method.

Note that Equations 2.38 and 2.39 use the scalar adjoint flux rather than the angular flux.
This is consistent with the original implementation of the CADIS method in MCNP as well
as the implementation of the method in ADVANTG; the scalar adjoint neutron flux function
is used in both tools [11, 8]. Historically, this was done to reduce the memory required for
the deterministic calculation as well as the weight window map. Additionally, the angular
adjoint flux resulting from an SN calculation was not considered to be sufficiently accurate
due to the limited number of discrete angles used for the calculation. Further, people have
generally not developed weight windows that are a function of angle.

The CADIS method is very effective for automated optimization of localized detectors
but falls short of efficiently optimizing distributed responses. FW-CADIS, discussed in the
next section, was developed to address this issue.

2.2.1.2 FW-CADIS

FW-CADIS, introduced by Wagner, Blakeman, and Peplow in 2009, is a variation on the
CADIS method to increase the efficiency of Monte Carlo calculations of distributions and
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responses at multiple localized detectors [12].
For this global variance reduction method, a response with uniformly-low statistical un-

certainty across all phase-space is desired. One way to target this for a given Monte Carlo
simulation is to uniformly distribute the particles throughout the system. Though this is
not a physical response, it is a proxy for the goal of obtaining uniform uncertainty. It also
indicates the possibility of developing an adjoint importance function that represents the
importance of particles to achieving the goal of uniform particle distribution.

With this new problem formulation, the problem of calculating particle density is cast
into the response formulation:

R =

∫
4π

∫
V

∫
E

ψ(r, E,Ω)f(r, E,Ω)dE dV dΩ, (2.40)

where f(r, E,Ω) is some function that converts angular neutron flux to Monte Carlo particle
density. Recall that the angular neutron flux can be defined as the product of the physical
particle density n and velocity v:

ψ(r, E,Ω) = n(r, E,Ω)v(r, E,Ω) (2.41)

and the physical particle density is related to the Monte Carlo particle density m and the
average particle weight w̄ by

n(r, E,Ω) = w̄(r, E,Ω)m(r, E,Ω). (2.42)

Using Equations 2.41 and 2.42, the Monte Carlo particle density can be estimated by

m(r, E,Ω) =
n(r, E,Ω)

w̄(r, E,Ω)
=

ψ(r, E,Ω)

w̄(r, E,Ω)v(r, E,Ω)
(2.43)

and the total Monte Carlo density can be estimated by

R =

∫
4π

∫
V

∫
E

ψ(r, E,Ω)

[
1

w̄(r, E,Ω)v(r, E,Ω)

]
dE dV dΩ. (2.44)

If the average particle weight is set proportional to the physical particle density, then the
Monte Carlo particle density should be approximately uniform in phase-space. Substituting
Equation 2.41 into Equation 2.44 gives

R =

∫
4π

∫
V

∫
E

ψ(r, E,Ω)

[
1

ψ(r, E,Ω)

]
dE dV dΩ. (2.45)

By then defining the adjoint source as the bracketed term in the above equation,

q†(r, E,Ω) =
1

ψ(r, E,Ω)
, (2.46)

we can calculate an adjoint importance function that represents the importance of particles
to achieving the desired objective of uniformly distributed Monte Carlo particles. This



CHAPTER 2. BACKGROUND 22

should, in turn, correspond to approximately uniform statistical uncertainties. The method
physically corresponds to weighting the adjoint source with the inverse of the forward flux;
the adjoint source will be high where the forward flux is low and the adjoint source will be
low where the forward flux is high. With this method, after the adjoint has been determined,
the standard CADIS procedures are used to calculate consistent source biasing parameters
and weight windows.

When considering implementation and use, it should be noted that, while the original
CADIS method requires only one deterministic calculation, the FW-CADIS method requires
two (one forward and one adjoint) deterministic calculations. Additionally, like the original
CADIS method, FW-CADIS is general and could be applied to all independent variables of
a problem, but the implementation has been limited to space and energy.

2.2.2 Directional CADIS

Noting the marked performance of the CADIS and FW-CADIS methods, their limited im-
plementation in only space and energy, and the importance of particle direction, Peplow
introduced directional CADIS in 2012 [13]. Two versions of directional CADIS were ex-
plored: one method that biases the source in space and energy while preserving the original
angular distribution of the particles, and one method that biases the source in space, en-
ergy, and angle. Both new methods were tested against standard CADIS for seven example
problems, with the Monte Carlo FOM compared among the methods for each problem.

Peplow notes that in many applications involving directionally dependent source dis-
tributions, the directional dependence is azimuthally symmetric about a given reference
direction d̂. With this, the angular distribution of the particles qi(Ω) can be expressed as
the product of the uniform azimuthal distribution and a polar distribution about reference
d̂i. The angular particle distribution may then be written as 1

2π
qi(Ω · d̂i). Peplow also

notes that the geometric size of these directional sources tends to be small enough to al-
low each source distribution to be expressed as the product of two separable distributions:
qi(r, E,Ω) ≈ qi(r, E)qi(Ω).

The implementation of directional CADIS explored in this work was intended to appro-
priately incorporate the importance of a particle traveling in a given direction while also
serving as a relatively simple modification of the standard CADIS method that is less in-
volved than a full treatment of space, energy, and angle. It starts with the approximation
that the angular component of the adjoint flux ψ†(r, E,Ω) is separable and symmetric about
the average adjoint current direction n̂(r, E) such that

ψ†(r, E,Ω) ≈ φ†(r, E)
1

2π
f(Ω · n̂). (2.47)

From this, it is proposed that weight window targets can be developed that are inversely
proportional to the approximation of the adjoint angular flux:
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w̄(r, E,Ω) =
2πk

φ†(r, E)f(Ω · n̂)
(2.48)

where k is a constant of proportionality that is adjusted to make the importance map consis-
tent with the biased source(s). The implementation of the following methods uses standard
CADIS routines to compute the response per unit source R, the weight window target values
w̄(r, E), and the biased source q̂(r, E) using only the adjoint scalar flux. The quantities are
then modified to include directional information.

2.2.2.1 Without Directional Source Biasing

Peplow asserts that the biased source q̂(r, E,Ω) should be proportional to both the true
particle source distribution and the space-energy component of the scalar adjoint flux:

q̂(r, E,Ω) =
1

R

[
q(r, E)

1

2π
q(Ω · d̂)

]
φ†(r, E), (2.49)

where the constant of proportionality R is determined by forcing q̂(r, E,Ω) to be a PDF.
Since the scalar adjoint flux is used here, the directional distribution of the biased source is
identical to that of the true source. Detailed in Reference [13], the constant of proportionality
R is found to be equal to the response per unit source from the traditional space-energy
CADIS treatment. Thus, the biased source can be expressed as

q̂(r, E,Ω) = q̂(r, E)
1

2π
q(Ω · d̂). (2.50)

The birth weight of a particle sampled from this distribution is independent of direction
and the proportionality constant k for the target weight windows should be chosen such that
the weight window targets match the birth weight of the source particles. This cannot be
done generally because the particle birth weight is independent of direction, but it can be
done for a single point in phase space (r0, E0,Ω0) of the source such that

k =
R

2π
f (Ω0 · n̂(r0, E0)) , (2.51)

where the average adjoint current direction n̂(r0, E0) is evaluated at the source location and
energy and

w̄(r, E,Ω) = w̄(r, E)
f (Ω0 · n̂(r0, E0))

f(Ω · n̂)
. (2.52)

Because the biased source and the weight window targets will match only at the specified
direction of interest Ω0 at one specific position and energy, the point (r0, E0,Ω0) should
be chosen carefully to represent the source accurately and to minimize rouletting and/or
splitting of particles just after birth.
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It should be noted that this approach is exact for cases where no directional biasing could
be applied, e.g. monodirectional beam sources. Although the above discussion considers only
one particle source, this directional CADIS method may be extended to multiple sources, as
explained in detail in Reference [13].

2.2.2.2 With Directional Source Biasing

In this method, it is asserted that the biased source should be proportional to both the true
particle source distribution and the approximation of the angular adjoint flux:

q̂(r, E,Ω) =
1

cR

[
q(r, E)

1

2π
q(Ω · d̂i)

] [
φ†(r, E)

1

2π
f(Ω · n̂0)

]
, (2.53)

where the constant cR is used to make q̂ a PDF. Because the vector n̂0 is fixed over the
source, the biased source is separable into q̂(r, E,Ω) = q̂(r, E)q̂(Ω) where q̂(Ω) can be further
separated into the product of its azimuthal and polar distributions:

q̂(r, E,Ω) =

[
1

R
q(r, E)φ†(r, E)

] [
1

c

1

4π2
q(Ω · d̂)f(Ω · n̂0)

]
. (2.54)

Both distributions q̂(r, E) and q̂(Ω) are independent and each should be a PDF. For
the space-energy distribution, the standard definition of R still applies. For the angular
distribution, the constant c is found to be

c =

∫
1

4π2
q(Ω · d̂)f(Ω · n̂0)dΩ, (2.55)

which may be evaluated using numerical integration. It should be noted that if either the
original source directional distribution q(Ω) or the adjoint angular flux distribution at the
source is isotropic, then c reduces to a value of 1

4π
.

Source particles sampled from the biased distribution are born with a starting weight of

w̄(r, E,Ω) =
R

φ†(r, E)

2πc

f(Ω · n̂0)
= w̄(r, E)

2πc

f(Ω · n̂0)
, (2.56)

where the constant k has been found to be equal to cR. As with the previously described
method, the user selects one point (r0, E0,Ω0) that is representative of the entire source,
where the biased source will match the target weight windows. This method can also be
extended to incorporate multiple sources.

2.2.2.3 Results

Sample problems of applications of interest were examined and compared between standard
CADIS and directional CADIS. For most of these problems, directional CADIS outperformed
standard CADIS, increasing the Monte Carlo FOM by a factor of around 2. Notable cases
in which directional CADIS performed more poorly than standard CADIS are a neutron
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porosity tool problem and a gamma-ray litho-density tool problem with the detector far
away from the source. It should also be noted that, for a spherical boat test problem with
a source far away from the boat, both standard CADIS and directional CADIS performed
more poorly than an analog Monte Carlo calculation. For full details on the test results, see
Reference [13]. In the conclusions of the report, Peplow notes that “it is difficult to know
a priori which problems would benefit from the space/energy/angular treatments presented
in this work more than from just using the standard space/energy CADIS.”

2.2.3 CADIS-Ω

One of the most recent developments in the area of angle-informed hybrid methods is
CADIS-Ω, introduced by Munk et al. in 2016 [14]. This method calculates an alternate
form of the adjoint scalar flux quantity that is then used in the CADIS and FW-CADIS
methods for generation of variance reduction parameters for local and global response func-
tions, respectively.

The alternative form of the adjoint scalar flux used in CADIS-Ω is defined as

φ†Ω(r, E) =

∫
4π
ψ(r, E,Ω)ψ†(r, E,Ω)dΩ∫

4π
ψ(r, E,Ω)dΩ

. (2.57)

Here, the product ψ(r, E,Ω)ψ†(r, E,Ω) is known as the “contributon flux”; contributons
can be conceptualized as pseudo-particles that carry “response” from a particle source to
a detector. The contributon flux incorporates information from both the forward particle
flux as well as the adjoint particle flux. It signifies the importance of a particle born from
a forward source moving towards an adjoint source. That is, when the contributon flux is
used to generate an importance map, high importance will be assigned to particles that are
generated at the forward source and are likely to generate a response in the detector (the
adjoint source).

The CADIS-Ω method was implemented in the ADVANTG framework, with numerical
experiments performed testing variance reduction for problems run in MCNP5. Several
characterization problems with spatially-induced anisotropies were tested to evaluate the
new method when used with CADIS and FW-CADIS. Here we will summarize the problems
tested and the results; a full discussion can be found in Reference [15]. Munk identified
three categories of processes that affect particle flux anisotropy: strongly directional particle
sources, strong differences between material properties, and algorithmic limitations that
result in ray effects.

Having grouped these processes, Munk tested a set of characterization problems, each
of which have different combinations of the above anisotropy-inducing mechanisms. Munk
also developed a set of metrics by which the anisotropy of the flux may be quantified over
the various problems. Similar to the conclusions drawn by Peplow, Munk found that it
was difficult to predict for which problems CADIS-Ω should outperform CADIS. When
considering a parametric study of deterministic variables likely to affect angular flux (varying



CHAPTER 2. BACKGROUND 26

quadrature set order and PN order) in a characteristic problem composed of a steel beam
embedded in concrete, CADIS-Ω achieved higher FOM values than standard CADIS for all
quadrature and PN orders at high energies. Similarly, for a simple labyrinth geometry of an
air maze through a concrete block, CADIS-Ω achieved lower relative errors than did standard
CADIS in the epithermal and fast neutron energy groups.

2.2.4 Other Notable Work

Here we will briefly summarize other notable works in the area of angle-informed hybrid
methods. We first introduce AVATAR, then discuss two following methods that built off of
the work.

2.2.4.1 AVATAR

AVATAR (Automatic Variance And Time of Analysis Reduction) was developed at Los
Alamos National Laboratory by Van Riper et al. in the 1990s to eliminate the need for
user-generated weight windows [16]. The package may be thought of as a predecessor to the
various CADIS methods, as it constructs three-dimensional energy- and angle-dependent
weight windows for an MCNP run from an adjoint calculation using the THREEDANT [17]
deterministic code.

The scalar adjoint fluxes resulting from THREEDANT are inverted by AVATAR to get
the lower weight window boundary in each mesh element of the problem. The weight win-
dows are then normalized such that source particles are born with weights inside of the
weight window. If angle-dependent weight windows are desired, the angular adjoint flux
is approximated using information theory [16]; the full angular adjoint flux was deemed to
require an inordinate amount of storage at the time of development.

AVATAR’s weight window mesh is independent of the Monte Carlo cells, so weight win-
dows are applied at absolute particle positions rather than when particles pass between
weight window meshes. To protect against significant variance increases in particle weight
(and tally) due to large sampling distance, weight windows are applied at a minimum of
once per mean free path traveled by a particle.

AVATAR was tested on a model of a three-detector oil well logging tool consisting of a
gamma-ray source and three gadolinium detectors. The system was intended to represent
deep-penetration problems, as a small fraction of the gamma rays emitted from the source
actually reach the detectors. The detector nearest the gamma-ray source has a collimator
attached, adding an angular dependence to the tool modeled.

Results from AVATAR were compared against MCNP’s weight window generator (WWG).
For the three-detector problem described above, AVATAR’s angle-dependent weight windows
delivered the highest FOM for the detector nearest the source as well as the “middle” detec-
tor. The MCNP WWG delivered the highest FOM for the detector furthest from the source,
but it should be noted that the MCNP geometry was hand-tuned for the WWG cases. When
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considering only a single detector, the AVATAR angle-dependent weight windows outper-
formed the WWG for a detector near the source as well as far from the source.

2.2.4.2 Cooper and Larsen’s Weight Windows

Cooper and Larsen developed a method similar to FW-CADIS that uses weight windows
to distribute Monte Carlo particles uniformly throughout the system for the purpose of
efficiently solving global particle transport problems [18]. Rather than using an adjoint
deterministic solution for generation of weight windows, a forward solution is used. The
method presented employs solution of the forward quasi-diffusion equation, a modified dif-
fusion equation that contains multiplicative correction terms known as “Eddington factors”.

The authors argue that a forward solution is more appropriate than an adjoint solution
in the context of automated weight window generation for Monte Carlo variance reduction.
This is supported by showing that if the center of the weight window in each cell is chosen to
be proportional to the density of the physical particles in the cell, then the density of Monte
Carlo particles throughout the system will be approximately constant.

Cooper and Larsen construct “isotropic” weight windows as well as angle-dependent
weight windows, following the AVATAR method to formulate the latter. The authors note
that a uniform particle distribution in angle is not always optimal with respect to compu-
tational efficiency, especially when considering problems with significant streaming. It is
the case that the angle-dependent weight windows developed in this work actually have the
potential to reduce the FOM due to excessive Monte Carlo particle splitting in nonstreaming
regions. To mitigate this by decreasing the amount of splitting incurred, the weight window
experienced by particles traveling in directions opposite to the preferred direction is raised.
This preserves the scalar flux, but not the current [18].

Results are presented for two two-dimensional problems. In both problems, weight win-
dows were updated twice – once after one-third of the histories had completed and again
after two-thirds of the particle histories had finished. The weight window parameters were
chosen to ensure a stable quasi-diffusion solution. The two problems were chosen to rigor-
ously test the global Monte Carlo method; the problems are optically thick with scattering
ratios sufficiently low such that the scalar flux decreases by several orders of magnitude far
away from the particle source. To observe the performance of the method on problems with
significant angular effects, the first problem includes a duct and the second problem includes
a barrier.

For the problem including a duct, the Monte Carlo FOM values calculated in the individ-
ual spatial cells are vastly improved by the use of both weight window types developed in this
work. In particular, the solution estimates for the scalar flux are very noisy far from the so-
lution when only survival biasing is used. Additionally, the angle-dependent weight window
generates a slightly higher FOM in the duct region than the isotropic weight window. Simi-
larly, for the problem including a barrier, the use of either type of weight window developed
here results in a drastically more uniform particle distribution. Again, the angular weight
window outperformed the isotropic weight window. Thus, from this work, we observe that
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incorporating angular information into weight window generation can significantly improve
Monte Carlo FOM for problems with strong geometric anisotropies.

2.2.4.3 LIFT

LIFT, the local importance function transform, was introduced by Turner and Larsen in 1997
[19, 20] as a new automatic Monte Carlo variance reduction method that closely approximates
a zero-variance method through the use of biasing parameters. The LIFT method is partially
based on the exponential transform, which adjusts the distance to collision such that particles
traveling toward the region of interest undergo fewer collisions than particles traveling away
from the region of interest. Particle weights are adjusted accordingly to keep the simulation
unbiased. On top of the conventional exponential transform, the LIFT method adds in
energy and angular biasing in each cell of the system.

LIFT uses scalar flux information from a deterministic adjoint solution to bias the source
distribution, distance to collision, scattering angle, and energy. The adjoint scalar flux
is also used to formulate weight windows. In the implementation presented, the weight
windows are not angle-dependent. The authors note that, in the LIFT implementation, the
angle-dependent weight windows require the use of an analytic expression for the angular
flux at every boundary and collision site and that this extra computational effort does not
generally yield increased efficiency for the Monte Carlo calculation that then employs the
angle-dependent weight windows.

