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Abstract

RNA SHAPE experiments have become important and successful sources of information

for RNA structure prediction. In such experiments, chemical reagents are used to probe

RNA backbone flexibility at the nucleotide level, which in turn provides information on

base pairing and therefore secondary structure. Little is known, however, about the statis-

tics of such SHAPE data. In this work, we explore different representations of noise in

SHAPE data and propose a statistically sound framework for extracting reliable reactivity

information from multiple SHAPE replicates. Our analyses of RNA SHAPE experiments

underscore that a normal noise model is not adequate to represent their data. We propose

instead a log-normal representation of noise and discuss its relevance. Under this

assumption, we observe that processing simulated SHAPE data by directly averaging dif-

ferent replicates leads to bias. Such bias can be reduced by analyzing the data following a

log transformation, either by log-averaging or Kalman filtering. Application of Kalman filter-

ing has the additional advantage that a prior on the nucleotide reactivities can be intro-

duced. We show that the performance of Kalman filtering is then directly dependent on the

quality of that prior. We conclude the paper with guidelines on signal processing of RNA

SHAPE data.

Introduction

Beyond its role in protein synthesis and the transfer of genetic information, RNA exists as a

dynamic cellular component at the core of gene regulation [1]. From microRNAs involved in

regulating gene expression [2] and long noncoding RNAs similarly regulating gene expression

[3] to ribozymes acting as chemical catalysts [4], RNA plays a central role in a multitude of cel-

lular activities. The diverse repertoire of biological functions that RNAs adopt is deeply rooted

in their abilities to form complex three-dimensional structures [1]. This interplay between

structure and function underscores the need for robust structural analysis as a prerequisite to a

full understanding of the physiological role of RNA [5]. Despite its importance, determining
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the complex 3D structures of RNA remains a challenging problem, particularly for longer

RNAs [6, 7].

Considering the hierarchical nature of RNA folding [8], much of the efforts in structure

determination have been devoted to its two-dimensional base-pairing pattern, also known as

its secondary structure. This secondary structure is generally considered to be more stable

than and independent of the final 3D conformation [8]. Though experimental methods such

as nuclear magnetic resonance (NMR) [9] and crystallography [10] can be used to accurately

resolve 3D RNA structures, they are time-consuming, expensive, and often preclude the analy-

sis of long or flexible molecules [11]. Comparative sequence analysis, the process of inferring

base-pairing from co-variations observed in the alignment of homologous sequences, is a

robust method for defining the secondary structure of RNA [11, 12]. However, this approach

has narrow applicability as it relies on the availability of an alignment with a large and diverse

set of homologs [13, 14]. An approach that circumvents the need for homologs is de novo RNA

secondary structure prediction. Many of these sequence-based methods employ a dynamic

programming algorithm with a thermodynamics-based scoring function to predict an optimal

secondary structure [15, 16]. The resulting computationally predicted secondary structures

exhibit variable accuracies [17]. As structure prediction relying on sequence alone poses a diffi-

cult problem, the addition of auxiliary experimental data is one way to improve these compu-

tational structure predictions [18–20]. The data most commonly included in these prediction

algorithms are derived from structure probing experiments [21, 22]. However, little is known

about the statistics of these data. One goal of this study is to develop a statistical model for the

uncertainty in probing data so that robust information can be extracted.

Structure probing (SP) refers to a class of experiments designed to link chemical reactivity

to molecular geometry. In SP experiments, a chemical reagent selectively modifies nucleotides

based on their accessibility. In the case of hydroxyl radical experiments, the accessibility is akin

to the solvent accessibility [23–25]. Alternatively, in SHAPE (Selective 2’-Hydroxyl Acylation

analyzed by Primer Extension) experiments [26], the chemical reagent probes the backbone

flexibility of each nucleotide. This flexibility correlates with the pairing state of the nucleotide:

higher reactivities are generally observed for unpaired nucleotides. Thus, by extension, the

chemical reactivity obtained in such experiments is a probe of the RNA’s secondary structure.

While SHAPE data provide a measurement on RNA structure, the precise link between chemi-

cal reactivity and 3D molecular geometry is complex and not well understood. The micro-

scopic interpretation of SHAPE reactivities is currently an active area of research. In a recent

molecular dynamics study, reactivity patterns for an RNA were computationally predicted by

modeling the interactions between SHAPE reagents and RNA nucleotides [27]. Similarly, in

[28], an analytic model for the relationship between the 3D structure of an RNA molecule and

SHAPE reactivity was used to study the mechanism of SHAPE experiments. In practice, a

SHAPE experiment is run as follows: The RNA sample is first modified with the chemical

probe. Following this, reverse transcription is applied to detect the resulting chemical modifi-

cations along the RNA sequence. Those modifications either cause termination of transcrip-

tion or introduce a mutation to the transcribed cDNA. Modified locations can then be

detected through cDNA fragment sequencing. By comparing to data coming from an

untreated control sample, the detection of the modifications is then a direct measure of the

reactivity for each nucleotide. The resulting sequence of reactivities is referred to as the reactiv-

ity profile or simply the profile of the RNA. Recent advances in sequencing have ushered in a

new era of affordable and massively parallel SP experiments [20] and applications of resulting

data are not limited to structure prediction. In fact, among other uses, SP has been used to

direct sequence alignment as well as to strengthen evolutionary signals when searching for

conserved RNA structures between organisms [29].

Kalman filtering of SHAPE data
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As with any measured value, SP reactivities are corrupted by noise. The standard

approach taken by experimentalists to reduce the impact of that noise is to repeat the experi-

ment multiple times under the same condition and combine the results using basic averag-

ing. For SP data, we use the term replicates to refer to the multiple reactivity profiles and

measurements to refer to the set of reactivities for a particular nucleotide coming from these

replicates. Basic replicate averaging is performed by taking a per-nucleotide average across

measurements. This sequence of values forms the average profile. While straightforward,

this implies that the noise is additive and has zero-mean. These criteria have not been estab-

lished for SP experiments. Indeed, the noise observed in SP data has not been explicitly stud-

ied and currently no models exist to characterize the observed differences between

replicates. In this manuscript, we propose a model for the noise associated with SHAPE data

and develop a pragmatic approach to signal denoising. To this end, we borrow from the

comprehensive literature available on denoising in signal and image processing (see for

example [30] and [31]). We first note that previous analysis of SHAPE data has revealed the

log-normality of reactivities [32]. This observation naturally led us to study the replicate

noise after applying a logarithmic transformation. Log transformations of data are simple

and easily reversible operations that are often applied in the case of skewed data to mitigate

the effects of volatile measurements [33]. Apart from their extensive use in image processing,

they have also been widely studied in the context of biological data analysis, such as in

microarray data analysis where they can act as a variance stabilizer [34]. It is worth mention-

ing that in dynamic programming based secondary structure prediction methods, such as

[18], SHAPE data are integrated into the prediction algorithm via a logarithmic relationship

between the reactivities and a pseudo-energy term. This operation implicitly decreases the

impact of nucleotides with high reactivity [35]. In this work, we propose an additive Gauss-

ian noise model for log transformed SHAPE data. This transformation allows us to study sig-

nal processing techniques that leverage the log-normality of the SHAPE distribution as prior

information. In particular, we apply the Kalman filter [36, 37], an algorithm commonly used

in signal processing and control theory, to SHAPE data. This filter works by optimally fusing

two sources of information: prior knowledge on nucleotide reactivity and the noisy mea-

surements. It has previously been applied to protein structure determination from NMR

data [38, 39]. For our purposes, we use the log-normal distribution of SHAPE reactivities as

the required prior with the goal of optimally extracting true reactivity information from the

noisy measurements.

