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ABSTRACT OF THE DISSERTATION  

 

Parietal and Hippocampal Representations of Complex Spatial Paradigms 

 

by 

 

Laura E. Shelley 

Doctor of Philosophy in Cognitive Science 

University of California San Diego, 2022 

Professor Douglas Nitz, Chair 

 

 In the following experiments, we sought to examine posterior parietal and 

hippocampal mapping of complex environments and spatial tasks. Experiment 1 found 

PPC population activity represented location, locomotor action, and progress through a 

trajectory, and that PPC and HPC’s scale of representation followed the action being 

performed during traversal of a three-dimensional squared spiral track with stairs, ramps, 

and corners.  

 Experiment 2 found that animals could learn to apply a behavioral rule where the 

correct choice varies depending on which half of the room the choice point is located. All 

animals could perform at well-above chance levels, and their performance transferred to 

novel locations. Although overall significantly above chance, accuracy was somewhat 
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decreased on the first trial of a block, possibly due to increased difficulty of the task on 

each trial 1 where the track was placed in a new location for a set of trials. 

 Using the paradigm from Experiment 2, Experiment 3 found that PPC and HPC 

firing patterns remained anchored with the maze itself across environmental locations, as 

opposed to differentiating the different room locations in their firing. Furthermore, HPC 

and PPC firing patterns did not discriminate the upcoming turn choice beyond what could 

be attributed to differences in the animal’s speed and orientation. We propose a model for 

how the task can be solved at different track locations via a conjunction of HPC-on-track 

mapping and the differing visual cues at each track location. Lastly, Experiment 3 found 

that HPC firing differentiated the first trial of a block compared to subsequent trials at a 

particular location, characterized by overall increased rates and a backward-shift in field 

location. Such differentiation was consistent with the decreased behavioral accuracy on 

first trials. 

 Such studies investigating HPC and PPC representation in complex, abstract 

paradigms reveal the noteworthy forms by which these two networks work in conjunction 

to map position and action within allocentric and egocentric frameworks. Such dynamic 

mapping by these and other related structures can give rise to complex and abstract 

cognitive phenomena bridging behavior and neural activity into a cohesive experience of 

an event. 
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Chapter 1: Literature Review and Introduction to the Present Research 

1.1 Introduction  

In 1948 Edward Tolman put forth the idea that animals have a mental 

representation of space that could be relied upon to navigate purposefully through an 

environment, coining the term ‘cognitive map’ (Tolman, 1948). This idea directly 

challenged widely accepted behaviorist stimulus-response theories, which claimed that 

animals had no internal states, and that all behavior was reflexive and could be explained 

by reinforcement through environmental experience. Tolman’s ideas, controversial 

among his colleagues at the time for lacking evidence, opened up an avenue for studying 

possible mechanisms for a cognitive map. Soon after, the hippocampus was implicated in 

spatial mapping. Lesions were associated with both spatial and episodic memory 

impairments (Scoville & Milner, 1957; Morris, Garrud, Rawlins, & O’Keefe, 1982) and a 

neural substrate for a cognitive map was first found in hippocampal ‘place cells’, neurons 

whose firing activity is specific to certain locations in a room (O’Keefe & Dostrovsky, 

1971). These studies sparked a wave of investigation into the hippocampus and 

surrounding cortical structures and their implications in spatial cognition. Briefly, 

findings included ‘head direction cells’ in the postsubiculum whose firing is specific to 

heading directions (Taube, Muller, & Ranck, 1990), and medial entorhinal cortex ‘grid 

cells’ that exhibit grid-patterned firing fields across an environment (Hafting, Fyhn, 

Molden, Moser, & Moser, 2005). Even more abstract spatial concepts are evident in route 

mapping by parietal cortex route-centered cells (Nitz, 2006) and parietal cortex mapping 

of personal and egocentric spaces (Duhamel, Colby, & Goldberg, 1998; Pouget & Driver, 

2000).  
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Known cognitive processes can be studied at the neuron level of analysis. The 

patterning found in neural systems, a conjunction of many types of information being 

registered, gives rise to these cognitive phenomena. Neural findings from the past 40 

years provide compelling, if often circumstantial, evidence that what is found at the 

neuron level can legitimately be interpreted as a mechanism for cognitive processes. Such 

knowledge can provide the foundation for many applications, including finding remedies 

for cognitive impairments, creating robots that simulate such behavior, or simply 

satisfying a scientific curiosity.  

Although spatial cognition is currently being studied extensively at the neuron 

level, there are still many complex and abstract aspects of spatial cognition that have not 

yet been formally studied in a way that links both the behavioral level and the single 

neuron level of analysis. The hippocampus and parietal cortex are two areas most heavily 

implicated in spatial cognition in humans, nonhuman primates, and rodents (Scoville & 

Milner, 1957; Pouget & Driver, 2000; Avillac, Deneve, Olivier, Pouget, & Duhamel, 

2005; O’Keefe & Dostrovsky, 1971; Nitz, 2006; Nitz, 2012; Nitz, 2013). Therefore, the 

completed work will focus on obtaining behavioral data and neural recordings from these 

two areas while rats perform different complex spatial tasks. First, a review of known 

aspects of parietal and hippocampal spatial tuning is necessary. 

1.2 Parietal Spatial Tuning 

The posterior parietal cortex (PPC) is a sensory integration area that receives 

input from sensory cortices of different modalities, integrates this information, and 

projects to other areas (Kolb & Walkey, 1987). This region is distinct from neighboring 

cortical regions as evidenced by its thalamic inputs that other cortical structures do not 
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receive (Reep, Chandler, King, & Corwin, 1994). The PPC receives inputs from the 

lateral dorsal thalamic nucleus, but does not receive input from the dorsal lateral 

geniculate nucleus which distinguishes it from nearby visual areas (Reep et al., 1994).  

Given its location and connectivity, it is reasonable to conclude that PPC 

integrates sensory information, self-motion information, and positions in space in both 

internal (egocentric) and external (allocentric) frames of reference (Nitz, 2009). Many 

studies in non-human primates on parietal cortex spatial mapping, including the parietal 

reach region (PRR) and the lateral intraparietal area (LIP), have revealed spatial activity 

in an eye-centered frame of reference where the firing pattern was dependent on the 

location that a stimulus falls on the retina (Cohen & Andersen, 2002). However, this 

activity that corresponds to an egocentric, eye-centered frame of reference can be 

modulated by relative positions of other parts of one’s self such as the trunk, head gaze, 

or position of the hand relative to the eye (Andersen, Essick, & Siegel, 1985; Aglioti, 

Smania, & Peru, 1999; Karnath, Christ, &  Hartje, 1993; Vuilleumier, Valenza, Mayer, 

Perrig, & Landis, 1999; Pouget & Driver, 2000; Nitz, 2013). Such modulation is called a 

“gain field” and demonstrates how the parietal cortex can simultaneously use different 

egocentric frames of reference to map out space. 

In addition to a retinotopic reference frame, parietal cortex neurons encode space 

in other egocentric reference frames in multiple modalities, including locations of tactile 

and auditory stimuli relative to one’s self (Duhamel et al., 1998; Grunewald, Linden, & 

Andersen, 1999; Linden, Grunewald, & Andersen, 1999). The multimodal nature of 

parietal spatial mapping is supported by the multimodal nature of behavioral deficits in 

patients with unilateral spatial neglect (Pouget & Driver, 2000). 
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In addition to activity tuned to various egocentric reference frames, PPC can map 

one’s position in space using an allocentric frame of reference. Posterior parietal cortex 

neuron activity that occurs at a specific egocentric behavior (such as a left turn) can be 

modulated depending on its order in a complex route, a type of allocentric reference 

frame (Nitz, 2006). This route-centered activity seems to integrate with the spatial 

activity based on an egocentric reference frame to map out position in an entire route, or 

even map out position within parts of a route, effectively mapping out parts of a space 

into a whole and forming a continuity between the route segments (Nitz, 2006; 2012; 

2013).  

This modulation of internal reference frame information by action sequences in an 

external frame of reference is analogous to the gain fields studied in non-human primates 

(described above). However, in primate studies, the animals are usually head-fixed, 

effectively clamping the vestibular system. Studying this area in the freely behaving rat 

affords us the advantage of being able to investigate how self-motion through an 

environment can modulate PPC firing activity, as vestibular input may have an impact on 

PPC activity (Nitz, 2013). Additionally, the PPC also interacts with the hippocampal 

formation (Rogers & Kesner, 2007), and studying a freely moving rat may allow that 

hippocampal spatially specific firing information to interact with PPC mapping of space. 

1.3 Hippocampal Spatial Tuning 

In contrast to the parietal cortex, the hippocampus contains place cells with firing 

activity that is specific to certain spatial locations in relation to the external environment, 

an allocentric frame of reference (O’Keefe & Dostrovsky, 1971). In other words, a place 

cell will fire when a rat is in a specific location within a room. The location of a 
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particular neuron’s place field is anchored to the boundaries of the environment, such that 

if you shift or rotate landmarks or cues on the walls, the field location moves accordingly 

(Muller & Kubie, 1987). This is a different, but complementary type of allocentric 

reference frame than that of the PPC as described above. This basic allocentric firing 

activity that is characteristic of the HPC can be modified by various features of the 

environment, including the trajectory the animal takes through the space (Frank, Brown, 

& Wilson, 2000; Ferbinteanu & Shapiro, 2003; Nitz, 2011). This trajectory-dependent 

modulation has implications for how the hippocampus might play a role in forming 

episodic memories as an animal moves through a space (Nitz, 2011).  

1.3.1 Trajectory Encoding and Episodic Memory 

The HPC in humans is critical for the generation of new episodic memories 

(Scoville & Milner, 1957). Traveling along a path can be thought of as an “episode” in 

that it entails a series of ordered events defined by the combination of the animal’s 

actions and sensory experiences. Accordingly, action sequences and trajectory shapes are 

critical components of spatial mapping. Trajectory-specific encoding is a phenomenon 

associated with altered in-place-field firing rates of HPC neurons depending on the full 

trajectory taken to reach those place fields or taken subsequent to those place fields 

(Ferbinteanu & Shapiro, 2003). Trajectory and action-specific encoding exists in other 

forms as well. For instance, place cells are direction-sensitive (McNaughton, Barnes, & 

O’Keefe, 1983; Markus et al., 1995), but much more so when the animal runs on a track 

completing a task defined by specific actions rather than free-foraging (Markus et al., 

1995).  



	 6 

Path shape can also impact the scale and recursion of HPC firing fields. For 

instance, Nitz (2011) found CA1 cell firing patterns of spiral tracks tend to recur in 

locations of the tracks that were spatially similar (i.e. analogous segment positions across 

loops of a spiral, where similar actions were required for traversal). Additionally, firing 

fields of some place cells were elongated on straight portions of the longer loops. If the 

HPC firing pattern generalizes across similar spaces, then it stands to reason that the 

episodic memory for that sequence of actions is likely similar. Thus, how an animal 

moves through space is directly related to spatial mapping, potentially explaining HPC’s 

roles in spatial mapping and episodic memory.  

Episodes are also encoded in HPC firing patterns via “theta phase precession”, a 

neural coding phenomenon where the animal’s past, current, and expected future 

positions (Lubenov & Siapas, 2009) organize the spiking order of HPC place cells whose 

place field centers lie in the past, present, and future. Such organized spiking occurs over 

the phases of prominent theta-frequency (5-10 Hz) oscillations seen in the HPC local 

field potential (O’Keefe & Recce, 1993). HPC place cell action potentials ‘phase 

precess,’ in that spiking for any given cell occurs at late phases as the animal enters the 

cell’s place field, at peak (middle) phases when the animal passes the center of the field, 

and at early phases near the exit of the field. As a consequence, across an entire trajectory 

and HPC cell population, neuronal firing repeatedly represents where the animal is, 

where he’s just been, and where he’s going. The phenomenon is considered critical to 

learning of new episodic memories in that: 1) the spiking order reflects the ordering of 

the animal’s experience while running down the path and 2) the timing of spikes is 

consistent with spike timing dependent plasticity rules governing learning processes in 
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the HPC (Bi & Poo, 2001). Thus, HPC activity patterns reflect space as well as the full 

episode of places visited along a trajectory. Yet, how HPC spiking activity relates to 

vertically-going action sequences and trajectories has not been determined.  Furthermore, 

there is scarce knowledge concerning how different forms of information associated with 

an environmental experience are integrated in HPC and how specific connectivity 

patterns within HPC and between HPC and other structures may support such integration. 

1.4 Complementary Spatial Mapping by Parietal and Hippocampal Neurons 

With respect to mapping positional relationships between an organism and its 

environment, the HPC and PPC in rodents, nonhuman primates, and humans are key 

structures. In each of these species, lesions in these structures produce profound 

impairments in spatial cognition and navigation, and neurons in these regions robustly 

map spatial relationships in their firing rates. In addition, when navigating along 

pathways through an environment, the HPC and PPC generate different forms of spatial 

mapping (e.g. they encode position in different reference frames), but these different 

forms play complementary roles in navigation (Nitz, 2012; Nitz, 2006; Rogers & Kesner, 

2007). The rat HPC maps, in its ensemble firing patterns position within the environment 

(O’Keefe & Dostrovsky, 1971), while the PPC maps position within the space of a route 

irrespective of that route’s position in the environment (Nitz, 2006). These distinct forms 

of spatial mapping are complementary in the way they transition spatial cognition into 

navigational actions.   