The LIFT strategy can be summarized in two steps. First, an analytic function is derived
that is piecewise continuous in space and angle and approximates the adjoint solution within
each energy group and spatial cell of the Monte Carlo system. Then, this approximate
representation of the adjoint solution is used to transform the original forward problem
into a new problem that can be solved by a Monte Carlo simulation with reduced variance.
Increased accuracy in the approximation of the adjoint solution results in greater reduction of
the variance, approaching zero variance in the solution when using an exact representation.
The authors note that this limit is unachievable and that the algebraic cost of obtaining and
using more accurate adjoint solutions must be balanced against the desired FOM.

The authors compare LIFT against AVATAR, considered to be one of the most efficient
automated variance reduction techniques used in a major production code at the time of
publication. The overall result stated in Reference [19] is that LIFT outperforms AVATAR
in most problems. The reasons given for this are that LIFT particles have significantly shorter
histories than AVATAR particles and that LIFT particles have smaller weight fluctuations
than AVATAR particles and thus require less splitting and Russian roulette. It is noted,
however, that the two methods perform comparably for problems where biasing is difficult
(AVATAR does not use any biasing techniques other than survival biasing, which LIFT also
employs in addition to its other biasing).

It is seen that the LIFT method loses its advantage over survival biasing as the scattering
ratio of a given problem approaches unity. While FOM values from LIFT increase, the
acceleration of the method compared to survival biasing becomes negligible [19]. In Reference
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[20], numerical results and comparisons against AVATAR are presented. We will briefly
summarize the results and conclusions here, focusing on results from the most complex
scenario tested, as the work presented in this dissertation is concerned with three-dimensional
multigroup problems.

Cooper and Larsen tested the LIFT method in combination with results from various
types of deterministic solutions as well as in combination with weight windows generated
from AVATAR. The most complex scenario tested was multigroup in energy and featured a
concrete cube with a duct running through it. The duct was also concrete but with a lower
density than the bulk material; it had the source at one end, the detector at the other end, and
three bends along its path. In general, it was found that incorporating angular information
into the AVATAR and LIFT solutions improved the FOM for the Monte Carlo calculation
when using either code [20]. Taking this result into consideration as well as other conclusions
drawn in work discussed earlier in this chapter, we move forward onto discussing the LDO
equations, which will be developed and then used to incorporate angular information into
Monte Carlo variance reduction parameter generation.

2.3 The Lagrange Discrete Ordinates (LDO)

Equations

The Lagrange Discrete Ordinates (LDO) equations, shown in Equation 2.79, are formally the
same as the classical discrete ordinates equations. The LDO equations differ from the discrete
ordinates equations in how the scattering source is calculated and in the representation of
the angular flux. In this section, we give a mathematical background for and a derivation of
the LDO equations.

2.3.1 Mathematical Background

Prior to deriving the LDO equations, it is useful to summarize relevant material from ap-
proximation theory for functions defined on S2, the unit sphere in R3. We start by denoting
the space of square integrable functions on S2 as L2(S2), where an orthonormal basis for
L2(S2) is given by the spherical harmonic functions

Y m
` (θ, ϕ) = (−1)`

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm
` (cos θ)eimϕ. (2.58)

Here, ` ≥ 0, |m| ≤ `, Pm
` is the associated Legendre function, and θ and ϕ are the polar and

azimuthal components of Ω, respectively. For a given positive integer L > 0, we define the
rotationally invariant subspace of the spherical harmonics, HL, as

HL = span{Y m
` : |m| ≤ `, 0 ≤ ` ≤ L}, (2.59)
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with dimension dL = dimHL = (L+ 1)2. Said differently, HL is the vector space that is the
intersection of all subspaces containing Y m

` ; it is the set of all linear combinations of Y m
` .

The space HL admits a “reproducing kernel” given by

K(Ω ·Ω′) =
L∑
`=0

2`+ 1

4π
P`(Ω ·Ω′) , (2.60)

where P` is the `th degree Legendre polynomial and K satisfies

f(Ω) =

∫
S2
K(Ω ·Ω′)f(Ω′)dΩ′ (2.61)

for all f ∈ HL.
Let S = {Ωi}Mi=1 be a given set of points (discrete directions) in S2 and assume that

M = dL. That is, the number of directions is equal to the dimension of the subspace
HL. Then, the set S is said to be a fundamental system of points for HL if the evaluation
functionals

f 7→ f(Ωi), i = 1, 2, . . . ,M, f ∈ HL (2.62)

are linearly independent. Using a spherical harmonics basis for HL, this is equivalent to
requiring that the interpolation matrix Y, shown in Equation 2.63, be nonsingular.

Y =


Y 0

0 (Ω1) Y 0
0 (Ω2) Y 0

0 (Ω3) . . . Y 0
0 (ΩM)

Y −1
1 (Ω1) Y −1

1 (Ω2)

Y 1
0 (Ω1)

. . .
...

...
Y L
L (Ω1) . . . Y L

L (ΩM)

 (2.63)

Fundamental systems of points can be constructed geometrically or through optimization
techniques. Here, we employ fundamental systems designed using numerical techniques to
maximize the logarithm of the determinant of the Gram matrix, where the Gram matrix is
constructed as G = Y†Y and Y† is the conjugate transpose (Hermitian adjoint) of Y. This
requirement leads to well-conditioned interpolation matrices. With the fundamental system
of points {Ωi}dLi=1, Lagrange functions on the sphere can be defined such that

Li(Ωj) = δi,j, i, j = 1, 2, . . . , dL. (2.64)

These functions {Li}dLi=1 then form a basis for HL. Next, we define another set of functions

Ki(Ω) ≡ K(Ω ·Ωi), i = 1, 2, . . . , dL. (2.65)

Using Equations 2.62 and 2.65, the Lagrange functions and the reproducing kernel functions
are related by
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∫
S2
Li(Ω)K(Ωj ·Ω)dΩ = 〈Li, Kj〉 = Li(Ωj) = δi,j, i, j = 1, 2, . . . , dL. (2.66)

This indicates that {Ki}dLi=1 and {Li}dLi=1 form bi-orthogonal bases for the subspace HL and
so one basis can be written in terms of the other:

Li(Ω) =

dL∑
j=1

〈Li, Lj〉Kj(Ω), (2.67)

Kj(Ω) =

dL∑
i=1

〈Ki, Kj〉Li(Ω). (2.68)

Now, define the dL × dL matrix L with elements (L)i,j = 〈Li, Lj〉. Using the addition
theorem, the Gram matrix G = Y†Y then has the elements (G)i,j = K(Ωi ·Ωj) = 〈Ki, Kj〉.
Equations 2.67 and 2.68 imply that LG = I, where I is the dL × dL identity matrix. As
mentioned previously, by the construction of the extremal point systems, the Gram matrix is
well-conditioned and so the matrix elements 〈Li, Lj〉 = (G−1)i,j can be computed accurately.
Additionally, the reproducing kernel can be easily calculated using the three-term recursion
relation for Legendre polynomials, so Equation 2.67 gives a convenient way to calculate the
necessary Lagrange functions.

Using this framework, for any f ∈ HL,

f(Ω) =

dL∑
i=1

f(Ωi)Li(Ω) (2.69)

and so we can define a quadrature on HL by

∫
S2
f(Ω)dΩ =

dL∑
i=1

∫
S2
f(Ωi)Li(Ω)dΩ

=

dL∑
i=1

wif(Ωi),

(2.70)

where

wi =

∫
S2
Li(Ω)dΩ =

dL∑
j=1

〈Li, Lj〉. (2.71)

In summary, the HL subspace has three different basis sets: the spherical harmonics,
the reproducing kernel functions, and the Lagrange functions. For the reproducing kernel
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functions and the Lagrange functions to be a basis, it is required that the number of directions
be equal to the dimension of the subspace. That is to say, for a Lagrange or reproducing
kernel basis to exist, the number of quadrature points must be (L + 1)2. This is what
precludes many commonly-used quadrature sets from generating a Lagrange basis and is
why extremal point systems and corresponding positive weight quadratures are used here.
Next, we will continue with the derivation of the LDO equations.

2.3.2 Derivation of the LDO Equations

With the appropriate mathematical background in place, we will now derive the LDO equa-
tions, keeping in mind that the end results is a set of equations that are formally the same
as the discrete ordinates equations. First, we define

ψL(r, E,Ω) =
N∑
n=1

ψn(r, E)Ln(Ω), (2.72)

where, again, Ln(Ω) is the nth Lagrange element and N is the dimension of the rotationally
invariant subspace of the spherical harmonics as defined in Equation 2.59. The coefficients
ψn(r, E) will be determined through collocation. Equation 2.72 is then substituted into the
NTE:

Ω · ∇ψL(r, E,Ω) + Σt(r, E)ψL(r, E,Ω) =∫ ∞
0

∫
S2

Σs(r, E
′ → E,Ω′ ·Ω)ψL(r, E ′,Ω′)dΩ′dE ′ +Q(r, E,Ω). (2.73)

Next, we define the residual

rL(r, E,Ω) ≡ Ω · ∇ψL(r, E,Ω) + Σt(r, E)ψL(r, E,Ω)

−
∫ ∞

0

∫
S2

Σs(r, E
′ → E,Ω′ ·Ω)ψL(r, E ′,Ω′)dΩ′dE ′ −Q(r, E,Ω). (2.74)

The energy variable is discretized with a standard multigroup approach as is done in the
discrete ordinates equations:

rgL(r,Ω) = Ω · ∇ψgL(r,Ω) + Σg
t (r)ψgL(r,Ω)

−
G−1∑
g′=0

∫
S2

Σg′→g
s (r,Ω′ ·Ω)ψg

′

L (r,Ω′)dΩ′ −Qg(r,Ω),
g = 0, 1, . . . , G− 1. (2.75)

Next, the scattering integral is evaluated analytically. In this evaluation, we suppress energy
dependence for brevity.
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∫
S2

Σs(r,Ω
′ ·Ω)ψL(r,Ω′)dΩ′ =

∫
S2

Σs(r,Ω
′ ·Ω)

N∑
n=1

ψn(r)Ln(Ω′)dΩ′

=
N∑
n=1

ψn(r)

∫
S2

Σs(r,Ω
′ ·Ω)Ln(Ω′)dΩ′

=
N∑
n=1

ψn(r)

∫
S2

Σs(r,Ω
′ ·Ω)

N∑
m=1

〈Ln, Lm〉Km(Ω′)dΩ′

=
N∑
n=1

ψn(r)
N∑
m=1

〈Ln, Lm〉
∫
S2

Σs(r,Ω
′ ·Ω)Km(Ω′)dΩ′

=
N∑
n=1

ψn(r)
N∑
m=1

〈Ln, Lm〉Σs,L(r,Ωm ·Ω).

(2.76)

Here, the reproducing property of the function K was used and Σs,L(r,Ωm ·Ω) denotes the
scattering cross section restricted to maximum degree L [21]. It is assumed that total and
absorption group cross sections are independent of angle. Equations 2.72 and 2.76 are then
substituted into the residual expression:

rgL(r,Ω) =

Ω ·
N∑
n=1

[∇ψg,n(r)]Ln(Ω) + Σg
t (r)

N∑
n=1

ψg,n(r)Ln(Ω)

−
G−1∑
g′=0

N∑
n′=1

N∑
m=1

〈Ln′ , Lm〉Σg′→g
s,L (r,Ωm ·Ω)ψg

′,n′
(r)

−Qg(r,Ω).

g = 0, 1, . . . , G− 1. (2.77)

Next, the collocation procedure requires the residual to be zero at the points {Ωn}Nn=1. This
leads to the G×N equations

Ωn · ∇ψg,n(r) + Σg
t (r)ψg,n(r) =

G−1∑
g′=0

N∑
m=1

N∑
n′=1

〈Ln′ , Lm〉Σg′→g
s,L (r,Ωm ·Ωn)ψg

′,n′
(r) +Qg,n(r),

g = 0, 1, . . . , G− 1,

n = 1, 2, . . . , N.
(2.78)

In the collocation procedure, we have made use of the interpolation property of the Lagrange
functions, i.e. La(Ωb) = δa,b.

Finally, we discretize the spatial variable in the same way as was done for the discrete
ordinates equations, giving the G× I × J ×K ×N multigroup LDO equations:
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Ωn · ∇ψg,ni,j,k + Σg
t,i,j,kψ

g,n
i,j,k =

G−1∑
g′=0

N∑
m=1

N∑
n′=1

〈Ln′ , Lm〉Σg′→g
s,L,i,j,k(Ωm ·Ωn)ψg

′,n′

i,j,k +Qg,n
i,j,k,

g = 0, 1, . . . , G− 1,

i = 1, 2, . . . , I,

j = 1, 2, . . . , J,

k = 1, 2, . . . , K,

n = 1, 2, . . . , N.

(2.79)

Here, N is the number of discrete angles used in the formulation and is a property of the
maximum degree of integration of the quadrature set on which the equations are based, Ln
is the nth Lagrange function, and Σs,L is the scattering cross section restricted to maximum
degree L.

The difference in how the scattering source is calculated between Equations 2.17 and 2.79
has important implications, which we will explore in Chapter 3. The most apparent difference
is that the LDO equations do not require the calculation of spherical harmonic moments of
the angular flux. It is also important to note that the extremal point systems on which
the LDO equations are based do not possess symmetries like those of the commonly-used
quadrature sets discussed earlier.

The LDO formulation has never before been implemented in a full-scale radiation trans-
port framework, nor has it been studied in the context of Monte Carlo variance reduction
parameter generation. The following chapter will discuss the implementation of the LDO
equations in the Exnihilo software package as well as the methodology employed for using
the equations’ solutions in automated Monte Carlo variance reduction parameter generation.
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Chapter 3

Method Description and
Implementation

This chapter discusses the implementation and solution of the LDO equations in Denovo, the
parallel discrete ordinates radiation transport code package in the Exnihilo code suite [22].
First, a comparison of the traditional formulation of the discrete ordinates equations with the
LDO equations is presented to demonstrate the difference in implementing the two separate
sets of equations. Then, a brief discussion of scattering is given to highlight the specific
differences between the two sets of equations with respect to how scattering is handled from
the perspective of implementation. Following that is an overview of the quadrature sets used
in solving the LDO equations in Denovo. Finally, we list and discuss the restrictions of using
the LDO equations in combination with Exnihilo and ADVANTG for the purpose of Monte
Carlo variance reduction parameter generation.

3.1 Operator Form

3.1.1 Traditional Discrete Ordinates Formulation

When considering deterministic methods, it is often instructive to think about the NTE in
operator form. In accordance with the discretization in Section 2.1.2.1, the operator form of
the traditional discrete ordinates equations [6] is

LΨ = MSΦ +Q, (3.1)

Φ = DΨ where D = M>W, (3.2)(
I−DL−1MS

)
Φ = DL−1Q. (3.3)

The operators will be defined below, with the exception of L, the transport operator. When
solving Equation 3.3, the operation L−1 is referred to as a “sweep”; L is implicitly formed as
a lower-left triangular matrix and is inverted by “sweeping” through the spatial mesh in the
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direction of particle flow [6]. With this formulation, at each spatial unknown, with energy
groups defined over the range g ∈ [0, G− 1] as described previously, we can write

L


Ψ0

Ψ1
...

ΨG−1

 =


[M] 0 0 0

0 [M] 0 0

0 0
. . .

...
0 0 · · · [M]




[S]0�0 [S]1�0 · · · [S]G−1�0

[S]0�1 [S]1�1 · · · [S]G−1�1
...

...
. . .

...
[S]0�G−1 [S]1�G−1 · · · [S]G−1�G−1




Φ0

Φ1
...

ΦG−1

 (3.4)

+


Q0

Q1
...

QG−1

 ,

where the notation [·]g indicates a block matrix over all unknowns for a single group.
Here, the angular flux vector for group g over angles 1, . . . , N is defined as

Ψg =
(
ψg1 ψg2 ψg3 · · ·ψ

g
N

)>
, (3.5)

with the external source vector Qg defined similarly. The operator M is the “moment-to-
discrete” matrix and is used to project harmonic moments onto discrete angle space. It is
defined as

[M] =


Y e

00(Ω1) Y e
10(Ω1) Y o

11(Ω1) Y e
11(Ω1) · · · Y o

PP (Ω1) Y e
PP (Ω1)

Y e
00(Ω2) Y e

10(Ω2) Y o
11(Ω2) Y e

11(Ω2) · · · Y o
PP (Ω2) Y e

PP (Ω2)
Y e

00(Ω3) Y e
10(Ω3) Y o

11(Ω3) Y e
11(Ω3) · · · Y o

PP (Ω3) Y e
PP (Ω3)

...
...

...
...

. . .
...

...
Y e

00(ΩN) Y e
10(ΩN) Y o

11(ΩN) Y e
11(ΩN) · · · Y o

PP (ΩN) Y e
PP (ΩN)

 . (3.6)

Note that [M] is dependent only on angle and is therefore the same for each energy group.
The operator D is the “discrete-to-moment” matrix; it is used to calculate the moments of
the angular flux from discrete angular flux values. D is calculated as M>W, where W is a
diagonal matrix of quadrature weights [6], and it is written as
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[D] =



w1Y
e

00(Ω1) w2Y
e

00(Ω2) w3Y
e

00(Ω3) · · · wNY
e

00(ΩN)
w1Y

e
10(Ω1) w2Y

e
10(Ω2) w3Y

e
10(Ω3) · · · wNY

e
10(ΩN)

w1Y
o

11(Ω1) w2Y
o

11(Ω2) w3Y
o

11(Ω3) · · · wNY
o

11(ΩN)
w1Y

e
11(Ω1) w2Y

e
11(Ω2) w3Y

e
11(Ω3) · · · wNY

e
11(ΩN)

...
...

...
. . .

