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I. INTRODUCTION 

The electronic ground state of a perfect semiconductor is pretty boring. In these mate­

rials, electronic energy levels are well described by the Effective Mass Approximation; the 

electronic ground state is such that the valence bands are full, the conduction bands are 

empty and essentially nothing happens. Things become more interesting when this peaceful 

situation is disturbed, i. e., defects are present, lattice vibrations interact with the elec­

trons, or an external perturbation is applied. In this chapter, we will mostly be concerned 

with the perturbations caused by an ultrashort laser pulse whose photon energy lies in the 

vicinity of the fundamental absorption edge. In that case, the material is raised from its 

ground state into an excited state, which can be described in terms of electronic excitations 

whose structure results from a delicate balance between quantum statistics and the Coulomb 

interaction. The fundamental quasi-particles, electrons (e) and holes (h), obey Fermi statis­

tics. They can form more complex objects with an internal structure, such as excitons (X), 

biexcitons (X2 ), polaritons (X-hv), Fano-resonances, dressed hole at the origin of Fermi 

edge singularities, e-h plasmas etc. These objects are essentially delocalized and long-lived. 

Obviously their nature and properties are very sensitive to t~e density and energy of the 

photons that create them. Despite the underlying Fermi statistics of the basic constituents e 

and h, some composite quasi-particles, X and X 2 , can, in very specific low density regimes, 

exhibit a Bosonic behavior. A further critical dependence on the density stems from the 

fact that the strong and long range Coulomb force, that is responsible for the formation of 

these composite excitations, can be screened, in particular by e-h plasmas, thus changing 

their very nature. All these manybody mechanisms are modified in a non-trivial manner by 

quantum confinement in heterostructures or under high magnetic fields. 

Just upon creation the excitations are coherent, their quantum mechanical phase being 

determined by that of the laser light that generates them. Very quickly, however, scattering 

within the electronic system and with the phonons starts to destroy that phase and the 

system evolves toward thermodynamic equilibrium, first among the electronic excitations, 
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and then later with the lattice. This fast and complicated kinetics impacts on fundamental 

issues related to coherence, dephasing, dissipation and memory, thus raising some interesting 

questions about the validity of approximations well-established in the quasi-static regime. 

The combination of extreme density dependence and ultrafast kinetics makes the behavior 

of electronic excitations in semiconductors and their heterostructures a fascinating topic at 

the frontier of condensed matter physics. Their creation or destruction is associated with 

interband and intraband polarization waves which, in turn, determine the optical properties 

of the material. The recent developments in ultrafast laser techniques have provided new 

tools, perfectly adapted to the study of semiconductor optics, thus opening new opportunities 

for investigating manybody effects in correlated quasi-particle systems in regimes previously 

inaccessible. A wealth of valuable and novel information on the physics that governs the 

electronic excitations of semiconductors has been obtained over the last decade, explaining 

the spectacular growth of the field of nonlinear spectroscopy of these materials. 

Coherent nonlinear optical processes were first investigated in atomic and molecular sys­

tems using CW and long pulse lasers [1-3]. In these systems the energy levels are narrow, 

and usually well separated, so that experiments were well described by theoretical models 

involving only a few levels. In particular, in the case where one optical transition is nearly 

resonant with the exciting photons and all others are far away, the two-level-atom model very 

successfully accounts for most experimental results in the frequency domain [4], and the time 

domain [5]. Similar coherent nonlinear spectroscopy techniques in the nanosecond regime 

were applied to semiconductors for studying excitons [6,7] and biexcitons [8,9]. Here again, 

two or three level models were sufficient to explain the most salient results, giving more sup­

port to these phenomenological approaches. With the development of short pulsed lasers, 

picosecond time resolved experiments were performed on semiconductors and heterostruc­

tures [10,11]. Coherence and dephasing, however, continued to be discussed in terms of 

atomic systems concepts using formalism such as the two level atom model [12,13]. As the 

quality of the samples and the laser performances improved, experimental observations were 

found to be in qualitative contradiction with the "atomic" pictures. This has triggered a ma-
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jor reconsideration of the theory of the dominant mechanisms governing ultrafast processes 

in semiconductors, which is still being improved. Recently several excellent review articles 

and books on light/semiconductor interactions have been published. However, they tend 

to concentrate on experimental [14] or theoretical [15-17] aspects of the subject. It is our 

opinion that the spectacular progress made in the field of ultrafast nonlinear spectroscopy 

of semiconductors is the result of the cross fertilization between experiment and theory. The 

parallel development of advanced ultrashort pulse laser sources and very sensitive data ac­

quisition techniques on one hand, and formal theory and sophisticated numerical simulation 

on the other, have resulted in a new and extremely active area of condensed matter physics. 

The purpose of this chapter is to give a comprehensive and balanced account of both 

experimental and theoretical advances, focusing on the most important physics and, as much 

as possible, giving an intuitive picture of the new phenomena that have been observed and 

explained. We shall attempt to give an organized presentation of a large body of work that 

is dispersed in the literature. HoweVer, because of the sheer volume of the publications in 

this active field, rather than giving a shallow review of many articles we prefer concentrat­

ing on the most relevant and fundamental work. In order to reach out to the Condensed 

Matter Physics community that is unaware of the recent advances, we will try to introduce 

as pedagogically as possible the basic concepts of nonlinear optical spectroscopy. For the 

specialists in atomic and molecUlar optics, we will present as progressively as possible some 

manybody concepts. Good interpretations of experiment often require sophisticated' compu­

tational treatments in which one can lose track of the underlying physics. It turns out that 

it is possible to develop an intuitive model directly related to the correct theory, that cap­

tures the essential physics, although it misses some details. The model is deduced from the 

general kinetic equations by averaging over band or excitonic indices to define an "effective" 

interband polarization, which obeys a nonlinear Schrodinger equation. Each term of this 

equation has a simple and meaningful interpretation. We call it, and its generalizations, the 

"Effective Polarization Model". We shall use it every time an intuitive explanation can clar­

ify the interpretation of experiments, keeping in mind that a true comparison with theory 

4 



can only be made through the full numerical treatment. 

This chapter is organized as follows: In Section II we discuss the nature and properties of 

the electronic elementary excitations of semiconductors near the fundamental band gap. In 

Section III we examine the time scales of the scattering processes and their basic descriptions. 

In Section IV we review the nonlinear optical effect in which only virtual electron-hole pairs 

are excited, and use this example as an introduction to the interpretation and description of 

the physics governing the coherent regime in condensed matter. Having introduced the main 

ideas of manybody interactions in semiconductor optics, we turn to the processes involving 

excitation of real electron-hole pairs. Section V covers the fundamentals of processes that 

require accounting for 2-particle correlations, and some applications to electronic states in 

heterostructures are described in Section VI. In Section VII we discuss experiment and 

theory of processes involving 4-particle correlations. Section VIII is devoted to the very 

early time regime where memory effects and non-Markovian dynamics dominate. Finally, in 

Section IX, we give some concluding remarks and list a number relevant topics that are not 

covered in this chapter because of space, or because they are somehow less general. 

II. NEAR BAND GAP EXCITATIONS 

The semiconductors of interest in this review are direct gap Zinc Blende materials. The 

single particle states are well described by the Effective Mass Approximation (EMA). Close 

to the r point, the center of the Brillouin zone, four spin-degenerate bands contribute to 

the optical transitions. The conduction band, which originates from s-orbitals, has the 

J = 1/2 symmetry and is spin-degenerate, Jz = ±1/2. The upper valence band originates 

from p-orbitals and has a J = 3/2 character. It is split into the Jz = ±3/2 heavy hole 

(hh) and the Jz = ±1/2 light hole (lh) subbands which, in bulk materials, are degenerate 

at r but separate for k =I 0, owing to their different curvature. The so-called spin-orbit 

split-off band, with J = 1/2, Jz = ±1/2 character, is considerably lower in energy. The 

optical transitions induced by (J±-photons, which are in pure spin states, correspond to the 
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D&Jz = ±I selection rule; they are sketched in Fig. (1). The sensitivity of the transitions to 

the photon polarization is often exploited in nonlinear optics to identify some pathways. 

In heterostructures and/or in a magnetic field, the dimensionality of the electronic states 

is reduced by a potential that confines the particles in one or more directions [18]. Since this 

confinement depends on the mass, the hh-lh degeneracy is lifted, giving separate transitions 

to the conduction band. The particles are still free to move either in a plane (2D case) or 

along one axis (ID case). The band dispersion in the directions of free motion can be highly 

non-parabolic [18]. The degeneracy between the hh and the lh bands can also be lifted if a 

stress is applied to the sample, thus reducing the crystal symmetry. 

In the description of optical properties of semiconductors, it is customary to introduce the 

joint density of states (DOS), VN1(W), for the transitions at nw betw.een the non-interacting 

particles of a valence band with energy dispersion €v(k), and a conduction band with energy 

dispersion €c(k). The general relation giving the density of states, V(w), in terms of the 

Green's function G (k, k' , w), is: 

V(w) = ~ [2:G(k,k"W)] , 
k,k' 

(1) 

where 

(2) 

and the <Pn(k) are the e-h eigen states of the system. In the simple case of non-interacting 

particles with parabolic band dispersion, these are plane waves. Because the bands form 

quasi-continua, the sum can be transformed into an integral, Lk -+ f d kd , where the index 

d = 3,2,1 specifies the dimensionality, 3D, 2D and ID, of the sample, 

V~(wl ~ 2 (!)d A.. (~,;,r (/iw - E.ld/2-1 e (~ -1) , (3) 

where, Eg is the band gap, m is the effective mass, ~ = 1, 27r and 47r, and 8(nw I Eg - 1) is 

the Heaviside step function. For ID, V~~(w) has a singularity at the band edge, V~~(w) ex 

(€c(k) - €v(k) - nw)-1/2. In 2D, V~~(w) is a simple step function, and in 3D it has the usual 

V~~(w) ex (€c(k) -€v(k) _nw)1/2 profile. For OD the V~~(w) is simply a series of 8-functions. 
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Although one can use these DOS for discussing single particle effects, for example as 

starting point for describing transport properties, this approach is very misleading in optics. 

It gives the impression that the Coulomb interaction is some kind of a refinement that is 

added a posteriori to improve an already pretty good description. This is completely wrong. 

The Coulomb interaction causes "zero order" effects that determine the very value of the 

optical band gap and simultaneously affect all optical transitions [19,20]. When such a 

transition occurs, the interaction of the particle promoted into the conduction band with 

those left in the valence bands is an integral part of the process. This "final state interaction" 

has profound effects on all optical properties. 

To introduce the most salient features, let us consider the simple two-parabolic-band 

model of a semiconductor. The ground state, full valence band and empty conduction band, 

is denoted 10 >. The simplest excited state or "exciton" has one electron removed from 

the valence band and one put in the conduction band. Rather than using the creation and 

destruction operators in the conduction and valence bands, ct ,Ck ,ilk and ilk, it is sometimes 

more convenient to work in the electron-hole representation, ct ---+ et, Ck ---+ ek, ilk ---+ h-k 

The operator creating an exciton with an electron at ke and a hole at kh is: 

(4) 

where the amplitude 4>(ke , kh ) satisfies the k-space Schrodinger equation for an e-h pair 

interacting via the Coulomb potential. In the case of a photogenerated exciton, one can 

neglect the momentum of the photon so that the center of mass momentum is K = 0, 

and ke = -kh = k. Then the relative motion wavefunction satisfies the k-space Wannier 

equation, 

( E, - E + :~ k') .po{k) - ~ V{k - k').po(k') = 0, (5) 

where the Greek index, a, labels the internal motion quantum number and runs over the 

bound and unbound states. Eq. (5) is just the Fourier transform of the r-space hydrogen 
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problem. It appears naturally in crystals where, because of Bloch's theorem, it is usual to 

work in k-space. It shows explicitly that in k-space the Coulomb interaction, Lk' V(k -

k')<po.(k'),couples states at different k. The solutions of Eq. (5) form a complete basis and 

satisfy the closure relation, 

L <PeAk) <p~/(k) = 80.0." 
k 

Using these eigen-functions in Eq. (1) and (2) gives Vx(w), the DOS for the Coulomb 

interacting and optically active pair states: 

Vx(w) = L I<po.(r = 0)12 8(w - En). (6) 
n 

Where r = re - rh is the e-h relative coordinate. For non-interacting particles where V(k) -t 

o , the <po.(k) are plane waves with <po.(r = 0) = 1, and one recovers the result of Eq. (3), 

When the Coulomb interaction is accounted for, only the s-like pair states with <PnS(r = 

0) =1= 0 contribute to the optical transitions. Eq. (3) includes the bound and unbound states, 

and therefore accounts for the contribution of the resonances as well as the Sommerfeld 

enhanced continuum. It implies the famous Elliott formula for the linear absorption [21], 

which for the 3D case is written as: 

. nw [00 47r ( 1 ) 7re
7T
/..JSfi 1 a?D(w) ~ a~D p L 3 8 ~n + 2 + e(~n). /...fMi)' 

'''''y n=l n n smh( 7r ~n 
(7) 

with 

and 

measures the photon excess energy in units of the exciton Rydberg 14. Here J.Lcv is the inter­

band transition dipole matrix element, which can be considered as independent of k with an 

excellent accuracy; ao is the exciton Bohr radius and no is the background refractive index. 

Similar expressions for 2D and ID can be found in many text books. One significant impli-

cation of the Elliot formula is that the absorption remains well above the non-interacting 

particle result, aNI ex: e(~n) J ~n, even far away from the gap (for ~n ~ 50, a 3D is still 
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about ten percent above aNI). It turns out that an analytical expression for the real part of 

the dielectric function, and hence for the refractive index, can be derived as well [22]. In Fig. 

(2) the solid lines give the experimental low temperature, T = 5K, absorption and refractive 

index spectra of a high quality 1f-Lm thick GaAs sample. The sample is antireflection coated 

on each side and glued on a Sapphire substrate. Stress due to different thermal expansion 

lifts the lh-hh degeneracy. One can distinguish clearly in the a(w) spectrum the two exciton 

peaks and the onset of the continuum. The small bump at the threshold of the latter is 

likely due to the 28 resonance. All these features have a "dispersive" correspondent in the 

refractive index spectra. On the scale of Fig. (2), the non-interacting particle absorption 

would barely be visible. The dotted lines show a fit to the analytical expressions [21,22]. 

Although the main features are accurately reproduced, some details that are smoothed out 

in the experimental curves are more apparent on the theoretical ones. 

Strictly speaking, as soon as a second pair is created one should account for the interac­

tion between the four particles. Intuitively, however, one expects that, as long as the distance 

between the two pairs is much larger than ao , the above results should not be affected too 

much. In order to be more quantitative, let us compute the commutation rule of the exciton 

operator. One finds, as a function of the number operators for'electrons, ne(k) = ekek, and 

~ ~t ~ 

holes, nh(k) = h_kh_k: 

[x1, Xa] = L 14>a(k)12 (1 - ne(k) - nh(k)) , (8) 
k 

in which we recognize a form of the Pauli principle. We need the expectation values of ne (k) 

and nh(k) in the exciton state IXa > = X~10 >. It is easy to show that 

so that, 

(10) 

Hence from the point of view of quantum statistics, creating one exciton is equivalent to 

creating a "very-special" distribution of electrons and holes: l¢a(k)12. This result implies 
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that the generation of excitons prevents the subsequent generation of other excitons, a 

behavior of Fermions and not of Bosons. 

Quite often it is found in the literature that excitons behave as Bosons, because they are 

made of an electron and a hole with opposite spin. This is wrong; at most one can consider 

that excitons are non-ideal "composite" Bosons with underlying Fermi statistics reflecting 

that of their constituents. Creating an exciton uses some states of the pool of Fermionic 

states of the crystal and produces Pauli blocking. This effect is called excitonic "Phase 

Space Filling" (PSF) in the literature. The magnitude of the exciton Pauli blocking can be 

estimated by noting that for the bound states cPa(k) ~ 0 for k »aijl, for example, cPls(k) = 

807ra~)/[1 + (kao )2J2. Therefore, returning in r-space to express the result intuitively, once 

an exciton is created a small volume of semiconductor ~ a~ can no longer sustain other 

excitons. Since the center of mass momentum vanishes, K = 0, the "location" of this 

"excluded volume" is not known; nevertheless the net effect of creating an exciton is to 

decrease the absorption of the sample. The exact value of the "excluded volume" has to 

be calculated from more precise manybody theory considerations [23]. The approximately 

Bosonic behavior of excitons can only be observed in the low density regime N x a~ « 1. Let 

us note for future reference that, for the same reasons, a plasma with e and h distributions, 

ne(k) and nh(k), also causes a PSF due to the overlap between these disfributions and cPa(k). 

As the density increases, excitons begin to interact and one expects, in analogy with the 

hydrogen problem, that two pairs would bind to form an excitonic molecule or biexciton 

X 2• Theoretical considerations show that the singlet state is indeed bound for all values of 

the electron/hole mass ratio, whereas the triplet state is unbound, i. e., X-X. Biexcitons 

can be created directly by a two-photon transition, or via relaxation and binding in an 

exciton population. Therefore, they are active in coherent processes involving two or more 

photons. The bound singlet state, X 2 , requires two photons of opposite polarization to be 

excited. This is achieved either by two distinct laser beams, one c:+ and one a--, or by 

use of linearly polarized beams. For future reference let us note that the four polarization 

configurations that are two-photon active are often called co-circular (a-± /a-±), counter-
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circular (O"± /O"~), linear parallel (II-polarized) and linear perpendicular (..i-polarized). Bound 

biexcitons have been observed in bulk large gap semiconductors, II-VIand I-VII, but not 

directly in III-V semiconductors because, in these materials, their binding energy is very 

small, :::; ImeV. In quantwn confined systems, heterostructures and/or under large magnetic 

fields, the biexciton binding energy is enhanced and, as discussed in Section VII, they play 

an important role in nonlinear coherent processes. 