In this work, we explore the following questions. First, how much of an advantage over

averaging does a sophisticated denoising strategy, such as Kalman filtering, offer when

extracting a reactivity signal from noisy replicates? Second, how many replicates are

required for robust signal extraction? Given that the majority of published SP data consists

of between one and three replicates, these questions are critical to experimental design. We

address these questions under the assumptions of our proposed noise model. The paper is

organized as follows: In the Background section, we provide an overview of SHAPE experi-

ments followed by a discussion on the factors contributing to noise in these experiments.

We then discuss important characteristics of SHAPE data and give a brief overview of signal

filtering. In the section that follows, we revisit the statistical models used in replicate pro-

cessing and propose a noise model based on the log transformation. We then provide a

description of how Kalman filtering can be applied as a denoising strategy in the context of

replicate processing. In the Results section, we compare the approaches of averaging and

Kalman filtering using replicates simulated under the proposed statistical model. Finally, we

conclude with a discussion on the statistical models and signal processing methods

described and future directions.

Kalman filtering of SHAPE data
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Background

Overview of SHAPE experiments and reactivity reconstruction

In a typical SHAPE experiment, a sample of an RNA is treated with a chemical reagent that

selectively forms adducts on nucleotides along flexible regions of the molecule. After treat-

ment, reverse transcription is applied to detect locations of adduct formation. The adducts

interfere with this transcription, either by causing termination or, in the case of SHAPE-MaP

experiments [40], by introducing a mutation in the nascent cDNA strand. Lengths of the

cDNA fragments, or equivalently, mutation sites, correspond to their locations along the RNA.

The number of modifications per nucleotide are then converted into a modification rate.

Reverse transcription is simultaneously applied to an untreated sample of the RNA. One way

to determine a reactivity value per nucleotide is to compute the difference between the modifi-

cation rates per-site on the reagent-treated and control samples [41, 42]. The reactivity result-

ing from this background-subtraction is a measure of the nucleotide’s sensitivity towards the

reagent and correlates with the local backbone flexibility [43]. As structurally constrained

regions of an RNA correspond to base-paired nucleotides, nucleotides exhibiting low reactivi-

ties are likely paired while highly reactive nucleotides are indicative of unpaired regions of the

RNA [19].

Prior to use in downstream analysis, reactivity profiles are normalized such that values

across a transcript typically lie between 0 and 2. This is done to ensure uniformity between

replicates as well as across different transcripts [35]. One commonly applied model-free nor-

malization technique works as follows: First, a percentage of the data corresponding to the

highest reactivity values are considered outliers and are temporary excluded from the analysis.

According to [19], for RNAs shorter than 100 nucleotides, no more than 5% of the data should

be excluded and for longer RNAs, no more than 10% of the data. Using a box plot analysis,

outliers can be identified as nucleotides with reactivities more than 1.5 times the interquartile

range above the upper quartile [19]. From the remaining nucleotides, another band of highly

reactive nucleotides (usually around the top 8-10%) are averaged in order to calculate a nor-

malization factor [19, 35, 44]. The entire profile, including the previously excluded outliers, is

then normalized by this factor. On the normalized scale, reactive nucleotides are loosly defined

as those with reactivities higher than 0.7 and unreactive nucleotides are those with reactivities

below 0.3 [18]. This normalization procedure is intended to result in an upper bound for reac-

tivities of about 2. However, as pointed out in [44, 45], this bound is not well-defined due to

the lack of a consensus method and the heuristic nature of both outlier and normalization con-

stant determination. In fact, even after normalization, it is not uncommon to observe values

significantly higher than 2. Additionally, while the standard values of reactivities are positive,

negative-valued reactivities are often observed in the data. These values occur when there is a

stronger readout in the control sample compared to the reagent-treated sample and the back-

ground-subtraction process does not completely account for sequence-specific noise. In prac-

tice, negative values are simply set to 0 [35].

Factors contributing to variation in SHAPE experiments

There are a number of influencing factors when it comes to uncertainty in SHAPE reactivity

values. Discrepancies observed between replicates can be classified as stemming from two

main sources [42].

The first source of noise can be classified as technical variation and includes anything from

the stochasticities introduced by the sequencing platform to the multiple steps in the cDNA

library preparation. Technical considerations also include variations that are a product of the

Kalman filtering of SHAPE data
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dynamic nature of RNA: RNAs in a sample can fold into and transition between various struc-

tures. These changes are sensitive to numerous parameters involved in the probing experi-

ment, including solvent conditions, temperature, and protein interactions [46]. As SHAPE

reactivities represent an aggregate measure on all RNA copies co-existing in a sample [47],

parametric fluctuations ultimately manifest as observable differences between replicates. RNA

thermometers, which shift from a highly structured state to an unfolded state with increasing

temperature, are one clear example that demonstrate this effect [48]. The relative concentra-

tions of the two states ultimately cause temperature-dependent variations in the measured

reactivities.

Along with technical factors, inter-replicate divergences can also be caused by biological

factors in the underlying sample. Such effects are referred to as biological variation. One exam-

ple is the degree of structural diversity in the sample being probed. It is known that the same

RNA sequence can fold into many different structures that co-exist with varying abundances

in a sample. Riboswitches, for example, are RNA elements whose functionality hinges on their

ability to alternate between two conformations to regulate gene expression [49]. This switching

between folds cannot be instantaneous without violating physical laws: the change in structure

must be gradual and thus gives way to the existence of intermediate structures between folding

pathways. As a SHAPE reactivity reflects the combined reactivity of all RNA copies co-existing

in the sample, the degree of structural diversity in the sample ultimately affects the differences

between replicate measurements.

The discrepancies between replicates reflect a composite effect of both the technical and

biological variation. We refer to this combination as the measurement noise, which we aim to

model. This measurement noise term is intended to reflect the variation between replicates

that remain following the background-subtraction and the normalization steps described

above.

Characteristics of SHAPE data

As SHAPE profiles include measurement noise, a term we use to span the effects of multiple

facets of experimental uncertainty, any analysis of these data must include a denoising step. In

practice, this step takes places after each replicate has been normalized. The traditional

approach is to compute the average across replicates. This method is sensible under an implicit

assumption that the true reactivity value of a nucleotide is corrupted by additive noise that fol-

lows a zero-mean distribution. Most often, this distribution is assumed to be Gaussian. How-

ever, the number of processing steps involved in the quantification of the SHAPE profile,

namely, computing the chemical modification rates, the background-subtraction, and the nor-

malization processes, raise doubts about this assumption. We diverge from the traditional

approach and propose a log transformation based noise model that renders the data amenable

to well-established signal processing techniques. The foundation of our noise model, which

will be introduced in the following section, was further prompted by the following fundamen-

tal observation on SHAPE data: the empirical distribution of SHAPE reactivities is highly

skewed [50]. This distribution is in fact near-Gaussian after applying a log transformation

[32]. We adopt this log-normality as an assumption for the remainder of our work.

Before proceeding, we note that some caution is required when defining a noise model for

SHAPE data for the following reasons. First, the normalization of SHAPE reactivities does not

preclude negative values and such reactivities are incompatible with the log-normal model.

While negative values are not rare, they are assumed to occur when the control sample can not

be used to adequately describe the true noise component of the reagent-treated sample. In this

case, subtraction of the control modification rate from the reagent-treated rate does not suffice

Kalman filtering of SHAPE data
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as a correction method. As mentioned, negatives are commonly set to 0 in the final SHAPE

profile. This practice skews the distribution for unreactive nucleotides and strongly implies an

asymmetric distribution of measurement noise.