1.5 The Present Research 

The present research seeks to examine parietal and hippocampal dynamics in 

representing complex environments and spatial tasks. Experiment 1 will evaluate parietal 
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and hippocampal neurons role in mapping out locomotor action sequences in a complex, 

three-dimensional squared-spiral maze, and the impact those locomotor actions have on 

the scale of representation. Experiment 2 will evaluate rat’s behavioral performance in a 

decision-making task that is dependent on a logical subspacing of an environment. 

Experiment 3 will evaluate the role of hippocampal and parietal neurons in representing 

the subspaces created in Experiment 2. 
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Chapter 2: Experiment 1 – Locomotor Action Sequences Impact the Scale of 

Representation in Hippocampus and Posterior Parietal Cortex 

2.1 The Present Study 

The hippocampus (HPC) and posterior parietal cortex (PPC) in both rats and 

humans are brain structures implicated in spatial navigation and the generation of new 

episodic memories (Scoville & Milner, 1957; Ergorul & Eichenbaum, 2004; O’Keefe & 

Dostrovsky, 1971; Muller & Kubie, 1987; Benoit & Schacter, 2015; Saj, Fuhrman, 

Vuilleumier, & Boroditsky, 2014; Hassabis, Kumaran, & Maguire, 2007; Rogers & 

Kesner, 2007). Episodic memory formation, while dependent on HPC, nevertheless 

appears to be a process distributed across multiple brain regions (Hassabis et al., 2007).  

Accordingly, HPC, PPC, and retrosplenial cortex all share a common temporal 

framework for activity based on the hippocampal theta rhythm (8 Hz) (O’Keefe & Recce, 

1993; Sirota et al., 2008; Alexander, Rangel, Tingley, & Nitz, 2018). Such temporal 

organization is considered critical to learning new episodic memories in that spike 

ordering according to the phase of theta frequency oscillations is thought to drive 

alterations in synaptic efficacy (Pavlides, Greenstein, Grudman, & Winson, 1988; Huerta 

& Lisman, 1993; O’Keefe & Recce, 1993; Skaggs, McNaughton, Wilson, & Barnes, 

1996). These alterations are thought to form the basis for a physical instantiation of 

distributed episodic memory. 

Spatial tuning of activity in HPC presents itself in the form of place-specific 

spiking in individual neurons that carries the reference frame of environmental 

boundaries (O’Keefe & Dostrovsky, 1971; Muller & Kubie, 1987). Yet place-specific 

activity is robustly modulated by the trajectory the animal takes through space, producing 
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different patterns for different trajectories through the same location (Ferbinteanu & 

Shapiro, 2003; McNaughton, Barnes, & O’Keefe, 1983; Markus et al., 1995; Frank, 

Brown, & Wilson, 2000; Wood, Dudchenko, Robitsek, & Eichenbaum, 2000; Ainge, 

Tamosiunaite, Woergoetter, & Dudchenko, 2007; Grieves, Wood, & Dudchenko, 2016). 

In principle, this allows differentiation in memory of otherwise distinct trajectory-running 

episodes that pass through the same space and reconciles the contradiction between pure 

spatial mapping and pure episodic memory formation functions proposed for HPC.  In 

complement to this, the same trajectory taken through different places can produce 

recursion in the population firing patterns for different environmental locations (Nitz, 

2011; Singer, Karlsson, Nathe, Carr, & Frank, 2010). To the extent that HPC population 

firing patterns reflect the content of episodic memories, such recursion would result in 

some degree of generalization across memories for the same trajectories taken through 

different locations in the environment.  

In complement to HPC place-specific activity, PPC neurons often have action 

correlates that effectively map locomotor sequences accompanying movement through 

specific trajectories (Mimica, Dunn, Tombaz, Bojja, & Whitlock, 2018; Nitz, 2006; 

McNaughton et al., 1994; Wilber, Clark, Forster, Tatsuno, & McNaughton, 2014; 

Whitlock, Pfuhl, Dagslott, Moser, & Moser, 2012). Such action correlates are often 

strongly and reliably modulated by the location of those actions within a trajectory (Nitz, 

2012; McNaughton et al., 1994; Whitlock et al., 2012; Wilber et al., 2014). Furthermore, 

PPC neurons lacking action correlates exhibit reliable spatial tuning to progress through 

trajectories of a particular shape irrespective of the environmentally-defined locations and 

directions of travel associated with them (Nitz, 2006; Nitz, 2012).  In this sense, the PPC 



	 11 

forms a map both for specific locomotor actions and for location in a trajectory, or route. 

Thus, trajectory modulates both place-specific activity in the HPC and action-related 

activity in PPC and represents a common spatial framework by which to examine how 

locations and actions can be registered within the same episodic memories. 

 Although there are reports of actions at a given location modulating the place-

specific activity of HPC neurons (Aghajan et al., 2015; Markus et al., 1995), it is unclear 

how extensively the trajectory-modulated place-specific activity in HPC and trajectory-

modulated action-specific activity in PPC are coordinated. This is relevant because any 

episodic memory for a path taken through the world is more than just a memory for a 

series of visited locations.  Episodic memories for completion of a trajectory will 

typically include the locomotor actions performed during traversal.  Indeed, such 

inclusion is arguably critical to generating memories for repeatedly used paths between 

environmental locations.  Therefore, understanding how trajectory-modulated action and 

location tuning in PPC and HPC relate would provide a better understanding of the 

distributed components of episodic memory generation. 

To more thoroughly examine the impact of trajectory on HPC place coding and 

PPC action coding, the current study utilized a five-loop, squared spiral track that extends 

the array of sampled locomotor actions beyond left and right turning to include actions 

such as stair-hopping and ramp-running that move the animal in the vertical dimension.  

The full track length is composed of recurring trajectories in the form of individual 

‘loops’ that pass through different allocentric locations in the recording room. Such 

trajectory recurrence is known to modulate action-specific activity in PPC and place-

specific activity in HPC (Nitz, 2011; Nitz, 2012) and is therefore a tool by which to 
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examine coordinated alterations of spatially tuned firing in HPC and PPC.  Further, the 

expanded range of locomotor actions on the part of the animal provides a methodology to 

better understand how actions are mapped into activity patterns of HPC and PPC. 

Notably, prior work suggests that movement in the vertical dimension is mapped in a 

qualitatively different way than for horizontal dimensions. In HPC and medial entorhinal 

cortex, tuning according to the vertical dimension is degraded relative to the horizontal 

dimensions (Hayman, Verriotis, Jovalekic, Fenton, & Jeffery, 2011; Hayman, Casali, 

Wilson, & Jeffery, 2015; Casali, Bush, & Jeffery, 2019; Porter, Schmidt, & Bilkey, 

2018). Place cells on a flat surface exhibit partial remapping once the surface is tilted 

vertically (Knierim & McNaughton, 2001; Porter et al., 2018). Anterodorsal thalamic 

head direction cells maintain their tuning specific to prior, horizontally-defined 

orientations when the animal traverses horizontal corners and begins to climb vertically 

(Taube, Wang, Kim, & Frohardt, 2013), and shift their tuning 90 degrees when the 

animal traverses vertical corners (LaChance, Dumont, Ozel, Marcroft, & Taube, 2020). 

Actions associated with movement in the vertical dimension (e.g., stair-hopping or 

jumping) are often qualitatively distinct from those associated with movement in the 

horizontal dimensions.  In principle then, the incorporation of action-tuned activity into 

episodic memories could serve to provide key information regarding the presence or 

absence of vertical dimension movement in episodic memories for trajectories.  Thus, the 

current experiments involve different forms of vertical behaviors including stair hopping, 

locomotion on an incline, and transitions from inclines to flat running surfaces.  These 

occur in the context of specific recurring trajectories through different environmental 
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locations, permitting an assessment of how action, trajectory, and environmental location 

operate in combination to alter spatial tuning in HPC and PPC. 

2.2 Methods 

2.2.1 Subjects 

Adult male Sprague Dawley rats (Harlan Laboratories) were used as subjects (n = 

5). Animals were approximately 6 to 12 months of age and individually housed in 

standard plastic cages. The vivarium was kept on a 12-hour light-dark cycle. To ensure 

animals were motivated to perform the task, all animals were food restricted to maintain 

their weight at 85-95% of their original free-feeding weight. Experimental protocols 

followed all AALAC guidelines and were approved by the Institutional Animal Care and 

Use Committee guidelines at the University of California, San Diego. 

2.2.2 Apparatus 

 A 1.65 meter squared spiral track with five loops that allowed for movement in 

both horizontal and vertical dimensions was used (see figure 1a). The four outer loops 

each had a series of stairs on segment 1 and a ramp on segment 2 while segments 3 and 4 

were flat. The outermost loop had eight steps on side 1, loop 2 had six steps, loop 3 had 

four steps, and loop 4 had two steps. The innermost loop was flat on all sides. The track 

edges were 1.27cm tall to allow the animal to clearly see distal cues on the walls of the 

304cm x 457cm environment. 

2.2.3 Behavioral Training 

 Animals were trained to traverse inbound and outbound along the track, 

completing each loop of the spiral and receiving a food reward upon completing an 

inbound run at the center of the spiral, and upon completing an outbound run. Animals 
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were trained to run ballistically without pausing in order to get a clean analysis of spiking 

data as it relates to traversing the track. 

2.2.4 Surgery 

 Once rats were trained, Isoflurane (4-5% induction, 1-2% maintenance) was used 

to anesthetize animals for surgery, and they were placed in a stereotaxic apparatus (Kopf 

Instruments). After craniotomy and resection of dura mater over the left and right PPC 

(anterior-posterior: 4mm posterior to bregma, 2.3mm lateral to the midline suture, 0.5mm 

depth from brain surface), rats were implanted with tetrode arrays (bundles of four 12µm 

tungsten wires, gold plated to impedances of 0.1 mOhms) mounted to custom-fabricated 

microdrives that allowed wires to be moved ventrally through PPC across days in 40µm 

increments until reaching the hippocampus. Tetrode locations within CA1 were verified 

by the presence of sharp-wave ripple events in vivo, and then later confirmed in the 

histology by the presence of wire tracks in CA1. All surgeries were performed in 

compliance with the Institutional Animal Care and Use Committee guidelines at the 

University of California, San Diego. 

2.2.5 Recordings 

 The recording techniques utilized for the current study have been described in 

detail in prior publications from the Nitz Laboratory (Alexander & Nitz, 2015; Nitz, 

2012). Recordings of both PPC and CA1 multiple single neuron populations and local 

field potentials were obtained during track traversal. Data was collected with a 48-

channel Plexon system that coordinates signal amplification, filtering, and sampling of 

waveforms. Action potentials were amplified at the headstage connection (20X, Triangle 

Biosystems), the pre-amp stage (50X), and at the amplifier stage (1-15X). A bandpass 
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filter (450Hz-8.8Hz) was applied and spike waveforms were digitized using SortClient 

(Plexon, 40kHz sampling). 

 Two overhead and one side camera recorded the animal’s position on the track in 

all three dimensions (figure 1b) using Cineplex3D software (Plexon, Inc., Denison, TX). 

Cineplex 3D detects differently-colored LED lights attached to the rat’s implant and 

encodes head position and orientation in all three dimensions. Such tracking affords 

identification of direction of movement, head orientation, and velocity in all three 

dimensions, as well as left and right turning and stair hopping actions. Tracking data was 

filtered to identify clean, ballistic runs. Only inbound trajectories were used to analyze 

firing patterns, as outbound runs were far less ballistic. 

 Each rat had 3 microdrives with four tetrodes each allowing utilization of all 48 

channels on the Plexon system. Microdrives were custom-built to allow dorsal to ventral 

(PPC to HPC) movement of the tetrodes across days, allowing recordings of many 

neurons from each animal. An approach to CA1 is routinely recognized by the presence 

of sharp wave ripple events in the local field potential during moments when the animal 

is idle. 

 The number of recording sessions in total varied across rats. Analyses include 

data from the following numbers of recordings from each of the five rats: 26, 40, 17, 21, 

and 18. Recording sessions typically lasted about 45 minutes each, and on average 

between 10 and 25 inbound and outbound laps were typically run during each session. 

Recording sessions where rats ran fewer than 6 laps with uninterrupted locomotion were 

not used for data analysis. 

2.2.6 Histology 
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 After recordings were completed, animals were anesthetized and perfused with 

4% paraformaldehyde. Brains were then extracted and sliced into 50µm sections. Nissl 

stain confirmed wire locations and final wire depth in PPC and CA1 (see figure 1c).  

Histological records, in particular the final depths of tetrode bundles, were cross-

referenced to logs of turning depth for each tetrode bundle and to records noting the first 

day in which theta-frequency (8 Hz) activity was found in recorded neurons (a feature of 

most hippocampal neurons) and the first day that obvious sharp-wave/ripple events were 

observed (indicating close proximity to the CA1 pyramidal cell layer). 

2.2.7 Identification of Clean, Ballistic, Track Traversals 

 A custom-built MATLAB graphical user interface was used to mark trial starts 

and ends from the tracking data to identify individual clean, ballistic trials. Trials were 

manually categorized into inbound and outbound trajectories, and only clean ballistic 

runs (i.e., having uninterrupted locomotion) were used in analyses of neural activity in 

order to prevent confounds such as pausing and consuming food rewards between trials, 

and so that every location is reliably associated with the same action and head 

orientation. PPC is sometimes sensitive to action, and HPC patterns can change as rats 

exhibit exploratory head-scanning behaviors (Monaco, Rao, Roth, & Knierim, 2014). 