...
w1Y

o
PP (Ω1) w2Y

o
PP (Ω2) w3Y

o
PP (Ω3) · · · wNY

o
PP (ΩN)

w1Y
e
PP (Ω1) w2Y

e
PP (Ω2) w3Y

e
PP (Ω3) · · · wNY

e
PP (ΩN)


. (3.7)

Like [M], [D] is dependent only on angle and is the same for each energy group. The
scattering cross section matrices are defined as

[S]g′→g =



Σg′�g
s,0 0 0 0 0 0 0

0 Σg′�g
s,1 0 0 0 0 0

0 0 Σg′�g
s,1 0 0 0 0

0 0 0 Σg′�g
s,1 0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0 Σg′�g
s,P 0

0 0 0 0 0 0 Σg′�g
s,P


, (3.8)

where these scattering cross section coefficient values come from data libraries based on
experimental measurements. Finally, the flux moment vectors are defined as

Φg =
(
φg00 φg10 ϑg11 φg11 φg20 · · · ϑgPP φgPP

)>
, (3.9)

where the flux moments are evaluated as listed in Equation 2.18. As we will describe below
in Section 3.1.4, the goal of solving the discrete ordinates equations is to solve for these
flux moments and then use the flux moments to calculate the scalar flux. In summary,
the traditional discrete ordinates discretizations are captured in the preceding matrices;
they can be used to analyze behavior and performance and can be compared against other
discretizations.

3.1.2 LDO Formulation

As discussed in Chapter 2, although the LDO equations are formally the same as the tra-
ditional discrete ordinates equations, there are several key differences between the sets of
equations. Here we present and discuss the operator form of the LDO equations as a com-
parison to the operator form of the discrete ordinates equations shown above. The operator
form of the LDO equations is
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LΨ = S̃JΨ +Q, (3.10)(
I− L−1S̃J

)
Ψ = L−1Q. (3.11)

Letting D ≡ I with L−1 = IL−1 = DL−1, we then have(
I−DL−1S̃J

)
Ψ = DL−1Q. (3.12)

Equation 3.12 is in the same form as Equation 3.3, so we can apply the same solution
techniques to both sets of equations.

In contrast to Equation 3.3, however, Equation 3.12 contains the Lagrange interpolation
matrix J rather than the moment-to-discrete operator M, and S̃ contains the new formulation
of scattering cross sections specific to the LDO equations. Additionally, when solving the
LDO equations, we are solving for the angular flux coefficients rather than flux moments.
Now, at each spatial unknown, with energy groups again defined over the range g ∈ [0, G−1],
we have

L


Ψ0

Ψ1
...

ΨG−1

 =


[S̃]0�0 [S̃]1�0 · · · [S̃]G−1�0

[S̃]0�1 [S̃]1�1 · · · [S̃]G−1�1
...

...
. . .

...

[S̃]0�G−1 [S̃]1�G−1 · · · [S̃]G−1�G−1




[J] 0 0 0
0 [J] 0 0

0 0
. . .

...
0 0 · · · [J]




Ψ0

Ψ1
...

ΨG−1

 (3.13)

+


Q0

Q1
...

QG−1

 ,

where the block matrix notation still holds. The angular flux coefficient vector and external
source vector are formed as listed in Equation 3.5. The operator [J] performs the Lagrange
interpolation. It is constructed as the inverse of the Gram matrix, G, which is calculated as

G =


∑L

`=0
2`+1
4π
P`(Ω1 ·Ω1)

∑L
`=0

2`+1
4π
P`(Ω1 ·Ω2) · · ·

∑L
`=0

2`+1
4π
P`(Ω1 ·ΩN)∑L

`=0
2`+1
4π
P`(Ω2 ·Ω1)

∑L
`=0

2`+1
4π
P`(Ω2 ·Ω2) · · ·

∑L
`=0

2`+1
4π
P`(Ω2 ·ΩN)

...
...

. . .
...∑L

`=0
2`+1
4π
P`(ΩN ·Ω1)

∑L
`=0

2`+1
4π
P`(ΩN ·Ω2) · · ·

∑L
`=0

2`+1
4π
P`(ΩN ·ΩN)

 .

(3.14)
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Like [M] and [D] in the traditional discrete ordinates formulation, [J] depends only on angle
and is the same for all energy groups. Finally, the new scattering cross section matrix is:

[S̃]g′→g =


Σg′→g

s,L (Ω1 ·Ω1) Σg′→g
s,L (Ω1 ·Ω2) · · · Σg′→g

s,L (Ω1 ·ΩN)

Σg′→g
s,L (Ω2 ·Ω1) Σg′→g

s,L (Ω2 ·Ω2) · · · Σg′→g
s,L (Ω2 ·ΩN)

...
...

. . .
...

Σg′→g
s,L (ΩN ·Ω1) Σg′→g

s,L (ΩN ·Ω2) · · · Σg′→g
s,L (ΩN ·ΩN)

 , (3.15)

where each element of [S̃]g′→g is calculated as

Σg′→g
s,L (Ωn ·Ωm) =

L∑
`=0

2`+ 1

4π
Σg′�g

s,` P`(Ωn ·Ωm). (3.16)

In Equation 3.16, Σg′�g
s,` are the same cross section coefficients that are stored in the tradi-

tional scattering matrix given in Equation 3.8. We again note that the operator D is replaced
by the identity matrix in the LDO formulation; incorporation of the quadrature set weights
in the LDO equations is discussed in Section 3.1.4. In the LDO formulation Equations 3.14
– 3.16, L, the order at which the scattering expansion is truncated, is arbitrary. However,
values of Σg′�g

s,` must exist for all values of ` ∈ [0, L], so we typically set L equal to the
same scattering expansion PN order P in Equations 3.6 – 3.8. A more detailed comparison
of scattering between the discrete ordinates formulation and the LDO formulation is given
below in Section 3.2.1.

To recap, space and energy are handled in the same way between the two different formu-
lations, while angular discretization and scattering are handled differently. The traditional
discrete ordinates formulation uses the M and D operators to project harmonic moments
onto discrete angle space and to calculate moments of the angular flux from discrete angular
flux values, respectively. In contrast, the LDO formulation employs the interpolation ma-
trix J and the scattering matrix S̃ to capture angular information in the problem. We will
look at the operator sizing for the two formulations in the next section to verify that these
differences are compatible with respect to implementing the LDO equations in a software
framework that was written to solve the discrete ordinates equations.

3.1.3 Operator Sizes

To evaluate the feasibility of constructing and solving the LDO equations in Denovo, it is
pertinent to look at the dimensions of the operator forms of each equation. By doing this,
we verify that the data structures for the discrete ordinates form can be leveraged to solve
the LDO equations.
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The sizes used for the discrete ordinates equations are

G = number of energy groups,

N = number of discrete angles,

P = scattering expansion PN order,

T = (P + 1)2 = number of flux moments,

C = number of spatial cells,

E = number of unknowns per spatial cell.

Now, we define

a = G×N × C × E and b = G× T × C × E. (3.17)

The operator sizes of the original formulation are then

I = (a× a);

D = (b× a), [D] = (TCE ×NCE);

L = L−1 = (a× a);

M = (a× b), [M] = (NCE × TCE);

S = (b× b), [S] = (TCE × TCE);

Φ = (b× 1), Φg = (TCE × 1);

Ψ = (a× 1), Ψg = (NCE × 1);

Q = (a× 1), Qg = (NCE × 1).

The sizes used in the LDO formulation are

G = number of energy groups,

H = degree of spherical harmonics subspace to integrate,

N = (H + 1)2 = number of discrete angles,

P = scattering expansion PN order,

T = (H + 1)2 = number of angular flux coefficients,

C = number of spatial cells,

E = number of unknowns per spatial cell.

Again, we define a and b as calculated in Equation 3.17. The operator sizes of the LDO
formulation are then
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I = D = (a× a);

L = L−1 = (a× a);

S̃ = (a× a), [S̃] = (NCE ×NCE);

J = (a× a), [J] = (NCE ×NCE);

Ψ = (a× 1), Ψg = (NCE × 1);

Q = (a× 1), Qg = (NCE × 1).

In the LDO formulation, since the number of flux coefficients is tied to the degree of the
subspace of spherical harmonics being integrated, T = N and thus a = b. With this in mind,
we observe that the operator dimensions in the two different formulations are compatible,
which facilitates the use of the Exnihilo framework to solve the LDO equations. However, as
noted throughout the chapter, the LDO formulation requires particular treatment in several
ways when forming and solving the equations.

3.1.4 Scalar Flux

In the traditional formulation of the discrete ordinates equations, the scalar flux is defined
as the zeroth moment in the expansion of the angular flux into spherical harmonic functions
[6]. In Denovo, it is calculated for a given spatial cell and energy group as

φ =

∫
4π

ψdΩ =
√

4π

∫
4π

Y e
00ψdΩ =

√
4πφg00. (3.18)

Thus, based on Equation 3.18, Denovo only retrieves the first entry of the angular flux
moment storage vector when called upon to calculate the scalar flux.

When solving the LDO equations, the scalar flux is calculated as a weighted sum of the
angular flux moments:

φ =

∫
4π

ψdΩ =
N∑
n=1

wnψn, (3.19)

where the weights are those associated with the particular quadrature set and the angular
flux coefficients are those values stored in the Denovo flux moment vector. In order to
keep the Denovo scalar flux output functionality consistent between LDO quadratures and
other quadrature sets, the scalar flux value calculated in Equation 3.19 is multiplied by 1

4π

and written into the first entry of the flux moment storage vector after the calculation has
finished.
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3.2 Scattering

3.2.1 Matrix Formulation

As mentioned in Chapter 2, the most apparent difference between the standard discrete
ordinates equations and the LDO equations is the discrepancy between the two sets of
equations’ scattering terms. Although the same scattering cross section coefficients are used
in both methods when running Denovo, the coefficients are used to construct the scattering
terms differently. Recall the operator forms discussed above and consider the following
demonstrative example.

Suppose we are considering one spatial cell of a system with two energy groups and a
P1 scattering expansion. It is assumed that particles may scatter between the two energy
groups as well as within each energy group. For the traditional discrete ordinates equations,
the scattering matrices are

[S]0�0 =


Σ0�0
s0 0 0 0
0 Σ0�0

s1 0 0
0 0 Σ0�0

s1 0
0 0 0 Σ0�0

s1

 , [S]1�0 =


Σ1�0
s0 0 0 0
0 Σ1�0

s1 0 0
0 0 Σ1�0

s1 0
0 0 0 Σ1�0

s1

 ,

(3.20)

[S]0�1 =


Σ0�1
s0 0 0 0
0 Σ0�1

s1 0 0
0 0 Σ0�1

s1 0
0 0 0 Σ0�1

s1

 , [S]1�1 =


Σ1�1
s0 0 0 0
0 Σ1�1

s1 0 0
0 0 Σ1�1

s1 0
0 0 0 Σ1�1

s1

 .

In contrast, the LDO scattering matrix for within-group scattering in the lower group is

[S̃]0→0 =


Σ0�0

s,1 (Ω1 ·Ω1) Σ0�0
s,1 (Ω1 ·Ω2) · · · Σ0�0

s,1 (Ω1 ·ΩN)
Σ0�0

s,1 (Ω2 ·Ω1) Σ0�0
s,1 (Ω2 ·Ω2) · · · Σ0�0

s,1 (Ω2 ·ΩN)
Σ0�0

s,1 (Ω3 ·Ω1) Σ0�0
s,1 (Ω3 ·Ω2) · · · Σ0�0

s,1 (Ω3 ·ΩN)
...

...
. . .

...
Σ0�0

s,1 (ΩN ·Ω1) Σ0�0
s,1 (ΩN ·Ω2) · · · Σ0�0

s,1 (ΩN ·ΩN)

 . (3.21)

The LDO scattering matrices for particle movement between the two energy groups as well as
within the higher energy group have been omitted for brevity; these matrices are constructed
in the same fashion as Equation 3.21. In this example LDO scattering matrix, a given entry
is calculated as
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Σ0�0
s,1 (Ωn ·Ωm) =

L=1∑
`=0

2`+ 1

4π
Σ0�0

s,` P`(Ωn ·Ωm)

=
2(0) + 1

4π
Σ0�0

s,0 P0(Ωn ·Ωm) +
2(1) + 1

4π
Σ0�0

s,1 P1(Ωn ·Ωm) (3.22)

=
1

4π
Σ0�0

s,0 +
3

4π
(Ωn ·Ωm)Σ0�0

s,1 .

Equations 3.20 and 3.21 show several important and distinct differences between the
two formulations. In the traditional discrete ordinates formulation, the scattering matrices
themselves do not incorporate angular information; they merely hold the constant scattering
cross section coefficients. Angular information is incorporated into the system solution via
the M and D matrices. In contrast, in the LDO formulation, the scattering cross section
expansion is contained within the scattering matrix itself. Despite the structural differences,
Equations 3.20 and 3.21 employ the same cross section coefficients, as seen in the expansion
listed in Equation 3.22.

3.2.2 Cross Section Reconstruction

To demonstrate the formal equivalence of how scattering is handled between the traditional
discrete ordinates formulation and the LDO formulation,we present a brief example of scat-
tering cross section reconstruction as a function of angle.

For this example, we will look at the scattering cross section of water at 300 K as a
function of Ω·Ω′, the cosine of the outgoing and incoming angles. Here we plot the scattering
cross sections for the highest energy group (group 0) of a coarse (8 energy groups) test cross
section library distributed with the SCALE software package [23]. A P3 scattering expansion
is used.

In Figure 3.1, we see that the group-to-group cross section with the greatest variation in
angle is the downscattering from group 0 to group 1. In the interest of demonstrating how
well particular quadrature types reconstruct scattering cross section as a function of angle,
we will restrict the following reconstructions to this particular group-to-group cross section.
Figure 3.2 shows this cross section reconstructed with the coarsest quadruple range (QR)
and LDO quadrature sets available in Exnihilo. The QR quadrature set has one angle per
octant and the LDO quadrature set is the “md003.00016” set of ordinates and weights listed
in Table 3.1.
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Figure 3.1: Water scattering cross section as a function of angle in the highest energy group.

In Figure 3.2 we see that the coarse QR and LDO quadrature sets both capture the
forward-peakedness of this cross section. The QR quadrature set contains fewer unique
values of Ω ·Ω′ than does the LDO quadrature set, however, and the LDO quadrature set
produces values of Σs that are closer to the extremal values of the reference cross section
curve. The potential impact of this is the possibility of being able to use relatively coarse LDO
quadrature sets in solving a problem while incorporating the problem’s angular dependence
better than a standard quadrature set of a similar coarseness would.
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Figure 3.2: Group 0 → 1 scattering cross section reconstructed with coarse angular meshes.

Finer angular meshes of both quadrature set types are shown in Figure 3.3; in this plot
the QR quadrature set has 128 angles and the LDO quadrature set has 144 angles. It is
seen that both quadrature set types match the reference cross section curve quite well when
the angular mesh is refined. This is unsurprising for the QR quadrature set and serves as
a confirmation that the LDO formulation is formally the same as the traditional discrete
ordinates equations.
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Figure 3.3: Group 0 → 1 scattering cross section reconstructed with fine angular meshes.

3.2.3 Scattering in Denovo

In Denovo and most other discrete ordinates codes, the operation L−1 in Equation 3.3 rep-
resents a sweep through the system mesh in the directions of particle travel [7]. We can
rewrite Equation 3.3 to reframe it as solving for the total source Q:

Q = DL−1 (MQm +Qd) . (3.23)

Here, the operators are the same as those in Equation 3.3, Qm is the sum of the “moment-
based” sources, and Qd is the sum of the “discrete” sources [24] as shown in Equation 3.24.
Recalling Equation 3.23, moment-based sources are those to which the moment-to-discrete
operator M is applied in the traditional discrete ordinates formulation. Discrete sources are
not operated on by M and may be restricted to a subset of the discrete angles used in a
given problem.
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Qm =
Sm∑
s=1

Qm,s and Qd =

Sd∑
s=1

Qd,s, (3.24)

where Qm,s is a particular moment-based sweep source, Qd,s is a particular discrete-based
sweep source, Sm is the total number of moment-based sources in the system, and Sd is
the total number of discrete sources [24]. Figure 3.4 shows the sweep source hierarchy
implemented in Denovo, where the goal of the infrastructure is to calculate the total source
listed in Equation 3.23 by performing a transport sweep over the combined particle sources.

Figure 3.4: Sweep source hierarchy in Denovo [24].

From this diagram, it is apparent that all scattering derives from a common base class,
the scattering sweep source base, and that this base class derives from the moment-based
sweep source class. The types of scattering supported include downscattering, within-group
scattering, upscattering, and first-collision scattering. The scattering classes share a great
deal of functionality, hence the implementation of the common base class. Because the
scattering sweep source is a type of moment-based sweep source, we note the particular
difference in the operator forms of the discrete ordinates and LDO formulations and how
that translates into implementing scattering calculations in Denovo.

In the LDO formulation, the interpolation matrix J is applied to the moment-based
sources. Looking at Equations 3.3 and 3.12, it is apparent that the operator order is differ-
ent between the traditional discrete ordinates formulation and the LDO formulation, Namely,
the product of the scattering matrix and the moment-to-discrete or interpolation matrix is
reversed between the two sets of equations. To handle this difference, a “scattering calcula-
tor” was implemented in the scattering sweep source base class such that the scattering sweep
source is calculated in accordance with the formulation of the equation set being solved.
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3.3 Selection of Quadrature Sets

As mentioned in Section 2.3.1, the LDO equations are developed with and must be evaluated
at a fundamental system of points for the subspace of spherical harmonics. Ahrens provides
references for examples of construction methods of these point systems [5]. Like Ahrens, we
have chosen to use the extremal point sets developed and distributed by Womersley [25].

Womersley’s extremal systems are generated such that the associated Gram matrix is
positive definite [25]; these matrices are of interest to work with from an implementation
standpoint because of their low condition numbers. In Table 3.1 we give an example of a
point set generated by Womersley. The point set is of degree 3 and thus contains 16 points.

Table 3.1: The “md003.00016” quadrature set developed by Womersley [25].