Second, it has been documented that the highest SHAPE values exhibit the most variability

between measurements [35]. This is particularly noteworthy as normalized profiles often

exhibit highly reactive nucleotides. The relationship between the average reactivity value for a

nucleotide across measurements and the standard deviation between measurements reveals

the heteroskedastic nature of SHAPE data. Fig 1 illustrates the strong mean-dependence pres-

ent in the standard deviation values across 5 experimental replicates obtained for the RNA3

segment of the cucumber mosaic virus genome [51]. The log of the measurement standard

deviations and log of the measurement means are related linearly and the slope of this relation-

ship nearly 1. Equivalently, the measurement standard deviation is nearly proportional to the

measurement mean, which may be indicative of a multiplicative noise term. Thus, the standard

statistical model relying on an assumption of an additive noise term may not properly serve

SHAPE measurements.

The two extremes of SHAPE reactivities discussed, namely, those corresponding to unreac-

tive and highly reactive nucleotides, underscore the unique characteristics of SHAPE data.

Fig 1. The mean-dependence in the standard deviation of SHAPE measurements. Data from 5 SHAPE replicates

obtained on the cucumber mosaic virus RNA3 sequence (experiments performed on data from infected plant cell

lysates) [51]. For each nucleotide, the mean value of the 5 measurements were calculated and plotted against their

standard deviation on a log-log plot. A linear fit is overlaid in red. Note that negative reactivity values were not

included as they are incompatible with the log-log plot.

https://doi.org/10.1371/journal.pone.0207029.g001
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Along with the log-normality of the SHAPE distribution, these characteristics prompted our

study of a noise model that relies on a log transformation.

Signal filtering

The purpose of filtering is to deduce meaningful information from a signal containing

unwanted components. Filtering usually relies on the availability of multiple realizations of the

signal. The simplest and most common filtering approach utilized in experimental studies is to

average the data realizations. Such a filtering relies heavily on the assumption of an inherent

randomness in the noise that can be modeled as independent samples of an additive Gaussian

distribution. Averaging, however, is not the only form of filtering available from signal pro-

cessing. In fact, it may not be optimal if the assumption of additive Gaussian noise is invalid. A

filter is optimal if it produces the best estimate under a certain prescribed criterion or model

[52]. One example of an optimal filter is the Kalman filter (KF) which estimates a parameter in

a system affected by additive Gaussian noise. This filter is often utilized in optimal tracking

systems and signal processing problems to smooth noisy data or to estimate a parameter from

a set of noisy measurements [53]. For the KF, the optimality criterion is defined as minimiza-

tion of the mean-square error associated with the parameter estimate. At a high-level, the 1

dimensional KF works by iterating between the following two steps:

1. Predict: the filter makes a prediction for the current state of the system on which measure-

ments are being made. This prediction is based on a model describing the state dynamics.

During the primary predict step, an initial prior on the system state is required to estimate

the state sans measurements.

2. Update: upon receiving new information in the form of a noisy measurement, the state

model is updated. A quantity known as the Kalman gain is calculated and is used to opti-

mally combine information from the prior and the newly incorporated measurement. The

state model is updated conditioned on the new measurements using the Kalman gain. The

updated conditional distribution is then used as a prior distribution in the ensuing predict

step.

The Kalman gain is an optimal weighting factor between the previous prediction and the

newly observed measurement. Its value depends on the uncertainties of both the prediction

and the new measurement. Initially, the prediction is based solely on the input prior. When

the measurement is noisy, the model relies more heavily on the prior. Conversely, when the

measurements are reliable, the filter puts less weight on the prior. After all measurements have

been handled, the final prediction is taken as an estimate of the parameter of interest. This pre-

diction represents an optimal fusion of the prior and the measured values. In classical Kalman

filtering applications, the input data is a discrete time series of measurements on a system in

which there are two sources of uncertainties: 1. the model dictating the state of the system and

its dynamics and 2. the measurements at each time point. For those interested in a derivation

of the complete filter and proof of its optimality, we recommend reading [37, 53, 54]. For our

purposes, the “state” of the system is a nucleotide’s true reactivity value. The measurements are

taken directly on this reactivity and are corrupted by noise. Our aim is to remove the errors in

these measurements and recover the true reactivity. A full mathematical characterization of

the KF implementation employed in this work is provided in Methods.

Models for signal extraction in SHAPE data

Below, we introduce notation and discuss two noise models for SHAPE data. We also review

the methods used for signal extraction under each model.

Kalman filtering of SHAPE data
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Notation

Consider data coming from N repeated SHAPE experiments on an RNA with M nucleotides.

For each nucleotide m, we assume an underlying ground truth reactivity value denoted sm.

The sequence of ground truth reactivities making up the true profile is denoted by S. The N
measurements of sm are denoted r1

m; r
2
m; . . . ; rNm. After a log transformation, the measurements

are denoted lim≔ log rim. We refer to these values as log measurements. Similarly, lm≔ log sm
denotes the log of the nucleotide’s ground truth reactivity, or its log reactivity. We say the

transformed data is in the log domain while the original data is in the data domain. The

sequence of log-transformed ground truth reactivities is denoted L. Our goal is to combine the

measurement values for each nucleotide in a manner that optimally extracts the true reactivity.

This amounts to either recovering sm from the rim values in the data domain, or, equivalently,

lm from the lim values in the log domain.

Normal noise model

Measurements across replicates for a nucleotide are generally combined into a single reactivity

by taking their average. This naive combination is appropriate if the assumed relationship

between the ith replicate rim and the ground truth reactivity sm is governed by the following rela-

tionship:

rim ¼ sm þ zim: ð1Þ

Here, zim is the measurement noise term, which is assumed to follow a zero-mean Gaussian dis-

tribution with standard deviation szm . We term this model the normal noise model. Under this

model, the average reactivity for a nucleotide is

�rm ¼
1

N

XN

i¼1

rim: ð2Þ

Assuming independence in the zims, this is also the maximum likelihood estimate for sm [55].

We refer to the sequence of M nucleotides averaged in this way as the average profile and

denote it �S. Although it is often not explicit, data processing pipelines that employ an average

across measured values are predicated on such a normal noise model. Despite being a straight-

forward approach to combining replicates, averaging in this way relies on a key assumption of

the normal noise model that has yet to be experimentally verified; that is, the assumption of an

additive Gaussian distribution of noise in the data domain for probing data.

Log-normal noise model

We have discussed three noteworthy features of SHAPE data: its log-normal distribution, the

skew in measurements introduced by replacing negative-valued reactivities with zeros, and the

heteroskedasticity observed in replicates. These features allude to an asymmetric noise distri-

bution. As the empirical SHAPE distribution is Gaussian in the log domain, it is a natural

extension to assume that the noise in measurements follows a similar distribution. We were

thus motivated to study the data after a log transformation and further modeled the noise as

following an additive Gaussian distribution in the log domain. In such a model, the log mea-

surement lim is related to the ground truth lm according to the following relationship:

lim ¼ lm þ wi
m: ð3Þ

The measurement noise term, wi
m, is assumed to follow a zero-mean Gaussian distribution

Kalman filtering of SHAPE data
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with standard deviation swm . The wi
m values are assumed to be independent between measure-

ments. We refer to this model as the log-normal noise model. As before, the log measurements

can be combined by taking their average. To distinguish it from averaging in the data domain,

we will refer to this process as log-averaging. The log-averaged estimate of lm is

�lm ¼
1

N

XN

i¼1

lim: ð4Þ

By reverting back to the data domain, we obtain e�lm as the final estimate for the reactivity sm.

In the log domain, the sequence of log-average reactivities for the M nucleotides is denoted �L.

After reverting to the data domain, we refer to the sequence of log-average reactivities as the

log-average profile and denote it e�L . We note that additive noise in the log domain implies mul-

tiplicative noise in the data domain, hence

rim ¼Wi
msm; ð5Þ

where Wi
m ¼ ewim .