In quantwn confined systems a potential, either modulation of the band gap in het-

erostructures or cyclotron energy in magnetic fields, quantizes the e and h motion in some 

directions. Let Lj be the effective confinement length in directions Xj. Then the correspond­

ing components of the momentwn can only take quantized values, k j ~ nj(27r / Lj ) and the 

particles acquire confinement energies Ee,h(nj) ~ L.nj(likj )2/(2me,h). Usually, because of 

the symmetry of the envelope functions, the strongest optical transitions occur between e 

and h subbands with the same index nj. They have onsets at ru.v = Eg + Ee(nj) + Eh(nj) 

followed by continua associated with the free motion in the unconfined directions. There-

fore, one expects to see an excitonic structure at each one of these thresholds. This is the 

case with, however, an interesting twist for the high energy transitions. Their excitons over-

lap in energy with the lower energy continua, and are coupled to them by the Coulomb 

interaction [24,25]. The true eigen-states, I'¢'(€) >, are superpositions of the (nj)-excitons 

and the (nl < nj )-continua. This is the recipe for a quantwn interference that pr?duces 

highly asymmetric "Fano" resonances [26]. Let us consider for simplicity the case of a single 

discrete state, IX >, coupled to a featureless continuum, IC(€) >, and let V be the cou­

pling constant. Then, even in the absence of any other dissipation mechanism, the Fano 

resonances acquire a linewidth r = 7rV2 and a transition dipole moment, 

2 (q - DoW)2 
1J.L?J>(€)g I ex: Dow2 + 1 ' (11) 

where Dow = (€ - ru.v)/r, and q = lJ.Lxg/ J.Lcgl 2 /7rV is the Fano parameter that measures the 

ratio of dipole moment of the discrete state and the continuum. The transition probability, 

ex: 1J.L?J>(€)gI2, vanishes for Dow = q and has a maximwn at Dow = -q-I, thus giving the 
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very asymmetric profile to the absorption spectrum. Fano resonances have been observed 

in heterostructures and in bulk semiconductors in magnetic fields [24,25]. They do not 

correspond to bound states and should be considered as "structured continua". An example 

of Lorentian excitons and Fano resonances observed in the absorption spectrum of GaAs at 

a magnetic field of B = 12T for the two polarizations 0-+ and 0-- is shown in Fig.(3). 

The case where a large density of carriers is already present in the sample is also very 

interesting. In that case, the common wisdom would say that the Coulomb interaction is 

screened and that one should recover the non-interacting particle results. Again, this is far 

from being the case. To illustrate what occurs in the presence of carriers, let us consider the 

optical transitions in modulation-doped quantum well (QW) or quantum wire structures. In 

these heterostructures, dopants are introduced in the large gap material during the growth. 

The dopant nuclei remain locked in that material, but the carriers move to the lowest gap 

in the structure where they form extremely high mobility electron or hole gases. To discuss 

a specific situation, let us assume an n-doped QW structure where electrons form a 2D 

electron gas, and therefore fill the conduction band up to a Fermi energy EF • Because of 

final state occupation in the non-interacting particle picture one expects that the transitions 

vary as ex: V~~(w) x [1- ne(w)]. Therefore, at low temperature the absorption profile should 

vanish around Eg , have a threshold around EF, and recover its usual profile above EF, i. 

e., exhibit the Burstein shift. This is not at all what is observed; in fact close to EF the 

absorption exhibits a strong spectral peak called a Fermi Edge Singularity (FES) [27,28]. 

An example of FES is shown in Fig. (4), where the absorption spectra of an undoped and 

a modulation-doped GaAsjAlGaAs-QW structure are compared [29]. At low temperature, 

the FES produces a spectral feature as strong as that of the excitons! The FES originates 

from Coulomb mediated static and dynamic manybody effects. The physics behind the 

FES is that in an absorption process the photoexcited hole interacts not only with its 

photoexcited electron companion, but with the electrons of the entire Fermi sea [30,31]. 

Furthermore, the dynamic Coulomb effects result in a complicated reaction of the Fermi 

sea at the sudden appearance of the photoexcited hole. Electrons inside the Fermi sea, 
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with momentum qe < kF' interact with the photo-hole and scatter to states of momentum 

Pe > kF' while the photo-hole recoils from kh to k~ = kh + qe - Pe. We have to introduce this 

heavy notation to distinguish between the e and h photo-generated in the interband optical 

transitions, from those created in the conduction band by intra band transitions that are due 

to the dynamic readjustment of the Fermi sea. It turns out that this readjustment cannot 

be described by a perturbative approach. The first order perturbation amplitude for the 

scattering described above is ex Val ~€, where Va is the screened e-h interaction and ~€ = 

€c(Pe) - €c(qe) + (melmh)[€v(k~) - €v(kh)]. Close to EF, ~€ can be vanishingly small and the 

number of scattered particles can become very large. The combination of an infinitely large 

number of processes of vanishing energy leads to a breakdown of the perturbation expansion! 

A number of approximations, very often used for treating manybody effects, "rigid Fermi 

sea approximation" or energy independent Coulomb interaction, etc., fail completely and 

lead to unphysical results. In fact, the dynamic readjustment of the Fermi sea gives an 

energy dependent e-h interaction. Recently a non-perturbative approach was developed for 

the case of a hole with an infinite mass. It has been shown that the final state wavefunction 

is a coherent superposition of all the Fermi sea excited states [32-34]. In the case where the 

h has an infinite mass, the absorption profile exhibits a power law divergence, [35] 

(12) 

were OT is the threshold transition, ~o is a typical conduction bandwidth and f3 is a function 

of the screening charges in the immediate vicinity of the hole [36]. Finite h mass raises 

the difficult question of the h-recoil. A more complete treatment shows this produces two 

thresholds, one at ~ Eg + (1 + melmh)EF for the vertical transitions, whereas the indirect 

transitions start at ~ Eg + E F , with creation of conduction band e-h pairs and plasmons for 

conservation of momentum. The singularity is smeared over an energy range of the order 

of the hole band width and is, therefore, changed into a peak [37,38]. This leads to the 

broad spectral feature seen in Fig. (4). The theory is not yet finalized, due to formidable 

difficulties, such as the nonlocal e-h interaction that the valence band dispersion and the 
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conservation of the total momentum impose. 

This concludes the brief review of the dominant elementary excitations that are involved 

in near band gap optical processes. In the next section we consider the time scales of their 

dynamics. 

III. TIME SCALES AND DYNAMICAL TRENDS 

When discussing coherent processes, it is important to compare the time scales of the 

optical excitation with those of the "fast" and "slow" electronic degrees of freedom that 

interact with it. For the light field, E(t) = £(t) exp( -iwt) + c.c., one can distinguish the 

duration of the optical cycle, T = 27r /w, of the carrier wave from the characteristics of the 

pulse envelope £(t). For excitation close to the band gap of common semiconductors, the 

period of the optical cycles, T ~ 27rTi/ Eg , is in the 2fs -7 3fs range. Modern ultrashort 

pulsed lasers deliver 5fs -7 Ips pulses. It is customary to assume that the optical field 

drives interband e-h charge fluctuations that can follow the carrier wave, and to make the 

so called "slow varying envelope" approximation for discussing light/semiconductor interac-

tions. This separates the fast variations of the material parameters at frequency w, from the 

slow variations that follow £(t). For example, in the case of the polarization, one assumes 

the ansatz: P(t) = P(t) exp( -iwt) + c.c .. The problem is further simplified by the Rotating 

Wave Approximation (RWA), that retains only the resonant or quasi-resonant terms of the 

equations of motion. Although these approximations may be legitimate for the longer 100fs 

-7 Ips pulses, for the shorter ones, containing less than ten cycles, they may be problematic. 

The general theoretical approach for describing optical processes in semiconductors is to 

try to solve the kinetic equations of the Density Matrix. For the off-diagonal elements and 

the diagonal elements, i. e., the polarization amplitudes Pk and the occupation numbers 

ne(k) and nh(k) respectively, the kinetic equations take the form; 

(13) 

and 
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(14) 

The coherent parts of Eq.(13) and (14) are derived from the Heisenberg equations and are 

discussed in Section IV and V. In this section, we analyze the scattering terms. The nature 

of the electronic species that are excited, and the time scales over which they can maintain 

well defined phases, depend on 1U;; relative to the band gap. It is clear from the previous 

section that one can roughly distinguish three excitation regimes: well below the lowest 

energy resonances, around the resonances and well above them. 

In the first case, the excitation energy 1U;; falls in the transparency range of the material. 

During excitation, the quantum state of the sample can be described as a linear superposition 

of excited states, i. e., only "virtual" excitations are generated. If we define a typical 

detuning as: l:l.w = Oeh -w, the uncertainty principle tells us that the "lifetime" of the 

virtual excitation is T ~ (l:l.w tl. During that lifetime, the virtual excitations possess all 

the properties of real ones; they, however, do not participate in the dissipation processes (or 

they would become real) and they disappear over a time of the order of T once the excitation 

ceases. This is a true coherent regime where the virtual excitations are completely driven 

by the light field, and they are described by Eq. (13) and (14) .with the last term set equal 

to zero. The corresponding nonlinearities are small, but they' are extremely fast. Both 

properties stem from the fact that.l:l.w is large. This case is covered in Section IV .. 

In the two other cases, the photons generate real e-h pairs, whose quantum mechanical 

phase is well defined only initially. These e-h pairs can participate in coherent processes 

over a time scale of the order of a dephasing time, T2 , that is determined by the scattering 

rates, r i ; T2 = [Ei ri]-l. It is clear that these differ widely depending on whether the e-h 

pairs form bound states and/or are strongly correlated, or have a significant relative kinetic 

energy. Relaxation affects more strongly the high energy carriers, but even for these it is 

not an instantaneous process. In the few fs following excitation, manybody interactions 

start to take place, destroying the e-h quantum mechanical phase coherence, and creating 

"real carriers". A semiconductor, as any quantum mechanical system, is described by a 
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Schrodinger equation that is local in time. Therefore, strictly speaking, the knowledge of 

the Hamiltonian and the present state is enough to determine the future evolution. In 

practice, however, the semiconductor is such a complex manybody system that this ideal 

program cannot be achieved. It is customary to divide the full system into a sUb-system 

that is analyzed and a thermal "reservoir" of all the other degrees of freedom on which we 

have only partial information, for example, respectively, the interband transitions and the 

phonons and other carriers. Then, one can distinguish two stages in the dynamics of the 

sub-system: the long term behavior occurring when scattering processes have randomized 

the degrees of freedom, which is well described by Boltzmann Kinetics, and the behavior at 

very early time where it is necessary to follow up the uncompleted scattering processes in 

the sub-system/reservoir interaction. This stage of the dynamics is highly non-classical; the 

uncertainty principle tells us that the energy of each e-h pair is not well defined, populations 

and polarization, i.e., diagonal and off-diagonal elements of the density matrix, are strongly 

coupled, and the lattice and the photo-plasma are just starting to react. In that regime, 

the dynamics of the polarization and k-dependent occupation numbers must be described by 

Quantum Kinetics, with non-Markovian statistics and memory structures. A comprehensive 

review of the current theory [17] of that early stage of relaxation is beyond the scope of 

this chapter. It is, however, useful to consider a very simple model for introducing the 

main concepts and discussing the essential physics [15r In this model, the sub-system is a 

harmonic oscillator, X, coupled to a bath of other harmonic oscillators, All. The Hamiltonian 

IS, 

(15) 
II II 

The Heisenberg equations of motion for x and All are, 

d A .t:. .• A.~ AA -d x = -~/tJ.J.)X - ~ L..J911 II, 
t II 

and 

The last equation can be integrated formally, AII(t) = -i911 f~oo dtx(t')exp[-inll(t - t')], 

assuming All ( -00) = 0, and put back in the first one, which takes the form, 
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d jt -d X = -i1iw X + dt'r(t - tf)X(tf) , 
t -00 

(16) 

where we have introduced the memory kernel: r(t-t') = in 2:v 9vexp[-inv(t-tf)], character-

izing how long the sub-system remembers its past. Sub-systems with an ultrashort memory, 

r(t - tf) = ,o(t - t'), are called Markovian, and their relaxation can be described by a single 

dephasing time T2 = ,-I. In our oversimplified model, the Markovian regime is obtained 

by making a number of simplifying approximations: i) the reserVoir is assumed to have a 

dense and featureless continuous spectrum with density of states V(w), ii) the coupling is 

assumed to be weak, 9v « nv , so that one can develop the equations of motion to first order 

in 9v, which is furthermore taken as a constant 9v ~ g and, more importantly, iii) all the 

transient effects are neglected by extending the integrals to t -7 +00, thus introducing en­

ergy conserving o-functions, limt->+oo [9v J~oo dtfx(tf)exp[-inv(t - tf)J] -7 i7rg$(t)o(nv - w), 

giving, ~ 27rng2V(w). This procedure is equivalent to calculating the scattering rates using 

Fermi's golden rule. 

This almost trivial example illustrates how memory effects manifest themselves in gen­

eral: at time tf some dynamical variable of the sub-system interacts with the reservoir and 

drives it; the degrees of freedom of the reservoir then evolve according to their own eigen 

energies, in turn, at a later time t, the reservoir interacts with the subsystem, carrying in-

formation about the dyanamical variables of the sub-system at time tf as well as its own 

dynamics between tf and t. Depending on the nature of the sub-system and of the reservoir, 

the kinetic equations can be more or less complicated to write and solve, but the behav­

ior of the simple example sketched above is generic. In general, because of the very large 

number of degrees of freedom of the reservoir, interferences are the rule between t and tf 

and information is lost (from the point of view of the sub-system). That "scrambling" is 

not instantaneous and often it is possible to define a correlation time, Te , that characterizes 

the memory kernel, i. e. r(t) =I 0 for t < Te and r(t) -7 0 for t »Te. For t - tf < Te 

the scattering integrals must be calculated explicitly. It is clear that they have an oscilla­

tory behavior with frequencies related to the natural frequencies of the reservoir nv. These 
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oscillations translate the wave nature of the elementary excitations and the finite duration 

of their "collisions". Let us note that because t is small, energy conservation is not strict 

in the scattering events, but is limited by the time/energy uncertainty relations. It is also 

worth noting that the time domain memory kernel corresponds by Fourier transform, F. T., 

to energy dependent scattering rates, F.T. [Jr(t - t')x(t')dt] -+ r(w)x(w), in the frequency 

domain. To apply the line of thoughts sketched above to realistic situations, one has to turn 

to much more powerful theoretical techniques and more sophisticated treatments [39-46,16]. 

The main dephasing mechanisms in semiconductors are the electron/phonon and the 

electron/electron interactions. Most of the direct gap semiconductors are at least partially 

ionic, and the dominant coupling with the phonons is due to the Frolich LO-phonon/ carrier 

interaction. The time scale of the initial non-Markovian regime can be estimated by noting 

that the time it takes a lattice or a plasma to react to a perturbation is of the order of one 

period of their natural oscillation [45]. For example, in the case of GaAs, the LO-phonon 

period is TLO = 27r/nLO = 115fs, and for a plasma of density of neh = 1018cm-3 in the same 

material Tpl = 27r /npl ~ 100fs. 

The non-Markovian regime in phonon scattering of photo carriers generated by ultra­

short pulses was recently analyzed, revealing some features spedfic to the early time domain 

[39,40]. These carriers are not classical; each one is spread over a large portion of k-space by 

the uncertainty principle. This spread must be accounted for in each scattering event. At 

an early stage of the relaxation, Pk and ne,h(k) are coupled and cannot be analyzed indepen­

dently. This "polarization scattering" is discussed in Section IV. Collisions are "incomplete" 

in the sense that carriers do not lose or gain exactly one phonon because their energy is not 

well defined. Consequently, the collision integrals exhibit a "memory behavior"; for example, 

in the case of electrons they have the following structure, 

!nelscatt ex [too dt'[l- ne(k,t')]ne(k - q,t') (17) 

[NLO(q, t')cos[e-(t - tf)] + (NLO(q, t') + l)cos[e+(t - t')]] , 

with e± - (€e(k) - €e(k - q) ± nLO ), plus terms that account for polarization scattering, 
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[39,40]. Here N LO is the LO-phonon occupation number. Note the oscillatory functions of 

time under the integral; they describe the "incompleted" scattering events. It is interesting 

to note that because the dispersion of LO-phonons is negligible, these lattice vibrations form 

a "single mode reservoir" whose frequency explicitly appears in Eq. (17). For the reasons 

evoked above, in the Markovian limit, t --+ 00, the oscillatory functions of Eq. (17) transform 

into energy conserving o-functions and the collision integrals take a more familiar form, 

! nelscatt ex 21fo(';_)[1 - ne(k, t)]ne(k - q, t)NLO(q, t) (18) 

+ 21fo(';'+)[1 - ne(k, t)]ne(k - q, t)[NLO(q, t) + 1] , 

with phonon emission and absorption terms multiplying the Pauli blocking factors. In 

particular, this implies that in the non-Markovian regime the rates of scattering-in and 

scattering-out of one state are modified as compared to the Boltzmann case. In the latter 

they are two Lorentzians (broadened o-functions) with opposite sign and separated by nOLO. 