µ η ξ w

0.00000000000000000 0.0000000000000000 1.0000000000000000 0.73999377643692810
0.89273429807179527 0.0000000000000000 -0.45058348066286125 0.73999377643692787
-0.14301510478336188 0.98579910306911467 -0.088015954189755163 0.73999377643692688
-0.73214276086495222 0.51082433836573149 -0.45058348066286003 0.73999377643692854
0.65748213697787805 -0.7831172071742225 -0.088015954189756496 0.73999377643692765
-0.70626478165373330 0.4595590936077425 0.52407635945553088 0.92161132427900849
-0.60670408850507063 -0.4914548265981833 0.62661538904237324 0.73999377643692887
-0.29492456926406690 -0.9812320737717869 -0.18150577463199227 0.92161132427900960
0.21767572867043725 -0.7831172071742269 0.62661538904237279 0.73999377643692787
-0.51446703219451573 -0.23748738235169115 -0.82396809162048790 0.73999377643692743
0.85155965361038066 -0.013788611344369470 0.52407635945553044 0.92161132427900860
0.28603020956672459 -0.48914548265981850 -0.82396809162048790 0.73999377643692776
0.14962969730741976 0.47595590936077353 -0.86664694427906974 0.92161132427900883
-0.96739492195887000 -0.23748738235169184 -0.088015954189756274 0.73999377643692821
0.68136471239214502 0.72663286501151070 -0.088015954189756274 0.73999377643692898
0.22843682262779150 0.72663286501151014 0.64793618324097579 0.73999377643692754

We note that all of Womersley’s extremal systems are generated such that the first point
in each set is situated along the z-axis. These systems are rotationally invariant with respect
to the maximization of the logarithm of the determinant of the associated Gram matrix, so
the point sets may be rotated in space if this vector placement is undesirable for a given
scenario. The work presented and discussed in Chapter 4 uses the point sets posted by
Womersley; exploration of using rotated extremal point sets is a potential area of future
work.

3.4 Restrictions

Several restrictions exist for solving the LDO equations in the Exnihilo framework as well as
employing the solutions in the ADVANTG software. Some of these restrictions are a result
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of implementing the LDO equations in a framework designed to solve the traditional discrete
ordinates equations, while other restrictions are merely current limitations of the software
pieces used in this work.

3.4.1 Boundary Conditions

Although it is mathematically possible to use reflective boundary conditions for the LDO
equations (given their interpolatory nature), the current implementations of the various
codes used in this work restrict the solutions to vacuum (black) boundary conditions at the
time of this writing. The primary reason for this is that the ADVANTG software does not
support the use of reflective boundary conditions, and the LDO equations were implemented
into the Exnihilo framework for the purpose of using the solutions in ADVANTG for Monte
Carlo variance reduction parameter generation. To a lesser extent, the Exnihilo framework
was built with symmetric quadrature sets in mind, and so the use of reflective boundary
conditions with the LDO equations was considered to be an effort beyond the scope of this
work.

3.4.2 Uncollided Flux

The use of an “analytic” approximation of the uncollided flux source, a method employed
to reduce ray effects from point sources or other small sources [22], is not available when
solving the LDO equations through Exnihilo. This approximation is obtained in Denovo by
solving the following equations for the group uncollided flux moments for every mesh cell in
the calculation domain:

Ω · ∇ψg(Ω) + Σg
tψ

g(Ω) =
Qg
p

4π
δ(r − rp), (3.25)

where |r − rp| is the geometric distance between the flux source and some particular point
and the analytic solution of the above equations is

ψg(Ω) = δ(Ω−Ωp→r)
Qg
p

4π|r − rp|2
e−τ(r,rp). (3.26)

In Equation 3.26, the term δ(Ω −Ωp→r) indicates that the angular flux at a given point is
only nonzero for the the angle that passes directly from the source through the particular
point of interest. The “optical path length” τ(r, rp) is the integral of the total cross section
from the source location to the point of interest and is calculated via ray tracing.

Because the Exnihilo framework was written to solve the traditional form of the discrete
ordinates equations, these flux moment solutions in Equation 3.26 are based on the expansion
listed in Equation 2.18. That is to say, when using the analytic uncollided flux approximation,
the flux moments are calculated using the components of the spherical harmonic functions
listed in Equations 2.19 and 2.20. So, the solutions do not apply to the LDO equations
and this treatment cannot be used. All tests in the following chapter were run with the
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uncollided flux treatment turned off; implementing this approximation for use with the LDO
equations in Denovo remains an area of future work.

3.4.3 Particle Sources

When considering neutron transport problems of interest, a small variety of particle source
types appear frequently. One typical source type is an isotropic source, in which particles
are emitted uniformly in all directions. Specifically, isotropic point sources, in which the
physical size of the source itself is negligible, are routinely used in both experimental work
and simulations.

Point sources must be approximated as small volumetric sources when solving the LDO
equations in Denovo. When a point source is used in a system, Denovo calculates the
uncollided flux from that point source using the analytic solution to the NTE. As mentioned
previously, this is done to alleviate ray effects. However, as discussed above in Section 3.4.2,
these analytic solutions are not applicable when solving the LDO equations. Thus, when
a point source is specified in combination with the LDO equations, it is treated as a small
volume source instead. In this case, an equal contribution of the source strength is added to
every angular flux coefficient in the cell in which the particle source resides. This is notably
different from the traditional discrete ordinates formulation in Denovo, in which the source
strength is added only to the zeroth flux moment for reasons described in Section 3.1.4.

Finally in this section, we note that this work is limited to isotropic particle sources.
At the time of this writing, ADVANTG does not support directional sources [15]; Monte
Carlo particle importance maps generated with ADVANTG and Denovo automatically use
an isotropic source distribution regardless of the particle source input. Since the ultimate
goal of implementing the LDO equations in the Exnihilo framework is to use the results for
Monte Carlo variance reduction parameter generation via ADVANTG, implementation of
the use of directional sources when solving the LDO equations in Denovo was not pursued
in this work.

3.4.4 Fixed Source vs. Criticality Calculations

All scenarios tested in this work are fixed-source problems, though the LDO equations are
applicable to k-eigenvalue (criticality) problems in principle. Ray effects, which we are
interested in using solutions of the LDO equations to mitigate, largely come from localized
sources, as discussed in Section 2.1.2.2. Due to the distributed nature of fission sites in a
typical light water reactor, the particle flux in a given criticality calculation will be relatively
isotropic and unlikely to incur ray effects within the reactor core. Furthermore, at the time of
this writing, ADVANTG only supports generation of Denovo input for fixed-source problems.
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Chapter 4

Test Cases and Results

In this chapter we present the test case scenarios simulated in this work as well as the results
of the various simulations performed. First, a description of the scenarios is given to detail
the geometry and cross section configurations used. Next, a comparison of deterministic
results for the test scenarios is given, with discussion and emphasis placed on the difference
in the results between different types of quadrature sets. Then, we present results and
analysis of the performance of the quadrature sets’ associated Monte Carlo variance reduction
parameters in the context of both CADIS and FW-CADIS simulations. Finally, a summary
of the results is given to conclude the chapter.

4.1 Test Case Scenarios

4.1.1 Steel Plate in Water

The first test case we describe is an idealized geometry of a steel plate embedded in water;
it is modeled after the scenario presented in Reference [26]. A diagram of the problem
geometry is shown in Figure 4.1 and a list of material properties used in the problem is given
in Table 4.1. In Figure 4.1, the orange region contains the source material, the black region
is composed of steel, the blue regions indicate water, and the white region is composed of
air.

The problem measurements are 53 × 50 × 140 cm. The scenario is uniform in the y-
direction and materials vary mainly in the z-direction. The source region extends from 0
to 15 cm, the steel shield extends between 15 and 30 cm, the water and steel plate extend
from 30 to 130 cm, and the air extends from 130 to 140 cm. The steel plate is 3 cm wide
and is centered at x = 26.5 cm. Vacuum boundary conditions were used at the problem
boundaries.

A non-uniform Cartesian mesh was used for the spatial discretization in the deterministic
calculations. In the x-direction, voxel width is 5 cm between x = 0 cm and x = 25 cm, 0.5
cm between x = 25 cm and x = 28 cm, and 5 cm between x = 28 cm and x = 53 cm. A
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Figure 4.1: Steel plate in water geometry (x− z slice through y = 25 cm) [26].

uniform spacing of voxel width 1 cm was used in the y-direction. In the z-direction, the
spatial cell width is 3 cm between z = 0 cm and z = 30 cm and 2 cm between z = 30 cm
and z = 140 cm.

The composition of the neutron source block is a homogenization of water, zirconium,
and uranium and was calculated based on the geometry and composition of the Rowlands
UO2 pin cell benchmark specification [27]. The source is a U-235 fission spectrum that
is uniformly distributed throughout the homogenized material. The compositions of air,
carbon steel, and water were taken from the Compendium of Material Composition Data for
Radiation Transport Modeling [28]. For this scenario, we are interested in the forward flux
solutions at the end of the steel plate.
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Table 4.1: Materials and compositions in the steel plate in water scenario.

Material Isotopes (Atomic %)

Source

U-235 (0.000247)
U-238 (0.009287)
Zr-nat. (0.004009)

H-1 (0.037394)
O-16 (0.034927)

Air

N-14 (0.784431)
O-16 (0.210748)

Ar-nat. (0.004671)
C-nat. (0.000150)

Carbon Steel
C-nat. (0.022831)
Fe-nat. (0.977169)

Water
H-1 (2)
O-16 (1)

4.1.2 Dog-Legged Void Neutron (DLVN)

The next problem modeled is the dog-legged void neutron (DLVN) experimental benchmark,
which was designed to measure neutron streaming in iron with air voids. The model used in
the following calculations was constructed from References [29, 30, 31]. The two materials
used in the problem are elemental iron and polyethylene. The polyethylene composition used
was C2H4. This is listed as “polyethylene, non-borated” and is material 248 in Reference
[28].

The problem measurements are 40×54×48 inches. A uniform spatial mesh was imposed
over the entire problem, with voxels measuring 1 inch per side. The neutron source in this
problem is a Cf-252 point source located at the center of the x− and y−directions and at
z = 9 inches. For reasons noted in Section 3.4.3, this point source was approximated as
a small volumetric source in the tests in this work. We are interested in the forward flux
solutions at the various detector locations shown in Figure 4.2.

The experimental configuration is symmetric about the y − z plane at x = 0 and so is
usually simulated with a reflecting boundary at x = 0 and vacuum boundaries on all other
sides of the configuration. For the tests in this work, the use of reflecting boundary conditions
was not available (see Section 3.4.1), so the model used was constructed to represent the
entire experimental geometry configuration. Vacuum boundary conditions were applied to
the outside of the entire problem.
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Figure 4.2: Centerline cutaway of DLVN setup [29].

4.1.3 Ispra Sodium Benchmark

The Ispra sodium benchmark experiment was constructed as part of experiments to study
neutron deep penetration in homogeneous materials commonly used in advanced nuclear
reactors. It is included in the Shielding Integral Benchmark Archive and Database (SINBAD)
data library [32]. We will give a brief overview of the material and geometry configuration
here and refer the reader to Reference [32] for a complete description of the experiment.

The neutron source consists of fission neutrons originating from an enriched U disc that
was subjected to a neutron flux leaving the thermal column of a TRIGA MARK II reactor.
An irradiation tunnel assembly composed of steel containers filled with Na was constructed
in front of the neutron source converter. The total length of the irradiation tunnel was 400
cm. A diagram of the experimental geometry is shown in Figure 4.3; we are interested in
the forward flux solutions in the detector array located along the midline of the assembly.

In the simulation of this benchmark configuration, the boundaries are -300 cm and 500
cm in the x−direction and -400 and 400 cm in both the y− and z−directions. The spatial
mesh in this problem is uniform in the y− and z−directions with a voxel width of 5 cm per
side in these dimensions. The x−direction mesh was created such that voxels are 10 cm wide
between x = -300 and -100 cm, 5 cm wide between x = -100 and 400 cm, and 10 cm wide
between x = 400 and 500 cm. The problem has vacuum boundary conditions.
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Figure 4.3: Cross sectional views of the sodium benchmark assembly.

4.1.4 Simplified Portal Monitor

The final problem described here is a simplified portal monitor scenario. Portal monitors
are large detector panels used to screen cargo for illicit radioactive materials. The problem
models a cargo container holding a Ba-133 photon point source and large blocks of homog-
enized iron and polyethylene. The geometry and material configuration used in this test is
the same as the example problem listed in Section 7.2 of the ADVANTG technical report
[8]; slight modifications were made to the given MCNP input deck such that the problem
could be studied with both CADIS and FW-CADIS calculations. Diagrams of the simplified
portal monitor problem are shown in Figure 4.4.

In Figure 4.4, the different colors represent different materials. The NaI detectors are red
and the gray material is concrete. The two types of material blocks are iron, shown in green,
and polyethylene, shown in white. The steel cargo container surrounds the particle source
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Figure 4.4: Top and side views of simplified portal problem [8].

and material blocks and is a semitransparent blue. Here we are interested in the forward
flux solutions at the four detector locations.

A non-uniform Cartesian mesh that captures all of the problem’s material boundaries
was constructed for this simulation. The voxels are nominally 10 cm thick within the cargo
container. Additional mesh planes parallel to the x−axis were added to the gaps between
the homogenized iron and polyethylene blocks [8]. Vacuum boundary conditions are present
at all problem edges.

4.1.5 Calculation Parameters

4.1.5.1 Deterministic

All of the deterministic calculations used 32 processes on a 2.8GHz AMD Opteron™ 6320
Processor [33], two for each logical CPU unit. With this in mind, all deterministic calcu-
lations were set to use the same Denovo computational block structure of 8 blocks in the
x−dimension, 4 blocks in the y−dimension, and 1 block in the z−dimension; thus the total
number of computational blocks equals the number of processes. Denovo uses the Koch-
Baker-Alcouffe (KBA) parallel sweep algorithm for high parallel efficiency in calculating
transport sweeps [7]; the aforementioned block structure was chosen to achieve the same
parallel decomposition among all test case deterministic simulations.

All but one of the test cases use the same coarse energy group structure specified in the
“27n19g” library; the groups in this library are listed in Table A-1 of Appendix A of the
ADVANTG technical report [8]. The exception to this is the simplified portal problem. The
highest energy emission line of Ba-133 is 383.8 keV, so weight window bounds above this
energy would not be used in the Monte Carlo simulation. Thus, the highest energy group
of the deterministic calculations was set to group number 41, which has an upper energy of
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400 keV [8]. Because energy discretization is treated the same way between the traditional
discrete ordinates formulation and the LDO equations, it was assumed that energy group
structure would not greatly impact the comparative results.

The step characteristics (SC) spatial discretization was used in all of the deterministic
calculations based on the recommendation listed in Section 9.1.3 of the Exnihilo user manual
[22]. In the DLVN and portal monitor scenarios, the point sources are approximated as small
spherical volumetric sources (see Section 3.4.3 for detail).

Except for the Galerkin quadratures, all runs used a P5 scattering expansion. At the
time of this writing, Galerkin quadrature sets are implemented in the Exnihilo framework
with the restriction that the PN order be one greater than the SN order. That is, for the
Galerkin quadrature set of SN order 2, the corresponding PN order is set equal to 3, and for
the Galerkin quadrature set of SN order 4, the PN order is 5.

4.1.5.2 Monte Carlo

The Monte Carlo calculations in this work were run on one Dell PowerEdge C6220 server
blade node with two Intel Xeon 10-core Ivy Bridge processors (a total of 20 cores) [34]. All
calculations were specified to use 21 MPI tasks; MCNP reserves one “master” process for
communication and transports particles with the remaining available tasks [3]. So, for the
purpose of parallel efficiency, one transport process per hardware core was used here.

All of the Monte Carlo calculations were run with a fixed number of particle histories to
simulate. For the steel plate in water, Ispra sodium benchmark, and simplified portal monitor
cases, all calculations used 1×109 particle histories in both the CADIS and FW-CADIS
contexts. The DLVN experimental benchmark case was simulated with 1×1010 neutron
histories as it was modeled after calculations in Reference [29]. All Monte Carlo tally results
and following calculations are reported with the one standard deviation confidence interval
x̄(1±R) where the relative error R ≡ Sx̄/x̄ [3].

4.2 Deterministic Forward Flux Calculations

Before investigating deterministic flux solutions resultant from solving the LDO equations
as input for Monte Carlo variance parameter generation, it behooves us to compare the
LDO deterministic results against those of standard quadrature set types. We start here by
presenting results and analysis for forward scalar flux solutions using different quadrature
types for the four test cases. We assume extensibility of these results to adjoint scalar flux
solutions since the changes to the Exnihilo code suite made in this work did not impact the
transport solvers in the Denovo package.

For all of the quadrature set types and sizes discussed above, a forward simulation of each
test case was run via the Exnihilo framework. The following results show a representative
quadrature set chosen for each type. With the exception of the Galerkin quadrature set
featured, the angular refinement of the representative quadrature sets was chosen such that
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the quadrature sets have approximately the same total number of angles. The QR quadrature
set is of order 4 and has 128 angles, the LDFE set is order 1 with 128 angles, and the LDO
set is of order 11 with 144 angles. The Galerkin quadrature set chosen as the representative
example here is of order 4 and has 24 angles. This set was chosen because its corresponding
PN order is 5 and so the scattering data used matches that of the other quadrature types.

Because more results were generated than are presented here, a fuller set of figures is
hosted at http://dx.doi.org/10.6084/m9.figshare.6063053.

4.2.1 Quadrature Sets

In these preliminary deterministic calculations, forward solutions for the test cases were
generated using quadruple range (QR), Galerkin, linear-discontinuous finite element (LDFE),
and LDO quadrature sets. All test cases were run with the same quadrature sets; increasing
sizes of quadrature sets were used to ascertain the angular mesh refinement necessary for a
given quadrature type to converge to a solution.

QR quadrature sets were chosen to generate the reference results against which the LDO
results are compared. QR was selected because they are commonly used in hybrid methods
for Monte Carlo variance reduction parameter generation and therefore provide a relevant
baseline. The Exnihilo framework allows the user to select the number of polar and azimuthal
angles in each octant when using a QR quadrature set; for these studies, the number of polar
and azimuthal angles per octant were each set to the same value, with the values ranging
from one per octant (for a total of eight angles) to nine per octant (for a total of 648 angles).