Trials that were dropped from analysis included trials where the animal paused its run for 

any reason.  Only inbound trajectories were used to analyze firing patterns, as outbound 

runs often did not meet criteria for clean, ballistic traversals.  Positional rate vectors for 

each neuron were constructed by mapping the animal’s location to a track template 

having 905 evenly-spaced spatial bins (2.24 cm in length). 

2.2.8 Linearized Firing Rate Calculation 
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 Linear firing rate vectors for inbound and outbound runs were constructed by 

dividing the total number of spikes in each template bin (2.24cm) during each trial by the 

total occupancy time in that bin. These vectors were then averaged across trials to obtain 

mean cross-trial positional firing rate vectors (see fig 1d,e), which allowed 

characterization of firing rate activity during track traversals in the form of spatial firing 

fields or action correlates where neural activity reliably increases. 

2.2.9 Unit Isolation 

 Units were isolated using Plexon’s Offline Sorter software. Main clusters were 

first cut by plotting peak minus valley values of the waveform for each spike from the 

different tetrode wires on the X and Y axes, and then selecting spikes that form clusters. 

Then noise was reduced by plotting various waveform features of each spike, such as 

energy, nonlinear energy, and principal component projections. Spikes that deviated from 

the main cluster were trimmed away. 

2.2.10 Filtering Out Interneurons 

 HPC interneurons were filtered out of the dataset and were not included in 

analyses. Interneurons were identified by first locating all bins where the firing rate was 

below 0.3Hz for each HPC neuron. If a neuron had fewer than ten bins (of 905) with 

firing rates below 0.3Hz, it was considered an interneuron and dropped from the dataset. 

2.2.11 Correlation Matrix Construction 

 To examine activity patterns for the entire population of neurons and compare this 

activity at different track locations (across loops, segments), correlation matrices were 

created (see figure 2a-b). As reported in other publications (Alexander & Nitz, 2015; 

Cowen & Nitz, 2014; Maurer, VanRhoads, Sutherland, Lipa, & McNaughton, 2005), the 
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matrices allow for assessment of similarity in spatial mapping across different track 

locations. To this end, firing rates of all neurons at a particular position bin was 

correlated with the firing rates of all neurons at every other position bin. Correlations for 

all possible track bin comparisons were collected and put into a matrix. These allowed for 

examination of similarities in firing patterns at different bin positions, across the entire 

population of PPC or HPC neurons. 

2.3 Results 

2.3.1 Tuning of Posterior Parietal Cortex and Hippocampal Neurons to Track 

Locations with Specific Actions 

Adult male rats (N=5) were trained to run inbound and outbound trajectories in an 

uninterrupted fashion along a squared spiral track with five loops (figure 1a, 1b). Two-

hundred eighty PPC and 170 HPC neurons were recorded and included in analyses.  

While our implantation target lies within PPC, we note that PPC is narrow along the 

anterior-posterior axis and that it is possible that some PPC neurons might better be 

regarded as V2.  Overall mean firing rate for HPC and PPC was 1.18Hz and 6.56Hz, 

respectively. Firing patterns for deep-layer PPC and HPC-CA1 neurons (figure 1c) were 

analyzed for inbound trajectories only, as these had very smooth, ballistic running 

behavior compared to outbound trials.  Where most mazes utilized in studies of spatial 

mapping demand only left and right turns and straight running along flat surfaces, 

movement through this maze expands beyond this typical range of behaviors to include 

stair hopping (segment 1 for each of outer four loops; figure 1a, colored lines), moving 

up and down an incline (segment 2 of the outer four loops), and managing transition  
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 Figure 1. The squared spiral track and associated firing rate vectors for PPC and 
HPC neurons. (a) Photograph of the three-dimensional, squared spiral track in the 
recording room with stairs highlighted by colored lines. The outer loop 1 has 8 steps 
(green), loop 2 has 6 steps (lavender), loop 3 has 4 steps (blue), loop 4 has 2 steps 
(yellow), and loop 5 is flat. Transition zones (purple circles) and reward sites (red circles) 
are also indicated. (b) Three-dimensional tracking data for one example trial. Blue and 
green traces show tracking for each light (blue and green LEDs) attached to the animal’s 
implant. (c) Electrode placements for all animals. The reconstructed tetrode bundle 
trajectories are depicted for each of the five animals used in the study with the left and 
right bundle trajectories for each animal indicated by different colors.  Example 
histological section for one animal with arrows marking the final depth of tetrode 
bundles. (d) Example PPC firing rate vectors for inbound runs. Shown are action 
correlates mapping corners (upper left), flats (middle left), ramps (bottom left), stairs 
(upper right), top of stairs (middle right), and base of ramps (bottom right). Gray dashed 
line depicts animal height (max = 90cm). Red trace in upper-left example rate vector 
corresponds to movement velocity in cm/sec (velocity axis given on right side of plot). 
Loops are demarcated by bolder, taller black lines, and segments are demarcated by 
thinner, shorter black lines. Color coding for steps and transition zones used in figure 1a 
is also depicted along the x-axis here. (e) Example inbound HPC firing rate vectors 
showing recursion on analogous parts of the track (upper and lower left, upper right) and 
an example of an isolated field (lower right). Loops are demarcated on bottom by 
brackets. 
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points between ramp and flat sections. For added contrast, the innermost loop is flat on 

all four segments.  

We first established that actions related to movement in the vertical dimension 

could impact the firing activity of PPC cells. In addition to turning related activity and 

activity specific to flat running sections in the horizontal dimensions (figure 1d, upper left 

and left middle), firing rate vectors of individual neurons also exhibited activity 

constrained to the locations associated with specific vertical moving actions. These 

include recurring activity that was modulated according to location in the full route over 

stair sections (figure 1d, upper right), ramp sections (figure 1d, bottom left), and 

transition points between stairs to flat areas and ramps to flat areas (figure 1d, right 

middle and right bottom right). Finding such action correlates replicates horizontal action 

mapping found previously on a squared spiral track (Nitz, 2012) and extends it to the 

behaviors associated with movement through the vertical dimension. 

As expected, HPC cells exhibited place-specific firing, but with sensitivity to the 

recursion of path shape and required locomotor actions inherent in the maze structure. 

Consistent with prior work, the spatial information (per spike) metric for spatially-

specific activity was high in our population of CA1 neurons (mean 3.28 +/- 1.98, median 

2.85) relative to PPC (mean 1.07 +/- 1.45, median 0.65). Figure 1e depicts the linearized 

firing rates of example HPC neurons with place-specific activity isolated to single 

locations (figure 1e, bottom right) or recurrence of spatially specific firing patterns at 

analogous locations of each loop. Neurons with recurrence included some that fired over 

vertical transition points such as the beginning of the downward-going ramp on inbound 

traversals (figure 1e, upper right). 
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To approximate the number of HPC neurons that show recursive firing across 

analogous locations of at least two loops, we first determined the location (loop and 

segment type) of peak firing for the neuron. If the main peak occurred over stair, ramp, or 

flat segments of loops 1-4, we then examined whether that neuron also fired at a rate of 

least 50% of that main peak on analogous segments of one or more of the other loops. 

Thirty-seven percent of HPC neurons met this criterion. We then calculated this using 

25% of main peak firing as a threshold, and 46% of HPC neurons met this more liberal 

criterion. These numbers are summarized in Table 1. 

Table 1. Percentages of HPC and PPC neurons showing recursion in firing across 
analogous segments of multiple loops at two threshold levels: 50% and 25% of main peak 
firing. 
Recursion 50% 

main 
peak 

25% 
main 
peak 

HPC 37% 46% 

PPC 80% 88% 

 
To approximate the number of PPC neurons that show recursion, we used the 

same criteria as outlined for HPC (Table 1). To further examine PPC action correlates, of 

the PPC neurons that showed recursion at the 50% threshold, we calculated the 

percentage of those that had their main peak over a particular segment type (stair, ramp, 

flat1, flat2), and these numbers are summarized in Table 2. Recursion was relatively 

evenly distributed across the types of maze segments and the locomotor actions 

associated with them.  
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Table 2. Percentages of PPC neurons with peak firing at maze locations sorted by their 
accompanying actions. 
Action correlates - 
PPC 

Main peak 

Stair 29.3% 

Ramp 25% 

Flat1 12.5% 

Flat2 13.6% 

Corners 44.3% 

Top of stairs 10.7% 

Base of ramp 7.5% 

Top of ramp 6.1% 

 

Of the PPC neurons that show recursion, we wanted to know how many had their 

main peak in particular areas such as corners or transition areas between horizontal-only 

and horizontal plus vertical locomotion. We examined the dataset for neurons that met 

the 50% threshold for recursion and had their main peaks within a window of one of 

these particular areas. For corners, the range was defined as between the last 25% of any 

segment, and the first 25% of the following segment. For the top of the stairs and the base 

of ramps, we looked for recurring neurons with a main peak within 40 cm surrounding 

the top of the stairs and the base of the ramp on any loop. For the top of the ramp, since it 

was very close to the corner we used an offset range so as to not overlap with the height 

of the animal's turn and any portion of the prior segment. The top of the ramp was 

10.16cm from the corner. We defined our top of ramp as a 40 cm window that began 

approximately 7 cm behind the top of the ramp, and extended 33 cm forward from the top 
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of the ramp on any loop. The main peaks for PPC neurons showing recurrence at the 50% 

threshold were distributed uniformly across maze locations and the locomotor actions 

associated with them (Table 2). We note that the sum of Table 2 percentages exceeds 

100, as locations such as top of stairs overlap with the stair segment. 

2.3.2 Discrimination and Recursion in Posterior Parietal Cortex and Hippocampal 

Population Firing Patterns 

We next quantified the extent to which PPC and HPC population firing patterns 

discriminated or generalized (recurred) across sub-fields of inbound track traversals.  

Sub-fields include ‘loops’, the five squared trajectories making up the entire inbound or 

outbound routes, and ‘segments’, the four sections making up each loop.  Population 

correlation matrices were constructed based on the mean firing rates for each neuron on 

odd-numbered vs even-numbered track traversals (figure 2a, 2b). As reported in other 

publications (Alexander & Nitz, 2015; Cowen & Nitz, 2014; Maurer et al., 2005), these 

matrices allow for a wide-range of assessments of similarity in spatially specific tuning 

across PPC and HPC populations across different track locations and to examine 

reliability in tuning at any single location. To construct these matrices, we determine the 

Pearson correlation between the set of firing rates across all neurons for all pairwise track 

locations.  The use of mean rate vectors from odd versus even numbered track traversals 

permits assessment of reliability in spatial tuning for any single location. Correlation 

values for all possible track location comparisons are entered into the matrix, the axes for 

which are organized by location on the track. Matrix values along the main diagonal of 

the matrix (moving from upper left to lower right) reflect reliability in population 

patterning for the same location on different trials (figure 2c, black trace). 
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Figure 2. Quantifying recursion in population firing patterns between track 
locations. (a-b) Correlation matrices for PPC and HPC population firing patterns on 
inbound runs. Segments and loops are demarcated by thin and thick black lines, 
respectively. The full traversal corresponds to movement through 905 evenly spaced 
position bins. (c) Schematic depicting portions of the correlation matrix used to compare 
overlap in population activity patterns across loops (upper panel) and across segments 
(lower panel). The lower panel is a magnified version of the upper left square in the 
upper panel.  Specific comparisons are color-coded to match color code for traces in d,f, 
and h-k. Purple shading highlights location of loop 1 correlation values. S, R, F1, and F2 
denote locations of the matrix associated with, respectively, stair climbing sections, ramp 
descent sections, and the two flat-run sections. (d,f) Cumulative distributions of PPC and 
HPC correlations comparing analogous position bins for adjacent loop comparisons and 
for the main diagonal.  The main diagonal values reflect comparison of odd versus even 
trial mean population firing patterns for the same locations.  Each loop comparison (loop 
1v2, 2v3, etc.) is represented by a different color, as indicated. Vertical gray line 
represents correlation threshold of 0.5 (used in e and g) and colored dashed lines 
highlight where each trace crosses 0.5. (e,g) Bar charts showing proportion of 
correlations under 0.5 for each loop comparison for PPC and HPC. Bars are organized 
according to the degree of spatial separation between loops being compared (1 degree of 
separation, 2 degrees of separation, etc., indicated by top brackets). Red dashed lines 
demarcate proportion of correlations under 0.5 expected by chance for these 
comparisons.  Chance levels were drawn from the 95th percentile of correlation matrices 
constructed from the dataset with firing rate vectors circularly shifted by randomized 
amounts for each neuron. (h-k) Cumulative distributions of PPC and HPC correlations 
comparing analogous position bins for all segment comparisons and main diagonal within 
loop 1 (h,j) and loop 5 (i,k). Each segment comparison (stair vs ramp, stair vs flat 1, etc.) 
is represented by a different color, as indicated. Vertical gray line represents correlation 
of 0.5, and colored dashed lines highlight where each trace crosses 0.5. (l) Bar charts 
showing proportion of correlations under 0.5 for each segment comparison and main 
diagonal within each loop for PPC (upper) and HPC (lower). Red dashed lines demarcate 
the proportion of correlations under 0.5 expected by chance for these comparisons, taken 
from the 95th percentile of correlation matrices constructed from the dataset with the 
firing rate vectors circularly shifted by randomized amounts. 
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We first examined population correlation values that represented specific 

combinations of segment and loop sub-fields of the full track (figure 2d-2l). We 

measured pattern similarity across loops by comparing values from the main diagonal and 

values from “off” diagonals that represent adjacent loop comparisons of analogous loop 

positions (e.g., loop 1 vs 2, loop 2 vs 3, etc.; figure 2c, upper). We used a series of 

Wilcoxon rank-sum tests to statistically compare all cumulative distributions representing 

each loop comparison. Cumulative distributions for loop versus loop pattern similarity in 

both PPC and HPC revealed that the main diagonal (figure 2d, f, black traces), 

representing similarity in patterning for the same loop on odd versus even trials, 

contained correlation values that were significantly higher than diagonals comparing 

analogous positions along loops, with the exception of loop 2 vs 3 in PPC (PPC p-values 

for the values along the main diagonal versus values along diagonals comparing 

analogous positions along loops to each other ranged from p = 1.65e-37 to p = 0.08; the 

same comparisons for HPC ranged from p = 1.36e-122 to p = 2.81e-49; Bonferroni 

adjusted alpha = 0.0071). This simply indicates that, despite loop to loop identity in 

actions taken and directions traveled, the populations of neurons in both HPC and PPC 

maintained the strongest trial-to-trial reliability in encoding of the same locations along 

the track.  