In the non-Markovian case, Fig.(5), the region of k-space involved in the scattering is only 

defined with an accuracy nj(t - t'); i. e., a much wider region of phase space is accessible 

than for the exchange of exactly one phonon, resulting in a very broad scattering-in rate 

and a slightly reduced scattering-out rate. 

In the long time regime, the steady state scattering rate is given by the Fermi golden 

rule [14]: 

r(LO) ~ r~LO) ( :::u:) ) 1/2 [N LOsinh - '( ~:;) + [NLO + 1] sinh -1 (~~; - 1) l, (19) 

where, 

Here Eoo and EO are the material optical and static dielectric constants respectively, and 

m(e,h) is the e- or h-effective mass. There is evidently a threshold for the emission of LO­

phonons at energy Ee,h(k) ~ Ea + nnLO , and no threshold for the absorption. The time 

scale for the establishment of the steady state regime is given by r~LO) ~ (125fs)-1 in the 

case of a moderately ionic compound like GaAs. We should mention that the deformation 
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potential scattering couples the lattice to carriers in all materials, purely covalent or ionic. 

Acoustic phonon interactions result in much slower scattering rates. The phonon scattering 

rates for excitons are usually calculated independently for the electron and the hole with a 

form factor that accounts for their relative motion [47]. The steady state dephasing rate of 

excitons can be estimated from their spectral linewidth. At low temperature, it is limited 

by the defects in the sample. In high quality materials, the exciton dephasing time is in the 

range 0.5ps < T2 < lOps. As the temperature increases, phonon scattering shortens T2 • It is 

found experimentally [11], and theoretically substantiated, that the exciton linewidth varies 

approximately linearly with the density of thermal LO-phonons, rx ~ ro + rph x NLO(T), 

resulting in dephasing times T2 ~ 100fs -200fs at room temperature. 

Dephasing through carrier-carrier scattering is much more difficult to describe. In the 

case of interaction with phonons, the lattice is the thermal reservoir and the electronic 

degrees of freedom are distinct from those of the reservoir. Carrier-carrier scattering proceeds 

from the Coulomb interaction, the very force that determines the nature of the elementary 

excitations. In a sense the "sub-system" is its own "reservoir". The screened Coulomb 

potential, Vs(r, t) , itself is a retarded function with its own kinetics. In particular, screening 

is not instantaneous; it builds up over a time scale ~ Tpl , and for shorter times is essentially 

unscreened, Vs(r, t ~ 0) ---+ VCr) [45]. Carrier-carrier scattering is often described in terms 

of the semiclassical Boltzmann Kinetics [48,49]. On the very short time scale, this formalism 

is plagued by a number of problems related to the fact that it conserves exactly the kinetic 

energy, is local in time and thus violates the uncertainty principle. On that time scale 

carrier-carrier scattering has to be described by Coulomb Quantum Kinetics (CQK). As 

for phonons, CQK involves collective effects, and a number of features discussed above in 

the case of phonons remain valid. For example, the carrier energy is not well defined, and 

this broadening can be larger than the typical energy transfer in 2-particle collisions which, 

therefore, are "incomplete" [46]. As opposed to LO-phonons, however, an electron gas has 

a gapless spectrum that cannot be characterized by well defined and discrete frequencies. 

Therefore, in general carrier-carrier scattering tends to broaden significantly and quickly any 
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distribution of electrons or holes. CQK expresses scattering in terms of transient scattering 

integrals with a memory structure. These have exactly the same structure for e and h [17], 

! ni(k, t)lscatt ex ~ [too dt' J dq J dk' IV(q)12cos[~~E(t - t')] 
J 

(20) 

[ni(k, t')nj(k', t')[l - ni(k - q, t')][l - n;(k + q, t')] 

-ni(k - q, t')nj(k' + q, t')[l - ni(k, t')][1 - n;(k, t')]] , 

here i,j ~ e, h, V(q) is the unscreened Coulomb potential and ~E = E~O)(k) + E)O)(k') -

E~O)(k - q) - E)O)(k' +q), where the E~O)(k) are the bare energies, see Section IV. The transient 

scattering integrals satisfy the Pauli principle as seen from the scattering in and out terms, 

and conserve the number of carriers and the total polarization. Conservation of the kinetic 

energy, however, is not strict, as expressed by the terms ex COS~E(t-t'). As a result a carrier 

distribution injected in the band spreads very quickly over a portion of k-space much larger 

than predicted by Boltzmann Kinetics. The associated broadening tends to attenuate the 

visibility of the phonon sidebands. Since, in the early time nk ~ IPkl2 ~ IEI2 the initial 

scattering rates scale as the excitation intensity. An example of the time evolution of a 

distribution of electrons generated in 20fs calculated with CQK formalism is shown in Fig. 

(6). One can clearly see a considerable broadening of the distribution, even during carrier 

injection. Current CQK calculations, however, have an infinite memory depth; the transient 

scattering integrals can have ali unstable evolution at long time, leading to overshoots in the 

carrier distributions. These theories are, therefore, only reliable for describing the early time 

behavior, whereas Boltzmann Kinetics theory is valid in the other limit of long times. Making 

the link between the two time scales still represents a formidable theoretical challenge. 

It is worth noting that a very different description of early time dephasing has been pro-

posed [50]. Because, immediately upon creation, a photoplasma is still immobile, one can 

consider that its effect is to create a random potential that is associated with an inhomoge-

nous broadening and thus leads to a dephasing mechanism. The phase decay is obtained by 

averaging over the disordered potential, giving, in bulk materials, a non exponential decay for 

the polarization, IPk(t)1 ex exp(t/7)3, with 7-3 ex R~ (na~) (kao). The cubic time dependence 
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is related to the dimensionality of the system; in 2D it becomes a quadratic dependence. 

By analogy with atomic physics, dephasing due to interaction between carriers is sometimes 

described as a source of "collisional broadening" and the effect of electrons and/or holes on 

a linewidth is written as 'Y = 'Yo + 'Yene + 'Yhnh + ..... Although intuitively attractive, this 

generalization can be misleading, especially in the context of coherent processes. Putting, 

without precaution, this expression in Eq.(13) can lead to severe contradictions. To see this 

more clearly, let us consider the case of a polarization component, Pk = < ekhk >. The 

product 'YPk = (/0 + 'Yene + 'Yhnh)Pk, contains terms of the form < e!,ek' >< ekhk > and 

< h!,i"k' >< ekhk >, which, in fact, originate from the uncontrolled factorization of the 

4-particle operator products, e!,ek,ekhk and h!,hk,ekhk. The coherence of these quantities 

must be accounted for by the equation of motion of the corresponding 4-particle correlation­

functions, which are coupled among themselves and with that of the density matrix. Since 

e-h pairs, just upon generation, have a well defined phase, the distinction between coherent 

and incoherent carrier-carrier interactions is a nontrivial matter that must be considered 

very carefully for each case, see Section VII. For example, when carriers form a Fermi sea in 

a sample, the Laundau theory of Fermi Liquids predicts that the lifetime of quasi-particles 

with excess energy &. varies as T ex:: (EF/&.)2 and, therefore, becomes infinite on the Fermi 

surface. Evidently this has important consequences for all coherent optical processes. Nev­

ertheless, it is true in general that the presence of a large number of carriers, photogenerated 

or not, reduces significantly the period of phase coherence. 

In summary, following the excitation of a semiconductor by an ultrashort laser pulse, one 

can distinguish the following time sequences. Initially, during the first few optical cycles, e-h 

pairs oscillate coherently between the valence and conduction bands; then typically in a few 

tens of fs, manybody interactions start to destroy the phase coherence. As e, h and nuclei 

start to move, a number of processes begin to be "turned on" , the Coulomb potential, which 

is initially bare, starts to be screened [46], and the lattice begins to react to the appearance 

of charges [39,40]. During this transient period the non-Markovian dynamics are described 

by Quantum Kinetics. Although the carriers start to relax, their distribution cannot be de-
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scribed by Fermi functions and a "temperature" cannot be defined. As scattering processes 

become effective, the coherence continues to decay, and is completely lost after several tens of 

femtoseconds when the quasi-particle scattering rates have reached a regime where the occu-

pation numbers follow Fermi-Dirac statistics and the system can be described by Boltzmann 

Kinetics. Early in that regime there is still no equilibrium among different carrier species or 

between the carriers and the lattice, but carrier-phonon and carrier-carrier scattering recover 

their usual behavior. Eventually the carriers equilibrate first among themselves and later 

with the lattice before finally recombining. 

IV. A PURELY COHERENT PROCESS INVOLVING ONLY VIRTUAL 

ELECTRON-HOLE PAIRS: THE EXCITONIC OPTICAL STARK EFFECT 

A true coherent state of a semiconductor is realized when the material is excited well 

below its optical transition energy threshold by a coherent laser field. Then only virtual 

excitations are generated. They do not participate in dissipation and their phase is deter­

mined by that of the laser. Such situations can also be realized in atomic systems, where it 

is well known that the laser field induces the so called Optical Stark Effect (OSE), whereby 

the k-atomic level experiences a shift in energy, 

(21) 

where ILk is the transition dipole moment and ~€(k) = Ti(Okg -w) is the laser detuning [51]. 

The Rabi frequency, IlLk . EI, measures the atom/EM-field coupling. An apparently similar 

effect was observed in semiconductor QW structures excited in their transparency range. 

Ultrashort pulse pump/probe experiments revealed, indeed, that the exciton resonances 

experience a shift that follows instantaneously the laser pulses, Fig. (7), with a magnitude 

inversely proportional to the detuning, and proportional to the laser intensity, in agreement 

with Eq. (21) [52,53]. In these experiments the small changes in sample transmission seen 

by a weak probe laser and induced by a strong pump laser are measured. In the small signal 
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regime, the differential transmission spectrum (DTS), D.T /T = [T(Ip) - T(Ip = O)]/T(Ip = 

0), reproduces faithfully the changes in the absorption spectrum of the sample, a(w), since 

D.T /T ~ -D.a(w) x l. A number of reports confirmed these early observations and provided 

more detailed information on the excitonic-OSE [54-57]. The most interesting aspects of 

the excitonic-OSE, however, relate to its interpretation [58,59]. Because of its importance 

as an introduction to the physics that governs light/semiconductor interactions, it is worth 

discussing the fundamental issues. Furthermore, the excitonic-OSE provides us with a very 

natural way of introducing the theoretical basis for the coherent part of the kinetic equations, 

1. e., the first part of Eq. (13) and (14). 

One approach for describing the excitonic-OSE could be to start from the quas1-

continuum of valence and conduction band states, and apply to each transition at k the 

atomic picture. Considering for simplicity the two-parabolic-band model, the levels at the 

bottom of the conduction band and at the top of the valence band are repelled more than 

the higher levels because of their smaller detuning D.f.(k). Hence the curvature of the band is 

modified by the laser field, and the effective masses are renormalized by the light! Since ex­

citons are made of the (k ~ a~l )-states, the "new" excitons would be constructed from these 

dressed single particle states. This approach gives the priority to the single particle/EM­

field interaction over the Coulomb interaction between particles, but as shown in Section-II, 

this is not justified. The alternative approach is to treat the excitons as eigen states of 

the crystal, and apply to them the atomic picture. In that case, the priority is given to 

the Coulomb interaction and not to the interaction with the EM-field. The charges, how­

ever, react to the total field, whatever its origin, the laser or other charge oscillations in 

the medium. This lengthy discussion is aimed at demonstrating that one must treat the 

Coulomb interaction and the interaction with the EM-field on the same footing. This is true 

for any light/semiconductor interaction, and causes some theoretical difficulties. 

Let us apply this program to the two-parabolic-band model. The basic Hamiltonian of 

the electronic system is, 
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He/ = L €c{k) ckCk + €v{k) VkVk (22) 
k 

1 '"'" [~t ~t ~ ~ ~t ~t ~ ~ 2 ~t ~t ~ ~ ] +2" L..t Vq Ck+qCk'_qCk,Ck + Vk+qVk'_qVk,Vk - Ck+qVk'_qVk,Ck, 
k,k',q""O 

where the first line describes the dispersion in the conduction and valence bands, and the 

second line the intraband and interband Coulomb interaction. For the purely coherent 

excitonic-OSE we do not need to consider dissipation, i. e., we can put 8pk/Btl scatt = 0 in 

Eq. (13) and, therefore, as a starting point we do not have to explicitly involve electron­

phonon and carrier-carrier scattering. The light/matter interaction is treated in the semi­

classical dipole approximation and the rotating wave approximation with the interaction 

Hamiltonian: 

HI = - L [JLcv,kE(t)ckvk + JL~,kE(t)*VkCk] . 
k 

(23) 

The total Hamiltonian, Htot = Hel + HI, has no known solutions, and approximations are 

necessary at this point. The general approach for describing optical properties of a system 

is to determine the expectation value of operators such as the Polarization P through the 

Density matrix operator n by: P = Tr(nF) [2,3]. In the tw~parabolic-band model the 

matrix elements of n are the expectation values of 2-particle operators: 

(24) 

The normal procedure for getting the equation of motion of n is to write the Heisenberg equa­

tions for the 2-particle operators using HTot , to apply the fundamental anti-commutation 

rules and then to take the expectation values. Because HTot contains 4-particle operators, 

these appear in the 2-particle operator equation of motion, so that one has to write the 

Heisenberg equations for the 4-particle operators. These in turn contain 6-particle opera­

tors, leading to an infinite hierarchy of coupled equations. This behavior is a fundamental 

problem of manybody systems that can find many embodiments in various formalisms (Feyn­

man Diagrams, Green's Functions etc.), in all cases, when an exact solution is not available, 
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one has to decide on a way to truncate this development. The simplest approach, beyond the 

independent particle model, is to factorize the expectation values of the 4-particle operators 

into products of expectation values of 2-particle operators, i. e., performing the Random 

Phase Approximation. This is, equivalent to the time dependent Hartree-Fock treatment 

[60]. At this HF /RPA level, correlation between four or more particles are neglected, and 

we will see in Section VI schemes for accounting for them. 

With all these approximations and considering only vertical transitions because the pho­

ton momentum is negligible, the density matrix breaks into 2 x 2 blocks, 

(25) 

It obeys the Liouville equation of motion, without the usual relaxation term, ! nk(t) \ scatt , 

(26) 

and the effective HF /RPA Hamiltonian 

- L Vk,k' nk,(t). (27) 
. k' 

Eq. (27) immediately shows that the Coulomb interaction renormalizes, at the same level, 

the energies and the coupling to the EM-field as measured by the Rabi frequency, 

€i(k) -+ €i(k) - L Vk,k' ni(k') , (28) 
k' 

/1-kE (t) -+ ~k = /1-kE (t) + L Vk,k' Pk' . (29) 
k' 

Eq. (28) expresses a renormalization of the single particle energies caused by the virtual 

populations, it is reminescent of the "Band Gap Renormalization" (BGR) which is often 

considered in a different context for incoherent electrically injected carriers or thermalized 

photocarriers. Coherent populations also cause a BGR and, since in that regime the po­

larizations have not dephased, the transient BGR, Eq. (28), is accompanied by a similar 
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transient renormalization of the Rabi frequency, Eq. (29). This equation simply expresses 

that carriers experience the "total" field, laser plus Coulomb coupling to other dipoles. The 

Liouville Eq. (26) then becomes, 

(30) 

(31) 

These equations have two constants of motion, 

(32) 

which simply express that, since there is no dissipation, the populations of optically coupled 

levels and the modulus of the Bloch vector are constant. 

Considering excitation by a monochromatic field, a/at -- 0, and transforming to the 

electron-hole representation, ncc(k) = ne(k) = nk and nvv(k) = 1 - nh(k) = 1 - nk, we get, 

(€k-1iw)pk-(1-2nk)~k = 0 and ~m(pk~k) = 0 where €k = €c(k)-€v(k). The last equation 

expresses that there is no absorption. It is worth noting that in the small excitation regime, 

the conservation of the Bloch vector modulus implies: nk ~ Ipk 12. The eigenvalues of Hk 

gives the dispersion of the "dressed" bands, 

As mentioned before, the curvature of these "dressed" bands is different from that of the 

unexcited semiconductor. This can be viewed as an "electronic polaron" effect whereby the 

e and h drag with them the cloud of short-lived (7 ~ Ti/(€k - 1iw)) virtual e-h pairs, hence 

becoming heavier [61]. 

The Hamiltonian H = Lk Hk can be diagonalized by a canonical transformation Uk. In 

the new basis the density matrix, UknkU1, has only one non-zero matrix element equal to 1, 

in the ground "condensed" state. The solutions are: 

(33) 
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and the "gap" equation: 

(34) 

The approach sketched in the previous paragraph is a mean field theory of the laser 

excited semiconductor, where Pk and nk are the order parameters. They play respectively 

the same role as the pair amplitude and the mean occupation number in the BCS theory 

of superconductors. Indeed Eq. (33) and (34) are formally identical to the BCS equations 

describing superconductivity [62], and to those describing the Bose condensation of excitons 

[63,64]' with two modifications: i) the chemical potential is replaced by the photon energy, 

and ii) the gap equation contains an extra term, the Rabi frequency. The first change 

expresses that each virtual exciton is created by a photon, the second that the condensation 

is not spontaneous, but induced by the EM field. In the same spirit it is worth noting that 

Eq. (27) is the analog of Anderson's "pseudo spin Hamiltonian" in superconductivity theory. 