LDFE and Galerkin quadrature sets were also chosen because of their interesting math-
ematical properties. Compared to QR quadrature sets, LDFE quadrature sets have been
shown to exhibit more accurate solutions for the scalar flux in both simple and more com-
plex geometry and material configurations [35]; they approximate the angular flux using
direction cosines and are determined by requiring that the integration of the related inter-
polation basis functions is equal to the surface area of a unit sphere. For LDFE quadrature
sets, if N is the order of the quadrature, there are 4(N+1) angles per octant [22]. In this work,
the LDFE quadrature orders used were one (128 total angles) and two (8192 total angles).

Galerkin quadrature sets offer several advantages relative to the standard SN method for
problems with highly anisotropic scattering [36]. Similar to the LDO equations, the “hybrid
collocation-Galerkin-SN” method developed by Morel has the same algebraic structure as the
traditional discrete ordinates equations but employs a nonstandard scattering treatment. For
reasons discussed below in Section 4.1.5.1, the Galerkin quadrature orders used were 2 and
4. For an SN order N , a given Galerkin quadrature set (as implemented in Exnihilo) has a
total of N(N + 2) angles; the Galerkin quadrature sets used in this work have 8 and 24 total
angles, respectively.

The degrees and sizes of the LDO quadrature sets used are listed in Table 4.2.

http://dx.doi.org/10.6084/m9.figshare.6063053
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Table 4.2: Properties of LDO quadrature sets used in preliminary scaling studies.

Quadrature Order (N) Number of Points
3 16
5 36
8 81
9 100
11 144
12 169
13 196
14 225

4.2.2 Steel Plate in Water

Figure 4.5 shows a representative forward scalar flux slice plot for each quadrature type.
Each of the flux slices is at the midplane of the y−dimension such that y = 25 cm. The ge-
ometry/material borders are outlined on each plot as well. All plots show the same expected
result – the scalar flux is highest in the source region and drops off by orders of magnitude
along the z−axis.

To more thoroughly evaluate the LDO quadrature set in this test case, we will look more
closely at the differences between the representative LDO flux and the three other quadrature
types. Figure 4.6 shows three plots of relative flux differences; each plot compares the
representative LDO quadrature set against one of the standard quadrature set types. The
relative flux difference is calculated as

φdiff =
|φLDO − φref |

φref

(4.1)

where φref is the scalar flux calculated using the standard quadrature set and is taken to
be the reference value. For all three of the standard quadrature sets, the area of greatest
agreement with the LDO scalar flux is towards the bottom of the problem geometry, with
discrepancies growing along the z−axis. The greatest difference can be seen between the
LDO and Galerkin quadrature sets, while the LDO and QR quadrature sets agree best. The
area of greatest discrepancy between the QR and LDO flux solutions is in the region of air
just beyond the steel beam. We will look more in depth as to why this is in Section 4.3.1
and briefly note here that this particular deviation is most likely due to issues in processing
iron cross section data inherent to deterministic calculations.

Table 4.3 lists the minimum, maximum, and average differences between various quadra-
ture types for the flux slices plotted in Figure 4.6. We compare the representative LDO
flux solution to the solutions from the three standard representative quadrature types and
also compare the Galerkin and LDFE results against the QR result. On average, the LDO
forward flux solution matches the QR flux solution more closely than it matches either the
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Galerkin or LDFE flux solutions. Additionally, the LDO flux solution matches the QR flux
solution more closely than do either of the Galerkin and LDFE flux solutions.

Table 4.3: Steel plate forward scalar flux extremal and average relative differences.

Comparison Min. Diff. Max. Diff. Avg. Diff.

LDO/QR 6×10−6 1.09×10−1 2.21×10−2

LDO/Galerkin 2×10−5 4.51×100 9.30×10−1

LDO/LDFE 5×10−7 2.79×10−1 9.42×10−2

Galerkin/QR 3×10−5 8.24×10−1 2.90×10−1

LDFE/QR 2×10−7 2.48×10−1 9.63×10−2

Looking at Figures 4.5 and 4.6 we note that the forward scalar flux solutions from the
LDO equations capture the same physical trends as the standard quadrature type solutions
and also that the LDO flux solution most closely matches that using the QR quadrature
set. Additionally, Table 4.3 shows an average difference of 2.2% between the plotted flux
solutions from the representative LDO and QR quadrature sets, which is the lowest average
difference seen in the comparisons here. As QR quadratures are commonly used for Monte
Carlo variance reduction parameter generation, the relative agreement of the LDO scalar flux
with the QR scalar flux motivates the exploration of the use of LDO scalar flux solutions for
Monte Carlo variance reduction parameter generation.
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(a) QR forward flux slice.
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(b) Galerkin forward flux slice.
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(c) LDFE forward flux slice.
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(d) LDO forward flux slice.

Figure 4.5: Steel plate forward scalar flux slices.
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(b) LDO/Galerkin flux rel. diff.
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(c) LDO/LDFE flux rel. diff.

Figure 4.6: Steel plate forward scalar flux relative difference slices.
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4.2.3 DLVN

For the DLVN test case, we present flux slice plots for the same representative quadrature
sets listed in Section 4.2.2. Although the entire DLVN experimental geometry was simulated,
here we plot only half of the configuration; this is the typical view of the benchmark seen in
the literature.

Figure 4.7 shows the forward scalar flux for each of the representative quadrature sets
at the midplane of y = 27 inches (68.58 cm). Each of the plots has outlines of the material
boundaries with the detector locations delineated as well. As expected, the flux is highest at
the neutron source and decreases as particles move through the experimental configuration.
With this, we again look at the differences between the representative LDO flux and the
three other quadrature types.

As with the previous test case, the flux differences are calculated with Equation 4.1. In
the DLVN scenario, the differences stem from the source location. This is not surprising; the
particle source here is approximately a point source and so these differences are appearing in
the form of ray effects, where the discrete angles in the LDO quadrature set do not overlap
with the angles in a given standard quadrature set. Similar to the steel plate in water test
case, the LDO scalar flux best matches the QR scalar flux and the largest differences are
seen between the LDO and Galerkin scalar flux plots. Looking at Figure 4.8b, the areas
of greatest discrepancy appear as ray effects; the relative coarseness of the representative
Galerkin quadrature set angular mesh is likely the cause of this. This is visibly pronounced
in the DLVN case because of the geometrically small particle source; it is also likely the
source of the LDO/Galerkin discrepancy seen above for the steel plate embedded in water,
but ray effects are lessened in that scenario by the larger volumetric source.

Lastly, it is instructive to compare the results of the forward deterministic scalar flux
solutions with the experimentally measured flux values at the detector locations. Table 4.4
lists the experimentally measured [31] and deterministically calculated scalar flux values at
the detector locations noted in Figure 4.2. Table 4.5 lists the percent differences between
the deterministically calculated flux values and experimentally determined flux values with
the lowest difference for each detector location emphasized.

Table 4.4: DLVN benchmark experimental and simulated scalar flux values [n/cm2/s].

Det. #5 Det. #9 Det. #11 Det. #12 Det. #13 Det. #14

Exp. Flux 6.97×10−8 1.57×10−7 8.81×10−6 2.60×10−7 1.42×10−6 2.74×10−7

QR 4.98×10−8 1.68×10−7 8.65×10−5 4.92×10−7 2.71×10−6 1.45×10−6

Galerkin 3.24×10−8 1.47×10−7 8.19×10−5 4.43×10−7 2.95×10−6 9.55×10−7

LDFE 5.12×10−8 1.76×10−7 9.17×10−5 5.14×10−7 2.93×10−6 1.47×10−6

LDO 4.56×10−8 1.39×10−7 7.88×10−5 4.28×10−7 2.37×10−6 1.28×10−6

Looking at Table 4.5 we see that all of the calculated values fall outside of the experimen-
tal uncertainty of five percent [31]. The results from the LDO quadrature set most closely
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Table 4.5: Percent differences between DLVN experimental and simulated scalar flux values.

Det. #5 Det. #9 Det. #11 Det. #12 Det. #13 Det. #14
QR 25.58 6.89 881.94 89.09 90.63 428.81
Galerkin 53.48 6.37 829.72 70.56 107.7 248.42
LDFE 26.61 12.3 940.41 97.75 106.4 435.01
LDO 34.61 11.2 794.75 64.46 66.77 368.24

match the experimental results for half of the detector locations. This begs the question of
how the LDO equations would perform in the context of the FW-CADIS method for the
DLVN problem since the adjoint source can be set to multiple detector locations. Table 4.6
lists the extreme and average values of the forward flux relative difference slices shown in
Figure 4.8 with Galerkin/QR and LDFE/QR comparisons included for reference. We see
that, on average, the LDO forward flux solution matches the QR forward flux solution better
than it matches those of the other quadrature types. However, in this case, the LDFE flux
solution matches the QR flux solution on average better than any other quadrature type,
including the LDO flux solution (5% difference versus 8.4% difference).

Table 4.6: DLVN benchmark forward scalar flux extremal and average relative differences.

Comparison Min. Diff. Max. Diff. Avg. Diff.

LDO/QR 2×10−4 8.40×10−1 8.44×10−2

LDO/Galerkin 1×10−6 2.14×100 2.42×10−1

LDO/LDFE 3×10−5 8.71×10−1 1.17×10−1

Galerkin/QR 3×10−4 6.37×10−1 1.92×10−1

LDFE/QR 3×10−5 2.67×10−1 5.05×10−2

Noting the potential performance of the LDO quadrature sets in the FW-CADIS context
and having observed fairly good agreement between the LDO forward flux result and the
QR forward flux result, we will further pursue solutions of the LDO equations as input for
Monte Carlo variance reduction parameter generation for the DLVN problem.
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Figure 4.7: DLVN benchmark forward scalar flux slices.
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Figure 4.8: DLVN benchmark forward scalar flux relative difference slices.
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4.2.4 Ispra Sodium Benchmark

For this test case, the representative LDO quadrature set is of order 9 and has 100 total
angles (as opposed to the LDO set of order 11 used for the other cases). Of the LDO quadra-
ture orders listed in Table 4.2, only the smallest four quadrature sets (orders 3, 5, 8, and
9) were available for use with the given test case and computational hardware configura-
tion. Recalling the discussion in Chapter 3, we will point out that, when solving the LDO
equations, the angular flux coefficient solution vector scales as the number of discrete angles
used in the simulation. This solution vector exists for every energy group in every spatial
cell and this particular test case used over 3 million spatial cells. So, the use of the larger
LDO quadrature sets was not possible given the parameters listed above in Section 4.1.5.1
because the memory requirement exceeded what was available.

Figure 4.9 shows flux slice plots for each representative quadrature set with outlines of
the neutron source, the sodium apparatus boundaries, and the detector locations in the
experimental configuration. All plots are at the problem midplane of y = 0 cm. Ray effects
are particularly apparent in all of the flux slices. Although the particle source is a volume
rather than a point, the geometry of the source volume creates the anisotropies observed in
the solutions. Additionally, the volume of the source is comparatively small relative to the
overall scenario geometry, so we see ray effects on this larger scale.

Let us again look at the differences between the representative LDO flux and the three
other quadrature types. As with the previous test cases, the flux difference is calculated
using Equation 4.1. Like the DLVN test case, Figure 4.10 shows numerous ray effects. The
ray effects are likely exacerbated by the use of a coarser LDO quadrature set, but the primary
cause is most likely the anisotropic disk source. Like the preceding two test cases, the worst
match is between the LDO and Galerkin results. Here, the comparisons of the LDO flux
solution with the QR and LDFE flux solutions look fairly similar, with the areas of best
agreement located in the sodium container and the regions of greatest discrepancy located
along rays far from the neutron source disk.

As this test case scenario is an actual experimental benchmark, it is pertinent to compare
the results of the simulations performed in this work against the experimental data listed in
the benchmark. Keeping in mind that this work aims to compare the calculations using LDO
quadrature sets with calculations using standard quadrature sets, we present a simplified
analysis and comparison here to gauge the representative LDO quadrature set among the
representative standard quadrature sets. For each detector location in the sodium block, the
absolute saturation activity of the 32S(n,p)32P reaction was measured experimentally using
sulfur detectors. The listed activity values are normalized for varying detector mass such
that the activities are listed in becquerels per gram [37].

To compare the scalar flux output resultant from the Exnihilo calculations with the
absolute saturation activity values listed in the experimental benchmark, we use the flux
values to calculate a reaction rate density [1] comparable with the listed activity values:

A = Nσφ, (4.2)
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where A is the specific activity in becquerels per gram, N is the number density of the
sulfur detectors in atoms per gram, σ is the cross section of the 32S(n,p)32P reaction in cm2,
and φ is the scalar flux at the detector location in neutrons per cm2 per second. For these
calculations, we have used the values of N = 0.0188×1024 atoms per gram of sulfur [32] and
an average cross section value of σ = 6.5×10−26 cm2 [38]. Additionally, since the neutron
source strength is normalized to unity in Exnihilo, the flux values were multiplied by a factor
of 1.948×1011, the calculated number of source neutrons per second exiting the source disk
in the direction of the detectors [32]. The 32S(n,p)32P reaction has a threshold of 2.7 MeV
[37], so the scalar flux values used in these calculations are those corresponding to the two
highest energy groups in the 27n19g library. Results are listed in Table 4.7 with detector #1
located closest to the neutron source and detector #7 located farthest from the source.

Table 4.7: Ispra sodium benchmark experimental and simulated detector activities [Bq/g].

Det. #1 Det. #2 Det. #3 Det. #4 Det. #5 Det. #6 Det. #7

Exp. Act. 3.237×104 1.971×103 1.036×102 6.270×100 4.200×10−1 3.030×10−2 1.990×10−3

Exp. Err. 5.7% 5.7% 5.7% 6.0% 6.0% 6.0% 15.0%
QR 2.472×104 7.474×102 6.507×101 3.142×100 8.114×10−2 4.152×10−3 2.446×10−4

Galerkin 2.435×104 6.702×102 4.460×101 1.870×100 3.969×10−2 1.665×10−3 7.228×10−5

LDFE 2.463×104 7.071×102 6.031×101 2.787×100 6.862×10−2 3.395×10−3 1.953×10−4

LDO 2.471×104 7.446×102 6.512×101 3.087×100 7.796×10−2 3.926×10−3 2.255×10−4

It is apparent that the activities calculated using the scalar flux values from Exnihilo do
not match those determined experimentally; this is likely due to the simplifications made
in the activity calculations using the simulations’ scalar flux output. That is, using a finer
energy group structure and more sophisticated cross section values would produce detector
activities closer to those determined experimentally. However, the values arrived at here
are still instructive in analyzing overall physical trends and useful for comparing the LDO
quadrature set against the standard quadrature sets.

Table 4.8 lists the ratios of the deterministic activity calculations to the experimental
values to explore the behavior of the different quadrature types. For each detector location,
the ratio closest to unity is emphasized. It is immediately apparent that the QR scalar flux
values are the most closely matching for all detector locations except Detector #3, where
the LDO scalar flux value is the closest. Even so, for all detector locations, the LDO ratio
value is closer to the QR ratio value than are either the LDFE or Galerkin ratios.

Table 4.8: Ispra sodium benchmark experimental and simulated detector activity ratios.

Det. #1 Det. #2 Det. #3 Det. #4 Det. #5 Det. #6 Det. #7

QR 0.764 0.379 0.628 0.501 0.193 0.137 0.123
Galerkin 0.752 0.340 0.431 0.298 0.095 0.055 0.036
LDFE 0.761 0.359 0.582 0.445 0.163 0.112 0.098
LDO 0.763 0.378 0.629 0.492 0.186 0.130 0.113
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Like the experimental activities, the activities calculated with the deterministic scalar
flux values decrease logarithmically as the distance from the source increases. For all of
the quadrature types, the calculated activities decrease more quickly than the experimental
results. Detectors 2, 3, 5, 6, and 7 all see the deterministically calculated activities at one
order of magnitude lower than the respective experimental activities (except for the case of
the Galerkin quadrature result at detector 7 which is two orders of magnitude below the
experimental activity). One possible reason for these discrepancies is the presence of iron in
the structure of the benchmark assembly. As we will discuss more in depth in Section 4.3.1,
it is not unexpected that deterministically calculated results in the presence of iron are lower
than those seen experimentally.

Table 4.9 lists the extreme and average values of the forward flux solution relative dif-
ferences shown in Figure 4.10 as well as comparisons of the QR flux solution against those
of the Galerkin and LDFE flux solutions. On average, all of the flux solutions show poor
agreement, with the best match being a 26% difference between the LDO and LDFE forward
flux solutions.

Table 4.9: Ispra sodium benchmark forward flux extremal and average relative differences.

Comparison Min. Diff. Max. Diff. Avg. Diff.

LDO/QR 2×10−6 2.78×101 5.00×10−1

LDO/Galerkin 8×10−6 2.38×104 6.57×101

LDO/LDFE 1×10−6 7.75×100 2.61×10−1

Galerkin/QR 3×10−6 1.16×100 4.24×10−1

LDFE/QR 7×10−6 2.29×101 7.59×10−1

For all of the detector locations, we see in Table 4.7 that the activity calculated with the
representative LDO quadrature set demonstrates good agreement with the QR quadrature
set. The LDO results in this table match the QR results more closely than do the Galerkin
and LDFE results and, of the standard quadrature set results, the LDO results are closest
to QR results. We find the LDO results’ proximity to the QR results sufficient justification
to pursue the exploration of Monte Carlo variance reduction parameter generation using the
LDO equations for this test case.
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Figure 4.9: Ispra sodium benchmark forward scalar flux slices.
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(a) LDO/QR flux relative difference.
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(b) LDO/Galerkin flux relative difference.
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(c) LDO/LDFE flux relative difference.

Figure 4.10: Ispra sodium benchmark forward scalar flux relative difference slices.

4.2.5 Simplified Portal Monitor

Lastly, we look at the simplified portal monitor problem with the small photon source. Of
the test cases presented here, the forward solutions differ most greatly for this problem.
Figure 4.11 shows forward scalar flux solutions for the representative quadrature sets with
the material pallets, detector array, and shipping container outlines overlaid on the plots.
Flux slices are plotted at the midplane of z = 243.84 cm (96 inches). All of the flux solutions
display ray effects as a result of the streaming paths created by the material variation of the
pallets inside of the shipping container.