Similarity in population firing patterns for PPC across loops was quite high for 

adjacent loops (figure 2d). Thus, for PPC, the same-shaped trajectories and action 

sequences across each loop yield recursion in population patterning. An exception to this 

was the relatively lower similarity in PPC population patterns for loop 4 vs 5 (figure 2d, 
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lightest blue trace; Wilcoxon rank-sum test p-values for loop 4 versus loop 5 correlations 

versus all other combinations of adjacent loops ranged from p = 1.76e-26 to p = 8.15e-17; 

Bonferroni adjusted alpha = 0.0071).  We note that there are no stairs or ramp along loop 

5, and therefore attribute this exception in similarity between adjacent loops as reflecting 

differences in the associated action sequences.   

To extend our examination of PPC loop comparisons, we calculated the 

proportion of values in each distribution that had a correlation of less than 0.5 for all loop 

comparisons.   When these proportions are graphed according to the degree of separation 

between any two loops, a clear pattern emerges wherein degree of separation yields 

greater and greater PPC population pattern dissimilarity (figure 2e). Additionally, we 

calculated the proportion of correlation values below 0.5 for each loop comparison that 

would be expected by chance by reconstructing correlation matrices from circularly 

shifted firing rate vectors. Each neuron’s firing rate vector was circularly shifted (relative 

to start and end) by randomized amounts that were at least one segment in length (161 

cm). We note that the independence of random shifts across neurons destroys the 

population activity patterns but retains the structure of firing fields for each neuron.  This 

randomization was done 100 times and a correlation matrix was constructed for each one. 

Randomized correlation matrices were sorted according to mean correlation and the 95th 

percentile correlation matrix was used to calculate the proportion of correlation values 

under 0.5 that we would expect by chance. These values are plotted as red dashed lines in 

figure 2e. Actual proportions below 0.5 only approach chance levels as the spatial 

separation between loops being compared grows larger.  Collectively, these results 

demonstrate that recurrence in activity is generally high for loops that share a common 
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set of heading directions and action sequences, but also indicates that progress through 

the full five-loop route has a strong influence on pattern recurrence as well. 

Examining the recurrence in HPC patterns across loops reveals a quite different 

pattern, one in which recurrence is minimal.  Despite strong odd versus even trial 

reliability in HPC population patterns for the same location, comparison of population 

patterns between even adjacent loops yields cumulative density functions dominated by 

low correlation values (figure 2f).  While there are correlations slightly above 0 for HPC 

for loop comparisons, most of these correlations fall well below 0.5 (figure 2g), a 

threshold that has been used previously to define pattern discrimination across locations 

for HPC populations (Maurer et al., 2005). The proportions of correlations below 0.5 for 

each loop comparison are at or near chance levels indicated by red dashed lines (figure 

2g). Some recursion was demonstrated in the firing patterns of individual neurons (Figure 

1e), but these cases proved infrequent enough that pattern recursion at the level of full 

neuron population is not robustly observed.  As for PPC, HPC correlations for loop 4 vs 5 

are the lowest (figure 2f, lightest blue trace; p-values for correlations for analogous 

positions along loop 4 versus loop 5 versus the same for all other adjacent loop 

combinations ranged from p = 3.64e-21 to p = 2.59e-7 according to Wilcoxon rank-sum 

tests; Bonferroni adjusted alpha = 0.0071). This indicates that the presence of movement 

in the vertical plane can significantly impact population activity patterns in HPC, 

negating even low-level recurrence to patterns across analogous and adjacent locations in 

the horizontal plane. 

Next we looked at the segment comparisons within a loop, which allowed more 

direct examination of the influence of the type of locomotor action (figure 2h-l; see figure 
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2c, lower panel, for schematic of correlation matrix diagonals representing the different 

segment comparisons). Loops 1-4 each had one segment that required traversing stairs, 

one segment that required descending ramp running, and two flat running sections. Given 

the type of action required to traverse each one, action mapping for stair hopping should 

be rather distinct from both ramps and flats. As far as actions required, we consider 

ramps to be more similar to flats in that ramps and flats both are associated with 

alternating movements of the left and right limbs. Stair climbing involves a “hopping” 

motion in which the left and right limbs move in parallel. Additionally, based solely on a 

model in which action drives activity patterns, the two flat segments should be mapped 

very similarly to each other. We used a series of Wilcoxon rank-sum tests to statistically 

compare all cumulative distributions representing each segment comparison within a loop 

(e.g., stairs vs ramp of loop 1 compared to stairs vs flat 1 of loop 1).   

In PPC, similarity in type of locomotor action was a strong determinant of 

population pattern recurrence. Within loop 1, main diagonal correlations representing the 

same positions along each segment for odd vs even trials (figure 2h, black trace) were 

significantly higher than any segment-segment comparisons (p-values ranged from p = 

1.15e-38 to p = 7.99e-15; Bonferroni adjusted alpha = 0.0033). Correlations between 

analogous positions along the two flat segments (figure 2h, gray trace) were significantly 

higher than all other segment-segment comparisons (p-values ranged from p = 3.23e-24 

to p = 4.31e-19; Bonferroni adjusted alpha = 0.0033). The correlation values for the stair 

and ramp segment (figure 2h, darkest blue trace) were significantly lower than all other 

segment comparisons (p-values ranged from p = 3.23e-24 to p = 4.52e-4; Bonferroni 

adjusted alpha = 0.0033). Position bin comparisons among flat segments (figure 2h, gray 
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trace) had the highest correlations (figure 2h, gray trace; figure 2a correlation values for 

flat comparisons, can be seen more clearly in figure 3a). The bar graphs of figure 2l (top 

row) show the proportion of correlations below the 0.5 threshold for the PPC population.  

From this perspective, the population patterns for flat sections versus ramp sections are 

quite different.  Flat comparisons (F1 vs F2) have the lowest proportion (near zero) in 

every loop.  Finally, across loop 5, where all four segments are flat, each segment-

segment correlation distribution exhibits many high values (figure 2i) and few values 

below 0.5 are observed (figure 2l). Flat sections in loops 1-4 were mapped more similarly 

to each other, and all segments of loop 5 were mapped more similarly, due to their 

similarity in actions (flat running, left and right turning behavior). 

As expected (Nitz, 2011), HPC populations completely discriminated all 

segments, no matter their required type of locomotor action as illustrated by overall lower 

correlation values among segment comparisons (figure 2j-l). Correlations representing 

the main diagonal on odd vs even trials for loop 1 (figure 2j, black trace) were 

significantly higher than all segment-segment comparisons according to a series of 

Wilcoxon rank-sum tests (p-values ranged from p = 8.77e-39 to p = 1.61e-37; Bonferroni 

adjusted alpha = 0.0033). Additionally, loop 5 segments did not appear any more or less 

correlated than segment comparisons from other loops (figure 2k, l bottom row), and 

main diagonal correlation values (figure 2k, black trace) were significantly higher than all 

segment-segment comparisons (p-values ranged from p = 3.57e-13 to p = 1.19e-10; 

Bonferroni adjusted alpha = 0.0033).  Thus, HPC exhibited strong reliability across trials 

for the same locations, but similarity in locomotor action did not drive extensive 

similarity in mapping at different locations. 
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2.3.3 Posterior Parietal Cortex and Hippocampus Scale of Representation Follows 

Variation in Type of Locomotor Action 

 The scale at which the population of HPC neurons is spatially selective has been 

previously defined by the distance at which the correlation falls below 0.5 (Maurer et al., 

2005). Some reports indicate that the scale of representation is stable for any single 

location within the CA1 region, but that scale varies along the longitudinal (dorsal-to-

ventral or septo-temporal) axis of HPC and medial entorhinal cortex (Kjelstrup et al., 

2008; Hafting et al., 2005). Others report that the scale might be more dynamic, based on 

running speed, path length, and position relative to inflection points in behavior (e.g., 

turns and reward consumption sites, Gupta, van der Meer, Touretzky, & Redish, 2012). 

By measuring, for all locations, the distance from any point associated with a drop in 

population correlation below 0.5, we sought to reveal other factors that modulate the 

scale of representation in HPC and PPC. 

 Depending on the structure of the trajectory, variation between locomotor actions 

and movement through space are dissociated.  This is true of both the spiral track from 

the current study, and of episodes such as a walk through a city. In our case, the animal 

traverses long distances up and down ramps, stairs, and along flat surfaces, all covering a 

great amount of space. The animal crosses much less space when turning and when 

transitioning from a stair or ramp to a flat surface. Thus, within any episode associated 

with a traversal along a path, the rate of variation in location can be wildly dissociated 

from the rate of variation in locomotor actions. We therefore asked how this specific 

difference is manifest in the scale of spatial tuning in HPC and PPC. 
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 Using the metric for scale of representation indicated by Maurer and colleagues 

(Maurer et al., 2005), we took the correlation matrix main diagonal and found the 

distance (perpendicular to the main diagonal) at which correlations dropped below a 

threshold of 0.5 (similar results were obtained using thresholds between 0.25 and 0.65). 

Dropoff points are plotted in black over loop 1 correlation matrices, thereby depicting 

dynamics in the scale of representation in PPC and HPC for loop 1 (figure 3a-b). These 

distances are plotted in green (PPC) and black (HPC) green in figure 3c, and the 

difference between the two (PPC minus HPC) is plotted in blue, graphically illustrating 

the scale of representation for different positions along the entire track. 

Both PPC and HPC exhibit a fluid dynamic in spatial scale that follows the 

variation in type of locomotor action (figure 3c). In PPC, the scale appears to more 

closely follow the actions, in that variation in loop 1 is greater than loop 2, variation in 

loop 2 is greater than loop 3, etc. HPC shows the same dynamic, however it is in a 

compressed form. To quantify these changes, we determined the mean values for scale of 

representation for the middle half of each track segment and compared them to means for 

the remaining 50% of space that surround each turn (as indicated by pink and blue 

shading along loop 1 in figure 3c).  Figure 3d depicts these values for all segments as 

well as the mean values for each loop (mean values are connected by lines, color coded 

for loop as indicated). With the exception of loop 5 data, centers of segments were 

associated with greater spatial scale of representation than for corners in PPC (figure 3d, 

leftmost panel). A Wilcoxon rank-sum test revealed an overall significant difference 

between centers of segments and corners for all loops for PPC (p = .006). Perhaps owing 

to the very short spaces between loop 5 turns, and perhaps due to the fact that there is no 
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vertical component in loop 5, the scale of representation in PPC sharply rises over the 

middle of the loop.  In HPC, a similar reduction in scale of representation around turns is 

observed, but the overall effect is dampened and did not reach significance when all 

loops were considered (p = .34; figure 3d, middle panel).  Nevertheless, the PPC and 

HPC vectors for scale of representation across the entire track are significantly positively 

correlated (r = 0.36, p = 1.89e-29) and the comparison of segment centers versus corners 

for HPC is significant for values taken from loops 1 and 2 (p = .015).  Figure 3d 

(rightmost panel) depicts these values separately for PPC and HPC to allow comparison 

between the two brain regions. A Wilcoxon rank-sum test demonstrates significant 

differences between PPC and HPC in scale of representation for both centers of segments 

(p = .00007) and corner comparisons (p = .002). This suggests a constraint on the range 

of dynamics in scale of representation for HPC relative to PPC. 
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Figure 3. PPC scale of mapping reflects the segment and loop structure of the entire 
track. (a-b) Loop 1 inbound population correlation matrices for PPC and HPC, 
respectively. Perpendicular distance from diagonal where correlation first drops below 
0.5 is plotted in black. (c) Perpendicular distance from diagonal plotted for entire track. 
PPC plotted in green, HPC plotted in black, PPC-HPC difference trace plotted in blue. 
Pearson correlation of r = .36 between the PPC and HPC traces is indicated. Loop 
transitions are marked with bolder, taller black lines, segment corners are marked with 
shorter, thinner black lines. The middle half of each segment (centers) for loop 1 are 
highlighted in pink. The remaining 50% of space that surrounds each turn is highlighted 
for loop 1 in blue. (d) Mean drop-off distance (distance from diagonal at which 
population correlation drops below 0.5) at segment centers and corners for HPC and PPC. 
Mean drop-off distance of center bins for each segment for every loop are plotted as dots 
on left of each graph while corners are plotted on right of each graph (left and middle 
panels). Loop means are connected by lines. Pink and blue boxes highlight segment 
center peaks and corner valleys to match c. Each loop (1-5) is depicted in a different 
color as indicated. Right panel depicts these values, but visually compares PPC and HPC 
on centers and on corners in one plot. Centers are plotted in solid gray ovals while 
corners are plotted in hollow black ovals. Solid and dashed lines connect means. 
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2.4 Discussion 

The spatially-specific firing patterns of HPC have often been used to gain insight 

into the content of episodic memory as it relates to movement through locations in an 

environment.  In the present work, we extend such considerations to include the PPC, a 

structure that, in humans, is associated with the perception of spatial relationships in both 

egocentric and allocentric frames of reference (Pouget & Driver, 2000; Driver & 

Mattingley, 1998; Crowe, Averbeck, & Chafee, 2010; Benoit & Schacter, 2015; Saj et al., 

2014; Hassabis et al., 2007). 