In order to describe pump and probe experiments, one has to consider that the applied 

field is comprised of two parts, the strong pump field, E(t), and the weak probe field, 6E(t). 

The former gives rise to a renormalized semiconductor" ground state", described by Eqs. 

(33,34), while the linear response to 6E(t) yields the corresponding renormalized "excitation 

spectrum" , which is blue shifted and thus exhibits the aSE. The theory also predicts a small 

nonlinear and coherent gain below the pump central frequency which involves processes of 

high order in the applied field [58,59]. All these results stress the profound effects that the 

Coulomb interaction has on the optical properties of semiconductors. The physics of these 

materials excited by a laser field is more closely related to that of condensed manybody 

systems than to that of laser excited atoms. Another description of the excitonic-OSE has 

been proposed [65,66]. Although starting from a different point of view, it yields results 

that are equivalent to those of Ref. [58,59] when the biexciton contribution does not play an 

important role. 

Linearizing Eqs. (31) and (30) with respect to 6E(t), and considering only the effects of 

the leading IS-resonance to get analytical results [58,59], one finds that the exciton peak is 
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shifted by 

(35) 

where N:SF is the saturation density due to excitonic-PSF mentioned in Section II. The first 

fraction in Eq. (35) reproduces the atomic results, Eq. (21); the second gives the changes 

due to the excitonic structure. 

The dependence of the OSE-shift on dipole matrix element was confirmed by comparing 

the shifts experienced by hh-X and lh-X in the same measurement [53]. Its dependence 

on the exciton relative motion wavefunction was studied by distorting ¢lS(r = 0) using 

an electrostatic field applied perpendicular to the plane of the QW. A strong reduction of 

the excitonic-OSE has been observed as l¢ls(r = 0)1 2 decreases, in agreement with theory 

[56,57]. A more complete treatment, using the Coulomb Green's functions for solving the 

formalism of Ref. [58], reveals. that the condensation of virtual excitons is distributed over 

all the bound and unbound states [67]. The relative occupation is a sensitive function of the 

detuning and pulse duration. Interestingly, it is related to the real part of the susceptibility 

in contrast with the cases where real excitons are generated and where the occupation is 

related to the imaginary part of the susceptibility [68]. 

Numerical calculations based on the theory of Refs. [58,59] predicted that in 2D and for 

pump detunings of about lORy, low-intensity nonresonant excitation should produce a pure 

Stark shift of the IS exciton without any loss of oscillator strength, while in 3D the oscillator 

strength increases slightly with pump intensity [71-74]. The physical origin of this behavior is 

that the Stark shift of the band gap is always larger than that of the IS-exciton because of the 

larger spatial extent of scattering states. This corresponds to an effective increase in the 18-

exciton binding energy and, thus, in its oscillator strength, which can overcome the decrease 

due to phase space filling by the virtual e-h pairs. An example of DTS at .t:::..t = 0 seen in a 

QW sample excited 50meV below the IS hh-X, for a low pump excitation, ~ 30MWcm- 2 , 

is shown as a solid line in Fig. (8). In the case of a pure shift, the DTS should have exactly 

the same lineshape as the derivative of the linear absorption 8a(w)/8w, which is shown as a 

29 



dashed line in the figure. Indeed the two lineshapes are identical. In addition, the integral of 

the DTS around to the resonance is zero, as it should be for pure shift. As the pump intensity 

is increased, the DTS profile becomes indicative of both a shift and broadening. This is due to 

the finite bandwidth of ultrashort pulses whose Fourier components have different detuning 

and amplitude, leading to an "inhomogeneous broadening" of the absorption spectrum, 

which increases with intensity [71,72]. An alternative interpretation of that broadening is 

that, for ultrashort pulse excitation at small detuning, the effective masses of the "dressed" 

bands experience a significant and time dependent variation. For the "slow" degrees of 

freedom, such as an e orbiting an h in a bound state, the time dependent masses induce a 

strong dephasing. Very recently, the coherent nonlinear gain below the pump frequency has 

been observed [75] 

The OSE was also observed in modulation-doped samples, where excitons are not present, 

and the absorption edge exhibits a FES. In ultrashort pulse experiments carried out under 

the same conditions as for undoped samples, together with the blue shift there was observed 

a small, but significant, optical gain just below the FES and a much smaller reduction in the 

optical absorption strength [29]. The FES-OSE is much more complicated to treat, because 

the reaction of the whole Fermi sea must be accounted for. The low lying excitations of 

the Fermi sea are slow; they cannot adjust adiabatically to the rapid effective mass changes 

induced by the virtual interband transitions. The combination of the reduced "electronic 

polaron" enhancement of the effective masses and the time dependence of gap Eg explains, 

qualitatively, the small gain and the changes in the FES absorption [61,76,77]. 

It is worth noting how much the formalism and the interpretation of the experiments 

discussed above are different from that of atomic systems. Having introduced the main 

manybody concepts, we can now proceed to the case where real carriers are created. 
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V. FUNDAMENTALS OF TWO-PARTICLE CORRELATION EFFECTS 

INVOLVING REAL ELECTRON-HOLE PAIRS 

In this section we discuss the fundamental mechanisms that are responsible for nonlinear 

optical processes in semiconductors when real e-h pairs are created. 

The first experiments performed with ultrashort pulse excitation at, or slightly above, 

exciton resonances were concerned with the effects that a gas of excitons or an e-h plasma 

have on the excitonic absorption, in bulk [78,79] and in QW structures [11,80-83]. The loss 

of exciton oscillator strength in the presence of an e-h plasma, seen in the bulk, was first 

attributed to screening. It was the interpretation of pump/probe experiments performed 

on quasi-2D QW structures, where the effects of screening are reduced, that helped identify 

Pauli blocking of exciton transitions as important [84,23]. Interestingly, it was found that 

the reduction of oscillator strength occurred as the absolute energy of the exciton remained 

constant in 3D [78,79,13]' whereas in 2D it was accompanied by a non negligible blue shift 

[80,82]. Furthermore, the relative magnitude of these effects depended strongly on the 

nature of the excited species, exciton gas or e-h plasma, and on their temperature, T, 

resulting in complicated dynamics. The e-h pairs appeared to be more effective than an 

exciton gas in reducing the band edge absorption at low temperature, but less effective at 

high temperature. Although a, comprehensive theory was not available at that time, the 

constant value of the exciton energy in 3D was explained as near perfect cancellation of 

Pauli blocking (hard core repulsion) and screening [78,85]. In 2D, since screening is strongly 

reduced, this compensation does not occur and the Pauli blue shift dominates [84,23]. 

Analytical results for the change in the exciton oscillator strength, Ja, in the leading 

order in the density, N, were obtained in reasonably good agreement with experiments: 

(36) 

Here N-1 = (NPSF)-l + (NEXCH)-l where NPSF accounts for the PSF of the states out s s s , s 

of which excitons are made and N;;XCH accounts for the change in the exciton relative 
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motion wavefunction due to screening. It follows from Eq.(10) that (NI'SFt 1 = Lk[ne(k) + 

nh(k)]<Pa(k)/<Pa(r = 0). For an exciton gas, ne(k) = nh(k) <X l<Pa(k)12 and (NI'SFt 1 
<X the 

exciton volume (47ra!/3 for n = 18 in bulk and 27ra;Lz in QW). For the e-h plasma NI'SF 

depends on the temperature, through the overlap between the plasma distribution, ne(k) 

and nh(k), and <Pa(k) [84,23]. At low temperature, the carriers occupy the band minima 

and efficiently block the transitions at k < ao1j at high temperature, they spread out, the 

overlap decreases and NS1 <X By/kBT. For the same reasons, N~XCH follows similar trends. 

The ultrafast evolution between these different regimes is shown in Fig. (9). Here the 

DTS spectra of a 10nm GaAs QW structure excited about 20me V above the exciton res- . 

onances are presented as the pump probe time delay Dot is varied from -100fs to 200fs by 

50fs steps [81]. At early time delay one sees a spectral hole around 1.513eV that follows ap­

proximately the pump spectrum, and a more complex DTS signal at the exciton resonances 

around 1.498e V indicative of broadening and loss of oscillator strength. The spectral hole is 

due to the PSF induced in the continuum states by the nonthermal distributions of photo­

carriers generated by the pump. As shown in the inset of Fig. (9) for another experiment, 

the spectral hole is always shifted as compared to the pump spectrum. The lineshape of 

the spectral hole and its location relative to that of the pump are discussed below. The 

signal at the exciton peaks is due to a combination of collisional broadening (see Section 

VII) and coherent excitation of the resonances. As Dot increases, the spectral hole in the 

continuum moves down in energy and smooths out until Dot ~ 200fs, where it has acquired 

an exponential profile reminiscent of a Maxwell-Boltzmann distribution: This is interpreted 

as due to the cooling down and thermalization of the photo-plasma. Simultaneously, the 

signal at the excitons increases because PSF and screening increases with the overlap of the 

plasma distribution with the excitons wavefunctions <Pa(k). 

For small time delays, the spectral hole is always seen shifted with respect to the laser 

spectrum, as detailed in Fig. (10) [86]. This very interesting coherent effect was investigated 

experimentally [86,87] and theoretically [67,88]. The mechanisms responsible for the FES, 

discussed in Section I, generalized to a nonequilibrium population [86-88], give a qualitative 
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understanding of the observations. The quasi-instantaneous e-h distributions created by 

ultrashort laser pulses have two edges that are not sharp, since they follow the laser pulse 

spectrum. hnmediately upon their creation, however, the carriers are coherent, and thus can 

participate in FES-like processes. Manybody theories have been developed to describe these 

mechanisms [88]; for an intuitive discussion let us neglect the valence band dispersion and 

assume that e-e interactions do not perturb significantly the h-Fermi sea interaction. We 

can then consider that the ultrashort laser pulses create a nonthermal electron distribution 

ne(E - Eo, t) centered at energy EO, that one can describe as the sum of two parts: ne(E­

EO, t) = nce(E, t) - nch(E, t), a negatively charged distribution of conduction band electrons, 

ee, nce(E, t) = 8(E - EO) + 8(EO - E) X ne(E - EO, t) and a positively charged distribution of 

conduction band holes, eh, nch(E, t) = 8(E - EO) x [1- ne(E - EO, t)]. These two distributions 

have a step-like Fermi-profile, and one can apply to them the static FES theory [30,35], i) as 

long as the non thermal distribution remains coherent, and ii) with opposite sign for the eb-e 

and the eb-h distributions, i. e., at the high energy, E2, and low energy, El edges. As for the 

case of the static FES, the singularities are smeared out because of processes neglected in 

this oversimplified discussion and appear as resonances. Altogether, the dominant physics is 

that the absorption is enhanced close to E2 because of the attraction between the eb-e-Fermi 

sea and the photogenerated valence hole, whereas it is reduced close to El because of the 

repulsion between the eb-h-Fermi sea and the valence hole. Let us note that, in the same 

spirit, excitonic effects at the edges of nonthermal Gaussian distributions were obtained in 

the in theory of pump/probe DTS involving a transient e-h population, Ref. [67]. 

Similar considerations show that the same resonant features occur in the emission process. 

The dynamic FES at both edges of the non-thermal distribution lead to absorption enhance­

ment and emission reduction i. e., to a blue shift of the spectrallineshapes of the absorption 

and emission spectra, as compared to that of the pump laser pulses. A crucial point on which 

all these arguments is based is that of the coherence of the non-thermal distribution; the 

energy shift lasts only as long as the coherence is maintained. This issue was investigated by 

a comparative spectro-temporal analysis of the time sequence for generation of non thermal 
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distributions in pump/probe and self-diffraction four wave mixing (FWM) experiments [87]. 

The self diffraction FWM technique is aimed at measuring the simplest non-trivial coher­

ent emission. Two laser pulses, EI (t) and E2 (t), separated by a time delay, ,6.t = t2 - tI, and 

propagating in the directions k2 and kl' interfere via some nonlinearity in a sample. They 

generate several nonlinear polarization waves that contain one contribution, Ps(t, ,6.t), emit­

ting photons in the background-free direction ks = 2k2 - kl. The excitation configuration 

is exactly the same as for pump/probe measurements although, in the latter case, it is the 

change in the transmission of the kl pulses that is measured. It is important to emphasize 

on the different time sequences for the generation of the first order polarization, p(1), second 

order population, n(2) and third order polarization, p(3) in the two experiments. For FWM: 

p(l)(kl ) oc E(kl ), n(2)(k2 - kl ) oc S'm[p(l)(kl )* E(k2)], and p(3)(ks) oc E(k2)n(2)(k2 - kd, 

whereas for pump/probe p(I)(k2) oc E(k2) , n(2)(k = 0) oc S'm[p(1) (k2)* E(k2)] and 

p(3) (kl ) oc E(k1 )n(2)(k = 0). Our convention for positive delay, ,6.t = t2 - tl > 0, refers 

to the usual one for the polarization decay of a two level atom. The dynamical FES is 

expected to occur on a time scale where incoherent screening starts to become effective. In 

the experiments of Ref. [87] the FWM and pump/probe power spectra measured vs. Dot 

show a shift of the instantaneous frequency immediately after the nonthermal second order 

distributions, n(2)(k2 - kl ) and n(2)(k = 0) respectively, are created, i. e., for the opposite 

time sequences between the pulses in direction k2 and kl. This demonstrates that the blue 

shift associated with the dynamical FES does not depend on the particular time ordering 

of the pulse sequence: it is only related to the coherent part of the manybody interaction, 

i. e., as long as the n(2),s are coherent. Importantly, the disappearance of the blue shift is 

still seen well 'after the conventional relaxation time T2 [89,90], clearly indicating that some 

correlation in the e-h system survives for rather long times. In fact, the experiments show 

that the loss of coherence in a dense medium is far too complex to be described by a single 

parameter such as T2 [87], as we discuss in Section VIII. 

The first investigations directly testing the relaxation time T2 of the excitonic polarization 

were performed by degenerate FWM. In the case of a homogeneously broadened two level 
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atom the FWM-signal is emitted immediately after the second pulse and corresponds to 

"Free Polarization Decay" [5]. For inhomogeneously broadened atomic lines, the FWM­

signal is delayed by tl.t after the second pulse and corresponds to a "Photon Echo" [4]. 

FWM techniques have been applied extensively to atomic and molecular systems. In the 

two level atom case of Free Polarization Decay, Ps(t, tl.t), is zero for tl.t < 0 and exhibits 

a simple exponential decay for tl.t > O. For this reason, the easiest and most commonly 

used measurement technique for atomic-like systems, is to time-integrate the FWM signal, 

with a slow detector, as tl.t is varied to determine the so called "Time Integrated" FWM 

(TI-FWM), 

(37) 

For a two level atom, STl(tl.t), reproduces, as a function of tl.t the same temporal behavior 

as IPs(t, tl.t)12 vs. t at any fixed tl.t. Because of the historical background of atomic and 

molecular physics, and the simplicity of the two level atome results [5], the early ultrashort 

pulse investigations of FWM in semiconductors concentrated on the dephasing of resonances 

and were analyzed using that model [12,13,91]. It was deduced from the decay of STl vs.tl.t 

that the exciton dephasing time was in the ps time scale. These experiments were extended 

to study the effects of temperature, density of exciton gases and e-h plamas on the exciton 

dephasing time [92,93]. Again,early analyses were performed according to atomic models 

as sketched in Section III, and we will revisit this issue in Section VII. 

A qualitative difference with the ideas commonly accepted in coherent spectroscopy was 

observed when very high quality heterostructures, with homogeneously broadened exciton 

resonances, were probed with ~ 100fs pulses [94]. As shown in Fig. (11), TI-FWM experi­

ments revealed a very strong STl(tl.t) signal for tl.t < 0, extending at least as far as 20 times 

the laser pulse duration before tl.t = O. As seen on the figure temperature dependence study 

demonstrated that the rise time of STI - STl(tl.t < 0) is exactly half the decay time of the 

"regular" signal Sf I = STl(tl.t > 0). This direct contradiction with the atomic theories, 

which always predict that STI = 0 identically [5], forced a re-evaluation of the analysis of 
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coherent processes in semiconductors. As shown below, the Coulomb interaction induces 

nonlinearities that are a behavior qualitatively different from that of two level atoms and 

are responsible for the non-zero value of STI' 

The two-parabolic band model formalism described in Section III, with the addition, in 

Eq. (26), of phenomenological relaxation and dephasing times describing the interaction 

with phonons, gives a good starting point for discussion [95]. It is instructive to write the 

coupled equations satisfied by the density matrix elements. For the off-diagonal and diagonal 

terms, Eq.(30) and Eq.(31) in the e-h representation, neCk) = neCk): nh{k) = 1 - nv{k), we 

have respectively; 

8 n2k 2 

in !U Pk + [in, - (Eg + -2-) ]Pk + L Vk,k' Pk' = 
U~ m k' 

- [1 - neCk) - nh{k)]ILkE{t) (38) 

+ L Vk,k' [Pk,{ne{k) + nh{k)) - Pk{ne{k') + nh{k'))]. 
k' 

and 

These equations deserve several comments. First, we should note that in Eq.(38) we have 

identified the "observed" band gap Eg with the energy difference f.c{k = 0) - f.v{k = 0) + 

Lk' Vk,k" Thus, within the very restrictive HF /RPA discussed in Section III, this indicates 

that the gap energy includes the Coulomb interaction of the full valence band electrons, 

nh{k) = 0 and neCk) = O. The sources of nonlinearity in Eq. (38) and (39) are due to 

the excited photocarriers, nh(k) =J 0 and neCk) =J 0, but their origin stems from the same 

potential Vk,k' that determines the gap. Hence, our remark in Section II: The Coulomb 

interaction causes "zero" order effects; this is, in fact, a general result substantiated by 
J 

much more thorough theoretical treatments [19,20]. If the right hand side of Eq. (38) is 

put equal to zero and the steady state is assumed (8Pk/Ot -+ 0), one recovers the k-space 

exciton Wannier equation, Eq. (5), so that Eq. (38) includes all the "excitonic" effects. If 

Vk,k' is put equal to zero in Eq. (38) and (39), one recovers the Optical Bloch equations for 
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the independent two level atom model of the "atomic" picture. 