The central assumptions of the log-normal noise model render the problem of optimally

extracting a reactivity value from noisy measurements directly applicable to Kalman filter-

ing. The KF exploits the distribution of the SHAPE data in the log domain as an auxiliary

information source and uses it to extract information from noisy measurements. We apply a

simplified version of the 1 dimensional KF to a system consisting of a single nucleotide with

a ground truth reactivity value that persists between measurements. The measurements of

the system state, i.e. the nucleotide’s reactivity, are described by Eq 3. The filtering process is

carried out in the log domain separately for each nucleotide. The KF inputs are summarized

below:

1. The log measurements, l1m; l
2
m; . . . ; lNm, which make up the measurement vector.

2. The uncertainty in the measurements, swm . This value is estimated using the sample vari-

ance of the lim values. It is required by the filter to calculate the Kalman gain.

3. The empirical distribution of log-transformed SHAPE data fit to a Gaussian distribution,

N ðm0; s0Þ. This is used as the prior in the initial predict step.

The resulting KF reactivity is denoted km and is an estimate of the log reactivity, lm. Trans-

forming back to the data domain gives ekm as an estimate of the reactivity, sm. The sequence of

filtered reactivities is denoted K in the log domain and eK in the data domain. We refer to eK as

the Kalman filter profile or KF profile. A detailed description of our KF implementation is pro-

vided in Methods. The two log domain processing pipelines, log-averaging and Kalman filter-

ing, are summarized in Fig 2.

Results

We compared the two statistical filtering approaches for analyzing SHAPE replicates in the log

domain introduced above: log-averaging and Kalman filtering. The results presented below

are organized as follows. First, we discuss noise levels that are observed in real SHAPE experi-

ments. Then, using simulations, we compare the accuracies of log average profiles to KF pro-

files by evaluating the ability of each approach to recover the ground truth profile. Finally, we

compare data-directed secondary structure prediction results on profiles processed under

assumptions of the normal and log-normal noise models.
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Fig 2. A conceptual representation of measurement combination methods under the log-normal noise model for three SHAPE replicates.

Replicates are first transformed into the log domain. The log-average (�L) and KF (K) profiles are then computed. The resulting profiles are

transformed back to the data domain.

https://doi.org/10.1371/journal.pone.0207029.g002
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Noise levels observed in SHAPE experiments

We studied the noise observed in SHAPE data collected on the 2216 nucleotide RNA3 seg-

ment of the cucumber mosaic virus [51]. Included in this analysis were data coming from

experiments run on three forms of the RNA: in vitro (5 replicates), purified viral RNA

extracted from virion particles (3 replicates), and from infected plant cell lysates (3 repli-

cates). Measurements were first transformed to the log domain. We then calculated the sam-

ple standard deviations of the log measurements per nucleotide for each of three different

forms of the RNA. Thus, standard deviation values were calculated using either 3 or 5 mea-

surements. A histogram of these values and their empirical cumulative density function

(CDF) are shown in Fig 3. We used these data to define low, medium, and high noise

regimes as follows:

1. We defined the low noise regime by measurements with log domain standard deviation

values between 0.0 and 0.5. This corresponds to about 60% of the data with log domain

standard deviation values lying in the 60th percentile.

2. We defined the medium noise regime by measurements with log domain standard devia-

tion values between 0.5 and 1. This range was selected to lie between the low and high noise

regimes and covers about 26.5% of the data.

3. We defined the high noise regime by measurements with log domain standard deviation

values between 1 and 1.5. This corresponds to about 10% of the data, with log domain stan-

dard deviation values lying between the 86.6th and 95.3rd percentile of the data.

Based on these ranges, we simulated replicates in the log domain with different noise levels

by uniformly selecting a standard deviation value within one of the specified ranges (either

low, medium, or high). Note that just under 5% of the nucleotides in this analysis exhibit vari-

ability in measurements exceeding the high level.

Fig 3. Log domain standard deviation values of measurements coming from real SHAPE data. Standard deviation values

were calculated for each nucleotide on log measurements. (a) Histogram of standard deviation values. (b) Empirical CDF of

standard deviation values. The shaded regions correspond to our definition of low, medium, and high noise regimes. All non-

positive measurements were removed from the initial set of data. Nucleotides with a single positive measurement were excluded

so that a total of 3723 data points were considered.

https://doi.org/10.1371/journal.pone.0207029.g003

Kalman filtering of SHAPE data

PLOS ONE | https://doi.org/10.1371/journal.pone.0207029 November 21, 2018 11 / 29

https://doi.org/10.1371/journal.pone.0207029.g003
https://doi.org/10.1371/journal.pone.0207029


Kalman filter improves information extraction from noisy replicates

We compared the performances of log-averaging and Kalman filtering for replicates simulated

under the log-normal noise model. We first assembled a database of 22 RNAs with published

SHAPE profiles and reference secondary structures [18, 32, 56–58]. The database includes

ribosomal RNAs, riboswitches, and viruses. RNA lengths vary from 34 to 2094 nucleotides and

sum to a total of 11070 nucleotides (see Table 1 of Methods for a complete description). The

known SHAPE profiles were treated as ground truth. We simulated 3 replicates for each

sequence according to the log-normal noise model. We varied the simulated noise level by

increasing the standard deviation of the log measurements from 0 to 5. We then assessed the

signal extraction capabilities of log-averaging and Kalman filtering by comparing each result-

ing processed reactivity to the ground truth. Root mean square (RMS) errors for varying reac-

tivity and noise-levels are shown in Fig 4(a). In low noise regimes, the two methods performed

comparably. However, in higher noise regimes, Kalman filtering recovered better the ground

truth reactivity than did log-averaging.

We repeated this analysis using 10 simulated replicates for each RNA. The RMS errors for the

two processing methods are shown in Fig 4(b). With this increase in replicates, as expected, both

methods exhibited an increase in performance compared to using 3 replicates. Additionally, the

simple log-averaging estimate extracted the true reactivity profile as accurately as the more com-

plex Kalman filtering approach, even in the higher noise regime. Hence, Kalman filtering is a

more robust method for signal extraction in the case of high noise levels or limited replicates.

Using more than four replicates marginally improves accuracy

The results presented in the previous section emphasized the impact of replicate count on the

relative performances of log-averaging and Kalman filtering. Given 10 replicates, the accuracy

Table 1. Summary of RNA sequences with SHAPE profiles included in database.

RNA Length Reference

Pre-Q1 riboswitch, B. subtilis 34 [56]

Fluoride riboswitch, P. syringae 66 [56]

Adenine riboswitch, V. vulnificus 71 [56]

tRNA(asp), yeast 75 [18]

tRNA(phe), E. coli 76 [56]

TPP riboswitch, E. coli 79 [56]

cyclic-di-GMP riboswitch, V. cholerae 97 [56]

SAM I riboswitch, T. tengcongensis 118 [56]

5S rRNA, E. coli 120 [56]

M-Box riboswitch, B. subtilis 154 [56]

P546 domain, bI3 group I intron 155 [18]

Lysine riboswitch, T. martima 174 [56]

Group I intron, Azoarcus sp. 214 [56]

Hepatitis C virus IRES domain 336 [56]

Group II intron, O. iheyensis 412 [56]

Group I Intron, T. thermophila 425 [56]

50 domain of 23S rRNA, E. coli 511 [56]

50domain of 16S rRNA, E. coli 530 [56]

16S rRNA, H. volcanii 1474 [57]

16S rRNA, C. difficile 1503 [57]

16S rRNA, E. coli 1542 [18]

23S rRNA, E. coli 2904 [18]

https://doi.org/10.1371/journal.pone.0207029.t001
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of the log-averaging approach mirrors that of Kalman filtering, even in the presence of sub-

stantial noise. However, 10 experimental replicates are almost never obtained in practice. To

explore how the accuracies of both approaches are affected by replicate count, we repeated our

simulations using from 2 to 10 replicates and performed log-averaging and Kalman filtering
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Fig 4. Comparison of log-averaging and Kalman filtering using (a) N = 3 and (b) N = 10 simulated replicates under log-normal noise

model. The vertical axis represents the data domain ground truth reactivity, sm. The horizontal axis represents the log domain standard

deviation of the simulated measurements, swm . Nucleotides were binned based on sm and swm values. Left panel shows RMS errors calculated

between ground truth and log-averaged reactivities for all nucleotides in a bin. Right panel shows RMS errors calculated between ground truth

and Kalman filtered reactivities for all nucleotides in a bin. Error calculations were carried out in the log domain and ground truth values were

the log reactivities. See Methods for RMS calculation details.

https://doi.org/10.1371/journal.pone.0207029.g004
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for each replicate count. We performed this simulation for replicates generated at low,

medium, and high noise levels for all RNAs in our database. The RMS errors for both methods

are shown in Fig 5 plotted against the number of replicates. These plots reinforces the results

presented above: for moderate noise, log-averaging and Kalman filtering perform comparably.