Episodic memories are not just memories for places, but memories for the actions 

taken as one moves through those spaces including turns, long stretches, walking up and 

down hills, transitioning from a steep hill to a flat surface, and navigating space as the 

constraints of the environment will allow. Furthermore, memory for the time spent on 

each action is often disproportionate with the amount of time experienced while 

performing those actions. Therefore we examined firing patterns for HPC and PPC 

neurons as a function of location on a five-loop, squared spiral track. Each loop had four 

segments: a stair segment, a ramp segment, and two flat segments. Segments of the 

innermost loop were all flat. The track design was implemented to achieve recursion in 

path shape across each loop and to extend the number of different locomotor actions 

utilized in path running. Both locomotor action and path recursion have previously 

proven to powerfully impact the form of spatially-tuned firing in both HPC and PPC, 

yielding both discrimination for individual locations based on overall trajectory 

(Ferbinteanu & Shapiro, 2003; Frank et al., 2000; Wood et al., 2000; Ainge et al., 2007; 

Grieves et al., 2016) and recursion in firing patterns across different locations when 
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trajectory shapes are repeated (Nitz, 2011; Frank et al., 2000).  We consider here the 

extent to which path shape and locomotor action impact: 1) the generalization or 

discrimination in population firing patterns for different environmental locations, and 2) 

the scale of representation in PPC and HPC. We found that PPC population activity 

patterns, through their discrimination and similarity in firing patterns, mapped location, 

actions, and progress through a trajectory. Additionally, PPC and HPC’s scale of 

representation followed variation in the type of action performed during track traversal. 

The results speak to the brain mechanisms which encode path running episodes in a way 

that goes beyond memory only for locations visited to include the actions taken along 

trajectories of a particular shape. 

 Mapping positions in the vertical dimension, by most accounts, is anisotropic 

(Hayman, et al., 2011; Hayman et al., 2015; Casali et al., 2019) to that for the horizontal 

dimensions. However, as we have stated, episodic memories associated with trajectories 

through space are also characterized by the action that takes place. The current study 

shows that the vertical actions yield specific activations of PPC neurons, and clearly 

impact the degree to which both PPC and HPC neuron populations produce similar or 

different activity patterns for equally distant locations. Linearized, positional firing rate 

vectors of the squared spiral track revealed a number of neurons in PPC whose firing 

peaks coincided with track positions associated with specific actions such as turning, 

hopping (along the stair section of loops 1-4), downward motion along a ramp segment, 

and transitions from movement through vertical and horizontal planes to movement 

through only the horizontal plane.  Accordingly, PPC population firing patterns exhibited 

similarity across track spaces that followed similarity in actions.  From population 
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correlation matrices measuring similarity in firing patterns between all pairs of track 

locations, the greatest between-location similarity was seen for path segments that 

demanded the same actions.  Spatial tuning along the track’s two flat segments, which 

required forward locomotion bracketed by right turns and had no vertical components, 

bore greater similarity to each other than did the flat and ramp segments.  Similarity was 

still further reduced when comparing the two flat segments to the ascending staircase 

which demanded hopping, a very different form of locomotion. Additionally, all 

segments in loop 5, which were flat, demanded no vertical movements, and required 

similar actions, showed greater similarity to each other than did all segments in loops 1-4 

which varied in vertical components and actions. Thus, action type was a strong 

determinant in the mapping by the population of PPC neurons and differentiates actions 

associated with movements in horizontal versus vertical dimensions. 

While the impact of locomotor action on PPC pattern recurrence was impressive 

and graded according to locomotor similarity, we note that PPC firing patterns exhibited 

greatest similarity along the main diagonal of the correlation matrix which measures 

pattern similarity for the same locations on odd versus even trials.  We also note that 

pattern similarity was highest for analogous positions along segments that demanded the 

same actions when those segments were from adjacent loops along the full five-loop path.  

Thus, while the PPC population showed strong modulation by action type, the location of 

the animal along the full five-loop route is also a strong determinant of spatial tuning (see 

also Nitz, 2012).   

While some HPC neurons appeared sensitive to position along the track and 

current locomotor action type, the impact of locomotor action type alone was subdued, 
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relative to PPC. Pattern similarity across analogous positions of two different segments 

for any given loop was uniformly low.  Thus, as one might expect, recurrence in 

locomotor actions across the four segments making up each loop was insufficient to drive 

similarity in firing patterns given the difference in heading directions (McNaughton et al., 

1983) and locations in the environment.  While locomotor action type was insufficient to 

drive HPC pattern similarity across different loop segments or even across analogous 

locations of adjacent loops, the impact of locomotor action on the scale of representation 

followed a very similar pattern for PPC and HPC. As in earlier work (Maurer et al., 

2005), we measured the scale of representation as the distance from any single location 

past which the population firing pattern for that location versus another falls below r = 

0.5.  We note that while the choice of r = 0.5 is somewhat arbitrary, it appears to match 

the average sizes of place fields along tracks and effectively described reliable 

differences in HPC place field sizes along the septo-temporal axis.  Furthermore, our own 

results are robust to a range of thresholds between r = 0.25 and r = 0.65. 

Remarkably, the scale, or resolution, of spatial representation in both PPC and 

HPC fluidly follows variation in the actions that are used to move through space, 

providing a potential explanation for the irregularity of time recalled in an episodic 

memory. For example, if one takes a trip that involves driving down long, straight roads 

separated by turns, the portions of the drive down long straight roads last much longer 

than the turns. However, the act of turning is an inflection point in the experience, and 

leaves a stronger impression on the memory for the trip. Thus, the remembered 

experience of time is highly irregular, perhaps in part as a consequence of the connection 

of locations and the actions associated with them. The PPC population exhibited a greater 
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range in scale, exhibiting long stretches of similar activity patterns across segment spaces 

associated with the same locomotor behavior, be that hopping, descending along a ramp, 

or simply forward locomotion.  Such stretches of sustained PPC firing patterns were 

interrupted as animals moved through turns, where the scale of representation was 

minimal.  PPC dynamics in scale of representation weakened as the animal moved 

through inner loops such as loop 4 where the distances associated with forward 

locomotion along a segment were shorter relative to the spaces over which a full turn is 

accomplished.  Scale of representation in PPC again peaked along the fifth loop, across 

which the animal’s behavior consisted of continuous straight running on a flat surface 

and right turning for all segments, without vertical traversal. 

We found that HPC spatial tuning was highly dynamic in terms of scale and that 

its patterning follows that of PPC. However, the range of scale was muted relative to 

PPC.  Thus, PPC and HPC, from the perspective of scale of representation, are observed 

to exhibit parallel sensitivity to the actions that accompany movement through distinct 

locations in an environment.  It is possible, of course, that both structures are influenced 

in this way by input from another brain region, but the repeatedly observed sensitivity of 

PPC neurons to locomotor action types and their associated postures (Mimica et al., 

2018; Nitz, 2006; McNaughton et al., 1994; Wilber et al., 2014; Whitlock et al., 2012) 

suggests that HPC sensitivity to locomotor action is a property of interaction between the 

two regions. PPC and HPC are only indirectly connected through structures such as 

retrosplenial cortex, peri-rhinal and post-rhinal cortex, and the medial and lateral 

entorhinal cortex (Burwell, 2000; Witter et al., 2000; Olsen, Ohara, Iijima, & Witter, 

2017; Wyss & Van Groen, 1992).  Thus, the means by which such parallel dynamics in 
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scale of representation occurs demand further study.  Future work should also address 

whether the shorter range for scale of representation in HPC is a consequence of local, 

HPC-centered constraints on persistence in population patterning across space or a 

compression of the impact of PPC output on HPC through intervening structures.   

 Both HPC and PPC neurons are strongly implicated not only in spatial mapping, 

but also episodic memory.  As a result, the spatially tuned firing patterns in each region 

across defined trajectories can be considered a window onto the content and character of 

episodic memories.  From this perspective, the findings from the present work would 

suggest that memory for the actions taken in series during a path traversal are registered 

in PPC in a form that also respects the progress through the full route.  In episodic 

memory recall, one would expect that HPC and PPC activity is temporally coordinated to 

the extent that recalled memory contains the sequence of environmental locations, the 

sequence of trajectory positions, and the sequence of associated actions.  This is at least 

consistent with the finding that PPC and HPC firing patterns during path traversal are 

“reactivated” during hippocampal sharp-wave ripple events at stopping points along a 

trajectory or during subsequent sleep (Qin, McNaughton, Skaggs, & Barnes, 1997).   

 To the extent that different population patterns reflect distinct elements in 

episodic memory, we conclude that time in episodic memory is irregular.  Population 

patterns persisting across space do so over several seconds of clock time while the much 

shorter time periods involved with turning a corner are associated with sharp changes in 

population patterning.  In this way, we expect the action and route location mapping in 

the PPC population impact the HPC population such that inflection points in behavior 
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become inflection points in memory with generalization across periods of time that 

intervene. 

Chapter 2, in part, has been published in Hippocampus, Shelley, L.E. & Nitz, 

D.A. (2021). The author of the dissertation is the primary author of this publication. 
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Chapter 3: Experiment 2 – Choice Behavior and Logical Fragmentation of the 

Environment 

3.1 The Present Study 

When asked to judge the location of Montreal relative to Seattle, participants will 

often state that Montreal is to the northeast, but the actual direction is southeast (Stevens 

& Coupe, 1978). Similarly, participants will often judge Reno, NV to be northeast of San 

Diego, CA, when the actual direction is northwest (Stevens & Coupe, 1978). These 

examples reveal fragmented structure of our cognitive representations of spatial 

relationships, an idea well-supported by the human spatial navigation literature (Stevens 

& Coupe, 1978; Hirtle & Jonides, 1985; McNamara, 1986). Spatial locations like San 

Diego and Reno can be grouped into larger fragments of space like California and 

Nevada. The relative locations of those larger fragments (e.g. Nevada is east of 

California), will then sometimes distort judgments of relative direction of subordinate 

locations (Stevens & Coupe, 1978; Hirtle & Jonides, 1985).  

Fragmented environments can also distort subjects’ judgments of absolute 

distance, where distances between landmarks located across fragment boundaries or 

between clusters tend to be overestimated, and distances within fragments or clusters tend 

to be underestimated (Kosslyn, Pick, & Fariello, 1974; Hirtle & Jonides, 1985; 

Newcombe & Liben, 1982; McNamara, 1986). When people plan the shortest route to 

multiple targets, they opt to use a fragmented, hierarchical navigation strategy that 

incorporates this phenomenon (Wiener, Ehbauer, Mallot, 2009).  Both humans and 

animals typically must travel long distances all while navigating around barriers and 

obstacles. Fragmented representations of space may aid animal navigation in much the 
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same way that knowing the relative locations of every city in the United States is aided 

by grouping those cities into states and knowing the locations of those states. 

One obvious way to break up an environment into fragments is to introduce a 

barrier. Humans and animals regularly encounter barriers that break up environments into 

smaller sections. Everyday environments are naturally broken up into smaller sections by 

physical barriers, but more subtle aspects of an environment may also play roles in 

logical fragmentation.  

 A rule can break up visual field space into fragments even when there is no 

visible, concrete boundary line. For example, one discerns and learns the rules for 

behavior when on one side versus the other of a speaker’s podium. The audience sits in 

front of the podium and pays attention to the speaker, who makes sure to stand behind the 

podium and present. In another example of rule-based fragmentation, Freedman and 

Assad (2006) were able to use a rule to create such a boundary for monkeys. Monkeys 

were trained to group directions of motion on a screen into two categories, separated by 

an invisible, but implied category boundary.  

The work by Freedman and Assad was focused solely on fragmenting the space 

on a computer screen with head-fixed animals and so does not speak to the issue of 

whether an environmental space can be fragmented by a rule in the context of animals 

traversing through space. Furthermore, space is often mentally organized according to 

how it is used. Even an essentially wall-less environment will be spatially perceived 

according to how actions (e.g., cooking) or even lack thereof (e.g., sleeping) are 

apportioned. Thus, addressing these issues will, in principle, yield important new insights 
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into how highly complex operations associated with everyday behaviors can yield a 

fragmented structure in our cognitive representations of the environment. 

3.2 Methods 

3.2.1 Subjects 

 Adult male Sprague Dawley rats (Harlan Laboratories) approximately 6 to 12 

months of age were used as subjects (n = 8). The rats were housed individually in 

standard plastic cages and kept on a 12-hour light-dark cycle. Animals were maintained 

on a food-restricted diet (85-95% of free-feed weight) to motivate them to perform the 

task. All animals were habituated to the colony room and handled for 30 minutes to 1 

hour each day for 1-2 weeks prior to task training. All experimental protocols adhered to 

AALAC guidelines and were approved by IACUC and the UCSD Animal Care Program. 