The nonlinear source term on the right hand side of Eq. (38) is comprised of two parts. 

The first one expresses the reduction of the Rabi frequency beca,use of Pauli Blocking, and 

it is active for all material systems made of Fermions, atoms, molecules or solids. It appears 

as a coupling between electric field E(t), and the populations ne(k), and nv(k). The sec­

ond term expresses the Coulomb coupling between polarization Pk and populations ne(k') 

and nh(k'). This term is new; it appears only in condensed matter. Because of the con­

sistent treatment of the self-energy and vertex corrections, it vanishes for k = k', avoiding 

unphysical divergences and translating the fact that a plane wave does not interact with 

itself. Finally, Eq.(39) expresses that the populations are generated by the total field, Dok 

of Eq.(29). In this chapter, we shall call the HF /RPA Coulomb nonlinearities, the Bare 

Coulomb Interaction (BCI). The set of coupled equations, Eq. (38) and Eq. (39), are called 

the Semiconductor Bloch Equations (SBE). Over the last decade the SBE have been ap­

plied very successfully to explain a number of nonlinear optical processes in semiconductors 

[72,60,15,96]. In the k-space representation, numerical solutions of the SBE, with a complete 

description of the energy band structure, have been applied successfully to realistic materials 

and heterostructures [96]. They have also been investigated in the r-space representation 

[97,98], where interesting spatio-temporal aspects of the polarization dynamics are better 

expressed [99]. 

Coming back to the experimental results of Ref. [94], let us see how they can be explained 

by the SBE. The processes responsible for the FWM signal in the direction ks are at least 

third order in the field. They can originate from one of the two nonlinear sources of Eq.(38). 

For ultrashort pulses, the polarization and population components rise with the fields and 

then decay exponentially. Thus the PSF source ex: [ne(k) +nv(k)]J.LkE(t) generates the FWM 

signal only for the sequence where the field E(k2) overlaps with the second order population 

n(2)(k2 - kl)' i. e., for Dot > O. On the contrary, the Coulomb source ex: Vk,k'Pk[ne(k) + nv(k)] 

is non-zero for both Dot < 0 and Dot > O. Furthermore, since in the x(3)-regime n(2) (k2-kt) ex: 

S'm[p(l) (kl)* E(k2)] , the rise time of STl is twice as fast as the decay time of Stl' Therefore, 
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in the experiments of Ref. [94], the observation of BTl and the value of its rise time are a 

direct manifestation of Coulomb mediated manybody effects. 

The SBE suggest further interesting aspects of FWM. Since the PSF due to Pauli blocking 

is instantaneous, but the polarization needs to build up to make a significant contribution, 

the "Time Resolved" FWM signal (TR-FWM), measuring the "absolute time" dependence 

of the polarizarion Ps(t, D.t), at fixed D.t, 

(40) 

is expected to be highly non-exponential and is comprised of two contributions, one instan-

taneous, due to PSF, and one delayed due tc? Coulomb manybody effects. This was indeed 

observed, leading to novel features of coherent wave mixing not seen in atomic systems 

[100-102]. These effects can be significant, as shown in Fig. (12). In high quality materials 

at low temperature the TR-FWM signal is very substantially delayed and even appears as 

a pulse well separated from exciting lasers pulses. At high temperature, as the excitation 

density is increased, excitons are ionized, generating free carriers that screen the Coulomb 

interaction and, hence, modify the relative contributions of the two sources of nonlinearities. 

A careful study and analysis of TR-FWM experiments in GaAs QWs at room temperature 

gave an accurate measure of the relative strength of PSF and BCI as a function of the photo­

carrier density [101]. In Fig. (13), the ratio of the BCI/PSF contributions is plotted versus 

Neh7ra~w, the number of photogenerated carrier per QW-exciton area. The plot exhibits a 

remarkably sharp transition from a BCI dominated regime for Neh x 7ra~w < 1, to a PSF 

dominated one for Neh x 7ra~w > 1, quite evocative of a phase transition. 

It is interesting to express the SBE in the exciton basis. Since the wavefunctions of the 

bound and unbound states, cPc.(r), form a complete basis, any function of r and t, J(r, t), 

can be written as: 

J(r, t) = L Jc.(t)(AAr) 
Q 

with Jc.(t) = J dr J(r, t)cPc.(r) , (41) 

and the polarization is expressed as: 
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p = LJ.t~Pk = LPo<po(r = 0). (42) 
k 0 

Applying Eq. (41) to the diagonal and off-diagonal elements of the density matrix yields, 

and 

where 

i!i ! Po = !i[Oo - ho ]Po - <p~(r = O)J.tE(t) 

+ [ne;o + nh;o]J.tE(t) + L VO !3'Y[p,B(ne;'Y + nh;'Y) - p'Y(ne;,B + nh;!3)] , 
!3'Y 

(43) 

(44) 

is the nonlocal Coulomb coupling between excitons. If we restrict ourselves to the linear 

regime, Eq.(43) and (44) are similar to that of a two level atom with the substitution J.t ~ 

J.t¢~(r = 0). Since the polarization is obtained by multiplying the polarization amplitudes 

by <po(r = 0), in the early days of the study of excitons it was commonly accepted that 

the only effect of BCI was the excitonic enhancement of the oscillator strength, 1J.t1 2 ~ 

1J.t1 2 1<po(r = 0)1 2
, consistent with Elliott's formula, Eq. (7). -Obviously, in the nonlinear 

regime excitons are sensitive to both PSFand BCL It is worth noting some aspects of the 

nonlocal BCI between excitons: i) it is active even when only one e-h pair is excited, but 

is distributed over several exciton states, as in the case of ultrashort pulse excitation; ii) it 

vanishes exactly for Q = f3 = " showing that a single exciton does not interact with itself. 

It is also interesting to note that the first nonlinear polarization, p(3) <X X(3), contains a PSF 

that the exciton internal structure does not affect the two sources of HF /RPA nonlinearity 

in the same way. 

A useful and intuitive model can be deduced from Eq.(43) and (44). Assume that, 

in the case of ultrashort pulse excitation with a significant linewidth, one can replace the 

polarization, Eq. (42), by an "average" P, so that the sums in Eq. (43) and (44) are written 
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as averaged as well. Assuming, furthermore, that excitation is low enough that one can take 

ni(k) ~ IPkI2, l' is found to satisfy the nonlinear Schrodinger equation: 

[.8. ] () (IP(t)1
2
) (I ( 12 ~ at +~, - no l' t = - JL • E 1 - 1'2 + VP t) l' t) 

8 

(45) 

where 1'8 is a saturation parameter, and V an effective Coulomb coupling [95,103]. We call 

this approximation the "effective polarization model" (EPM). l' behaves like a harmonic 

oscillator driven by two source terms. These express the dual character of laser excited 

semiconductors. The first source term translates the "atomic" character of the optical 

transitions and has its origin in the Pauli Blocking saturable electron-photon coupling. The 

second is a Coulomb mediated self-interaction, which has the same form as that of the 

order parameter in the Ginzburg-Landau theory of superconductivity, and has its origin 

in the electron-electron manybody coupling. Eq. (45) captures the essential physics of 

the light/semiconductor interaction at the HF /RPA level and it was found very useful for 

intuitively explaining a number of experiments [95,103,101]. In the following sections, we 

will use the EPM and its generalization to discuss the physics behind a number of interesting 

observations. This is very convenient for giving an intuitive picture. However, for accurate 

simulation of experiments it is necessary to use the full numerical solutions of the SBE, 

including the actual band structure and spin selection rules of each particular sample. 

VI. APPLICATIONS: SPECTROSCOPY AND DYNAMICS OF ELECTRONIC 

STATES IN HETEROSTRUCTURES 

Modern optoelectronics makes extensive use of semiconductor heterostructures, and very 

often electronic and photonic devices operate in conditions of high density and high field. 

A generic question of this field of research is to understand and control the electronic states 

and their dynamics in these artificial structures. In that respect, time resolved nonlinear 

optical spectroscopy has proven to be a very po:verful tool, much more versatile than the 

conventional techniques such as photoluminescence. The interpretation of many important 
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experiments with ultrafast dynamics requires a correct description of the interplay between 

PSF and BCI. This section reviews some of them. 

A first example is the Quantum Beats (QB) observed in TI-FWM when the lh-X and 

hh-X of a QW-structure are simultaneously excited by ultrashort pulses [104-107]. As 

shown in Fig.(14), when the central frequency of the excitation is tuned between the two 

excitons, both SfICb..t) and STI(b..t) exhibit a strong modulation in time. The period is 

related to the lh-X/hh-X energy splitting, €lh - €hh = TiD.1h- hh , by TQB ~ 27r/Olh-hh. If the 

beat period is in agreement with an atomic-like 3 level system (3LS) model [106], the large 

STI(b..t) indicates t~at BCI is active as well. The FWM is also found to be very sensitive 

to the polarization of the laser pulses. The combination of a large STI(b..t) and polarization 

selectivity indicates that one must include both the Coulomb interaction and an adequate 

band structure for explaining the data. The polarization selection, alone, can be accounted 

for by phenomenological atomic-like models with six levels reproducing the near band edge 

spin-symmetry of Fig. (1) [108]. The correct interpretation is given by the SBE formalism 

with the full six spin-degenerate bands Luttinger Hamiltonian [96]. We will analyze more in 

detail the important question of FWM polarization selection rules in Section VII. For the 

moment, we satisfy ourselves with a qualitative discussion. 

Using the band structure sketched in Fig. (1) we see that it is possible to build up four 

exciton manifolds for the transitions hh ---+ e and lh ---+ e excited by photons with polar­

ization a±. Introducing the mixed band-spin indices v = (hh, ±), (lh, ±), a straightforward 

generalization of the EPM is, 

[i! + i'yl/ - D.I/]PI/(t) = -1-£1/' E(l- L: 1";~(t)12) + PI/(t) L:Vw I IPI//(t)1 2 (46) 
Vi s,vv' v' 

where the PSF due to excitons sharing a common band is characterized by the saturation 

parameter PS,wl , and the BCI coupling between two exciton species by the parameter VW" 

It turns out that at the HF /RPA level the BCI is diagonal with respect to the different bands 

due to the orthogonality of the different spin states in the conduction and valence bands. 

Thus for FWM in a linear parallel polarization configuration (with all photons II-polarized), 
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the four exciton species are excited. They are quantum mechanically coupled by PSF, and 

BCI coupling is active within each spin manifold. Thus the oscillations in the FWM signal 

are true Quantum Beats. Conversely, in the co-circular o-± /o-± polarization configurations, 

the spin polarized lh-X± and hh-X± do not share a conduction band, and they are not BCI­

coupled. Thus, in these polarization configurations any beat seen in STI(At) originates from 

a Polarization Interference (PI), unless processes beyond the SBE are active. As we will see 

in Section VII the coupling between lh-X± and hh-X± is, in fact, a signature of four-particle 

interaction processes not accounted for at the HF /RP A level. Finally, in the cross-linear 

case, (.i-polarization configuration), we will show in Section VII that among the processes 

beyond the SBE, only the exciton-exciton exchange is active and thus the FWM signal is 

weaker, whereas for the 0-- j 0-+ -polarization one does not expect to see a FWM signal at 

any order [109]. 

These investigations triggered several experiments aimed at distinguishing the QB within 

a single multi-level quantum mechanical system from the interference in the emission of 

independent two level atoms [110,111]. This latter can be considered as the simplest case 

of inhomogeneous broadening and, in TR-FWM experiments, the rephasing of the different 

emission frequencies has the same time dependence as for a Photon Echo. Therefore, the 

maxima of the spectrally resolved FWM signal, 

(47) 

vary as Max [STR(t , At)] ~ 2At+47rn/n1h- hh • The QB, on the contrary, follow the same time 

dependence as free polarization decay, i. e., Max [STR(t , At)] ~ At + 27rnjn1h- hh . This was 

verified in an elegant experiment [110] by comparing the TR-FWM from two QW samples. 

One consisted of only one type of QW and thus exhibited hh-Xjlh-X QB, whereas the other 

sample had two types of QW electronically separated, with distinct exciton transitions, and 

gave only PI. A comparison of the STI(At) in the two cases is shown in Fig.(15) [110], 

where the two slopes are easily distinguished. The different time behavior of QB and PI 

has its counterpart in the frequency domain [111]. The component of Sps(w, At) at a given 
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frequency Ws shows oscillation as f:).t is varied. By scanning Ws across the resonances, it is 

found that the oscillation pattern remains unchanged for QB, but for PI it experiences a 

7r-shift and the signal amplitude vanishes exactly at the center of the two resonances. 

An important aspect of QB is related to the uncertainty principle. As for any quantum 

mechanical effect in a single system, the frequency shift during a QB cannot be instantaneous 

and must satisfy ~E x ~t 2: n. This was actually measured in experiments where both the 

amplitude and the phase of the FWM signal were determined [112-114]. Fig. (16) shows 

the "time-energy" picture of QB obtained under conditions where the spectral weights of 

the hh-X and lh-X contributions were equalized, Fig. (16a). The QB appear beautifully in 

the interferometric first order auto-correlation, (AC-FWM), 

(48) 

Fig. (16b), with a 230fs beat period corresponding to the hh-Xjlh-X splitting seen in the 

spectrally resolved FWM. The phase of the FWM signal relative to the laser, Fig. (16c), 

shows that the emission starts approximately in coincidence with the laser, which in this 

case coincides with the lh-X. Then, around 120fs, it experiences an abrupt 7r-shift when it 

moves suddenly to the hh-X, where it remains until the next beat. The 7r-shift does not occur 

instantaneously, but takes about 50fs to be completed. The QB "duration" is more precisely 

determined in Fig. (16d), where a set of fringes at the center of the AC-FWM is compared to 

a set of fringes close to the first node. One can actually count the number of fringes it takes 

to complete the 7r-shift. The frequency modulation is very fast, f:).E x f:).t = (1.4 ± 0.1 )n, yet 

still above the fundamental quantum limit. QB were also observed and investigated in other 

systems including magneto-excitons [115,116]' excitons localized by interface roughness in 

QW-structures [117], and unbound e-h continua states [118]. 

Ultrafast nonlinear optical spectroscopy has also found useful applications in the study 

of electronic transport in coupled-layer heterostructures, such as resonant tunneling of elec-

tronic wave-packets in double-QW systems, and Bloch Oscillations in superlattices. 

A double QW system that consists of two QW's with thickness Lz > L~, separated by 
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a very thin large-gap barrier layer, can sustain tunneling of e wave-packet between the two 

QW's when the conduction subband energy levels in the two QW's are brought in coin­

cidence, say by application of an electrostatic field. The electronic levels of the combined 

QW-system are, approximately, the symmetric and antisymmetric combinations of the iso­

lated QW-Ievels, and are separated by n,8ns,as. For properly chosen Lz > L~ the hole levels 

are not coupled and remain localized in each QW. An electronic wave-packet prepared in 

one QW will oscillate between the two QW's with a period Tosc = 27f /8ns,Qs. The elec­

tron motion can be detected by probing the interband transition between the hole localized 

in one QW and the combined electronic levels, because when the electron is in the same 

QW as the hole that transition is blocked by PSF. This program was actually performed in 

pump/probe and FWM experiments [119]. Fig. (17) presents the DTS spectra measured on 

a heterostructure that consisted of double QW within a pin-diode, the resonance condition 

was achieved by applying a reverse bias to the pin-diode. The DTS shows periodic oscilla­

tion with period Tosc ~ 1.3ps close to the nominal value corresponding to n,8ns,Qs = 3.2 me V 

[119]. The amplitude of the oscillations depends on the bias voltage, translating the proxim­

ity to resonance. Clearly, these are damped, showing that the electronic wave-packet loses 

its coherence as it moves back and forth between the two QW's. Although the electron 

motion is well described by the single particle model sketched above, it is necessary to take 

into account BCI between electron and hole [120] to reproduce the experimental interband 

transition energy [121]. 

Since the early days of solid state physics it was argued that, because of the k-space 

periodicity of the energy dispersion of carriers in a crystal, an electron subject to a constant 

electric field, F, would perform an oscillatory motion both in r-space and in k-space [122,123]. 