Meanwhile, in the high noise regimes, Kalman filtering better recovers the ground truth. This

advantage is only present for a small number of replicates, specifically, less than 4. If the num-

ber of replicates is increased above this, then the two methods perform comparably even in the

presence of high noise. Thus, increasing the number of replicates to be more than 4 does not

significantly improve the results of either method. Based on these findings, we recommend

obtaining a minimum of 4 replicates.

Refining the Kalman filter prior improves accuracy

The results of the log-averaging approach can be improved either by increasing the number of

replicates or by improving the data quality. In contrast, Kalman filtering offers an additional

channel for improvement by way of the prior distribution. The prior is used by the filter along

with the measurements to extract signal information. Thus, the success of the KF relies on how

faithful this model is to the data, in addition to the data quality. With a well-tailored prior, we

expect an improvement in Kalman filtering results. Here, we demonstrate this idea with a sim-

ple simulation in which we defined an “ideal” prior specialized for each nucleotide. This ideal

prior is a Gaussian distribution centered at the ground truth (log reactivity) for that nucleotide

and with a small standard deviation. We studied how deviations for this ideal prior affected

the KF results by examining the effects of two possible changes. The first was a shift in the

prior mean away from the ground truth. This mean offset represents a loss of accuracy in the

prior. The second was an increase in the prior standard deviation, representing a loss of preci-

sion in the prior. The definitions of the ideal prior and the deviations are described in detail in

Methods. We calculated the Kalman filtered reactivity with different mean offset and standard

deviation values for 3 replicates simulated under the low, medium, and high noise regimes.

The RMS errors calculated over all nucleotides in our database are shown in Fig 6. As this

Fig 5. Comparison of the log-average and Kalman filter approaches using N = 2 to N = 10 replicates simulated at (a) low (b)

medium and (c) high noise levels under log-normal noise model. RMS errors were calculated between ground truth and log-

averaged reactivities (solid line) and between ground truth and the Kalman filtered reactivities (dotted line) over entire set of

nucleotides. Error calculations were carried out in the log domain and the ground truth values were the log reactivities. See Methods

for RMS calculation details. In low noise regimes, only a negligible difference between the log-averaging and Kalman filtering

approaches is observed. However, in the higher noise regime, the Kalman filtering approach better recovers the ground truth. This

advantage is marginal after the replicate count is increased beyond 4. Note that errors increase with increasing noise levels.

https://doi.org/10.1371/journal.pone.0207029.g005
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result confirms, the quality of the KF results are related to that of the prior. The KF applied

with a prior having high accuracy and precision performs the best.

Intuitively, applying the KF with a prior that is inaccurate (i.e. having a large mean offset)

and precise (i.e. having a small standard deviation) results in the filter placing a high level of

confidence in a biased initial prediction. On the other hand, applying the KF with a prior that

is inaccurate but also imprecise (i.e. having a large standard deviation) is comparable in perfor-

mance to the log-averaging approach. This is because the KF places a high level of confidence

in the measurements while the prior is largely ignored. To confirm this intuition, we per-

formed the following two experiments:

• The prior used had a mean that was offset from the ideal by a fixed value. We increased its

standard deviation and studied the effects on the KF results. RMS errors are shown in Fig 7

plotted against the prior standard deviation.

• The prior used had mean that was fixed at the ideal value. We increased its standard devia-

tion and studied the effects on the KF results. RMS errors are shown in Fig 8 plotted against

the prior standard deviation.

As expected, the KF performed best when provided with an accurate and precise prior dis-

tribution. Its performance suffered the most when the prior mean offset was increased but its

standard deviation remained small. However, when the KF was fed a highly inaccurate but

also imprecise prior, the results mirrored that of log-averaging.

While these simulations can be seen as a purely theoretical exercise, we note that the prior

distribution was modeled based on data collected from years of RNA SHAPE experiments. As

more data is obtained, data characterizations will inevitably improve. It is thus not far-fetched

to foresee future datasets that beget more specialized prior models.

Comparison of data-directed structure predictions under different

replicate processing strategies

A major applications of SHAPE data is in RNA secondary structure prediction. In dynamic

programming based secondary structure prediction algorithms, reactivities are incorporated

Fig 6. KF results as the prior mean and standard deviation are varied for N = 3 replicates simulated at (a) low (b) medium and (c) high

noise levels under log-normal noise model. The horizontal axis represents an increase in the prior standard deviation, σm,0. The vertical axis

represents the offset, μoffset, which was added to the ground truth log reactivity to define the prior mean. The value of each bin is the RMS error

calculated over all nucleotides in our database between the ground truth and Kalman filtered reactivities. Error calculations were carried out in

the log domain and the ground truth values were the log reactivities. See Methods for RMS calculation details.

https://doi.org/10.1371/journal.pone.0207029.g006
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into the structure prediction algorithm by first being converted into a pseudo-energy change

term. This term is based on a linear-log relationship between reactivities and pseudo-energies.

Thus, the prediction algorithm internally transforms the input profile to the log domain. For

this section, we employ the RNAstructure software package [59], which implements such an

algorithm. When using multiple replicates, the goal is to first combine them in a way that opti-

mally removes the noise component. The resulting profile is then used as input to the predic-

tion software to ultimately improve prediction accuracies. The replicate processing can be

done either in the data domain by averaging, or in the log domain by log-averaging or Kalman

filtering. To compare these three approaches, we ran the following sets of computational

experiments to make secondary structure predictions on each of the 22 RNAs in our database:

Fig 8. Kalman filtering results using an accurate (unbiased) prior performs comparable to log-averaging when the

uncertainty is increased. RMS errors were calculated over all nucleotides in our database. Error calculations were carried out in

the log domain and the ground truth values were the log reactivity. See Methods for RMS calculation details. The prior mean

was fixed to the ideal value. Its standard deviation, σm,0, was then increased. As the standard deviation increased, the more

comparable the Kalman filtering’s performance was to log-averaging.

https://doi.org/10.1371/journal.pone.0207029.g008

Fig 7. Kalman filtering results using an inaccurate (biased) prior improves with increased uncertainty in prior. RMS errors

were calculated over all nucleotides in our database. Error calculations were carried out in the log domain and the ground truth

values were the log reactivities. See Methods for RMS calculation details. The prior used in the KF was biased by adding the offset

μoffset = 3 to the ideal prior mean. As the standard deviation of the prior, σm,0, was increased, the filters performance improved,

despite the mean offset. On the other hand, when standard deviation was close to 0, the filter is influenced by a narrow, biased prior

and produced poor results.

https://doi.org/10.1371/journal.pone.0207029.g007
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1. Reference set (SET0): The original SHAPE profile (ground truth) was used as input to

RNAstructure. The accuracy of the resulting predicted structure was used as a baseline for

comparison to those predicted in SET1, SET2, and SET3.