3.2.2 Apparatus 

 The behavioral task was conducted using a T-shaped track with a round start-plate 

(18.5cm diameter) at the base. The track was 122 cm long x 10 cm wide on the stem and 

67.5 cm long x 10 cm wide on the top. A 0.5 cm tall railing enclosed all sides, allowing 

the animal to see the larger room and distal cues on the walls. 

3.2.3 Behavioral Training 

Animals were trained to traverse the stem of the T-shaped track and make either a 

left or a right turn at the choice point for a food reward. Correct left or right choices 

depended on the track’s position in the room in relation to an implied, rule-defined 

boundary (figure 4b). The animals then made a return run, retracing their outbound 

trajectory directly back to the start plate. Only correct turns on outbound runs were 

rewarded, and rats received a smaller reward for inbound runs to motivate prompt returns 
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to the start plate. Animals were trained to run in a ballistic fashion to eliminate pauses 

that would influence analysis of spiking data. There was no visible, physical line drawn 

dividing the room. Animals were able to localize themselves by reference to prominent, 

fixed distal cues in the 304 cm x 457 cm recording room. Track locations were placed 20 

cm apart for locations 1-5 and position 6 was located 10 cm adjacent to position 1 (figure 

4a). Track location distribution spanned most of the length of the room. Fixed distal cues 

included large wall murals, a desk, a table, and the recording rig, all distributed around 

the perimeter of the room. 

Initial training involved only track sites 1-4 in larger blocks of 20 trials in each 

location in randomized order. During a block, the track was placed in one of the 4 

locations, and then moved to another location at the start of the next block. Track 

locations were in randomized order. Rats learned through trial and error that track 

locations 1 and 2 required left turns and locations 3 and 4 required right turns. After 2 

weeks of 20-trial blocks, the task structure was broken up into 28 blocks of 5 trials each 

and performance accuracy was recorded (figure 4a).  

Once rats met criteria on track sites 1-4 (significantly above chance and at least 9 

days of behavioral results), track location 5 was introduced as a probe trial, with the 

exception of one rat that was tested on track location 5 before meeting criteria (figure 4a). 

This served to rule out simple individual associations between place and a correct action 

and assess for transfer of the whole-room fragmentation to novel positions. Once animals 

performed significantly above chance on positions 1-5, track location 6 was introduced as 

a second probe trial (figure 4a). Novel track locations were immediately incorporated into 

the 28-block structure. 
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Figure 4. Paradigm for fragmenting a space into two subspaces. (a) Upper: Overhead 
view of the track location layout. Full T-track only shown for location 1 in red for figure 
clarity. The other location markers represent the top of the T. Locations 1-4, shown in 
color, were the main training and recording locations. Locations 5 and 6, shown in gray, 
were introduced as novel location probe trials to test for transfer of the task rule to new 
locations. Gray dashed line through the middle of the space represents the fragment 
boundary implied by the task rule (no actual line exists). Black panels represent distal 
cues in the room. Lower: Temporal structure of the task. Each block consisted of 5 trials 
in a particular location before the track was moved to a new location for the next block of 
five trials. Each session consisted of 28 blocks. Location order was randomized. (b) 
Overview of task in each track location. Each panel shows overhead view of the rat on 
the track at one of the 6 locations. Turn direction is indicated by blue and purple dashed 
arrows and the asterisk represents the reward site. (c-f) Behavioral accuracy. (c) Boxplots 
of all rats’ percent accuracy on the task across days in each track location 1-4. Boxplots 
highlighted in red only include data from trial 1 of a block, while other boxplots represent 
all trials. Animals’ performance demonstrated a trend toward lower accuracy in trial 1 
and lower accuracy in track locations 2-3. (d) Mean percent accuracy of each rat in each 
trial 1-5. Each colored line corresponds to one rat. Accuracy was significantly worse in 
trial 1 compared to trial 2. (e) Mean percent accuracy of each rat in trial 1 of each track 
location 1-4. All animals’ accuracy was significantly worse on track locations closest to 
the boundary (2 and 3) compared to locations farthest from the boundary (1 and 4). (f) 
Location 5 and 6 probe trial accuracy. Each colored line represents correct vs incorrect 
turns for one rat across all trials on day 1 when the novel location (5 or 6) was 
introduced. Line gaps in the top “correct” area represent incorrect turn choices, and are 
shown below in the “incorrect” area. Each gray dashed line demarcates a new block of 5 
trials. All 8 animals turned correctly in location 5 the first time it was introduced, while 
6/8 turned correctly in location 6 the first time it was introduced. Rats that missed 
location 6 quickly learned the correct turn during that same session. 
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3.2.4 Analysis of Behavioral Accuracy: Trial 1 vs. Other Trials 

 Sign tests were used to assess whether performance accuracy was significantly 

above chance (50%) for each trial (1-5) across days before surgery for each of 8 animals 

and for all animals combined. To statistically assess observed differences in trial 1 vs 

other trials, a chi square test of independence comparing trial 1 vs trial 2 accuracy was 

performed. 

3.2.5 Analysis of Behavioral Accuracy: Track Location 

 Accuracy in each track location was evaluated using sign tests to assess whether 

performance accuracy was significantly above chance (50%) at each track site. For each 

track location sign test, only data from the first trial of each block was included in this 

calculation. The first trial of each block is a better assessment of the rat’s ability to use 

knowledge about his allocentric spatial position since the track was moved just prior. 

During subsequent trials the rat simply has to repeat the action he took in trial 1 if that 

action was previously rewarded. Sign tests were performed for each location to assess 

both per-rat accuracy and accuracy of all rats combined. To assess whether rats learned 

the whole-room fragmentation rule (as opposed to independent place-choice 

associations), sign tests were also performed on all probe trials (locations 5 and 6) across 

all rats the very first time the novel location was encountered. 

3.3 Results 

3.3.1 Choice Behavior Follows the Imposed Logical Fragmentation of the 

Environment 

 Adult male rats (N=8) were trained to perform a modified T-maze navigational 

task in which correct left/right turn choice behavior was dictated by the location of the 
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maze within the environment (figure 4a). Animals were trained to run along the stem of a 

T-shaped track and either turn left or right depending on the location of the choice point 

(intersection) in the larger experimental space. After an outbound run, the animals then 

made a return run where they ran directly back to the start plate. When the choice point of 

the maze was in one half of the environment, the animal was required to make a left turn, 

and if in the other half, a right turn (figure 4b). In order to assess the impact of recent 

navigational decisions at a single location, animals were run on the task at track locations 

1-4 in daily sessions of 28 blocks made up of 5 trials each. Correct decision-making in 

this task demands learning of a rule-based logical fragmentation of the environment (the 

‘allocentric space’).  By rule, maze locations in one half of the room demand a left-turn 

choice while locations in the other half demand a right turn (Figure 4a-b).  

 Animals were first trained to make left/right turn choices in 20-trial blocks at four 

different maze locations in the environment (Figure 4a).  The maze structure permitted 

open view to the surrounding large recording room environment which was rich with 

prominent distal visual cues.  After two weeks of such training, individual blocks were 

shortened to 5 trials and further training ensued to reach criterion performance, at least 9 

straight days of above-chance choice-making. Subsequently, animals were exposed to 

novel environmental locations for the maze to probe learning of the spatial rule (further 

detail in methods). 

 To examine behavioral performance, we focused on the 9 days prior to surgery for 

animals (N=4) undergoing implantation of recording wires and, for those animals not 

implanted (N=4), a 9-day period subsequent to reaching the criterion described above.  

Each day, each animal worked through a total of 140 trials arranged in blocks of five 
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trials with the maze location moved randomly between the four initial locations.  A sign 

test demonstrated that performance for all animals on the task was well above chance (> 

90%) for each track location (locations 1-4 of figure 4c; p-values ranged from p = 4.84e-

70 to p = 4.54e-56).  Thus, animals had robust knowledge of appropriate turn choice 

according to environmental location of the maze. 

 It is possible to solve the task for track locations 1-4 by forming four independent 

place-choice associations rather than by applying a learned, rule-based fragmentation of 

the environment into two parts. To shed light on the character of the learned spatial 

relationships and rule out the possibility that rats have formed 4 independent place-choice 

associations, we tested for transfer of the left- versus right-turning rule to novel positions 

(locations 5, 6 of figure 4a) within the two sub-regions of the environment.   

 Remarkably, all 8 rats made the correct choice on their very first encounter with 

position 5, and 6/8 rats made the correct initial choice at position 6 (figure 4f).  

Furthermore, the two animals with incorrect choices at position 6 chose correctly on trial 

2 and for all but one of the remaining trials of the behavioral session (yellow and black 

traces). A sign test on all probe trials revealed that first-trial-ever accuracy was 

significantly above chance (p = 0.004), demonstrating that the learned rule reflects the 

fragmentation of the environment into subspaces and can be generalized to new 

circumstances. The choice behavior was inconsistent with a model in which the animal 

must learn the correct choice at each location independently.  

Further ruling out simple, independent place-choice associations, performance 

accuracy for all animals was significantly worse for track locations 2 and 3 which are 

closest to the fragment boundary (figure 4c, chi-square test for independence, p-values 
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ranged from 8.14e-5 to 7.33e-14). This proximity effect reflects increased difficulty of 

the task when the track location is proximal to the boundary line (dashed line in Figure 

4a-b), indicating a continuum of difficulty spanning the whole environment that peaks at 

the fragment border. If four truly independent place-choice associations were formed and 

the animals did not fragment the environment, no such continuum would be expected.  

Furthermore, the task’s block structure consisted of five trials in a row at each track 

location demanding, at the very least, that the animal assess maze location for each first 

trial of a block. Accordingly, the proximity effect for all animals was exacerbated if only 

the first trial of each block was examined (see figure 4d,e), an indication that animals 

may be using a different strategy during the first trial of a block compared to subsequent 

trials. 

3.3.2 Choice Behavior According to Trial Number Suggests Two Choice Strategies 

 The task structure was such that the first trial of any five-trial block is distinct 

from trials 2-5. Since the track had just been moved to a different location during trial 1, 

animals had to know where they were in the room as well as where the track is located in 

the room, a “track location-based strategy.” For subsequent trials of the same block, an 

animal simply has to repeat a prior action to solve the task if it was previously rewarded, 

a “prior action-outcome strategy.” Alternatively, if an incorrect choice had been made on 

trial 1, the animal would simply have to make the opposite choice on trial 2.  

 The behavioral data are consistent with the rat employing these two different 

strategies. Although all rats performed significantly above chance at each track location 

(1-4) and for every trial number (1-5), the data showed an obvious trend toward worse 

performance on trial 1 of each block of 5 trials with better performance on subsequent 
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trials (figure 4c-f). In terms of performance accuracy, trial 1 is more challenging overall. 

To statistically assess observed differences between trial 1 and other trials, a chi-square 

test of independence comparing trial 1 vs trial 2 accuracy was performed. The trial 1 vs 2 

accuracy difference was greater than the differences between subsequent trial 

comparisons (e.g., 2vs3, 3vs4, etc.). Four of eight rats performed significantly worse on 

trial 1 (significant p-values ranged from p = 0.02 to p = 0.04), and when considered all 

together, rats overall performed significantly worse on trial 1 (p = 2.56e-7). Thus, the 

animals may use a different strategy on trial 1 compared to trials 2-5. 

3.4 Discussion 

The left/right choice behavior of rats on a T-maze evidenced robust learning of a 

rule-based environmental fragmentation.  All animals proved capable of very quickly 

(immediately in most cases) applying the behavioral rule learned at four room locations 

to two new environmental locations. To our knowledge, this represents the first work 

using decision-making rules to effect an arbitrary division of an environment. 

A study by Grieves and colleagues (2016) used a somewhat similar behavioral 

setup where rats had to solve an odor location discrimination task in each of four 

identical compartments. In one condition the compartments were each parallel to one 

another, and in another condition the compartments were fanned out so that each 

compartment was 60 degrees from one another. Since the correct choice for the odor 

location discrimination task was different in each compartment, there is a similarity to the 

current study where the animal had to determine the location of each compartment 

relative to the other compartments in order to solve the task correctly. The rats in the 

parallel condition had significantly greater difficulty on this task compared to the 60-
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degree angle condition, and many of the animals didn’t even reach criterion. Although 

there are some similarities, in the present study the animals complete the task on a track 

in an open environment, so that on each trial all of the same distal cues are visible to the 

rat and clue the animal into the track’s location. This may explain the discrepancies 

between our results and those of the multi-compartment task. 

In the present task, animals showed significantly lower accuracy on trial 1 

compared to subsequent trials in a block. This difference in performance on trial 1 vs 

subsequent trials, and the five trials per block structure of the task raises the possibility of 

alterations in the strategy used to determine choice on trial 1 compared to subsequent 

trials. Such a robust behavioral distinction between trial 1 and trials 2-5 implies two 

strategies are used by the rat depending on recent experience at a track location: 1) a trial 

1 ‘track location based strategy’ in which the rat needs to know its allocentric room 

location; and 2) a trial 2-5 ‘prior response strategy’ in which the rat simply needs to 

execute the same procedure as in the prior trial, if rewarded, or the opposite procedure if 

not rewarded. The prior response strategy could seemingly take advantage of such 

encoding of recent history, but would not require any knowledge of room location for 

decision-making. 

There is precedent for different strategies used by a rat in a different cross maze 

paradigms depending on how long they’ve been performing the task (Chang & Gold, 

2003; Tolman, Ritchie, & Kalish, 1946; 1947; Packard & McGaugh, 1996; Packard, 

1999). These tasks usually involve a cross maze placed in the same location over multiple 

trials, where rats start from the same arm (e.g. south arm) and turn toward a baited arm. 