Such dynamics, called Bloch Oscillations (BO), were never observed in bulk crystals because, 

to execute one BO, the electron would have to reach the edge of the Brillouin zone, thus 

gaining an energy on the order of the band width, i.e., a few eV, without experiencing any 

scattering, as the analysis of Ref. [122,123] assumed. A much more favorable situation for 

observing BO is provided by semiconductor superlattices (SL). Here one works with the 
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envelope-wavefunctions, the SL-period d, and SL-minibands rather than with the Bloch­

wavefunctio~, the lattice period and the energy bands. This change of scale brings, among 

other things, the BO period, TBO = h/eFd in the ps range. In the presence of a static 

electric field, the absorption spectrum of SL exhibits the so called Wannier-Stark ladder 

(WSL) structure, [124,125]. It consists of evenly spaced transitions, EN = Eo + N l!:.E, with 

N = 0, ±1, ±2, ..... , whre l!:.E = h/TBO = eFd, between the SL-electronic states and a hole 

state that is localized owing to the large mass of the holes. Again excitonic effects strongly 

modify the interband transition energies and must be properly accounted for [126] . In a 

certain sense, the WSL structure is the frequency domain manifestation of the BO [127]. 

Nevertheless, the direct observation of BO in the time domain remained a challenge until 

ultrafast time-resolved nonlinear optical spectroscopy techniques were exploited. The idea is 

rather similar to that discussed in the previous paragraph. An ultrashort pulse whose spectra 

covers several WSL transitions would create an electronic wave-packet that would oscillate 

with the period TBO. This charge oscillation should be observable in a FWM experiment since 

it would modulate the interband polarization. A clear signature of the BO, that distinguishes 

them from other oscillations, such as lh-X/hh-X QB, is that their period TBO = h/eFd 

depends on the applied field and is, therefore, tunable. This scenario was indeed applied, 

using SL located in the intrinsic region of a p-i-n heterostructure [128-131]. An example 

of BO observed through TI-FWM is shown in Figure (18). The field dependence of the 

period is clearly seen. Strictly speaking, however, it is not clear that the features seen in the 

TI-FWM correspond directly to an oscillation of the center of mass of the electronic wave­

packet, as a symmetric breathing mode of the envelope wavefunction also could modulate the 

TI-FWM signal as well. Recently, an elegant experiment [132] was able to actually directly 

measure the spatial amplitude of the electronic wave-packet. The experiment is based on the 

observation that as the wave-packet oscillates it creates a field that superimposes itself on 

the constant applied field F, thus modulating the spectrally resolved FWM whose maxima 

experience shifts as l!:.t is varied. The magnitude of the oscillating dipole, and hence the 

amplitude of the center of mass motion, are directly related to these shifts. The center of 
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mass of the wave-packet executes damped sinusoidal oscillations as shown in Fig. (19). The 

amplitude is macroscopic, ~ 14nm for the first oscillation, and follows, quite closely, the . 
theory [132]. 

VII. FUNDAMENTALS OF FOUR-PARTICLE CORRELATION EFFECTS 

INVOLVING REAL ELECTRON-HOLE PAIRS 

So far we have been able to describe the main observations by accounting for Pauli 

Blocking and 2-particle correlation at the HF /RPA level. As mentioned in the introduc-

tion, coherent nonlinear optical processes involving bound biexcitons have been extensively 

investigated in bulk semiconductors in the nanosecond regime [8,9]. Obviously, processes. 

involving two excitons require a description accounting for 4-particle correlations, at least. 

Effects associated with bound states of biexcitons are easily identified in II-VI and I-VII 

semiconductors, because their binding energy, t::.EX2 = h(OX2 - 2f2x ), is large enough that 

the two-photon biexciton resonances, 2w ~ f2X2' are well separated from the one-photon 

exciton resonances, W ~ f2x . In III-V materials, biexcitons have a very small binding energy 

t::.EX2 < 1meV, and were not expected to play an important role in nonlinear optics. In 

quantum confined structures, although t::.EX2 ~ 1 - 3meV is enhanced [133], it remains of 

the order of the exciton linewidth in theseinhomogenously broadened systems. Thus it came 

rather as a surprise when oscillations at" a frequency different from the lh-X/hh-X splitting 

were observed in GaAs/AlGaAs QW structures through pump/probe [134] and FWM [135] 

experiments. An example of the exciton/biexciton oscillations seen in pump/probe experi­

ments [134] is shown in Fig. (20). The origin of these new features was correctly identified 

as due to the bound biexciton contribution, which appears in coherent processes because 

a two-photon transition (one (J- from the probe and one (J+ from the pump) directly con­

nects the ground state to a X 2-state, no matter what the inhomogeneous broadening is. 

Phenomenological 5-level models including the ground state Ig >, the two X± excitons, a 

bound biexciton and unbound exciton pairs, and accounting for inhomogeneous broaden-
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ing, were proposed to interpret the data [136]. More systematic studies [137-139] using 

3-pulse FWM in a number of polarization configurations were able to separate the quantum 

beats between lh-X± and hh-X± from those between these excitons and their bound (lh­

X±h and (hh-X±h states. Again, the FWM signals measured in these experiments have 

a very clear polarization selectivity: strong FWM signal for II-polarization, weak signal for 

.i-polarization and co-circular a± j a±-polarization and almost vanishing signal for counter­

circular a± ja=F-polarization [137,139,140]. Interestingly it was found that the phase of the 

lh-X±-hh-X± quantum beats seen in .i-polarization configuration exhibit a clear ?T-shift as 

compared to those seen in II-polarization. Describing qualitatively the overall line shapes of 

these experiments required the extension of the phenomenological models to ten levels! 

The correct interpretation of these experiments requires formalisms able to handle n­

particle correlations, including many obviously important mechanisms such as screening, 

which are not described by the HF jRPA of the SBE [16,141-151]. In the continuum of 

almost free e-h pairs, one could use non-equilibrium Green's functions and a second Born 

approximation with a satisfactory accuracy. However, in the domain of highly correlated 

e-h pairs, the Coulomb interaction must be accounted for consistently to arbitrary order. 

Several theoretical approaches have been proposed for achieving this goaL The first one 

was developed in the context of molecular systems and, because of this, has received little 

attention from the "semiconductor community", although it is absolutely general [141-145]. 

A formalism that naturally extends the density matrix approach of the SBE and is able 

to account f~r high order correlation is called the Dynamic Controlled Truncation Scheme 

(DCTS) [146]. Other formalisms that proceed through diagrammatic techniques [148], or 

through the development of correlation functions in the basis of n-exciton eigenstates, have 

been proposed recently [149]. We will base our discussion on the DCTS because it allows us 

to maintain the continuity with the previous sections. 

The DCTS consists of: i) writing the Heisenberg equations of motion for all relevant 

products of operators, ii) applying the fundamental Fermion anticommutation rules, and 

iii) taking the expectation values. This results in an infinite hierarchy of equations of mo-
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tion coupling the n-particle and the (n+m )-particle correlation functions. The consistent 

truncation scheme is based on the fact that in nonlinear optics one is usually interested 

in a development in powers of the interaction Hamiltonian, Eq. (23), so that the electric 

field E(t) is the natural expansion parameter. When one wishes to describe the effects up to 

E(t)n, the system of coupled equations is truncated at this power and the terms 0 (E(t)n'>n) 

are neglected. This results in a closed system of equations that, in principle, can be solved 

exactly. 

The 4-particle correlation functions that appear in the development of the kinetic equa­

tions beyond the 2-particle correlation functions, Eq. (24), have the form [146], 

and (49) 

or 

and (50) 

and similar ones obtained by permutation of the indices or Hermitian conjugation of the e 

and h operators. Here, to simplify the notation, we have lumped all the quantum numbers 

that distinguish particles in a single index. The 4-particle correlation functions represent 

coherent processes with a very intuitive interpretation., Those appearing in Eq. (49) can be 

interpreted respectively as: an e-density/density correlation, an h-density/density correla­

tion and an X-occupation, whereas those in Eq. (50) represent an e-screened 1pair-emission, 

• 
an h-screened 1pair-emission and a 2pair-emission. It is worth noting that they correspond 

to coherent processes, in contrast to the products of 2-particle correlation functions that are 

deduced from them by applying a RPA and thus destroying the phase relation between the 

terms of the products. For example, the 4-operator product appearing in P'::;2)' ei e2e3h4, 
represents the single process in which an e-h pair (e3, h4 ) and an electron (e2) are destroyed 

while an electron (el) is created. Hence, our interpretation of P':~:2) as a e-screened 1pair­

emission, i. e., (e3, h4 )-recombination acompanied by the e2 -7 el scattering. The intuitive 

picture carried by Eq. (49) and (50) relates nicely to mechanisms that are usually considered 
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in a more heuristic description of light/matter interaction; the DCTS formalism, however, 

is completely consistent. 

It is clear that, as the order of the development increases, the number of correlation 

functions to consider becomes quickly unmanageable. It turns out, however, that it is 

possible to develop a systematic procedure for identifying all those that contribute at 

a given order [147]. In the limit of third order processes, X(3)-truncation, a number of 

factorization-summation relations valid 0 (E(t)n>3) can be demonstrated. They take forms 

like: (P(:1~2»)* = (e!h~hlh4) = Lej(e!h~h~ej) x (ejh4) +0 (E(t)5), showing that many coher­

ent 4-particle processes can be expressed in terms of only two types of correlation functions: 

the 1pair-transition, peh = (eh), the 2pair-transition, Bheh'e', and their complex conjugates 

[151]. A physically meaningful expression for the exciton-exciton correlation function Bheh'e' 

appears naturally when operator products that have already been factorized in the SBE ap­

proximation are subtracted from the bare 4-particle correlation function (with proper sign 

changes due to Fermi operator commutation rules). Then Bheh'e' takes the following form: 

Behe'h' = (eh~h') - (eh) (e'h') + (eh')(e'h) [151]' and has an straightforward interpretation. 

It characterizes the deviation from the HF /RPA meanfield theory. This underlying physics 

make the coupled equations of motion of peh and Bheh'e' much" more transparent since they 

can be written in such a way that the first term in 8peh /8tl coh exactly reproduces the SBE. 

This procedure shows that the DCTS includes, of course, the HF /RPA meanfield formalism 

[151], furthermore, it is very useful in practice, since it identifies the processes that are, or 

are not included in the SBE. 

Discussing the details of the theory is beyond the scope of this chapter. Therefore, to 

get an insight into the mechanisms relevant for the experiments mentioned in the previous 

paragraph, we will use a generalization of the EPM, Eq. (45) and (46), which, as we have 

seen, gives a good intuitive picture of the physics. The model proceeds along the same lines 

as EPM. If we consider only the hh --7 e transition, we have to account for the two spin 

manifolds and introduce two effective polarizations, P±, respectively associated with the 

absorption of a± photons, and, in addition, an "effective 4-particle correlation function" B, 
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which represents a two-photon (one (]"+ and one 0"-) bound biexciton transition. With these 

ingredients one can derive from the full kinetic equations the coupled system; 

[i! + h - Ox]P±(t) = -p,. E(l _IP~~)12) + VP±(t) IP±(t)12 (51) 
8 

+ V~~hp±(t) IP±(t)12 - vi~een P±(t)[ IP±(t)12 + IP=F(t)1 2] 

+ Vxx2 B(t)P±(t)* 

and 

(52) 

In Eq. (51), V is the effective BCI coupling and, therefore, the first line reproduces the 

SBE-approximation Eq. (45). All the other terms in Eq. (51) and (52) originate from 

correlation effects beyond HF /RPA; Vixeen is the effective parameter describing excitonic 

screening, VxJl is the corresponding exchange term and VXX2 accounts for the exciton-

biexciton interaction. It is worth noting that the excitonic screening couples the two exciton 

spin-manifolds and explains the coupling between P(t)- and P(t)+, whereas the excitonic 

exchange term has the same form as the BCI and can be lumped with it. The effective 

4-particle correlation function, B(t), is driven by a product of two effective polarizations, 

P(t)- X P(t)+. The model readily explains how processes not included in the SBE affect 

FWM experiments and govern their polarization selectivity [150,151]. In the X(3) limit, i. 

e., 0 (E(t)5) solution, the polarizations in the RHS of Eq. (51) and (52) are the linear 

polarizations p(l)±(t) ex: E(t). In the configuration (]"± /(]"±, either P(t)- or P(t)+ is zero, 

the RHS of Eq. (52) vanishes and bound biexcitons are not created. All the other terms 

contribute at the same level and Eq. (51) has the same form as the SBE approximation, Eq. 

(45). In the II-polarization configuration the RHS of both Eq. (51) and (52) are nonzero; 

therefore bound biexcitons are created. The oscillations at frequency 20x - OX2 arise 

naturally, P(t)- is coupled to P(t)+ through Vixeen and the FWM signal is large. Finally, in 

the i.-polarization configuration the coefficient of Vixeen vanishes and the exciton-biexciton 

interaction contribution is dominant, but the signal is weaker. 
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Other, apparently simple processes, also imply correlation beyond more than two parti­

cles. This is the case, for example, for the dephasing induced by the presence of other charged 

carriers or other excitons. In Section V, we mentioned that early FWM experiments, where 

e, h or X populations were intentionally photogenerated, were satisfactorily described by 

using empirical density-dependent scattering rates, 1 = 10 + lini, with i = e, h, orX in 

analogy with the concept of collisional broadening of atomic physics [12,13,91]. It is easy to 

convince one's self that such density dependent scattering rates imply processes beyorid the 

third order. As mentioned in Section III, when introducing a density broadening parameter 

in the kinetic equations, Eq. (13) and (14), terms of the form lene,h x Pk, appear, and since 

ne ~ nh ~ IPkl 2 + IPkl4 + O(E5) and Pk = O(E) they contain contributions O(E5). 

Recently, the effects of collisional broadening have been re-examined carefully, their con­

sequences on the FWM emission were clarified and they were baptized "excitation induced 

dephasing" (EID) [152,153]. It was found that even at low excitation densities, the exci­

ton resonances experience a significant broadening. This is shown in Fig. (21), where the 

pump/probe DTS, measured near the X-resonances of a 0.2j.-tm GaAs sample kept at low 

temperature, is presented. In that experiment the pump generated Nioh ~ 3 x 1015cm-3 

excitons. The DTS is very well interpreted as the difference between Lorentzian reso­

nances with the same strength, but slightly different widths. FWM experiments, using 

a pre-pulse to introduce a controlled amount of excitons, N]pcoh, long enough before the 

arrival of pump and probe pluses on the sample to be incoherent with the excitons in­

volved in the FWM, confirmed the earlier results. Moreover they have shown that, as 

N]pcoh ~ 6 x 1014cm-3 ~ 5 x 1015cm-3 , the FWM efficiency was reduced by a factor ~ 6, 

while the ratio S~WM/S~WM varied from 10 ~ 5. All these changes were found to be in­

dependent of the spin of the incoherent excitons created by the pre-pulses. Obviously the 

Coulomb coupling between the two sub-systems of excitons is responsible for the observa­

tions. 

Since screening in its various forms is not included in the SBE, a description of EID 

requires using formalisms such as the DCTS. In fact, up to 0 (E(t)5), the discussion of 
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the previous paragraphs gives a pretty good idea of the mechanisms involved. The exciton 

screening, i. e. the term ex v~~een, introduces the channel that couples the X+ and X­

populations, and the ratio S~WM/S¥WM » 1 follows from Eq. (51). At the 0 (E(t)3) level, 

exciton screening does not affect the dephasing, and one has to look for an explanation 

beyond that order. A full and consistent theory of wave mixing experiments, including a 

correct description of screening, is such a formidable task that it has not yet been attempted. 

In the experiments of Ref. [152,153]' because the two exciton populations are completely 

incoherent and the densities are rather small, it is possible to use a less general scheme 

to explain the main trends [154]. An effect of screening by the incoherent excitons is to 

renormalize the transition energies between the conduction and valence bands, Eq. (28). In 

the conditions considered here, the self-energies, Ec,v, can be estimated within the second 

Born approximation, in which all terms up to 0 (E(t)2) are included in the screened potential 

[85]. The real and imaginary part of Ec,v describe respectively a shift and a broadening of the, 

single particle levels. The exciton energy is very robust, however, because of the cancellation 

between band shift and binding energy, (see Section V), and only the broadening remains. 

By developing the corresponding parameter to the first order in the density, 'Y = 'Yo + 

'X (N}tcoh + NiOh ) , the heuristic approach of Ref. [12,13,91] is recovered and justified [154]. 

In the context of the experiments of Ref. [152,153]' this introduces in the SBE the desired X+ 

and X- coupling, as in the DCTS, and accounts for the observed broadening of the exciton 

resonances. In a certain sense, EID provides new source terms for the nonlinear polarization 

whose effects appear in many nonlinear optical processes. This is indeed the case, and the 

coherent transients associated with the EID due to exciton-continuum scattering have been 

observed in GaAs by 15fs short pulse FWM experiments that excite the resonances as well 

as e-h pairs in the continuum [155]. 