2. Average set (SET1): We generated 3 replicates under the log-normal noise model for each

RNA. In the data domain, the average profile was calculated and used as input to

RNAstructure.

3. Log-average set (SET2): Using the same 3 replicates, the log-average profile was calculated

in the log domain, transformed back to the data domain, and used as input to

RNAstructure.

4. Kalman filter set (SET3): Using the same 3 replicates, the KF profile was calculated in the

log domain, transformed back to the data domain, and used as input to RNAstructure.

For each set, the differences between the predicted structure and the reference structure

were quantified using the Matthews Correlation Coefficient (MCC) [60, 61] (See Methods for

MCC definition). As SET0 is the baseline set, we subtracted the MCC values of SET1, SET2,

and SET3 from those in SET0. These results are shown in Fig 9 for 3 replicates simulated in

the low, medium, and high noise regimes. Results using 2 and 4 simulated replicates are shown

in S1 and S2 Figs. For replicates simulated under moderate noise levels, we did not observe

substantial differences between the results of SET1, SET2, and SET3. However, in the presence

of high noise, the structures predicted in SET2 and SET3 (using the log-average and KF pro-

files, respectively) were closer in MCC to the baseline than SET1 (using the average profile).

Comparing the results of SET1 (averaging) and SET2 (log-averaging), for 17 of the 22 RNAs,

the MCC coefficients for the structures predicted using the log-average profiles were closer to

the baseline than those predicted using the average profiles. For these RNAs, the improvement

observed in the results in SET2 compared to SET1 was between 0.69% and 48.21%. For the

remaining RNAs, the decrease in MCC values in SET2 compared to SET1 was less than 6.05%.

On the other hand, the differences between the results of the two log domain processed pro-

files, SET2 (log-averaging) to SET3 (Kalman filtering) where negligible, even in the high noise

regime.

Discussion

In this work, we explored models of noise in SHAPE experiments and compared methods for

replicate processing. The goal of replicate processing is to generate a profile that captures as well

as possible the true sequence of reactivities. This is done by combining measurements for each

nucleotide in a way that eliminates the contaminating noise. Any statistically sound processing

method is closely linked to the model describing the system. A system model includes models

for both the reactivity of a nucleotide and the noise effecting measurements, which is composed

of many contributing factors. Based on an empirical distribution of SHAPE data, we modeled

reactivities as following a log-normal distribution. We described two models for the measure-

ment noise in SHAPE experiments: the normal noise model and the log-normal noise model.

In both models, each nucleotide in an RNA was assumed to have a ground truth reactivity value

that persists between replicates. Nucleotide reactivities were also assumed to be independent

across an RNA. Considering the normal noise model, replicate processing corresponds to sim-

ple measurement averaging. In the log-normal noise model, we outlined two methods for repli-

cate processing: log-averaging and Kalman filtering. Our analyses of SHAPE experiments

underscored that a normal noise model is not adequate to represent the data. We instead dis-

cussed the relevance of the log-normal noise model. Under the assumptions of this model, we
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Fig 9. RNAstructure results for profiles calculated using different processing methods. 3 replicates simulated at (a) low (b) medium and (c)

high noise regimes. MCC differences are plotted compared to the baseline calculated in SET0. An MCC difference of 0 indicates that when the

processed profile was used as input to the RNAstructure software, the resulting predicted structure had the same accuracy as the one predicted

using the ground truth profile as input. A positive MCC difference indicate that when the processed profile was input to to the RNAstructure

software, the resulting predicted structure was less accurate than the one predicted using the ground truth profile as input. Note that the scale of the
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noted that processing such experiments by data domain averaging leads to bias in the resulting

profile. This bias can have an affect on the ensuing applications of the data, such as in the case

of data-directed RNA secondary structure prediction. These detrimental effects can be avoided

by carrying out the replicate processing in the log domain, either by log-averaging or Kalman

filtering. Within the log-normal noise model, application of the Kalman filtering approach has

the advantage that a prior on the nucleotide reactivities can be introduced. The performance of

Kalman filtering is directly dependent upon the quality of the prior and replicate processing can

significantly improve with a reliable prior. This auxiliary prior information employed by the fil-

ter is particularly useful for signal extraction in the case of substantial noise or as the number of

replicates decreases. Accordingly, a well characterized prior represents an additional opportu-

nity for improvement in signal extraction beyond data quality and replicate count.

As mentioned above, Kalman filtering results are strongly tied to the quality of this prior.

We observed that a high quality prior mitigates the use of multiple replicates, which can be a

serious advantage in resource limited analysis of large RNA molecules. Because such a prior is

based on an empirical distribution which can be built with any reasonably sized database, we

take this opportunity to advocate the use of public data. As more data becomes available, we

anticipate that more specialized priors can be generated, further improving filtering results. We

again note that although we focused on the SHAPE probe in this work, there are a variety of

other experimental probes available providing a wealth of opportunity for data characterization.

Future directions

Kalman filtering is just one of many possible signal processing methods available for informa-

tion extraction. In fact, the KF is a specialized form of the general class of Bayesian filters [62].

Extended Kalman filters and particle filters and other members of this class of filters loosen the

Kalman constraints and can also be applied to the analysis of SHAPE data.

A distinct advantage of filtering is that, as with the use of the prior distribution, it provides

opportunity to incorporate other types of information into the denoising scheme. Consider, as

one example, the correlation effects of neighboring nucleotides in SHAPE experiments, which

have been noted and modeled [58]. Although in our study we assumed independence between

nucleotides, these effects can be incorporated into processing algorithms to improve signal

extraction. Such complex modeling is simply inaccessible under an averaging framework, leav-

ing these correlations as untapped avenues for improved signal extraction.

As a final note, we reiterate that much work is to be done to fully characterize the noise in

any SP experiment. The intimate coupling of noise characterization and signal extraction

underscores the importance of this step in data processing. Although structure prediction is

the most prominent applications of SHAPE data, there exists a breadth of emerging applica-

tions for SP data, such as data-directed sequence alignment and the identification of conserved

and functional RNA structures [29, 58, 63]. SP data and filtering techniques need to be exam-

ined in the context of these data-drive applications.

Materials and methods

Preprocessing SHAPE data

Normalized SHAPE reactivity scores are expected to fall between 0 and 2. However, values

exceeding 2 and below 0 are not rare and most SHAPE profiles contain both negative and 0

MCC differences vary between noise regimes. RNAs are ordered by length. See Table 1 of Methods for corresponding sequence names and lengths.

Error bars represents standard errors over 10 repeated runs of replicate simulations.

https://doi.org/10.1371/journal.pone.0207029.g009
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values. Thus, prior to the application of a log transformation, the profile must undergo some

preprocessing. A common approach for dealing with negative values is to simply replace each

occurrence with 0 [35]. We refrained from using this method as a profile processed in this way

still precludes the use of the log transformation. Another approach is to replace negative reac-

tivities with their absolute value. The drawback of this approach stems from the distribution of

negative valued reactivities: while negative values correspond to unreactive nucleotides, the

long tail in the distribution can result in an unreactive nucleotide being assigned an uncharac-

teristically high reactivity.

To circumvent these problems, we followed a procedure similar to the one taken in [32].

Using a large set of SHAPE data, we built a “background distribution” from the empirical dis-

tribution of all negative values observed. Our background distribution included data coming

from the SHAPE profiles of all 22 RNAs in our database (see Table 1 of Methods). All values

below a certain cutoff were removed from this set in order to truncate the tail of the back-

ground distribution. In our experiments, we set this cutoff to -0.25. For a given profile, each

negative and 0 valued reactivity were replaced by sampling from the truncated distribution.