As with the previous test cases, we look at the differences between the representative
LDO flux and the three other quadrature types. Figure 4.12 shows flux differences similar to
the difference plots for the Ispra sodium benchmark problem; that is, the differences largely
appear as ray effects. This is unsurprising given the combination of the small volume of the
photon source in the problem and the inherent difficulty of accurately simulating particle
streaming in deterministic calculations. Again we see that the LDO scalar flux solution
exhibits strong disagreement with the Galerkin scalar flux solution. The LDO/QR and
LDO/LDFE comparison plots show discrepancies of similar orders of magnitude and all of
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the relative difference plots exhibit the greatest difference along the y − z plane streaming
pathway located in the center of the shipping container.

Table 4.10 lists the minimum, maximum, and average values of the relative differences
in the forward scalar flux solutions, shown in Figure 4.12. As with all of the previous
cases, comparisons between the QR flux solution and the Galerkin and LDFE flux solutions
are included for reference. None of the flux solutions in this case show particularly good
agreement on average; the closest solutions are the LDFE and QR flux solutions which have
an average difference of about 24%. Of the three standard quadrature types, the LDO
forward flux solution matches the QR forward flux solution most closely.

Table 4.10: Portal monitor forward scalar flux extremal and average relative differences.

Comparison Min. Diff. Max. Diff. Avg. Diff.

LDO/QR 1×10−6 1.43×102 3.07×10−1

LDO/Galerkin 7×10−5 1.22×102 1.96×100

LDO/LDFE 6×10−5 1.53×102 3.33×10−1

Galerkin/QR 4×10−5 2.47×100 3.93×10−1

LDFE/QR 2×10−5 2.09×100 2.38×10−1

Given the localized small volumetric particle source used in the problem in combination
with the streaming pathways created by the scenario’s material and geometry configuration,
it is unsurprising that the forward flux solutions generated with the various representative
quadrature sets show only fair agreement. Still, in the interest of exploring the LDO quadra-
tures’ solutions for Monte Carlo variance reduction parameter generation for this problem
transporting photons, we will compare the results of the different quadrature sets in the
CADIS and FW-CADIS contexts.
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Figure 4.11: Simplified portal monitor scenario forward scalar flux slices.
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Figure 4.12: Simplified portal monitor scenario forward scalar flux relative difference slices.

4.2.6 Summary

For the test cases here, we have compared the forward scalar flux solutions resultant from
solving the LDO equations against those arising from solving the traditional discrete ordi-
nates equations with a small variety of standard quadrature set types. Particular attention
was paid to the comparison of the LDO results with the QR results, as QR quadrature sets
are commonly used in Monte Carlo variance reduction parameter generation and the larger
goal of this work is to assess the efficacy of the LDO equations’ solutions in Monte Carlo
variance reduction parameter generation. In each test case, the results from solving the LDO
equations best matched those from using the QR quadrature set in the traditional discrete
ordinates formulation. Additionally, for the two benchmark test cases, the LDO equations
produced results that were commensurate to those of all standard quadrature sets when the
deterministic results were compared against experimental values.

4.3 CADIS Calculations

Having found that the LDO equations’ forward scalar flux solutions are comparable to those
of standard quadrature sets, we move on to test the various quadrature sets’ performance for



CHAPTER 4. TEST CASES AND RESULTS 79

Monte Carlo variance reduction parameter generation. We begin by looking at the test case
scenarios in the context of the CADIS method, described in Section 2.2.1.1. Since the CADIS
method uses the deterministic adjoint scalar flux solution to generate Monte Carlo variance
reduction parameters, it is pertinent to first examine the deterministic adjoint scalar flux
solutions for each of the representative quadrature sets for each test case. Then, we move
on to the Monte Carlo results to examine the different quadrature types’ efficacy in Monte
Carlo variance reduction.

4.3.1 Steel Plate in Water

For the CADIS calculations for the steel plate embedded in water, the adjoint source was
set to be the detector tally. Figure 4.13 shows the deterministically calculated adjoint scalar
flux solutions for the representative quadrature sets. As expected, the flux is highest at the
detector location and decreases logarithmically moving backwards along the z−axis. From
there, we also examine the relative differences between the LDO solution and those from
the standard quadrature sets. Results are shown in Figure 4.14 with extremal and average
values listed in Table 4.11. As seen previously, the LDO solution matches the QR solution
better than it matches the Galerkin or LDFE solutions. In this case, the LDFE solution
has a lower maximum relative difference compared to the QR solution than does the LDO
solution, but we see that the LDO solution matches the QR solution more closely than does
the LDFE solution on average (4.1% difference versus 12.5% difference).

Table 4.11: Steel plate CADIS adjoint scalar flux extremal and average relative differences.

Comparison Min. Diff. Max. Diff. Avg. Diff.

LDO/QR 3×10−5 4.54×10−1 4.13×10−2

LDO/Galerkin 1×10−3 3.50×101 3.27×100

LDO/LDFE 5×10−5 6.96×10−1 1.14×10−1

Galerkin/QR 4×10−4 9.71×10−1 4.60×10−1

LDFE/QR 7×10−5 4.26×10−1 1.25×10−1



CHAPTER 4. TEST CASES AND RESULTS 80

0 10 20 30 40 50

x [cm]

0

20

40

60

80

100

120

140

z 
[c
m
]

QR 04 CADIS φ † [ n

cm2 · s
]
 at y=25 cm

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

(a) QR adjoint flux slice.
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(b) Galerkin adjoint flux slice.
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(c) LDFE adjoint flux slice.

0 10 20 30 40 50

x [cm]

0

20

40

60

80

100

120

140

z 
[c
m
]

LDO 11 CADIS φ † [ n

cm2 · s
]
 at y=25 cm

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

(d) LDO adjoint flux slice.

Figure 4.13: Steel plate adjoint scalar flux slices for the CADIS method.
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Figure 4.14: Steel plate adjoint scalar flux relative difference slices for the CADIS method.
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Following this, we examine the Monte Carlo results; recall that 1×109 neutron histories
were used in these calculations. Figure 4.15 shows the MCNP-reported flux tally for the
detector at the end of the steel plate for each angular mesh refinement for each quadra-
ture type. We note that the Monte Carlo runs with biasing parameters from the Galerkin
quadrature set of order 2 and the LDO quadrature set of order 5 were not able to finish in a
timely manner for the hardware configuration used in this work, so Monte Carlo results for
those two data points are not included here. The flux tally results are plotted as a function
of angular mesh refinement to observe the impact of angular mesh refinement on flux tally
solution for the different quadrature types. Figure 4.15 also includes the flux tally value for
an unbiased Monte Carlo calculation as a reference point of comparison; it is shown as a
horizontal black line with dashed lines on either side indicating the one standard deviation
confidence interval.
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Figure 4.15: MCNP-reported flux tally values at the end of the steel plate.

All of the biased results tend towards a tally calculation on the order of 10−12, while
the unbiased tally calculation is on the order of 10−10. We will pause here to explore one
reason behind this discrepancy. Figure 4.16 shows the MCNP-reported flux tally broken
down into energy bins with boundaries set to those of the 27n19g library. In this plot, only
tallies corresponding to calculations using biasing parameters from the four representative
quadrature sets are included. We see an extreme difference in the results from the biased
calculations versus the results from the unbiased calculation between neutron energies of 1
keV and 1 MeV.
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Figure 4.16: Steel plate detector tally broken down by energy bin.

This phenomenon has been previously documented [26] and can be largely attributed to the
resonances in the iron cross section, shown in Figure 4.17 with the 27n19g library energy
group boundaries overlaid. The unresolved resonance region in the iron cross section spans
multiple energy groups, leading to inaccuracies in the discretized multigroup cross section
values used in deterministic calculations. To put this directly in the context of the test case
scenario at hand, Figure 4.18 shows the detector tally broken down by energy bin overlaid
on the iron total cross section. Unsurprisingly, the energy regions of large discrepancy are
those in which the iron cross section resonances lie.
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Figure 4.17: ENDF iron total reaction cross section with 27n19g energy group limits [39, 8].
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Figure 4.18: Steel plate detector tally broken down by energy bin with iron cross section.
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Having explored the discrepancy between the biased and unbiased tally results, we move
on to looking at the Figures of Merit for the various Monte Carlo run results. Figure 4.19
shows the reported FOM value for the detector tally for the various quadrature sets and
orders. We again plot the results as a function of angular mesh refinement with a black
horizontal line denoting the FOM for the unbiased Monte Carlo calculation. The biasing
parameters corresponding to the LDFE quadrature set of order 1 result in the highest FOM
value while those of the QR set of order 1 result in the lowest FOM value. For all LDO
quadrature sets of order 8 and above, the Figures of Merit are one order of magnitude greater
than that of the unbiased calculation.
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Figure 4.19: FOM values for MCNP flux tally at the end of the steel plate.

To conclude this section, we consider the overall trends in angular mesh refinement in
Figures 4.15 and 4.19. It appears that the angular mesh refinement does not have a great
impact on the flux tally value in this scenario, as all of the biased tally results fall within
the same order of magnitude and do not exhibit any trends as a function of the number of
discrete angles used. The Figures of Merit vary somewhat more greatly. Specifically, the
LDO biasing parameters appear to gather around FOM values of 0.005 even as the number of
discrete angles used is increased. So, for the steel plate in water detector tally in the context
of the CADIS method, one could use a relatively low-order (i.e., order 8) LDO quadrature
set to generate Monte Carlo biasing parameters that result in a Figure of Merit comparable
to (and better than most of, as seen here) those produced by finer angular meshes.
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4.3.2 DLVN

To study the DLVN problem in the context of the CADIS method, the adjoint source was set
to be the tally located at detector #14 in the original experiment. All of the adjoint scalar
flux solutions shown in Figure 4.20 reflect this; the adjoint flux is highest at the specified
detector location. The differences in the adjoint scalar flux solutions shown in Figure 4.21
appear as ray effects from the relatively localized source at the detector location as well as
in the streaming pathway in the dog-legged void section. Table 4.12 lists the extremal and
average values of the relative differences between the LDO and standard quadrature results.
Comparisons between the Galerkin and LDFE quadrature sets versus the QR set are also
given for reference. On average, the LDO adjoint flux solution agrees best with the QR
adjoint flux solution with a difference of approximately 3.8%.

Table 4.12: DLVN CADIS adjoint scalar flux extremal and average relative differences.

Comparison Min. Diff. Max. Diff. Avg. Diff.

LDO/QR 1×10−5 1.24×100 3.78×10−2

LDO/Galerkin 3×10−4 5.01×100 3.56×10−1

LDO/LDFE 2×10−5 9.67×10−1 6.04×10−2

Galerkin/QR 6×10−1 7.62×10−1 2.00×10−1

LDFE/QR 2×10−5 3.07×10−1 5.31×10−2
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(a) QR adjoint flux slice.

0 10 20 30 40 50

x [cm]

0

20

40

60

80

100

120

z 
[c
m
]

Galerkin 04 CADIS φ † [ n

cm2 · s
]
 at y=68. 58 cm

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

(b) Galerkin adjoint flux slice.
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(c) LDFE adjoint flux slice.
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(d) LDO adjoint flux slice.

Figure 4.20: DLVN adjoint scalar flux slices for the CADIS method.
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Figure 4.21: DLVN adjoint scalar flux relative difference slices for the CADIS method.
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Moving forward, we look at the Monte Carlo results. For the DLVN case, 1×1010 neutron
histories were simulated. Since the CADIS method is for one local adjoint source, which we
have set to detector #14 here, the discussion in this section will focus on the results for this
specific detector location. Figure 4.22 shows the MCNP-reported tally for the forward scalar
flux at the location of detector #14. Here we see that all of the biased calculation values
fall within the error of the unbiased result. However, all of these tally calculations (biased
and unbiased) do not match the experimentally calculated flux value of 2.74×10−7 ± 5%
n/cm2/s at detector #14.
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Figure 4.22: Flux tally at detector #14 in the DLVN problem with the CADIS method.

Figures 4.22 and 4.23 show similar convergence behavior with respect to angular mesh
refinement for the biased tally calculations and Figure of Merit values. Beyond the lowest-
order angular mesh refinement for each quadrature type studied here, the tally result for this
detector location using the CADIS method is not impacted by further refining the angular
mesh. The Figures of Merit for the tally calculations reach a similar upper bound, but
this happens more slowly with respect to angular mesh refinement for the LDO quadrature
sets. Like the tally in the steel plate case above, the LDO quadrature set of order 8 is the
optimal choice with respect to flux tally result and FOM value for detector #14 in the DLVN
experimental benchmark problem in the CADIS context.
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Figure 4.23: FOM values for the DLVN problem detector #14 tally with the CADIS method.

4.3.3 Ispra Sodium Benchmark

For these CADIS calculations, the adjoint source was set to be the detector location farthest
from the experimental neutron source. As with the previous cases, we will first examine the
adjoint scalar flux solutions and then move on to the Monte Carlo results. The representative
LDO quadrature set used in the deterministic calculations here is of order 9 with only 100
total angles and is coarser than the other representative quadrature sets.

The adjoint scalar flux solutions are shown in Figure 4.24 with relative differences plotted
in Figure 4.25 and listed in Table 4.13. Since this source is relatively localized in the overall
problem scale, ray effects are seen in the adjoint flux solutions as well as in the relative
difference plots. For this case, the Galerkin adjoint scalar flux matches most closely with
the QR adjoint scalar flux; a finer LDO angular mesh would likely show better agreement.

Table 4.13: Ispra sodium test CADIS adjoint flux extremal and average relative differences.

Comparison Min. Diff. Max. Diff. Avg. Diff.

LDO/QR 1×10−8 1.46×102 9.71×10−1

LDO/Galerkin 2×10−5 2.52×105 5.74×102

LDO/LDFE 1×10−6 3.32×102 1.28×100

Galerkin/QR 5×10−6 1.00×100 4.62×10−1

LDFE/QR 6×10−7 8.10×101 1.19×100
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(a) QR adjoint flux slice.
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(b) Galerkin adjoint flux slice.
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(c) LDFE adjoint flux slice.
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(d) LDO adjoint flux slice.

Figure 4.24: Ispra sodium adjoint scalar flux slices for the CADIS method.
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(b) LDO/Galerkin flux relative difference.
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Figure 4.25: Ispra sodium adjoint scalar flux relative difference slices for the CADIS method.

Again, we will focus the analysis here on the Monte Carlo results for the detector loca-
tion set to be the adjoint source in the CADIS context. Here, 1×109 neutron histories were
simulated. Figure 4.26 shows the calculated activity values for the far detector location as a
function of angular mesh refinement. All activity values were calculated using the forward
scalar flux reported by MCNP in combination with Equation 4.2 and the data listed in
Section 4.2.4. All of the biased results fall well within the statistical error of the unbiased
calculation, but the calculations are all four orders of magnitude greater than the experimen-
tally calculated activity of 0.00199 Bq/g listed in Table 4.7. One likely reason for this is that
the MCNP flux tallies used in these calculations include neutrons of all incident energies and
not only those above the threshold for the 32S(n,p)32P reaction measured experimentally.

Figure 4.26 exhibits no trend for the calculated activity with respect to angular mesh
refinement; the coarsest angular mesh of each quadrature type studied here is sufficient to
achieve the same forward flux tally and calculated activity value. The FOM values plotted
in Figure 4.27 show differing trends for the different quadrature types. The QR biasing
parameters tend toward a Figure of Merit of approximately 1000, with the exception of
those from the quadrature set of order 4. Of the LDO quadrature sets tested here, the best
performance comes from the coarsest angular mesh, with the finest angular mesh not far
behind. So, for the Ispra sodium benchmark case in the CADIS method context, the LDO
quadrature set of order 3 would be the best one to use (of the LDO quadrature sets).
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Figure 4.26: Ispra sodium calculated activity in the far detector with the CADIS method.
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Figure 4.27: Ispra sodium far detector flux tally FOM values with the CADIS method.
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4.3.4 Simplified Portal Monitor

To study calculations for the simplified portal monitor scenario in the context of the CADIS
method, the adjoint source was set to be the top detector in the small array. The adjoint
scalar flux solutions are plotted in Figure 4.28. Ray effects appear drastically in all of
the adjoint scalar flux solutions. Figure 4.28b shows regions where the adjoint scalar flux
solution is negative for the representative Galerkin quadrature set; these regions are plotted
in white. Because of these negative flux regions, Table 4.14 shows the extremal values of the
magnitudes of the relative flux differences, calculated as

φdiff =
|φLDO − φref |
|φref |

. (4.3)

All of the flux solutions show poor agreement, likely because of the localized source and
streaming paths created by this scenario’s materials and geometry. Still, the LDO adjoint
scalar flux solution agrees with the QR adjoint scalar flux solution better than the Galerkin
or LDFE solutions, on average.

Table 4.14: Portal monitor CADIS adjoint scalar flux extremal and average relative differ-
ences.

Comparison Min. Diff. Max. Diff. Avg. Diff.

LDO/QR 2×10−4 1.83×102 2.27×100

LDO/Galerkin 1×10−4 6.20×104 4.29×101

LDO/LDFE 2×10−4 2.54×102 3.46×100

Galerkin/QR 1×10−3 2.59×102 3.81×100

LDFE/QR 6×10−5 6.48×101 2.21×100
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Figure 4.28: Simplified portal monitor adjoint scalar flux slices for the CADIS method.
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Figure 4.29: Portal monitor adjoint scalar flux relative difference slices for the CADIS
method.

Finally, we move on to the results and analysis of the Monte Carlo calculations, in which
1×109 particle histories were simulated. Again, since the CADIS adjoint source was set to
be the top detector location, we focus the discussion in this section on the results for that
specific location. Figures 4.30 and 4.31 show the MCNP-reported forward scalar flux tally
values and Figures of Merit, respectively. As with the other test cases, the values are plotted
as a function of the number of quadrature points used to generate the biasing parameters in
order to explore the impact of angular mesh refinement on flux tally and FOM.