During a probe trail, to determine strategy, the animal starts from the opposite arm (e.g. 
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north arm). Generally, the animals will initially use a place strategy (turning toward the 

correct location in the room), but eventually over time will switch to a response strategy 

(turning in the egocentric direction that they usually turn, left or right). In our task, the 

track switches locations altogether at the start of every block, and so a track location 

based strategy established by the entire track’s placement in the room would need to be 

used at the start of each new block. 

With the difference in performance on trial 1 vs subsequent trials, paired with 

distinct possible strategies across the different trial types, it follows that there may be 

some extra difficulty in the first trial decision-making inherent in the structure of the task, 

perhaps due to greater demand on retrieval mechanisms or heightened task engagement 

on the first trial of a block when the track location has just been shifted. For any first trial, 

the rat must pay greater attention to its location in the room in order to determine a 

correct turn decision since repeating the decision from a prior trial at another room 

location would yield only chance-level performance (50% correct), as the animal is 

equally likely to be placed in a left-turning vs. a right-turning case. In the present study, 

the accuracy was above chance for all trials and track locations.  

The difference in behavioral accuracy between trial 1 and subsequent trials raises 

the possibility that neural activity might distinctly reflect the two strategies in some way.   

The use of different strategies over time (place and response) is associated with different 

neural systems (Chang & Gold, 2003; Packard & McGaugh, 1996; Packard, 1999). 

Several findings in the literature suggest that HPC activity can track the recent history of 

exposure to a given environment and decision-making context (Colombo, Brightwell, & 

Countryman, 2003; Wimmer & Büchel, 2019). Additionally, changes in HPC theta 
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rhythm have been reported for animals exploring novel environments (Feng, Silva, 

Foster, 2015; Penley et al., 2013; Jeewajee, Lever, Burton, O’Keefe, & Burgess, 2008). 

The neural activity patterns of HPC and PPC as a function of trial number for the present 

task is measured and discussed in the next chapter.  

Chapters 3 and 4, in part, have been published in Neurobiology of Learning and 

Memory, Shelley, L.E., Barr, C. I., & Nitz, D.A. (2022). The author of the dissertation is 

the primary author of this publication. 
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Chapter 4: Experiment 3 – Cortical and Hippocampal Dynamics Under Logical 

Fragmentation of Environmental Space 

4.1 The Present Study 

Navigation in humans and animals is often constrained to movement along 

pathways that are interconnected and oriented in either a simple or complex fashion. The 

layout of paths, their interconnections and affordances impact human perception and 

navigational problem solving (Warren, Rothman, Schnapp, & Ericson, 2017), as well as 

neural activity in hippocampus and cortex in humans moving through virtual 

environments (Bonner & Epstein, 2017; Javadi et al., 2017) and in animals moving 

through physical environments (Nitz, 2006; Ainge et al., 2007; Grieves et al., 2016; 

Gupta et al., 2012; Dabaghian, Brandt, & Frank, 2014). A frequently-recurring, 

fundamental navigational problem in such environments, whether regular (e.g., 

Manhattan or Fresno, CA) or irregular (e.g. Boston or Arlington, VA) in their 

arrangements, is the decision whether to turn left or right as one approaches an 

intersection.  Like humans, animals routinely encounter this same problem multiple times 

within a single environmental setting, as their movement is often constrained to naturally 

occurring pathways, pathways within urban environments, or tunnel systems below the 

surface. In all cases, the choice at each intersection must take into account the unique 

context associated with it.   

Choice behavior and neural activity leading up to choices at isolated “T” junctions 

has been studied extensively using the T-maze, Y-maze, or a squared figure-8 maze. 

Multiple studies suggest that part of the solution to a turn-choice navigational problem is 

achieved through hippocampal (HPC) trajectory-specific encoding of absolute location in 
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an environment (Pastalkova, Itskov, Amarasingham, & Buzsáki, 2008; Wood et al., 2000; 

Grieves et al., 2016; Ferbinteanu & Shapiro, 2003; Ainge et al., 2007; Frank et al., 2000). 

Here, in addition to the well-known mapping of absolute location (or “place”) in an 

environment, HPC patterns discriminate different trajectories taken through the same 

places on ‘Y’ and ‘T’ shaped mazes.  

In complement to trajectory-dependent encoding of environmental location in 

HPC, posterior parietal cortex (PPC) neurons also map position in a trajectory, but this 

mapping is independent of environmental location (Nitz, 2006; Nitz, 2009; Nitz, 2012).  

That is, specific, spatially-tuned firing patterns for PPC neurons recur when the same 

trajectory is traversed between different start and end points in the environment and is 

associated with different, even opposite, directions of travel.  In the same PPC neuron 

populations, a large minority (~30%) of PPC neurons exhibit differential firing during 

left versus right turning behavior (Whitlock et al., 2012; Nitz, 2006; McNaughton et al., 

1994; Wilber et al., 2014).  However, route-position mapping of individual neurons and 

PPC populations is not epiphenomenal to these action correlates (Nitz, 2006; Nitz, 2009; 

Nitz, 2012; Whitlock et al., 2012; Wilber et al., 2014).  This indicates that PPC produces 

a combined action and route-position encoding that could be used to guide action 

selection (left versus right turning) according to perceived location along a complex route 

that passes through multiple intersections.    

Both lesion and recording studies have suggested that HPC and PPC interaction is 

critical for navigation (Rogers & Kesner, 2007; Save, Paz-Villagran, Alexinsky, & 

Poucet, 2005; Qin et al., 1997). But, exactly how these regions interact to guide 

navigational decision-making remains to be determined. In fact, outside of recording 
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experiments performed under head restraint and virtual reality (Harvey, Coen, & Tank, 

2012; Krumin, Lee, Harris, & Carandini, 2018), the spatial tuning and trajectory-

dependence of PPC neurons during T-maze performance is unknown.  What is clear is 

that the PPC encoding of route position also reliably encodes proximity to an upcoming 

intersection (Nitz, 2006). In principle, then, PPC ensembles can set a framework for 

left/right-turn decision-making that generalizes to all physical instances of T junctures 

within an environment. Structures such as hippocampus, subiculum, and retrosplenial 

cortex could provide information on environmental position and orientation that, as direct 

or indirect inputs to PPC, could guide choice-making at individual locations.  Finally, 

PPC projections to secondary motor cortex could provide a final pathway to implement 

actual navigational actions (Yamawaki, Radulovic, & Shepherd, 2016; Nitz, 2009; Olson, 

Li, Montgomery, & Nitz, 2020).  

For environments containing multiple, spatially distributed choice-points, a 

further consideration concerns fragmentation of the environment into neighborhoods. 

Turn choices that get one to a goal will often cluster in different fragments of an 

environment. For instance, if walking north in one neighborhood, the good restaurants 

might be to the west and so a left turn will suffice at any of multiple intersections, but if 

one walks a bit farther north into another neighborhood, the good restaurants might be to 

the east and require a right turn at any of the intersections. Finally, in addition to a spatial 

context, each individual T-intersection has an experiential context where, upon first 

approach, the person or animal must define where he is and make the appropriate left or 

right turn, but with repeated experience turn choice may be a more automatic procedure 

not requiring knowledge of spatial location.  
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To begin to address such forms and contexts for navigation, we developed a T-

maze spatial decision-making task that required animals to know in which half of a room 

they were located.  Under these conditions, we find that HPC and PPC spatial firing 

patterns are aligned to the same track-based frame of reference, as opposed to a room-

based frame, and that recent experience significantly impacts the magnitude of spatially 

tuned firing rates.  The findings call attention to the impact of experience in decision-

making and call for revision of current models for T-maze choice behavior in complex 

environments. 

4.2 Methods 

4.2.1 Subjects 

Adult male Sprague Dawley rats (Harlan Laboratories) approximately 6 to 12 

months of age were used as subjects (n = 8). The rats were housed individually in 

standard plastic cages and kept on a 12-hour light-dark cycle. Animals were maintained 

on a food-restricted diet (85-95% of free-feed weight) to motivate them to perform the 

task. All animals were habituated to the colony room and handled for 30 minutes to 1 

hour each day for 1-2 weeks prior to task training. All experimental protocols adhered to 

AALAC guidelines and were approved by IACUC and the UCSD Animal Care Program. 

4.2.2 Apparatus 

The behavioral task was conducted using a T-shaped track with a round start-plate 

(18.5cm diameter) at the base. The track was 122 cm long x 10 cm wide on the stem and 

67.5 cm long x 10 cm wide on the top. A 0.5 cm tall railing enclosed all sides, allowing 

the animal to see the larger room and distal cues on the walls. 

4.2.3 Behavioral Training 
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Animals were trained to traverse the stem of the T-shaped track and make either a 

left or a right turn at the choice point for a food reward. Correct left or right choices 

depended on the track’s position in the room in relation to an implied, rule-defined 

boundary (figure 4b). The animals then made a return run, retracing their outbound 

trajectory directly back to the start plate. Only correct turns on outbound runs were 

rewarded, and rats received a smaller reward for inbound runs to motivate prompt returns 

to the start plate. Animals were trained to run in a ballistic fashion to eliminate pauses 

that would influence analysis of spiking data. There was no visible, physical line drawn 

dividing the room. Animals were able to localize themselves by reference to prominent, 

fixed distal cues in the 304 cm x 457 cm recording room. Track locations were placed 20 

cm apart for locations 1-5 and position 6 was located 10 cm adjacent to position 1 (figure 

4a). Track location distribution spanned most of the length of the room. Fixed distal cues 

included large wall murals, a desk, a table, and the recording rig, all distributed around 

the perimeter of the room. 

Initial training involved only track sites 1-4 in larger blocks of 20 trials in each 

location in randomized order. During a block, the track was placed in one of the 4 

locations, and then moved to another location at the start of the next block. Track 

locations were in randomized order. Rats learned through trial and error that track 

locations 1 and 2 required left turns and locations 3 and 4 required right turns. After 2 

weeks of 20-trial blocks, the task structure was broken up into 28 blocks of 5 trials each 

and performance accuracy was recorded (figure 4a).  

Once rats met criteria on track sites 1-4 (significantly above chance and at least 9 

days of behavioral results), track location 5 was introduced as a probe trial, with the 
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exception of one rat that was tested on track location 5 before meeting criteria (figure 4a). 

This served to rule out simple individual associations between place and a correct action 

and assess for transfer of the whole-room fragmentation to novel positions. Once animals 

performed significantly above chance on positions 1-5, track location 6 was introduced as 

a second probe trial (figure 4a). Novel track locations were immediately incorporated into 

the 28-block structure. 

4.2.4 Surgery 

Once trained, 4 of the 8 rats were surgically implanted with tetrode arrays 

(bundles of four 12 µm tungsten wire, gold-plated to impedances of 0.1 mOhms) 

mounted to custom-built microdrives that allowed for ventral movement in 40 µm 

increments across days. Isoflurane (4-5% induction, 1-2% maintenance) was used to 

anesthetize animals for surgery and they were placed in a stereotaxic apparatus (Kopf 

Instruments). Craniotomy and resection of dura mater over the PPC was performed to 

allow bilateral implantation of microdrives over the right and left posterior parietal cortex 

(anterior-posterior: 4mm posterior to bregma, 2.3mm lateral to the midline suture, .5mm 

depth from brain surface; Paxinos & Watson, 2007). 

4.2.5 Recordings 

The recording techniques necessary for the current project have been used and 

described in detail in published work from the Nitz laboratory (Alexander & Nitz, 2015; 

Nitz, 2012). Recordings of multiple single neuron ensembles and local field potentials 

were obtained from both PPC and the CA1 area of the HPC during track traversal. Data 

was collected on a 48-channel Plexon system that coordinates signal amplification, 

filtering, and sampling of action potential waveforms. In each recording, action potentials 
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were amplified at the headstage connection (20X, Triangle Biosystems), the pre-amp 

stage (50X), and at the amplifier stage (1-15X). Signals were bandpass filtered (450 Hz – 

8.8 kHz). Spike waveforms were digitized using SortClient (Plexon, 40 kHz sampling). 

The microdrives were built to allow dorsal to ventral (PPC to HPC) movement of 

tetrode bundles at 40-micrometer intervals, affording recordings of many neurons in one 

animal across days in both PPC and HPC. The transition from PPC into HPC is routinely 

recognized at first by relative silence across electrodes (when wires are within the corpus 

callosum) and subsequently by the emergence of sharp wave ripple events in the local 

field potential that occur when the animal is immobile. Recognition of such events is 

critical to fine tuning the timing of wire movement into the relatively thin CA1 layer. 

Each rat had 3 microdrives with 4 tetrodes per microdrive allowing recording from all 48 

channels. 

Recording sessions had the same 28-block structure as training sessions. 

Overhead cameras 2.6 m above the floor recorded the animal’s position on the track 

using Cineplex software (Plexon Inc., Denison, Tx) while rats performed the task. 

Cineplex detects differently-colored LED lights attached to the rat’s implant and encodes 

position in the room. Aside from spatial positions, variables that can be extracted from 

this data include direction of movement, head orientation, velocity, and left and right 

turning action. Tracking data was filtered for ballistic runs such that pauses would not 

influence analysis of spiking data. 