The absolute value of this sample was used as the updated reactivity. After all negative and 0

valued reactivities were replaced, the resulting processed profile was strictly positive and ame-

nable to a log transformation. The original and processed SHAPE profiles of the 22 RNAs in

our database are included in S1 Dataset.

Simulation of replicates

To generate a replicate under the log-normal noise model for an RNA with ground truth pro-

file S, we simulated the reactivity measurements for each nucleotide m separately. As log mea-

surements follow Eq 3, the log reactivity of nucleotide lm is corrupted by additive noise wm
following distribution N ð0; swmÞ. A log measurement was simulated by sampling from this

distribution and adding it to lm. We selected swm from a uniform distribution Uðsmin; smaxÞ.

The values of σmin and σmax were dictated based on the selected noise regime (See Results for

definition of noise regimes). This was repeated for the M nucleotides in the RNA sequence to

generate a complete replicate profile. Replicates were reverted to the data domain via an expo-

nential transformation. A comparison of the mean-dependence in the standard deviation of

real and simulated replicates are shown in Fig 10. As the noise term modeled accounts for

post-normalization noise, simulated replicates were not re-normalized. To address the issue of

whether an additional normalization step is necessary, we refer the reader to S1 Text, in which

we provide a study on the effects of re-normalization and as well as the issue of outlier exclu-

sion in the normalization process.

Kalman filter implementation

We now provide a description of the simplified 1 dimensional implementation of the KF we

applied in the log domain. To maintain notational simplicity in this section, we drop the m
subscripts denoting the nucleotide but restate that the filter is applied per nucleotide.

Recall in the log domain the relationship between the log measurements li and the true log

reactivity l is

li ¼ l þ wi: ð6Þ

We assume the wi values are independent and identically distributed as� N ð0; swÞ. The mea-

surement vector is [l1, l2, . . ., lN]. The order of measurements imposed in this vector is random

and does not affect the final filtered result. The variance, s2
w, represents the uncertainty in each
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measurement. Its approximate value, ŝ2
w, is the sample variance of the li values. That is,

ŝ 2

w ¼
1

N � 1

XN

i¼1

ðli � �lÞ2: ð7Þ

The prior distribution is denoted N ðm0; s0Þ. The log reactivity for a nucleotide, l, is assumed to

be a sample of this distribution. We set μ0 = −1.74 and σ0 = 1.52. These values were obtained

using Gaussian fit to the empirical distribution of our database of 10690 log transformed

SHAPE reactivity values. Let l̂ i denote the optimal estimate of l after the ith KF iteration. The

uncertainty in this estimate is denoted by s2
i . The Kalman gain term at the ith iteration is

denoted by Ki.
The filter is initialized as follows. Prior to the inclusion of the first measurement, the esti-

mate l̂0 relies solely on the prior. The estimate is thus the prior mean and its uncertainty is the

same as the prior variance. That is,

l̂ 0 ¼ m0

s2
0
¼ s2

0
:

During the ith KF iteration, the ith measurement, li, is incorporated into the estimate. First, the

Kalman gain is calculated as:

Ki ¼
s2
i� 1

s2
i� 1
þ ŝ2

w
ð8Þ

Fig 10. Comparison of mean-dependence in the standard deviation of (a) real and (b) simulated SHAPE measurements. For

each nucleotide, the mean value of the 5 measurements (real and simulated) were calculated and plotted against their standard

deviation on a log-log plot. A linear fit is overlaid in red for each. The left panel is a recreation of Fig 1 for comparison. The right

panel consists of data coming from simulated replicates for the same RNA. The ground truth reactivity used the in replicate

simulation was the average measurement per nucleotide coming from the real replicates. For the simulated replicates, noise levels

were between σmin = 0 and σmax = 1.5. Note that negative reactivity values in the real data are not included as they are incompatible

with the log-log plot.

https://doi.org/10.1371/journal.pone.0207029.g010
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The new estimate, l̂ i, and its uncertainty, σi, are then calculated as:

l̂ i ¼ l̂ i� 1 þ Kiðl
i � l̂ i� 1Þ ð9Þ

si ¼ ð1 � KiÞsi� 1 ð10Þ

The uncertainty, σi, is in fact the variance in the posterior distribution of the prior conditioned

on the measurements incorporated so far. This value decreases as more measurements are

incorporated. The new estimate represents an optimal fusion of the previous estimate and the

newly incorporated measurement. The filter repeats Eqs 8–10 until all N measurements have

been incorporated into the model. The final estimate of l is k≔ l̂N .

Note that our implementation appears to bypass the predict step of the standard KF algo-

rithm. This is because we assume no uncertainty in our model that the nucleotide’s reactivity

remains constant between replicates. Thus, the predicted value for the (i + 1)st measurement is

simply the ith estimate, l̂ i.
A Python implementation of this method is provided in S1 File.

Ideal prior for the Kalman filter

The ideal prior is perfect information. Such a prior has a mean that is the value to be predicted

and a standard deviation of 0. For a nucleotide m with ground truth reactivity sm, the prior dis-

tribution used in the KF is denoted N ðmm;0; sm;0Þ. In the case of the ideal prior, μm,0 = lm and

σm,0 = 0. We studied how deviations from this ideal model affected the KF results by adding an

offset to the ideal mean. That is,

mm;0 ¼ lm þ moffset ð11Þ

The offset value, μoffset, was varied between -3 and 3. The prior standard deviation, σm,0, which

signifies the uncertainty in the prior, was similarly increased from 0 to 5.

Error calculations

We calculated the root mean square (RMS) error over all nucleotides considered (in an RNA

or relevant bin for heat map generation) as

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM

i¼1

ð̂lm � lmÞ
2

s

: ð12Þ

Here, l̂m is the value to be compared against the ground truth, lm. M is the number of nucleo-

tides considered (in an RNA or relevant bin for heat map generation). For our calculations, l̂m
was either the log-average reactivity, �lm, or the KF reactivity, km.

Matthews Correlation Coefficient

The accuracy of a computationally predicted secondary structure for a given RNA sequence

can be assessed by comparing it to a reference structure. The number of true positives, TP, is

the number of base pairs that appear in both structures. The number of false positives, FP, is

the number of base pairs that appear in predicted structure but not in the reference structure.

The number of true negatives, TN, is the number of possible base pairs that do not appear in

either structure. Finally, the number of false negatives, FN, is the number of base pairs that

appear in the reference structure but do not appear in the predicted structure. As defined in
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[61], the MCC value of the predicted structure is calculated as

MCC ¼
TP� TN � FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞ

p : ð13Þ

Data used

Figs 1, 3, and 10 were created using the cucumber mosaic virus RNA3 sequence data from

[51]. The database used in the rest of our analysis was comprised of data coming from the 22

RNAs listed in Table 1 with their appropriate source. Each of these profiles were previously

normalized by performing a box plot analysis to detect outliers (see Background). For RNAs

from [56] and [57], the maximum number of outliers was capped at 10% of the data for RNAs

100 nucleotides or longer and 5% for RNAs shorter than 100 nucleotides. Profiles were nor-

malized by the average reactivity of the top 10% most highly reactive nucleotides excluding

outliers. The total number of nucleotides in our database was 11070. From the published

SHAPE profiles of these RNAs, 1262 of the nucleotides have non-positive SHAPE reactivities.

These were used to build the background distribution described above. Another 380 nucleo-

tides do not have SHAPE scores recorded in the published profiles. Hence, a total of 10690

SHAPE reactivities were used in our study.