Similar to other test cases, the flux tally values reported in Figure 4.30 show a trend
of converging to a stable value after the first few coarsest angular meshes. The flux tally
values from the biased calculations all fall within the statistical error of that of the unbiased
calculation but appear to require a minimum value of approximately 100 discrete angular
values in order to stabilize. Figure 4.31 shows a strong correlation between the number of
quadrature points and the flux tally FOM, eventually approaching an upper limit around
100. The LDO Figures of Merit increase most rapidly with the number of quadrature points
used, so one would want to use a higher-order LDO quadrature set to generate Monte Carlo
biasing parameters.
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Figure 4.30: Flux tally in the portal monitor top detector using the CADIS method.
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Figure 4.31: CADIS method FOM values for the portal monitor top detector flux tally.
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4.3.5 Summary

In this section, we examined the deterministic and Monte Carlo results for the four test case
scenarios in the context of the CADIS method. For all of the test cases, little correlation was
noted between angular mesh refinement and MCNP-reported forward flux tally value beyond
the suggestion to use at least 100 discrete angles for the simplified portal monitor scenario.
The reported FOM values also exhibited minimal correlation with angular mesh refinement
except in the case of the portal monitor scenario, where the flux tally FOM increased with
angular mesh refinement while approaching an upper limit.

For the three test cases in which neutrons were transported, the LDO quadrature sets
of lower orders (3 and 8) were the most effective of the LDO sets for both flux tally value
and FOM achievement. That is, if one were interested in using an LDO quadrature set
to generate Monte Carlo biasing parameters for a given neutron transport problem in the
context of the CADIS method, we would suggest performing the deterministic calculation
with an LDO quadrature set of order 8. For a photon transport problem considered in the
CADIS context, we would suggest the finest available LDO quadrature set, based on the
results seen here.

4.4 FW-CADIS Calculations

Finally, we examine the performance of the various quadrature types in the context of the
FW-CADIS method. Similar to the analysis for the CADIS method, we will first look at the
deterministic adjoint scalar flux solutions from the representative quadrature sets to compare
the calculations using the LDO equations versus the standard quadrature types. Recalling
Section 2.2.1.2, the FW-CADIS method incorporates both forward and adjoint scalar flux
solutions. Because the adjoint source may be specified differently between the CADIS and
FW-CADIS methods, it is instructive to look at the FW-CADIS deterministic adjoint scalar
flux solutions. However, the deterministic forward flux solutions used in the FW-CADIS
method are the same as those discussed in Section 4.2 and so we will not repeat the analysis
here. Lastly, we again look at result metrics from the various Monte Carlo runs to compare
the variance reduction parameter generation efficacy of the different quadrature types.

4.4.1 Steel Plate in Water

For the FW-CADIS calculations for the steel plate in water, the adjoint source was set to
be a mesh tally over all of the air beyond the steel plate. The discretization for the adjoint
source mesh tally is the same as that listed in Section 4.1.1. Specifically, the adjoint source
mesh is identical to the overall problem mesh in the x− and y−directions but starts at
z = 130 cm and extends to the problem boundary at z = 140 cm.

Figure 4.32 shows the adjoint scalar flux solutions for the representative quadrature sets
for the steel plate embedded in water. As expected, in each solution, the adjoint flux is
highest in the chosen adjoint source region for the problem and decreases logarithmically
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in the z−direction. Table 4.15 lists the minimum, maximum, and average relative adjoint
scalar flux solution differences for the comparisons plotted in Figure 4.33. As with earlier
cases, the Galerkin/QR and LDFE/QR comparisons are also tabulated for reference. Like
other deterministic flux comparisons for the steel plate embedded in water, the LDO flux
solution best matches the QR flux solution, with an average relative difference of 4.6% for
the FW-CADIS adjoint scalar flux.

Table 4.15: Steel plate FW-CADIS adjoint scalar flux extremal and average relative differ-
ences.

Comparison Min. Diff. Max. Diff. Avg. Diff.

LDO/QR 2×10−4 1.66×10−1 4.63×10−2

LDO/Galerkin 2×10−5 1.85×100 7.16×10−1

LDO/LDFE 8×10−2 2.41×10−1 1.92×10−1

Galerkin/QR 5×10−4 5.98×100 2.85×100

LDFE/QR 3×10−2 3.37×10−1 2.09×10−1

Comparing Figure 4.33 with Figure 4.14, we see that the relative differences among the
FW-CADIS adjoint scalar flux solutions are more uniform than those of the CADIS adjoint
flux solutions. This is to be expected, as the CADIS adjoint source is much more localized
than the FW-CADIS for the steel plate scenario studies conducted here.
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Figure 4.32: Steel plate adjoint scalar flux slices for the FW-CADIS method.
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Figure 4.33: Steel plate adjoint flux relative difference slices for the FW-CADIS method.
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Next, we will look at the results for the mesh tally in the air region of the scenario. The
Monte Carlo run with biasing parameters from the Galerkin quadrature set of order 2 was
not able to finish in a timely manner for the hardware configuration used in this work, so
Monte Carlo results for this data point are not included here. The calculations for this test
case scenario used 1×109 neutron histories.

Figure 4.34 shows the total tally summed over all air in the problem for the biased and
unbiased calculations. The biased calculations are plotted as a function of angular mesh
refinement and the unbiased calculation value is shown as a black horizontal line. Like the
CADIS method, the FW-CADIS method generates biasing parameters such that the biased
Monte Carlo flux tally results all fall far below that of the unbiased calculation. Similarly,
in this case, the angular mesh refinement has little impact on the tally result. So, if using
an LDO quadrature set to generate biasing parameters with the FW-CADIS method in a
similar scenario, a low-order LDO angular mesh could be used to good effect.
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Figure 4.34: Flux tally over the air region in the steel plate test with the FW-CADIS method.

To analyze the performance of the representative quadrature sets’ variance reduction
parameters for the steel plate in water case using the FW-CADIS method, we will look at
the average FOM values over the entire adjoint source mesh tally. The Figures of Merit
were calculated by taking the average relative error over all spatial cells in the air block
mesh tally and using that mean value in combination with the MCNP-reported computer
time and Equation 2.10. Figure 4.35 shows these average Figures of Merit as a function of
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the number of angles used in generating the biasing parameters. The average FOM for the
unbiased calculation is shown as a horizontal black line.
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Figure 4.35: Average FOM values for the mesh tally in the FW-CADIS steel plate scenario.

We see a different trend here in that the highest average FOM values tend to come from
quadrature sets with mid-range angular mesh refinement; the coarsest and finest angular
meshes produce Monte Carlo biasing parameters that result in reduced Figures of Merit.
Considering Figures 4.34 and 4.35, we note that one would wish to use a lower-order (e.g.,
order 5) LDO quadrature set to generate variance reduction parameters for a Monte Carlo
mesh tally using the FW-CADIS method.

4.4.2 DLVN

Considering the DLVN case with the FW-CADIS method, the adjoint source was specified
to be the combination of all of the detector locations in the problem. In accordance with
this, the adjoint scalar flux solutions shown in Figure 4.36 demonstrate the highest source
values in the region where four out of the six detector locations are concentrated. Figure
4.37 displays the relative differences between the LDO adjoint scalar flux solution and those
of the three standard quadrature types with extremal and average relative difference values
listed in Table 4.16. Of the standard quadrature types, the LDO adjoint flux solution differs
the least from the QR adjoint flux solution, with an average relative difference of about
11% for this FW-CADIS adjoint source specification for the DLVN problem. Given the
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more spatially generalized source specification, it is unsurprising to see uniform differences
in Figures 4.37a and 4.37c. The nonuniform differences in Figure 4.37b may be attributed
to the relative coarseness of the representative Galerkin quadrature set.

Table 4.16: DLVN FW-CADIS adjoint scalar flux extremal and average relative differences.

Comparison Min. Diff. Max. Diff. Avg. Diff.

LDO/QR 1×10−3 4.32×10−1 1.12×10−1

LDO/Galerkin 2×10−5 1.90×100 1.79×10−1

LDO/LDFE 1×10−2 3.97×10−1 1.73×10−1

Galerkin/QR 2×10−4 6.88×10−1 2.68×10−1

LDFE/QR 4×10−4 2.58×10−1 5.42×10−2
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Figure 4.36: DLVN adjoint scalar flux slices for the FW-CADIS method.
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Figure 4.37: DLVN adjoint scalar flux relative difference slices for the FW-CADIS method.
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Moving on to the Monte Carlo results and analysis, we look at the flux tallies and Figures
of Merit for all of the detector locations in the DLVN experimental benchmark. Recall that
1×1010 particle histories were simulated. Figure 4.38 shows all of the detector locations’
MCNP-reported forward scalar flux tallies plotted as a function of angular mesh refinement
used to generate biasing parameters in addition to the Figures of Merit for the flux tallies.
In each plot, the unbiased flux tally result is shown as a horizontal black line.

Figures 4.38a and 4.38b exhibit the same lack of trend in flux tally as a function of
angular mesh refinement. That is, in general, for detector locations #5 and #9, using more
discrete angles in the FW-CADIS deterministic calculations does not greatly impact the flux
tally result from MCNP. Figures 4.38e and 4.38f show similar behavior with the exception of
the most coarse angular meshes. For these detector locations, any angular mesh refinement
other than the coarsest angular mesh will produce a consistent forward scalar flux tally result.
Figures 4.38c and 4.38d show slightly more variation in flux tally result with angular mesh
refinement. These two detector locations’ tallies have also higher statistical error relative
to those at the other detector locations. Overall, though, the flux tallies at detectors #11
and #12 are not heavily impacted by the refinement of the angular mesh used in generating
the Monte Carlo biasing parameters, but a mid-range number of quadrature points should
be used to avoid the large statistical errors seen at the extreme ends of the angular mesh
refinement spectrum.

Like their corresponding flux tally graphs, Figures 4.38a, 4.38b, and 4.38e show almost
no variation in FOM with angular mesh refinement for the tallies at detector locations #5,
#9, and #13. This is to be expected, considering the uniform statistical error and stable
flux tally results at these locations. Figure 4.38c shows variation in FOM with angular mesh
refinement that is more varied, which corresponds to the larger statistical uncertainties in
the flux tally values for detector #11. Figure 4.38d shows little variation in FOM with
angular mesh refinement with the exception of the finest QR set. Lastly, 4.38f shows an
upper FOM limit of approximately 200 across all quadrature types, with the Figure of Merit
largely consistent across quadrature types with the exception of QR angular meshes.

In Table 4.17 we compare the Monte Carlo forward flux tally results for the representative
quadrature sets listed in Section 4.1.5.1. Results from the unbiased Monte Carlo calculation
are also included for comparison. All Monte Carlo flux tally values are reported with an
uncertainty of one standard deviation. For all detector locations, the Monte Carlo flux
tallies do not match the experimentally measured flux values for any of the representative
quadrature sets or the unbiased calculation, so we only compare the Monte Carlo calculations
in this table. We do note that the Monte Carlo calculations overestimate the flux tally at
all detector locations with the exception of detector #13. The flux tallies at detectors 5, 9,
13, and 14 all match within statistical uncertainty for all of the Monte Carlo calculations.
At detector #11, the biased Monte Carlo calculations match within standard error, but the
calculations using the QR and LDO biasing parameter fall outside of the error bounds of
the unbiased calculation. Somewhat similarly, at detector #14, all of the biased calculations
match one another within statistical uncertainty, but they are all outside of the error bounds
of the unbiased flux tally calculation.
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Table 4.17: DLVN benchmark flux tallies [n/cm2/s] calculated with FW-CADIS.

QR Galerkin LDFE LDO Unbiased

Det. #5
1.3341 ± 0.0003 1.3344 ± 0.0003 1.3347 ± 0.0004 1.3344 ± 0.0003 1.3315 ± 0.0092

(×10−7)

Det. #9
2.5225 ± 0.0005 2.5224 ± 0.0005 2.5229 ± 0.0004 2.2555 ± 0.0004 2.5104 ± 0.0127

(×10−7)

Det. #11
1.4420 ± 0.0005 1.4451 ± 0.0027 1.4446 ± 0.0026 1.4463 ± 0.0015 1.4463 ± 0.0010

(×10−5)

Det. #12
2.4749 ± 0.0004 2.4743 ± 0.0004 2.4751 ± 0.0004 2.4744 ± 0.0004 2.4684 ± 0.0042

(×10−6)

Det. #13
4.3984 ± 0.0011 4.3997 ± 0.0011 4.3994 ± 0.0011 4.3983 ± 0.0011 4.4170 ± 0.0175

(×10−7)

Det. #14
7.0070 ± 0.0025 7.0829 ± 0.0045 7.0813 ± 0.0026 7.0834 ± 0.0032 7.0694 ± 0.0216

(×10−7)

To examine the FOM values in a more quantifiable way, Table 4.18 lists the FOM values
for all detector locations for each of the representative quadrature sets as well as the unbiased
calculation. The maximum FOM value at each detector location is emphasized. Of the six
detector locations, the LDO quadrature set achieves the highest FOM for two of the locations.
The QR quadrature set is the only other type to also deliver the highest FOM for two out of
six detectors; the Galerkin and LDFE quadrature set biasing parameters each only achieve
the highest FOM at one detector. So, the LDO quadrature set’s biasing parameters perform
comparably to those from the QR quadrature set with respect to obtaining high FOM values
for multiple detector locations using the FW-CADIS method for the DLVN problem.

Table 4.18: FW-CADIS FOM values for representative quadratures for the DLVN problem.

Quad. Type Det. #5 Det. #9 Det. #11 Det. #12 Det. #13 Det. #14
QR 483.01 709.51 202.66 747.91 380.84 185.40
Galerkin 527.79 649.88 5.9934 798.88 326.11 52.098
LDFE 310.28 710.43 6.6749 926.28 391.62 166.51
LDO 478.24 721.22 19.959 943.96 369.42 110.40
Unbiased 0.14912 0.27845 14.555 2.5256 0.45376 0.76362

In summary, for test case scenarios such as the DLVN problem in which the FW-CADIS
method is used to generate Monte Carlo variance reduction parameters to optimize the
response at multiple flux tally detector locations, a relatively coarse quadrature set of any
of the types studied here can be used to sufficient effect. However, the coarsest available
quadrature sets should be avoided; flux tally results and Figures of Merit for the various
detector locations tend to level out as a function of angular mesh refinement beyond the
quadrature sets with the fewest number of angles. In particular, if using an LDO quadrature
set in another similar scenario, we would suggest using a point set of order 5 or 8.
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(a) MCNP-reported forward flux tally and FOM values at detector #5.
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(b) MCNP-reported forward flux tally and FOM values at detector #9.
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(c) MCNP-reported forward flux tally and FOM values at detector #11.
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(d) MCNP-reported forward flux tally and FOM values at detector #12.



CHAPTER 4. TEST CASES AND RESULTS 115

0 100 200 300 400 500 600 700

Number of Quadrature Points

4.39

4.40

4.41

4.42

4.43

Fl
u
x
 T
a
lly

 [
n
/c
m

2
/s
]

1e−7

0 100 200 300 400 500 600 700

Number of Quadrature Points

100

101

102

103

R
e
p
o
rt
e
d
 F
O
MQR

Galerkin

LDFE

LDO

Unbiased

DLVN Benchmark Flux Tallies and FOM Values at Detector #13

(e) MCNP-reported forward flux tally and FOM values at detector #13.
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(f) MCNP-reported forward flux tally and FOM values at detector #14.

Figure 4.38: FW-CADIS flux tallies and FOM values for the DLVN problem.
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4.4.3 Ispra Sodium Benchmark

As in the previous case, the adjoint source for the Ispra sodium benchmark problem in
the context of the FW-CADIS method was specified to be the combination of all of the
detector locations in the problem. Figure 4.39 shows the adjoint scalar flux solutions for the
representative quadrature sets based on this specification. Relative differences between the
representative LDO adjoint scalar flux and the standard quadratures’ adjoint scalar fluxes
are shown in Figure 4.40 with minimum, maximum, and average relative differences listed
in Table 4.19. Again, comparisons of the QR flux solution against the Galerkin and LDFE
flux solutions are tabulated for reference as well.

Table 4.19: Ispra sodium FW-CADIS adjoint flux extremal and average relative differences.

Comparison Min. Diff. Max. Diff. Avg. Diff.

LDO/QR 2×10−6 4.40×101 5.93×10−1

LDO/Galerkin 6×10−7 4.45×104 1.63×102

LDO/LDFE 1×10−6 1.30×102 7.42×10−1

Galerkin/QR 2×10−6 1.00×100 4.42×10−1

LDFE/QR 3×10−6 5.05×101 8.00×10−1

Comparing these differences to the values listed in Table 4.13, we see that the LDO adjoint
flux matches those of the standard quadratures more closely on average in the FW-CADIS
method than the CADIS method. This is to be expected, as the adjoint source in the
FW-CADIS method is much less localized than in the CADIS method for this scenario. As
with the forward and CADIS adjoint flux comparisons for the Ispra sodium benchmark, the
differences between the representative LDO flux solution and the representative standard
quadratures’ flux solutions are exacerbated by the relatively coarse LDO angular mesh.
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(a) QR adjoint flux slice.
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(b) Galerkin adjoint flux slice.
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(c) LDFE adjoint flux slice.
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(d) LDO adjoint flux slice.

Figure 4.39: Ispra sodium benchmark adjoint scalar flux slices for the FW-CADIS method.
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(b) LDO/Galerkin flux relative difference.
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Figure 4.40: Ispra sodium adjoint scalar flux relative difference slices for the FW-CADIS
method.

Having looked at the deterministically calculated adjoint flux solutions for the FW-CADIS
method, we move on to examine the results of the Monte Carlo calculations run using the
corresponding biasing parameters. All calculations here used 1×109 neutron histories. Fig-
ure 4.41 shows the saturation activities calculated for the various detector locations using
Equation 4.2 and the parameters listed in Section 4.2.4. Figures of Merit for the forward
flux tallies are also shown. The detectors are numbered such that detector #1 is the closest
to the experimental neutron source location with increasing detector number as the distance
between the neutron source and the detector location increases.

Comparing Figures 4.39 and 4.41, it is clear to see that the statistical uncertainty associ-
ated with the calculated activity (propagated from that of the forward flux tally) is heavily
correlated to the adjoint source strength at the detector location. That is, detector #7,
which has the highest adjoint source strength, sees the lowest uncertainty in the activity
values calculated there. Even with the variation in statistical uncertainty, the behaviors of
the FOM values for all detectors are fairly consistent between the locations for the biased
calculations. For all detector locations, the biasing parameters from the coarser angular
meshes produce higher FOM values than the mid-range and fine angular meshes for the
quadrature types studied here.
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(a) Calculated activities and flux tally FOM values at detector #1.
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(b) Calculated activities and flux tally FOM values at detector #2.
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(c) Calculated activities and flux tally FOM values at detector #3.
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(d) Calculated activities and flux tally FOM values at detector #4.
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(e) Calculated activities and flux tally FOM values at detector #5.
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(f) Calculated activities and flux tally FOM values at detector #6.
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(g) Calculated activities and flux tally FOM values at detector #7.