It was expected that the bound biexciton states would make a noticeable contribution 

in processes where two-photon transitions are active, and it was rather implicit that the 

continuum of unbound exciton-pairs would playa minor role. Surprisingly, this is not the 

case. Recently, it was found that correlations in the continuum of X -X scattering states can 
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have important, and even dominant, effects in regimes of distorted excitons at low density, 

[156-158]. A magnetic field B II z, applied to a semiconductor, confines electrons and holes 

in the (x, g)-plane, inducing a 3D to 1D transition for the density of states, and strongly 

modifying the internal structure of the excitons. They experience a shrinkage, ex: {(IBI), in 

the (x, g)-plane and ex: Ln(IBI) II z. The magnetic confinement is expected to have signifi­

cant effects at fields IB I ~ Be where Be is the field strength at which the cyclotron radius 

equals ao, the (B=O)-excitonic Bohr radius [159-161]. For semiconductors, that regime can 

easily be explored, for example in GaAs Be ~ 3.4T, with the further practical advantage 

of an adjustable confinement while studying the same volume in a single sample. This 

continuous tuning of the manybody interactions governing the nonlinear optical response 

provides a perfect laboratory for studying manybody interaction processes. Fig. (22) shows 

the experimental TI-FWM for different magnetic field strengths up to B = lOT ~ 3Bc, in 

an optically thin (0.25J,Lm), high quality GaAs layer, with homogeneously broadened lh-X 

and hh-X excitons (r ~ O.4meV), which are visible because of mechanical strain [162]. The 

measurement was performed with co-circular polarization (7- j (7- to minimize the effect of 

bound biexcitons. The signal at B = OT shows an exponential decay superimposed on oscil­

lations for D.t > 0, with a dephasing time T2 ~ 1.5ps and oscillation period corresponding to 

the lh-Xjhh-X splitting. For D.t < 0, the signal is much smaller and its rise time is rv 300fs. 

As B is increased, the D.t > 0 signal, S:;;l' changes only slightly, whereas the D.t < 0 signal, 

STl' changes drastically. Its magnitude increases significantly relative to Sil' and above 

B ~ Be the rise time lengthens to 3ps while the profile becomes highly non-exponential 

with an unususal positive curvature. As the density is lowered to N ~ 5 x 1014cm-3, i. e., 

at an average exciton-exciton separation as large as d ~ 10ao, STl can be seen as far as 

D.t ~ -lOps, i. e., 100 times the pulse duration! Furthermore, it was confirmed that the 

oscillations are quantum beats and not polarization interference, by inspection of the slope 

of the peak of the TR-FWM vs. D.t [110] and, more importantly, because it was found in 

the spectrally resolved FWM signal Sps(w, D.t) that the lh-X and the hh-X significantly 

exchange oscillator strength as D.t is varied. In fact, that exchange can be so strong that 
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Sps(w, fl.t) could be completely dominated by the lh. This is in contradiction to the SBE, 

which predict a lh-X contribution about an order of magnitude smaller than that of the 

hh-X, and constant relative contributions of the lh-X and hh-X to the signal. Again, these 

observations require accounting for 4-particle correlations to be explained. 

Before showing the result of full numerical simulation of the experiment within the nCTS 

formalism, let us again use the extension of the EPM to gain an intuitive insight into the 

physics. In general, B encompasses both bound biexcitonic states and unbound biexciton 

states. In the a- /a- configuration, the former are not active and only the X-X scattering 

states need to be considered. In that case, it is easily found that P and B obey the coupled 

equation system, 

[i! + i, - nx]p(t) = -1-£. E(l - IP~t]12) + Vef/P(t)IP(t) 12 + Vxx2B(t)P(t)* (53) 
s 

and 

[i! + ir - 2nx ]B(t) = p(t)2 (54) 

where now, B accounts only for the X-X scattering states, which are modeled as a single 

resonance at 2nx , and Vef/ lumps all the exciton-exciton interactions active in the a- /a-

configuration. One recognizes the EMP model of the SBE, Eq. (45), in the left hand side 

and first two terms of the RHSof Eq. (53). Eq. (54) can be formally integrated and put in 

Eq. (53), giving a third source term 

ex P(t)* [00 dt'p(t,)2e -(i2o.x +r)(t-t') , 

due to exciton-exciton correlation (XXC). This new term is obviously of the same order as 

the PB and BCI contributions; however, it has a completely different, non-Markovian, time 

dependence, i. e., it grows first as the integral of the square of the polarization before 

exhibiting an exponential decay. The origin of that "coherent" memory is easy to interpret. 

Clearly, for a third order signal in the direction 2k2 - kI, P(t)* is generated by E(kd, 

whereas the integral over P(t'? comes from E(k2). Therefore, when the k2-pulse arrives 

54 



first, at At < 0 it generates a 4-particle correlation ex: p(t')2 which, because it corresponds 

to a two-photon transition, cannot emit light and builds up as fltdt' ... , until the krpulse 

arrives and triggers the emission of the FWM signal. The TI-FWM response of Eq. (53) and 

(54) can be easily calculated. An example is shown in Fig. (23) for values of the parameters 

chosen to reproduce the experiment of Ref. [156], and displaying the separate contributions 

arising from the PB, BCI, and XXC. Of course, only the general features are reproduced 

by this simple model and many details, such as the lh-X/hh-X beats, are not included. 

Nevertheless, one sees that the large STI is reproduced and that it has the long duration 

and non-exponential profile with the positive curvature for small At < 0 that is observed 

experimentally. 

The results of the full numerical calculation of the coupled equations of motion of peh 

and Behe'h', including the correct band structure and the magnetic field, are shown in Fig. 

(24) [158]. The solid curve is the TI-FWM, which shows the slow rise time of STI. There 

are strong beats in the theoretical STI which are not seen as clearly in the experimental 

data. Their attenuation in the experiment is most likely due to exciton-density correlations 

which contrib'\.!.te beyond the coherent limit. The dashed curve is the result of the calcula­

tion without XXC. Here we see that the signal without XXC has a much faster rise time for 

At < O. Furthermore, the XXC contribution completely dominates the FWM; for l:!.t < 0 

the signal without XXC is three orders of magnitude smaller than the signal with XXC, and 

even for At > 0 it is still an order of magnitude smaller. The theoretical spectrally resolved 

FWM signal calculated for different At recovers the enhancement of the lh-X signal and the 

exchange of oscillator strength between the lh-X and hh-X with At. These quantum beats, 

not predicted by the HF /RPA, are due to the strong coupling between the lh-X and the 

hh-X in the 4-particle correlation functions, due to the distorsion of their relative-motion 

wavefunction and to their large mass difference. Looking for an intuitive explanation for the 

enhancement of the XXC by the magnetic field, it is worth noting that the 4-particle corre­

lation function Behe'h', which includes all the X-X interactions, contains the X-X multipole 

interaction in the long-wavelength limit (very low density). Clearly, in high magnetic fields 
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excitons are squeezed in the (x, Y)-plane and develop large quadrupole moments that allow 

them to interact via a long range quadrupole-quadrupole interaction. 

At this point it is useful to comment on the reason why the exciton-exciton correlation 

function Behe'h' naturally appears in the description of effects that are beyond the HF /RPA 

level of the SBE. As mentioned in Sections IV and V, at that level of approximation one 

obtains a mean field theory where the order parameters are the pair amplitude, peh, and 

the electron and hole occupation numbers, ne and nh' It is thus natural that the effects not 

included in that theory involve the exciton-exciton correlation function: Behe'h' = (eke' h') -

(ek) (e' h') - (eh') (e' k), since it measures the difference between the bare 4-particle correlation 

function, (eke'h'), and the two products of two-particle correlation functions, (ek)(~h') and 

(eh') (e' k), derived from it in the HF /RPA factorization. In the experiments described above, 

the time delays that are probed are short compared to the mean free time for x-x scattering. 

Thus, not enough scattering events happen over the time span of one experiment for each 

X to interact with a substantial fraction of its neighbors, i.e., for the HF /RPA mean-field 

conditions to be established. These experiments, therefore, access the new regime where the 

fluctuations in X-X scattering induce large fluctuations of the HF /RPA ~ean-field order 

parameters. We will come back on the generality of that comment in our conclusion. 

This is not the end of the story. Nonlinear optical effects are extremely sensitive to the 

interactions between elementary excitations. They provide direct information on processes 

that are inaccessible to other spectroscopic techniques. Therefore, it is most likely that 

investigations of high order manybody effects through nonlinear optical spectroscopy are 

going to be an important direction of research in condensed matter physics. Already in 

the experiments described above there are indications that mechanisms beyond X(3) are 

active [156], and recently there have been reports of unambiguous observation of X(5) and 

X(7) processes [163]. Although the general framework for describing these effects exists in 

principle, the detailed theory is far from being developed, and one can anticipate surprises. 
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VIII. DYNAMICS IN THE QUANTUM KINETICS REGIME 

We have seen in Section III that the most non-classical dynamics regime occurs at very 

early times after e-h pairs are created. The time scale of that regime is determined by the 

period of the elementary excitations, plasmons and phonons for semiconductors. Therefore, 

in the first few tens of femtoseconds after excitation, one expects to see new features in the 

nonlinear optical response of these materials. These can be used for investigating this poorly 

understood thermodynamic regime. This is the topic of this section; we shall discuss in turn 

the effects of carrier-carrier scattering and those of carrier-phonon scattering. 

Evidence for non-Markovian behavior was found in experiments where both the ampli­

tude and the phase of FWM signal were measured [112-114]. Through a combination of 

interferometric, time resolved, and frequency resolved measurements, a "time-energy" pic­

ture of the process was developed. An example of such a study is shown in Fig. (25). The 

GaAs QW sample is weakly excited, N ~ 3 x 109cm- 2 , just below the hh-X resonance. 

The left curve gives the logarithm of STI(~t); the arrows mark the ~t at which the spec­

trally resolved signal, Sps(w, ~t) shown in the central panel and ~<1>(t), the phase (relative 

to that of the reference laser) shown in the right panels, wer~ obtained. For comparison 

the laser spectrum is despicted as a dotted line in the ~t = 0 graph of Sps(w, ~t). For 

~t = -80fs, the emission spectrum is essentially at the hh-X, and ~<1>(t) shows an almost 

linear slope corresponding to a constant emission frequency, ~<1>(t) = (w - w£)t = O. For 

~t = 0, STI(~t) has an asymmetric profile with a low energy tail extending well into the 

laser spectrum, indicating that the instantaneous frequency of the emission is chirped. Cor­

respondingly, ~<1>(t) exhibits a linear part first, but after about 250fs the slope changes and 

after 350fs it flattens. At ~t = 160fs, Sps(w, ~t) has two separate contributions, one close 

to the hh-X and the other approximately following the laser spectrum. ~<1>(t) takes a more 

pronounced S-shape, indicating that the emission is first centered at the laser, w ~ Wi, then 

shifts at the hh-X, w ~ nhh , and then moves back again to the laser, w ~ Wi. 

The experiments were modeled by a SBE theory, with screening treated in the static 
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single plasmon pole approximation and with dephasing accounted for by a constant rate. The 

calculated 8TI (ilt) (dashed curves) are unable to account for the lineshape. A "frequency 

dependent" rate, r(w), would give better agreement and would correspond to a memory 

kernel, r(t - t') as seen in Section III. The phase dynamic within one ultrashort pulse 

is governed by events occurring within a few optical cycles; during such short times the 

elementary excitations only experience a few "collisions", thus the phase cannot randomize 

and memory effects become apparent. Although the discrepancies between experiments 

and the SBE theory were traced back to the approximations used, the exact origin of the 

mechanisms at work in 8Pk/fltlscatt were not precisely identified in Ref. [114]. 

More recently, experiments have been specifically designed to investigate the non­

Markovian regime, and theoretical simulations have been developed to interpret them. In 

the work of Ref. [164], the authors argued that, since the Liouville Eq. (26) relates nand 

Bn/flt, the simultaneous determination of both the DTS (ilT /T), and its derivative with 

respect to ilt, c5(DTS) = 8(ilT/T)/8ilt vs. w, and ilt would put very strict restrictions on 

any theory invoked to explain the data [164]. Their experiments were performed on GaAs 

using a pump/probe technique, with independently adjustable pump and probe durations 

30 --+ 100fs. In experiments with rather long, (~ 70fs) pulses and moderate density, the 

DTS exhibits a spectral hole slightly red-shifted relative to the pump spectrum, in agree­

ment with previous reports, see Fig. (9) and (10) [81,86]. When pulses much shorter than 

the natural time scales, TLO a~d Tpl , are used, no spectral hole is seen in the DTS, which is 

featureless and extends from below the pump central frequency all the way to the exciton 

edge. More importantly, for very short ilt smaller than the pump duration, the c5(DTS) 

shows a uniform positive growth shifted toward the exciton, that reverses and changes sign 

immediately at the end of the pump pulse, Fig. (26a) [164]. This is indicative of generation 

in the medium, during the pump pulse, of a polarization out of phase with the probe field, 

over a broad range of energy below the pump, and of a sudden change in phase when the 

pump pulse ends. 

Interpretation of the experiments were attempted by calculating the DTS and c5(DTS) 
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using a four-band version of the SBE within the Boltzmann Kinetics relaxation time approx­

imation. The first attempts, consistent with Boltzmann Kinetics, considered only dephasing 

and assumed no population relaxation. It was possible to qualitatively reproduce the DTS 

lineshape with a value T2 ~ 200fs that agrees with the time scale seen experimentally. The 

calculated 8(DTS), however, presents qualitative discrepancies with experiments, Fig. (26b). 

It can reproduce neither the shift towards the band-edge during carrier generation, nor the 

negative 8(DTS) seen close to the laser center frequency immediately after the pump pulse 

is over Fig. (26a). By including a population relaxation towards a Maxwell-Boltzmann dis­

tribution with the same instantaneous number of carriers and total energy as that generated 

by the pump pulse, it was possible to get better agreement with the experiments, see Fig. 

(26c). However, this occurs only for unphysical population relaxation times much shorter 

than the dephasing time, Tl '" 36fs ~ T2 and, furthermore, too short to be compatible with 

theories based on Boltzmann Kinetics [48,49]. Any attempts to salvage Boltzmann Kinetics 

by using more complicated models for dephasing, such as EID, [154] failed to remove the 

unphysical results: i) T2 » 'it, and ii) Tl ~ 27r/nLO and« 27r/npl • The features observed 

are, however, consistent with Quantum Kinetics theories, see Fig. (6). In the experiments 

of Ref. [164], both electrons and holes are generated, thus complicating the interpretation. 

An elegant technique allowing one to follow the evolution of the electrons alone was 

implemented in Ref. [165]. In these pump/probe experiments, the ~ 13o£s pump excites the 

hh -+ e and lh -+ e transition, but the ~ 30fs probe was tuned to the spin-orbit split-off 

transition. In the case of GaAs, the spin-orbit splitting is large enough, ~ 340meV, that no 

holes are excited by the pump at that transition, and the probe measures only the effects of 

the electrons. Although very small spectral holes are seen in the DTS at the hh -+ e and lh -+ 

e thresholds for very early time delay, in that case, again, the DTS is immediately very broad 

and becomes featureless even before the end of the pump pulse [165]. The DTS line shape 

and its evolution vs tl.t are very similar to those reported in Ref. [164]. They were calculated 

from the SBE with Coulomb Quantum Kinetic scattering terms of the type of Eq.(20). The 

agreement with the experiment is remarkable; most of the features observed experimentally 
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are qualitatively reproduced, including the overall line shape and the disappearance of the 

spectral holes for ~t > 80fs. As mentioned in Section III, because the excitation spectrum 

of a plasma is gapless, carrier-carrier scattering tends to produce broad and featureless 

distributions. Furthermore, the experiments and theories discussed above show that in the 

Quantum Kinetics regime, carrier-carrier interactions almost instantaneously scatter the 

carriers out of the energy window in which they were created, resulting in a distribution 

much broader than that of the pulse that generates them, and even broader than that 

predicted by Boltzmann Kinetics [41,42,44-46]. 

The other scattering processes that can produce memory effects are due to the carrier­

phonon interaction. We have seen that in polar semiconductors this interaction is dominated 

by LO-phonon scattering, which has a well defined and single frequency and form a "sin­

gle mode reservoir" as mentioned in Section III. Very strong coupling of the exciton to 

LO-phonons was observed in II-VI nanocrystals [166-168]. In these systems, however, the 

electronic excitations form discrete levels because of quantum confinement in all directions 

and the interaction with vibrations can be analyzed as for molecules [167,168]. For structures 

of higher dimensionality, the electronic levels form bands and LO-phonon scattering results 

in intraband transitions normally associated with irreversible processes and dissipation. 

Non-Markovian effects due to LO-phonon intraband transitions were observed recently 

in FWM experiments, where bUlk GaAs is resonantly excited by ~ 14fs pulses, much shorter 

than the LO-phonon period. As shown in Fig. (27), the TI-FWM signal, ST1(~t), presents 

a strong oscillatory modulation superimposed on the usual exponential decay. The period, 

~ 98fs, corresponds to the separation between two conduction band states coupled by one 

LO-phonon, i. e., (1 + m e /mh)f2Lo [169,170]. The amplitude of the oscillations decreases 

when the excitation density increases. Surprisingly, these features are not reflected in the 

spectrally resolved signal, Sps(w, ~t), which at each ~t consists of a single line without 

phonon sidebands [169,170]. This implies that the electrons excited by the first pulse in­

teract with the LO-phonons, which in turn affect, at a later time, electrons involved in 

the transitions of the second pulse, i. e., the kind of memory of the electron sub-system 
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interacting with the LO-phonon thermal bath that we discussed in Section III. An analysis 

based on a SBE description of the FWM, but with a 8Pk/&tlscatt described by Quantum 

Kinetics scattering integrals for the interaction for the electron and phonon sub-systems 

[171 ,172], equivalent to that of Ref. [39], see Eq. (17), was able to explain quite nicely the 

data [169,170]. In particular, the period of the oscillation was related to beats of interband 

transitions whose electronic states are coupled by an LO-phonon. 