Supporting information

S1 Fig. RNAstructure results for profiles calculated using different processing methods. 2

replicates simulated at (a) low (b) medium and (c) high noise regimes. MCC differences are

plotted compared to the baseline calculated in SET0. An MCC difference of 0 indicates that

when the processed profile was used as input to the RNAstructure software, the resulting pre-

dicted structure had the same accuracy as the one predicted using the ground truth profile as

input. A positive MCC difference indicate that when the processed profile was input to to the

RNAstructure software, the resulting predicted structure was less accurate than the one pre-

dicted using the ground truth profile as input. Note that the scale of the MCC differences vary

between low and high noise regimes. RNAs are ordered by length. See Table 1 of Methods for

corresponding sequence names and lengths. Error bars represents standard errors over 10

repeated runs of replicate simulations.

(EPS)

S2 Fig. RNAstructure results for profiles calculated using different processing methods. 4

replicates simulated at (a) low (b) medium and (c) high noise levels. MCC differences are plot-

ted compared to the baseline calculated in SET0. An MCC difference of 0 indicates that when

the processed profile was used as input to the RNAstructure software, the resulting predicted

structure had the same accuracy as the one predicted using the ground truth profile as input. A

positive MCC difference indicate that when the processed profile was input to to the RNAs-

tructure software, the resulting predicted structure was less accurate than the one predicted

using the ground truth profile as input. Note that the scale of the MCC differences vary

between low and high noise regimes. RNAs are ordered by length. See Table 1 of Methods for

corresponding sequence names and lengths. Error bars represents standard errors over 10

repeated runs of replicate simulations.

(EPS)

S3 Fig. Box plots for original and normalized simulated replicates. Replicates were simu-

lated at (a) low (b) medium and (c) high noise levels for each of the 22 RNAs of Table 1. The

original simulated replicates (SET0), the simulated replicates modified under Normalization 1
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(SET1, including outliers in normalization factor calculation), and the simulated replicates

modified under Normalization 2 (SET2, excluding outliers from normalization factor calcula-

tion) are shown. Outliers are not displayed in box plots. See S1 Text for definitions and a dis-

cussion on the effects of normalization on simulated replicates.

(EPS)

S4 Fig. Effects of simulated replicate normalization on (a) averaged (b) log-averaged and

(c) Kalman filtered profiles for the TPP riboswitch, E. coli. Replicates were simulated at

medium noise levels for the TPP riboswitch, E. coli. SET0 profiles were calculated using the

original simulated replicates. SET1 profiles were calculated using replicates modified under

Normalization 1. SET2 profiles were calculated using replicates modified under Normalization

2. See S1 Text for definitions and a discussion on the effects of normalization on simulated rep-

licates.

(EPS)

S5 Fig. Effects of simulated replicate normalization on (a) averaged (b) log-averaged and

(c) Kalman filtered profiles for the Group I intron, Azoarcus sp. Replicates were simulated

at high noise levels for the Group I intron, Azoarcus sp. SET0 profiles were calculated using the

original simulated replicates. SET1 profiles were calculated using replicates modified under

Normalization 1. SET2 profiles were calculated using replicates modified under Normalization

2. See S1 Text for definitions and a discussion on the effects of normalization on simulated rep-

licates.

(EPS)

S6 Fig. Effects of simulated replicate normalization on (a) averaged (b) log-averaged and

(c) Kalman filtered profiles for the IRES domain of the Hepatitis C virus. Replicates were

simulated at medium noise levels for the IRES domain of the Hepatitis C virus. SET0 profiles

were calculated using the original simulated replicates. SET1 profiles were calculated using

replicates modified under Normalization 1. SET2 profiles were calculated using replicates

modified under Normalization 2. See S1 Text for definitions and a discussion on the effects of

normalization on simulated replicates.

(EPS)

S7 Fig. Comparison of log-averaging and Kalman filtering using (a) N = 3 and (b) N = 10

simulated replicates under log-normal noise model and modified under Normalization 1.

Replicates were simulated under the log-normal noise model and modified using the Normali-

zation 1 technique in which outliers were not excluded when calculating the normalization fac-

tor. The vertical axis represents the data domain ground truth reactivity, sm. The horizontal

axis represents the log domain standard deviation of the simulated measurements, swm . Nucle-

otides were binned based on sm and swm values. Left panel shows RMS errors calculated

between ground truth and log-averaged reactivities for all nucleotides in a bin. Right panel

shows RMS errors calculated between ground truth and Kalman filtered reactivities for all

nucleotides in a bin. Error calculations were carried out in the log domain and ground truth

values were the log reactivities. See Methods for RMS calculation details. See S1 Text for defini-

tions and a discussion on the effects of normalization on simulated replicates.

(EPS)

S8 Fig. Comparison of log-averaging and Kalman filtering using (a) N = 3 and (b) N = 10

simulated replicates under log-normal noise model and modified under Normalization 2.

Replicates were simulated under the log-normal noise model and modified using the Normali-

zation 2 technique in which outliers were excluded when calculating the normalization factor.
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The vertical axis represents the data domain ground truth reactivity, sm. The horizontal axis

represents the log domain standard deviation of the simulated measurements, swm . Nucleo-

tides were binned based on sm and swm values. Left panel shows RMS errors calculated between

ground truth and log-averaged reactivities for all nucleotides in a bin. Right panel shows RMS

errors calculated between ground truth and Kalman filtered reactivities for all nucleotides in a

bin. Error calculations were carried out in the log domain and ground truth values were the

log reactivities. See Methods for RMS calculation details. See S1 Text for definitions and a dis-

cussion on the effects of normalization on simulated replicates.

(EPS)

S9 Fig. Comparison of the log-average and Kalman filter approaches using N = 2 to N = 10

replicates simulated at (a) low (b) medium and (c) high noise levels under log-normal

noise model and modified using the Normalization 1 technique. Replicates were simulated

under the log-normal noise model and normalized using the Normalization 1 technique in

which outliers were not excluded when calculating the normalization factor. RMS errors were

calculated between ground truth and log-averaged reactivities (solid line) and between ground

truth and the Kalman filtered reactivities (dotted line) over entire set of nucleotides. Error cal-

culations were carried out in the log domain and the ground truth values were the log reactivi-

ties. See Methods for RMS calculation details. Compared to results calculated using original

simulated replicates (see Fig 5), RMS values are generally higher for both log-averaging and

Kalman filtering methods. In low noise regimes, only a negligible difference between the log-

averaging and Kalman filtering approaches is observed. However, in the medium and high

noise regimes, the Kalman filtering approach better recovers the ground truth. Increasing the

number of replicates does not improve the Kalman filtering results, particularly in the higher

noise regimes. Note that errors increase with increasing noise levels. See S1 Text for definitions

and a discussion on the effects of normalization on simulated replicates.

(EPS)

S10 Fig. Comparison of the log-average and Kalman filter approaches using N = 2 to

N = 10 replicates simulated at (a) low (b) medium and (c) high noise levels under log-nor-

mal noise model and normalized under Normalization 2. Replicates were simulated under

the log-normal noise model and normalized using the Normalization 2 technique in which

outliers were excluded when calculating the normalization factor. RMS errors were calculated

between ground truth and log-averaged reactivities (solid line) and between ground truth and

the Kalman filtered reactivities (dotted line) over entire set of nucleotides. Error calculations

were carried out in the log domain and the ground truth values were the log reactivities. See

Methods for RMS calculation details. As in the results calculated using the original simulated

replicates (see Fig 5), in low noise regimes, only a negligible difference between the log-averag-

ing and Kalman filtering approaches is observed. However, in the medium and high noise

regimes, the Kalman filtering approach better recovers the ground truth. Note that errors

increase with increasing noise levels. See S1 Text for definitions and a discussion on the effects

of normalization on simulated replicates.

(EPS)

S1 Dataset. Original and processed SHAPE profiles for the 22 RNAs of Table 1.

(XLSX)

S1 File. Python implementation of 1D Kalman filter for RNA SHAPE replicates.

(PY)
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S1 Text. Discussion on the effects of normalization on simulated replicates and filtered

profiles.

(PDF)
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