Figure 4.41: Ispra sodium benchmark FW-CADIS calculated activity and FOM values.

Table 4.20 lists the Figures of Merit for all detector locations for the representative
quadrature sets. The FOM values from the unbiased Monte Carlo calculation are also in-
cluded for reference. For all detector locations except that closest to the experimental neu-
tron source, the representative Galerkin quadrature set generates biasing parameters that
produce the highest FOM. The unbiased calculation results in the highest overall FOM for
the detector closest to the neutron source, which is unsurprising given the relative proximity
of the neutron source and closest detector and the relatively low adjoint source strength for
that detector location in the FW-CADIS adjoint scalar flux solutions.

Table 4.20: Representative quadratures’ FW-CADIS FOM values for the Ispra sodium test.

Quad. Type Det. #1 Det. #2 Det. #3 Det. #4 Det. #5 Det. #6 Det. #7

QR 1877.6 1254.2 1155.3 1094.7 1047.4 962.76 748.32
Galerkin 3211.0 2205.2 1999.1 1797.5 1578.1 1398.1 969.99
LDFE 2309.4 1573.0 1436.7 1394.9 1273.9 1157.4 848.77
LDO 1626.0 1125.3 1066.2 989.45 950.75 895.03 686.34
Unbiased 9685.4 1966.4 442.76 97.875 20.791 4.0357 0.66237

Lastly, in Table 4.21, we compare the activities calculated from the biased and unbiased
Monte Carlo forward flux tallies. At all detector locations, the calculations from the biased
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and unbiased Monte Carlo runs severely overestimate the experimentally measured satura-
tion activity (see Section 4.3.3), so we examine the Monte Carlo results amongst themselves.
All of the calculations match within statistical uncertainty at detector locations 1, 2, 5, 6,
and 7. At detector #4, the biased calculations match within their respective statistical er-
rors but are all outside of the error bounds of the unbiased calculation. Detector #3 sees
calculated activities all on the same order of magnitude; not all of the biased calculations
match within statistical uncertainty and only the calculated activity using the LDFE biasing
parameters matches the unbiased calculation within error bounds.

Table 4.21: Ispra sodium benchmark activities [Bq/g] calculated with FW-CADIS.

QR Galerkin LDFE LDO Unbiased

Det. #1
9.5121 ± 0.0026 9.5107 ± 0.0020 9.5111 ± 0.0023 9.5130 ± 0.0028 9.5121 ± 0.0021

(×104)

Det. #2
2.1024 ±0.0007 2.1018 ± 0.0005 2.1024 ± 0.0006 2.1031 ±0.0007 2.1026 ± 0.0010

(×104)

Det. #3
4.6834 ± 0.0016 4.6816 ± 0.0012 4.6808 ± 0.0015 4.6854 ± 0.0017 4.6749 ± 0.0047

(×103)

Det. #4
9.7356 ± 0.0035 9.7380 ± 0.0027 9.7406 ± 0.0031 9.7393 ± 0.0036 9.7695 ± 0.0211

(×102)

Det. #5
1.9030 ± 0.0007 1.9024 ± 0.0006 1.9027 ± 0.0006 1.9041 ± 0.0007 1.0941 ± 0.0089

(×102)

Det. #6
3.4166 ± 0.0013 3.4168 ± 0.0011 3.4165 ± 0.0012 3.4180 ± 0.0013 3.4194 ± 0.0363

(×101)

Det. #7
5.0891 ± 0.0022 5.0854 ± 0.0019 5.0885 ± 0.0021 5.0903 ± 0.0023 5.0508 ± 0.1326

(×100)

To summarize the results in this section, we note that the detector activity calculations
from the LDO biasing parameters are comparable within statistical uncertainty to those from
the standard quadrature types, but the LDO biasing parameters do not generate the highest
Figure of Merit for any detector location for the representative quadrature set. So, we would
not suggest using an LDO quadrature set in the FW-CADIS method for a situation such
as this scenario with fast reactor materials and detectors (adjoint source locations) all along
one line. Of the LDO quadrature sets tested in this scenario, the coarsest and finest angular
meshes produce comparable FOM values for all of the detector locations.

4.4.4 Simplified Portal Monitor

To generate Monte Carlo variance reduction parameters for the simplified portal monitor
using the FW-CADIS method, the adjoint source was set to be all four detector locations
in the problem’s detector array. Figure 4.42 shows the adjoint scalar flux solutions from the
representative quadrature sets for this case. Ray effects are seen in the x − y plane for all
quadrature sets; this is unsurprising given the relatively localized adjoint source with respect
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to this plane. Differences between the representative LDO adjoint flux solution and the other
adjoint flux solutions are shown in Figure 4.43 and listed in Table 4.22.

Table 4.22: Portal monitor FW-CADIS adjoint flux extremal and average relative differences.

Comparison Min. Diff. Max. Diff. Avg. Diff.

LDO/QR 8×10−5 8.59×101 2.95×100

LDO/Galerkin 3×10−4 2.53×102 1.02×101

LDO/LDFE 3×10−5 3.46×101 8.54×10−1

Galerkin/QR 4×10−4 1.19×102 3.23×100

LDFE/QR 1×10−4 8.67×101 2.88×100

As with all other test cases, the listed differences are relative and comparisons between the
standard representative quadrature sets are included for reference. Unlike other scenarios,
the LDO adjoint flux best matches the LDFE adjoint flux for the simplified portal monitor
scenario and this FW-CADIS adjoint source specification. However, this best agreement
is an average relative difference of 85%; none of the flux solutions agree particularly well
here. The relative difference flux plots show ray effects similar to those seen for the forward
and CADIS adjoint scalar fluxes for all quadrature types in the simplified portal monitor
scenario.
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(c) LDFE adjoint flux slice.
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Figure 4.42: Simplified portal monitor adjoint flux slices for the FW-CADIS method.
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Figure 4.43: Portal monitor adjoint flux relative difference slices for the FW-CADIS method.
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Figure 4.44 shows MCNP-reported forward scalar flux tallies and Figures of Merit for
all four detectors in the array. The flux tallies and FOM values are each plotted as a
function of the number of discrete angles used in the quadrature sets that were used to
generate biasing parameters. In all plots, the unbiased calculation result is shown as a
horizontal black line. At all detector locations, the forward flux tallies and FOM values
show the same trend of leveling off to a stable value once the angular mesh used for the
FW-CADIS biasing parameters has been refined past the few coarsest numbers of discrete
angles. At all detector locations except for the 2nd in the array, the unbiased calculation
and the calculations with biasing parameters resultant from the representative quadrature
sets all match within statistical uncertainty. The 2nd detector sees all representative biased
flux tallies matching one another but outside the error bounds of the unbiased flux tally
calculation.

Table 4.23 lists the Figures of Merit for the various detector locations for the representa-
tive quadrature sets. The unbiased calculation FOM values are also tabulated for reference.
We see that the biasing parameters from the representative LDO quadrature set produce the
highest Figures of Merit for three out of four detector locations, with the representative QR
quadrature set’s biasing parameters achieving the highest FOM for the bottom detector in
the array.

Table 4.23: FW-CADIS FOM values for representative quadratures for the portal monitor.

Quad. Type Top Detector 2nd Detector 3rd Detector Bottom Detector

QR 76.115 121.24 128.9 81.125
Galerkin 30.249 38.139 34.01 29.016
LDFE 65.613 96.156 115.5 61.655
LDO 85.707 132.96 140.3 75.135
Unbiased 4.4096 3.1520 2.096 2.8313

To conclude, using LDO quadrature sets to generate Monte Carlo biasing parameters
in the FW-CADIS method is particularly promising for cases such as the simplified portal
monitor scenario. When selecting an LDO quadrature set to generate variance reduction
parameters for similar photon transport problems, a relatively coarse angular mesh of order
5 or 8 may be used to good effect.
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Figure 4.44: FW-CADIS flux tallies and FOM values for the portal monitor scenario.
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4.4.5 Summary

We conclude the FW-CADIS method section by summarizing the results presented here.
As in Section 4.3, the representative LDO adjoint scalar flux solutions were compared with
those of representative standard quadrature types for each test case scenario. Compared
to the CADIS calculations, the steel plate in water and DLVN experimental benchmark
cases showed much more uniform relative differences for the adjoint scalar flux solutions in
the context of the FW-CADIS method. Differences in the Ispra sodium benchmark and
simplified portal monitor scenarios still appeared as ray effects due to the small scale of the
FW-CADIS adjoint sources in the large problem geometries.

For the Monte Carlo results using the biasing parameters of the various quadrature
sets from the FW-CADIS method, the forward flux tally results using the LDO biasing
parameters were comparable to those of standard quadrature types across all of the test
case scenarios. We generally recommend using a coarse LDO angular mesh of order 5 or 8
to generate biasing parameters for Monte Carlo neutral particle transport problems in the
context of the FW-CADIS method. Highlights of the LDO quadratures’ performance in this
section include the representative LDO quadrature set producing the highest FOM values
for two out of the six detector locations in the DLVN benchmark and three out of four
detector locations in the simplified portal monitor scenario. To this end, further exploration
of using LDO solutions for Monte Carlo variance reduction parameter generation for photon
transport using the FW-CADIS method is an area of future work and interest.

4.5 Chapter Summary

Finally, we end the chapter with an overall summary of the results and discussion presented,
with a specific focus on outcomes from LDO quadrature sets. Before exploring the LDO
equations’ solutions as input for Monte Carlo variance reduction parameter generation, we
first performed comparative studies for the LDO equations’ forward scalar flux solutions
versus those of QR, Galerkin, and LDFE quadrature sets for four test case scenarios. Be-
cause QR quadrature sets are commonly used in Monte Carlo variance reduction parameter
generation, particular attention was paid to the comparisons between the LDO and QR for-
ward flux results. At best, the average relative difference between the representative LDO
and QR forward flux solutions was 2.2% for the steel plate in water test case. The Ispra
sodium benchmark case saw the greatest LDO/QR forward flux difference at an average of
50%. Based on this general agreement and all quadrature types capturing the same physical
phenomena in each test case, we moved forward to explore the LDO equations’ solutions in
Monte Carlo variance reduction parameter generation.

Before looking at the results of the Monte Carlo calculations using biasing parameters
from the CADIS method, the deterministic adjoint scalar flux solutions were explored for the
different quadrature types. In this context, the LDO/QR adjoint flux solution comparison
had the smallest relative difference (3.8%) for the DLVN experimental benchmark. The



CHAPTER 4. TEST CASES AND RESULTS 135

responses of interest for the Monte Carlo calculations were studied as a function of angular
mesh refinement used in the generation of biasing parameters. On the whole, little correlation
was seen between angular mesh refinement and the MCNP-reported forward flux tally values
in the CADIS context. If using an LDO quadrature set to generate biasing parameters in
this context for any of the neutron transport scenarios, a low-order (3 - 8) quadrature set
may be used to sufficient effect for flux tally value and FOM achievement. For generating
biasing parameters in the CADIS context for a photon problem with an LDO quadrature set,
the finest available angular mesh should be used. This is consistent with what is expected
based on the difference between neutron and photon scattering in the materials in these test
case scenarios.

Finally, studies of deterministic adjoint scalar flux solutions and their efficacy as input for
Monte Carlo variance reduction parameter generation were performed in the context of the
FW-CADIS method. Here the LDO adjoint flux solution best matched the QR adjoint flux
solution in the steel plate scenario with an average relative difference of 4.6% between the
representative quadrature sets’ solutions. Again in this context we found that low-order (5
or 8) angular meshes are sufficient to produce forward flux tally and Figure of Merit values
comparable to those of more refined angular meshes when using LDO quadrature sets. The
superior FOM values resultant from the representative LDO quadrature set for three of four
detectors in the simplified portal monitor scenario begets interest in further exploration of
LDO equations’ solutions as input for Monte Carlo biasing parameters for photon transport
in the FW-CADIS context.
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Chapter 5

Conclusions and Future Work

To conclude this dissertation, we present a summary of the results and analysis delivered
in the previous chapter followed by an outlook for future work based on the preliminary
endeavors undertaken here. The ultimate research goal achieved in this work as well as the
complementary objectives met along the way serve to contribute to the body of knowledge
regarding hybrid methods for neutral particle radiation transport in shielding and deep
penetration applications.

5.1 Summary and Conclusions

In this work, the LDO equations were implemented in the Exnihilo parallel neutral particle
radiation transport framework for the purpose of using the equations’ solutions in Monte
Carlo variance reduction parameter generation via the ADVANTG software to improve the
results of simulations run with MCNP5. A small variety of test case scenarios were exam-
ined in the CADIS and FW-CADIS contexts with biasing parameters generated from flux
solutions of different quadrature types to ascertain the LDO solutions’ performance relative
to unbiased Monte Carlo calculations as well as those with biasing parameters from standard
quadrature types.

Deterministically-calculated forward and adjoint scalar flux solutions from the LDO equa-
tions were found to be comparable to those of standard quadrature types. The LDO equa-
tions saw their best-performing Monte Carlo biasing parameters in the FW-CADIS context.
For the DLVN experimental benchmark, LDO variance reduction parameters generated the
highest Figures of Merit for two of the six detector locations in the assembly. Of those stud-
ied here, the only other quadrature type to achieve this was the QR quadrature set. In the
case of the simplified portal monitor scenario studied in the FW-CADIS context, the LDO
biasing parameters attained the highest FOM values for three out of four detector locations.
Considering results from the test case scenarios in which neutrons were transported using
the CADIS and FW-CADIS methods, we suggest a coarse angular mesh for Monte Carlo
variance reduction parameter generation based on flux solutions resultant from solving the
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LDO equations. For photon transport problems, a more refined LDO angular mesh is rec-
ommended for generating Monte Carlo biasing parameters and achieving detector responses
with high Figures of Merit.

In general, the LDO formulation is most useful in the specific context of Monte Carlo vari-
ance parameter generation using the FW-CADIS method for photon transport problems. It
is also effective in the FW-CADIS method for neutron transport problems, though somewhat
less so. However, the LDO representation is currently limited in applicability by its current
implementation in the Exnihilo framework and the ADVANTG software. The problem space
available to explore is limited to those with vacuum boundary conditions and isotropic fixed
particle sources with non-zero volume. Adopting the LDO formulation in another radiation
transport and Monte Carlo variance reduction parameter generation framework would be of
interest if the framework is flexible in allowing for asymmetric quadrature sets to be used
and if the framework allows for relative ease in implementing the unique features of the LDO
representation such as interpolation in angle.

To conclude, we note that the novel work towards this dissertation includes the imple-
mentation of the LDO equations in a radiation transport framework as well as the study of
the resultant scalar flux solutions’ efficacy in Monte Carlo variance parameter generation in
both the CADIS and FW-CADIS methods. The results and analysis presented here are of
interest to the community at large in that the LDO representation treats particle scatter-
ing differently than the traditional discrete ordinates formulation and incorporates angular
information into scalar flux solutions in a new way. This improves the performance of hy-
brid methods in shielding problems with highly anisotropic particle movement and particle
streaming pathways when using the FW-CADIS method, especially for photon transport
problems.

5.2 Future Work

Various avenues of future work have become apparent over the course of this work. Some
facets of investigation are more rudimentary and concern details regarding the implemen-
tation of the LDO equations in a radiation transport software framework, while others are
more research-oriented questions.

We will first discuss suggested future work that concerns implementation details and
studies that may follow. As reflective boundary conditions are commonly used in both
deterministic and Monte Carlo transport methods to reduce problem space and compute
time, one of the first next steps to take would be to enable the use of reflective boundary
conditions with the LDO equations in Denovo. This is less straightforward than for standard
quadrature types because of the LDO equations’ asymmetry in angle, but it should be
possible using the interpolation property of the LDO representation. In a similar vein,
enabling the use of analytic approximations of uncollided flux sources in combination with
solving the LDO equations in Denovo would be a next logical development. This would
enable the direct use of point sources when solving the LDO equations through the Exnihilo
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framework and help to mitigate the ray effects from the point sources in the resultant flux
solutions.

Modifying the ADVANTG software to support more variety in deterministic calculations
and Monte Carlo variance parameter generation would open doors for more interesting stud-
ies with the LDO equations as well as standard quadrature types. Specifically, implementing
the use of anisotropic particle sources would allow for studies involving commonly-used
directional particle sources such as beams. Additionally, generalizing the FW/CADIS-Ω
methods implemented in the ADVANTG software such that quadrature sets that are not
rotationally symmetric could be directly used in concert with the methods would bring
about an additional channel for capturing the LDO equations’ unique scattering treatment
in angle-informed scalar flux solutions used to generate Monte Carlo biasing parameters.
Currently, the LDO equations’ deterministic flux solutions could be used in combination
with the FW/CADIS-Ω methods with the use of the interpolation property of the LDO
equations. This interpolation functionality does not exist in either the Exnihilo framework
or the ADVANTG software at the time of this writing.

Broader research questions involving solving the LDO equations are of interest as well.
The test case scenarios in this work were limited to relatively small scales with respect to
computational hardware usage; studies with finer LDO angular meshes across larger hard-
ware configurations would be instructive to see at what subspace degree, if any, the LDO
equations’ flux solutions mitigate ray effects in relevant real-world scenarios. Additionally,
we suggest testing rotated versions of the LDO quadrature sets to study the relationship be-
tween ordinate placement and problem geometry in detector response and FOM production.
This would be a fairly straightforward next step; the point sets generated by Womersley
used in this work are rotationally invariant and the Exnihilo framework imports the LDO
quadrature sets from plain text files. So, rotation matrices or formulae could be applied
to the already-existing LDO point sets with the new rotated quadratures directly input to
Exnihilo (and ADVANTG) for study in deterministic calculations as well as in Monte Carlo
variance reduction parameter generation. As an alternative to conducting studies with in-
creased angular resolution, we suggest undertaking investigations that use the interpolatory
nature of the LDO representation once this ability has been realized in the various software
frameworks involved.
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