Phonon oscillations are also expected to appear in the DTS of pump/probe experiments. 

In the early investigations, where rather large excitation densities were used [173,174]' the 

DTS was dominated by carrier/carrier scattering and phonon replicas were not observed. 

With the improvement of the laser and detection techniques the topic has been successfully 

revisited recently [175,176]. Using a combination oflow excitation density, ~ 8 x 1014cm-3, 

ultrashort probe pulses, ~ 25fs, and circular polarization selection rules to detect only the 

carriers generated in the hh --+ e transition, several phonon replicas were observed in GaAs 

[176]. Broad features are seen at very short ~t (:::; 80fs), due to the energy uncertainty 

relation; but over times of the order of the LO-phonon period the phonon replica start 

to appear superimposed on a broad background. Their width narrows and become of the 

order of that of the laser at later times. In fact, it seems that the successive replica appear 

one after the other and are roughly separated in time by an LO-phonon period. This 

indicates a succession of quantum interferences whose time scale is related to the internal 

period of the "thermal reservoir", as discussed in Section III. It turns out that an analytical 

solution for the electron-phonon Quantum Kinetic equation for a one dimensional system 

was found recently [177]. Using this model to calculate the scattering integrals of a SBE 

description of the pump-probe experiments, theoretical DTS in remarkable agreement with 

the experimental ones were obtained [176]. 

To finish this section we want to discuss some important and recent developments. In the 

previous paragraphs we have seen that what is usually called an "irreversible" process is, in 

fact, a quantum mechanical interaction with an oscillatory behavior that couples a degree of 

freedom of a sub-system to the numerous ones of a thermal reservoir. The process becomes 
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really "irreversible" only after several oscillations. Therefore, it should be possible to reverse 

or enhance, after it has already started, an interaction process that would become irreversible 

if the sub-system and the reservoir were left to themselves. Following this argument and the 

narrative of the previous paragraphs, such a situation could be implemented by replacing 

one of the pulses of a canonical FWM configuration by a pair of pulses whose relative 

phase is properly chosen. This has been demonstrated in a recent FWM experiment [178], 

where two phase-locked pulses, 1 and I', propagating in the direction kI and separated 

by the time delay ~tl1l = tl - tI', interact with a pulse propagating along k2 delayed by 

~t2I' = t2 - hI in a GaAs sample at T = 77K. The FWM signal is detected, as usual, in the 

direction 2k2 - kI' so that in the x(3)-regime the pair of phase-locked pulses enter linearly 

polarized. The 15fs pulses are tuned to the band gap; they are all linearly polarized and 

have approximately the same intensity. The relative phase between pulse-l and pulse-I' is 

defined to better than O.1£s. If only one kI-pulse is present, this is the same experiment as 

in Ref. [169] and the same results are reproduced. With the pair of phase-locked pulses, the 

STI(~t2I/) shown in Fig. (28), exhibits remarkable features as ~tl1' is varied over a range 

corresponding approximately to one optical cycle. Depending on the time delay between the 

phase-locked pulses, the phonon oscillation can disappear completely (for example around 

~tl1' = -43.64fs) or can be very pronounced (for example around ~tlll = -42.38fs). The 

detailed theory of these experiments is not yet available, but model calculations, able to 

reproduce the main trends, confirm this interpretation [178]. These experimental results 

clearly demonstrate that it is indeed possible exploit the techniques of ultrafast nonlinear 

optics to manipulate the so called "irreversible" scattering processes. 

The Quantum Kinetics regime is still poorly understood. In particular, there are still 

outstanding questions about how to connect Quantum Kinetics and Boltzmann Kinetics 

theories. Currently, our interpretations are based on a SBE description of 8Pk/8tl coh , aug­

mented by 8pk/8tl scatt calculated using scattering integrals that rely on mechanisms beyond 

the HF /RPA level of the SBE. One may look for a more consistent formalism, which may 

be derived from a treatment such as the DCTS that is, in principle, exact. Nevertheless, 
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ultrashort pulse time-resolved experiments are now able to explore regimes that were not 

previously accessible and will continue to provide novel information on the very short-time 

dynamics of manybody interactions. 

IX. CONCLUSION 

As we conclude this chapter, it may be useful to reflect on the recent developments in 

the area of time-resolved nonlinear optical spectroscopy of semiconductors that we have just 

reviewed, and to compare them to parallel advances in other areas of condensed matter 

physics. In general one can say that observing and describing manybody effects has been a 

driving force for this whole field of physics. However, in most of the other sub-fields (quan­

tum transport, superconductivity, quantum Hall effect etc.) researchers are interested in 

understanding how degrees of freedom lock together as the energy scale is lowered. Corre­

spondingly, they concentrate on the low energy elementary excitations and the "long time" 

scales. In that regime, one can probe the formation of "order parameters" and the estab­

lishment of mean-fields. Several aspects of time-resolved nonlinear optical spectroscopy of 

semiconductors can be contrasted with this approach. Firstly, optical processes with photon 

energies close to the band gap of semiconductors correspond to the creation of elemen­

tary excitations whose dynamics evolve significantly on short time and short length scales. 

Therefore, what can be explored with ultrafast optical techniques is the new regime where 

the fluctuations of the "order parameters" become important and the mean-field pictures 

break down. Secondly, it is clear that the manybody mechanisms that are responsible for 

the formation of the quasi-particles seen in the linear regime, are also responsible for the in­

teraction among these quasi-particles that are seen in the nonlinear regime. However, what 

was discovered in the last decade is that these various interactions have specific dynamics 

with specific time scales, and that they are strongly and differently affected by quantum 

confinement. Thus, as already noted, time-resolved nonlinear optical spectroscopy in quan­

tum confined systems provides information on manybody interactions that is inaccessible to 
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conventional spectroscopic techniques. Finally, electronic states in semiconductors are well 

described by the effective mass and mean field approximations, and their basic physiCs is 

well understood. Thus, they constitute an almost ideal ground for testing advanced many­

body theories. This, combined with important experimental advances, has placed the field 

of time-resolved nonlinear optical spectroscopy of semiconductors in an exceptional situa­

tion. By exploiting ultrafast time-resolved techniques under quantum confinement; it has 

been possible to design experiments for investigating manybody processes, in almost perfect 

samples, with an unprecedented flexibility and sensibility. This has provided theorists with 

a wealth of reliable and novel experimental data that motivated them to develop very refined 

descriptions of subtle phenomena and enormously further our understanding of manybody 

systems. It is not a big stretch of imagination to predict that the same approach will be 

applied soon to other outstanding problems of condensed matter physics. 

In this chapter we have tried to give an overview of the spectacular recent progresses 

made in the time-resolved spectroscopy of semiconductors. Because of space restrictions 

we had to concentrate on the conceptual and fundamental aspects of the subject and leave 

apart a number of interesting areas. Concerning the material systems, we have not covered 

the II-VIand I-VII compounds, mostly because the fundamental physics is quite similar 

to that of the III-V's, the main differences being due to the magnitude of some parameters 

such as the electron-phonon coupling or the binding energies of the exciton complexes. This, 

nevertheless, can affect significantly the carrier relaxation and correlation [179-181]. The 

magnetic-semiconductors present, in addition, some extremely important and exciting spin­

related effects, that form a separate topic in their own right [182-184]. The III-V nitride 

family promises to have a great impact in photonics and electronics in the next decade. 

Although the material quality has greatly improved recently, more progress must be made in 

defect control, but there is no doubt that the I II-V nitrides will soon attract much attention 

in the area of nonlinear spectroscopy. In terms of elementary excitations, magneto-excitons 

in quantum well structures [185-189] and magnetically induced Fano resonances [190,191] 

have complex and very interesting ultrafast dynamics which we have not reviewed. Finally 
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we have also left aside a number of applications, for example the generation and utilization of 

THz radiation from heterostuctures excited by ultrashort laser pulses [192] or the dynamics 

of micro-cavities where the number of photon modes interacting with the e-h pairs can be 

controlled [193]. Covering all these topics would have required at least doubling the size of 

the chapter. 
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x. FIGURE CAPTIONS 

Figure 1: Sketch of the energy levels and selection rules for optical transition near the 

band gap of Zinc Blende and Wurtzite direct band gap semiconductors. 

Figure 2: Solid lines, experimental spectra of the absorption coefficient and refractive 

index of GaAs at the fundamental absorption edge. The l/lm sample is at T=1.6Kj it 

is glued on a sapphire substrate, and the thermally induced stress has shifted the heavy­

hole/light-hole degeneracy. Dotted lines, fits to the analytical formulae discussed in the 

text. 

Figure 3: Absorption of a l/lm GaAs sample in a B = lOT magnetic field for (1+ and 

(1- polarizations. Regular Lorentzian exciton resonances are seen at the lowest edge, at the 

higher Landau edges strong Fano resonances are observed. 

Figure 4: Comparison of the absorption coefficient, of (a) a modulation doped (solid line) 

and (b) an undoped (dotted line) GaAs quantum well structure at T = 8K. The Fermi 

Edge Singularity, at the edge of the modulation doped sample· spectrum, is as pronounced 

as the regular excitons in the spectrum of the undoped sample. 

Figure 5: Phonon scattering in and out rates calculated with non-Markovian and Boltz­

mann Kinetics theories according to Ref. ( [39,40]). In the non-Markovian case, the region 

of phase-space accessibility is much broader than in the Boltzmann case. 

Figure 6: Time-momentum evolution of a population of electrons generated in 20fs in 

the conduction band of GaAs calculated with Quantum Kinetic theory. (Courtesy of Prof. 

K. El Sayed.) 

Figure 7: Excitonic optical Stark effect observed in ultrafast time resolved pump probe 

experiment Ref. [52]. The pump pulse duration is ~ 100fs and the sample is a 10nm GaAs 
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quantum well structure. The pump spectrum shows where, below the resonances, the sample 

is excited. The absorption spectra for ~t = -2ps, Ops and +1.2ps are given by the solid 

line, the dotted line and the dashed line respectively. 

Figure 8: At low excitation and large detuning the excitonic optical Stark effect corre­

sponds to a pure shift without change of oscillator strength. This is shown by the comparison 

of the differential transmission spectrum, measured in a QW sample excited 50me V below 

the IS hh-X for a pump intensity ~ 30MW cm-2 (solid line), with the w-derivative of the 

linear absorption spectrum (dashed line), Ref. [56]. 

Figure 9: Differential transmission spectra versus time delay measured on a GaAs quan­

tum well structure at room temperature excited about 20me V above the exciton resonances, 

Ref. [81]. One sees clearly the Pauli blocking of the absorption by the nonthermal carrier 

population as it is created and thermalizes. The signal at the exciton resonances increases as 

the carriers fill up the bottom of the bands. Inset: Comparison of the pump spectrum with a 

differential transmission spectrum at ~t = 0, showing that the spectral hole is down-shifted 

as compared to the pump spectrum. 

Figure 10: Pump/probe differential transmission spectrum 'measured for a set of time 

delays in a GaAs sample at low temperature (solidlines), as compared to the pump spectrum 

(dotted lines), Ref. [86]. The lineshape and the shift are due to excitonic effects at the 

two edges of the transient populations generated by the pump. The inset shows the laser 

spectrum and the sample absorption spectrum. 

Figure 11: Time integrated self-diffracted four wave mixing signal from a homogeneously 

broadened exciton resonance in a 17nm GaAs quantum well structure Ref. [94]. The negative 

time delay signal is due entirely due to the Coulomb interaction. The rise time of the signal 

for ~t < 0 is exactly half the decay time for ~t > o. 

Figure 12: Time resolved self-diffracted four wave mixing signal from a 17nm GaAs 
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sample, showing that the emission due to the Coulomb interaction can be so much delayed 

that it appears as a separate pulse Ref. [102]. 

Figure 13: Ratio of the contribution of the bare Coulomb interaction and the Pauli 

blocking (phase space filling) nonlinearities as a function of the density of carrier excitations, 

Ref. [114]. 

Figure 14: Quantum beats between the heavy hole and light hole excitons, seen in the 

time integrated four wave mixing signal measured on a 15nm GaAs quantum well structure 

when the two excitons are simultaneously excited, Ref. [106]. 

Figure 15: Distinction between quantum beats and polarization interference Ref. [110]. 

Top graphs, the amplitude of the time resolved four wave mixing signal is plotted as a 

function of the absolute time t for a series of time delays .6.t in the case of (a) quantum 

beats and (b) polarization interference. Lower graphs, position of the signal maximum in 

the t-.6.t plane in solid line for the two cases; the dashed lines show the t = 2.6.t and the 

t = .6.t slopes. 

Figure 16: Time-energy picture of the four wave mixing signal, showing that the shift 

in emission frequency in a quantum beat is not instantaneous and satisfies the uncertainty 

principle, Ref. [113]. (a) spectra of the laser (dotted line) and four wave mixing signal (solid 

line), (b) interferomeric auto-correlation (AC) of the four wave mixing signal, (c) AC-fringe 

spacing relative to the reference laser showing the sudden 1f shift during the quantum beat, 

(d) detail of the interferomeric-AC at the center of the profile and near the first node. 

Figure 17: Observation of by pump/probe spectroscopy of an electronic wave packet 

oscillation in an asymmetric coupled quantum well structure Ref. [119]. As the electrons 

oscillate between the two wells they modulate the transmission of the probe beam. 

Figure 18: Observation of the Bloch oscillations in a superlattice structure by four wave 
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mixing for a set of applied electrostatic fields, Ref. [129]. The electron oscillations modulate 

the four wave mixing signal. 

Figure 19: Measurement of the amplitude of the wave-packet center of mass motion 

during Bloch oscillations in a supedattice, Ref. [132]. The maximum amplitude is ~ 14nm. 

Figure 20: Exciton-Biexciton oscillation observed in a GaAs quantum well sample by 

pump/probe technique, using a u- probe and a u+ pump, Ref. [134]. 

Figure 21: Differential transmission spectra showing the broadening of the exciton reso­

nance due to dephasing induced by n ~ 3 x 1015cm-3 photogenerated excitons, Ref. [152]. 

The DTS lineshape is very well described as the difference between two Lorentzians. Inset: 

Linear absorption spectrum of the sample. 

Figure 22: Time integrated four wave mixing signal measure with u- /u- polarization, 

GaAs sample as a function of the applied magnetic field, Ref. [156]. As the magnetic field 

is increased the tl.t < 0 signal acquire a long and nonexponential profile that can be seen 

as far a ~ 100 time the laser pulse duration. It signals 4-particle correlations not accounted 

for in the time dependent Hartree-Fock theory. 

Figure 23: Calculation of the time integrated four wave mixing (TI-FWM) signal using 

the "effective" polarization and exciton-exciton correlation, showing the contrasted time 

dependence of the Pauli Blocking (PSF), the bare Coulomb interaction and the exciton­

exciton correlation contributions Ref. [157]. 

Figure 24: Theoretical time integrated four wave mixing signal calculated for GaAs at 

B = lOT and low density using the "Density Controlled Truncation Scheme" formalism. 

The large tl.t < 0 signal is due to the exciton-exciton correlation Ref. [157]. 

Figure 25: Dynamics of the coherent FWM emission vs. time delay tl.t. Left curve: 
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logarithm of the time integrated FWM signal intensity vs. t1.t. Central panel: FWM power 

spectrum for three time delays between -8Ofs and 160fs, as indicated by the arrows on the left 

curve. The solid curves are the experimental results and the dashed curves the theoretical 

results of the Semiconductor Bloch Equations. For comparison the laser spectrum is depicted 

as a dotted line in the t1.t = 0 graph of the central panel. It is tuned slightly below the 

hh-exciton resonance. Right panels: corresponding phase difference with the reference laser. 

Ref. [114]. 

Figure 26: Comparison between the experimental 6(DTS), derivative of the differential 

transmission spectrum with respect of the time delay, and the best simulations using the 

Semiconductor Bloch Equation within the relaxation time approximation: (a) experimental 

results for 30fs pump and probe pulses on a 1j.£m GaAs sample, (b) theory with T2 = 200fs, 

and no population relaxation, (c) theory with T2 = 200fs and a population relaxation, 

T't '" 36fs, towards a Maxwell-Boltzmann distribution with the same instantaneous number 

of carriers and total energy as that generated by the pump pulse, Ref. [164]. 

Figure 27: Time integrated four wave mixing signal measured in a GaAs sample at 

T = 77 K with ~ 14fs pulses and for three carrier densities neh. ~ 1.2, 1.9, 6.3 x 1Q16cm-3. 

The dashed curve, marked AC, shows the laser autocorrelation. The dots show the results 

of the Quantum Kinetics theory, Ref. [169]. 

Figure 28: Coherent control of phonon scattering processes: Lineshape of the time inte­

grated four wave mixing signal as a function of the time delay t21, between the pulses along 

k2 and k1 for a series of fixed time delay t1.tll, between two phase-locked pulses. The range of 

..6.tll', tn' = -43.64 (top) --+ -41.11 fs (bottom), corresponds approximately to one optical 

cycle. It was scanned in steps of 0.21 fs. The GaAs sample is at T = 77 K, the excited 

carrier density is ne,h ~ 3.6 x 1015 cm-3. Inset: Laser (dotted line) and TI-FWM (solid 

line) spectra at zero time delay. The phonon oscillations are absent for tn' = -43.64 fs and 

pronounced for tn' = -42.38fs Ref. [178]. 
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