4.2.6 Histology 

 Animals were perfused with 4% paraformaldehyde under deep anesthesia after all 

recordings were completed. Brains were extracted, sliced into 50 µm sections, and Nissl 
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stained to reveal wire locations and final depth in PPC and HPC. Nissl stains confirmed 

wire locations and final wire depth in PPC and CA1 (figure 5; tracks drawn represent 

beginning and ending of recording locations). Final depths were cross-referenced to logs 

of turning depth for each bundle, to records noting the first day in which theta-frequency 

(8Hz) activity was found (a feature of most hippocampal neurons), and to records noting 

the first day that sharp-wave ripple events were observed (an indicator of close proximity 

to the CA1 pyramidal layer). 

 

 
Figure 5. Recording wire tracks through posterior parietal cortex and hippocampal 
sub-region CA1. Left panel depicts typical Nissl stained coronal slice used to define the 
deepest level of penetration of tetrode wire bundles.  Orange arrows mark the location of 
recording wire tracks.  The recording track on the right side is more apparent in adjacent 
slices.  Middle and right panels depict the space over which tetrode wire bundles 
progressed across recordings from beginning to end.  Each color corresponds to one of 
the recording animals.  Note that tetrode bundles are taken to a depth of 0.5 – 0.7 mm 
from the surface of the brain during surgery. 
 
4.2.7 Identification of Clean, Ballistic Track Traversals 

Tracking data was loaded into a custom-made MATLAB user interface to mark 

individual trial starts and ends and to evaluate whether each run was clean and ballistic 

(i.e. having uninterrupted locomotion). Trials were automatically categorized into track 

locations (1-4) as well as correct vs incorrect using a custom-made MATLAB script. 

Only clean and accurate runs were included in neural recording analyses to prevent 

confounding reward time periods, stalled runs, incorrect turn choices, and between-run 
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time periods with neural activity. PPC is sometimes sensitive to action, and HPC patterns 

can change as rats exhibit exploratory, head-scanning behaviors (Monaco et al., 2014). 

Therefore trials where the rat paused its run for any reason were not included in analyses. 

Clean traversals were each approximately 2-3 seconds long on average. 

4.2.8 Linearized Firing Rate Calculation 

 To characterize firing activity during track traversals, individual action potentials 

were mapped to specific positions on a template generated from the animal tracking data. 

A spatial template match for the average movement of the animal in pixel space was 

generated using custom MATLAB software. Trials were individually plotted and starts, 

ends, and turn apices were marked, and a series of 1.49cm template bins were generated 

across the animal’s trajectory. Positional firing rate vectors for inbound and outbound 

runs were then constructed by dividing the total number of spikes in each template bin by 

the total occupancy time in each bin on each path traversal. Individual firing rate vectors 

varied in length across recordings due to differences in the precise trajectories taken by 

animals. Therefore firing rate vectors were interpolated (MATLAB ‘interp1’ function) to 

the average template length in bins across recordings (98 bins). Mean cross-trial 

positional firing rate vectors were calculated from these vectors for individual trials (see 

fig 6a-b). These positional firing rate vectors allow identification spatial firing fields or 

action correlates, where neuronal activity reliably and robustly increases. Such positional 

firing rate vectors can be combined to assess firing patterns for the whole population of 

neurons in a given area across positions. 

4.2.9 Unit Isolation 
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Plexon’s Offline Sorter software was used to isolate units. Peak minus valley 

values of the waveform for each spike were plotted from different tetrode wires on the X 

and Y axes, then spikes that formed clusters were selected as main units. Noise was then 

reduced by plotting various waveform features for each spike including energy, nonlinear 

energy, and principal component projections. Spikes that separated from the main cluster 

were trimmed away. 

4.2.10 Filtering Out Interneurons 

HPC interneurons were not included in analyses. For each HPC neuron, all bins 

where the firing rate was below 0.3Hz were located. If a neuron had fewer than ten bins 

(out of 98) with firing rates below 0.3Hz, it was considered an interneuron and filtered 

from the dataset. 

4.2.11 Correlation Matrix Construction 

Correlation matrices were created for the firing rate vectors of the population of 

PPC and HPC neurons to compare track locations (1-4; figure 10a-b).  As done in other 

works (Alexander & Nitz, 2015; Cowen & Nitz, 2014), these correlations were used as a 

metric for similarity in spatial mapping rather than for statistical testing. To construct 

these, the firing rates of all neurons at a particular position bin for a particular track 

location was correlated with the firing rates of all neurons at a particular position bin for a 

different track location. All pairwise combinations of bins were correlated for two 

different track locations and put into a correlation coefficient matrix where they can be 

easily visualized. Matrices were created for all pairwise track location comparisons (1-4). 

From such matrices the extent to which HPC or PPC ensembles exhibit similar firing 
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patterns across track locations can be determined, where higher correlation values 

represent position bins that were mapped more similarly at the two track locations. 

4.2.12 Choice Probability Analysis 

 To compare firing rates between trials (1-5) and firing rates between track 

locations (1-4) on a per-run, per position bin basis, choice probability analyses were 

conducted for pairwise trial and track location comparisons (figure 6d & 9c). This 

analysis was adapted from Britten et al. (1996) and the calculations involved are 

equivalent to the area under the curve of the receiver operating characteristic (figure 6c). 

Choice probability values are an indicator of how strongly each neuron’s firing rate 

predicts trial number or track location (and therefore a rat’s eventual choice of a left- vs 

right-turn). 

Firing rate vectors for each run were first smoothed by calculating a moving 

average of each vector with a rolling subset of 5 position bins. Then for each pairwise 

comparison (trials 1-5 or track locations 1-4), a Mann-Whitney U statistic was calculated 

for each neuron at each position bin average. An area-under-curve (AUC) statistic was 

calculated from this for each of the distributions of firing rate values at each position bin 

average. The resulting two AUC values for each pairwise comparison are inverses of 

each other across chance (50%; if one is 40% the other is 60%), but we were only 

interested in the magnitude of the prediction, not the direction. Therefore, the maximum 

AUC was taken at each position bin average and put into a vector of that neuron’s choice 

probability at each position bin average, allowing easy visualization of the time course of 

how strongly the neuron predicts either trial (figure 6d) or track location (figure 9c) at 

each bin. These values were then compared to shuffled data from a bootstrapping 
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procedure where run labels for each comparison type (trials 1-5 or track locations 1-4) 

were shuffled. 

As a behavioral control for these values, choice probabilities for each bin were 

calculated in the manner described above for head direction as well as velocity to assess 

whether behavioral changes at each bin predict either trial or track location (and therefore 

the rat’s eventual turn choice). 

4.2.13 Analysis of Local Field Potentials 

Eight HPC recordings were selected for analysis, two random HPC recordings 

from each of the four recording animals. One LFP channel was selected per recording. In 

each case, the channel selected was from the nearest available wire to recorded HPC 

neurons, provided the signal subjectively appeared noise-free. Raw LFPs were band-pass 

filtered in MATLAB for theta rhythm (6-10hz). Theta filtered LFPs were then rectified 

and an amplitude envelope trace connecting the peaks of the rectified trace was 

calculated. Only portions of signal whose time stamps corresponded with animals 

running trials on the task were used for analysis. T-tests comparing trial types were 

conducted using mean envelope values for each run. 

4.3 Results 

4.3.1 Hippocampal and Parietal Firing Patterns Differentiate First Trial of a Block 

 As stated, choice accuracy was significantly above chance levels for all 

conditions, but overall accuracy was significantly worse on trial 1 of each block, 

indicating rats may be using a different strategy on the first trial compared to subsequent 

trials. We therefore conducted separate analyses of spatial tuning in HPC and PPC 
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populations according to trial number to see if HPC or PPC patterns are sensitive to the 

more challenging decision-making on trial 1.  

The behavioral indication of different strategy use on trial 1 vs trials 2-5 was 

paralleled by differences in both HPC and PPC spatial firing patterns.  Figure 6 (a-b) 

depicts positional rate vectors for example HPC and PPC neurons. Rate vectors for some 

HPC neurons evidenced higher firing and earlier onset of firing on trial 1 (red traces) 

relative to trials 2-5 (black traces). The HPC cell of figure 6a has a place field over a 

portion of the stem, and trial 1 firing  (red traces) occurred earlier and at higher rates than 

subsequent trials (black traces). The PPC cell (figure 6b), consistent with prior literature, 

is less sparse in its firing but generates a reliable, if irregular, pattern across trials (1-5; 

red vs black traces). Remarkably, both PPC and HPC neurons exhibit repeated firing 

patterns despite the different track locations (1-4; each firing rate vector depicted in 

figure 6a-b), a finding we explore in the next section.  
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Figure 6. Firing patterns differentiate trial 1 of a block. (a-b) Outbound firing rates of 
an example hippocampal (a) and parietal (b) neuron. Each of the four plots shows firing 
rate vectors for one location (1-4). Red trace shows mean firing rates for trial 1 only. 
Black lines indicate mean firing rates for trials 2-5. Mean firing rates for all trials 
combined shown in blue shaded area. Black dashed line indicates turn location. T-shaped 
track, rat and turn direction for each location depicted to right of HPC rates. Gray lines 
demarcate position bins 40 and 60 which each show a large (bin 40) and small (bin 60) 
difference between trial 1 and subsequent trial firing. (c) Choice probability analysis 
example. Left: Per-run ranks of firing rates at bin 40 and bin 60 from HPC example 
neuron in (a). Trial 1 shown in red, trial 2 shown in blue. Upper right: Choice probability 
equation. Lower right: Trial 1 vs 2 choice probability trace for HPC example neuron in 
(a). Gray lines demarcate bin 40 and bin 60. Dashed line demarcates turn location. (d) 
Trial choice probability plots. Outbound and inbound mean choice probability plots for 
velocity, head direction, PPC firing rates, and HPC firing rates. Warm colors represent 
pairwise trial 1 vs other trial (2-5) comparisons (1v2, 1v3, etc). Cool colors represent 
pairwise non-trial 1 comparisons (2v3, 2v4, etc). Black lines indicate 95th percentile of 
choice probabilities from shuffled data. Dashed black line indicates turn location. 
 
 To analyze this first trial effect across all HPC and PPC neurons, a choice 

probability (CP) analysis was conducted (figure 6c). This analysis was adapted from 
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Britten and colleagues (1996) and the calculations involved are equivalent to the area 

under the curve of the receiver operating characteristic. Essentially, we used it as a 

measure of the degree to which a neuron differentiates two conditions (e.g. trial number) 

at each position bin along the track on a per-run basis. Based on the observed rate 

differences for two conditions, the CP measure reflects the probability of correct 

assignment to a condition for any new value.  A schematic describing the CP analysis 

using firing rates from the example neuron depicted in figure 6a is shown in figure 6c. 

For any given track bin position, the firing rates of a single neuron at that bin for every 

run in the two conditions (e.g. trial 1 and trial 2) are ranked (Figure 6c: red/trial 1 vs 

blue/trial 2 tick marks in left panel show ranks for every run for neuron depicted in figure 

6a, at position bins 40 and 60 demarcated by gray line in Figure 6a). The rankings are 

summed for each group and are then compared using the equation given in figure 6c. CP 

comparing two trials is calculated for every track bin (e.g. the resulting example CP trace 

for this neuron at these two position bins is shown in figure 6c: bottom). Mean CP values 

across neurons were then calculated (figure 6d, parietal and hippocampal colored traces) 

and compared to the 95th percentile of mean CP values for 1000 different randomizations 

of trial identity for the same data (figure 6d, parietal and hippocampal black traces). 

These same calculations were also performed for velocity, and head direction (figure 6d). 

Across neurons, CP values for outbound runs for both HPC and PPC populations 

differentiate the first trial of a block from other trials (figure 6d).  All trial 1 versus trial 

2-5 mean CP values (yellow-red traces, N=339) for PPC outbound runs lie above the 95th 

percentile (black traces) for mean CP values when trial identity (trial 1 data included) was 

randomized. This was also true for nearly all mean CP values for HPC prior to the T-
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maze intersection (yellow-red traces, N=260). No trial differentiation beyond chance was 

found for comparisons using trial 2-5 pairings (green-blue traces). If neurons did not 

differentiate two conditions, we would expect CP values to exceed the 95 percentile of 

shuffled data for only 5 percent of all track positions. In contrast, inbound runs do not 

show differentiation amongst trials (figure 6d, right), a result we expected since all 

inbound runs involve running back to the start plate with no allocentric spatial task to 

solve, no matter which trial.  

To examine behavioral differences during trial 1 as a possible explanation for the 

firing rate differences, trial CP was also calculated for head direction and velocity (figure 

6d). Here, CPs beyond the 95th percentile of CPs from shuffled data would indicate that 

the animal’s head direction or speed might explain firing differences in HPC or PPC 

firing rates between trials. Although there is trial 1 differentiation in the velocity 

(outbound and inbound runs) and head direction (outbound runs only) of the animal, the 

envelope of the effect does not fall in step with the firing rate CP traces of HPC and PPC.  

Velocity differences are apparent throughout the track space. For outbound runs, head 

direction differences between trials are observed very early in the run but return to meet 

the CPs from shuffled data over later sections. HPC and PPC trial 1 differentiation in 

firing rates is not maintained on return runs while velocity differentiation is, ruling out an 

explanation based on speed. Head direction CP also differentiates the first trial on 

outbound runs. However, this differentiation disappears early in the run and does not 

exist on inbound/return runs. Overall, the pattern of head direction CPs does not follow 

the envelope of firing rate CP traces, precluding a complete explanation based on the 

animal’s head direction. 
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 There are several factors that could differentiate trial 1 firing in HPC and PPC on 

outbound runs including: 1) Reliable increases and decreases in rate that vary by neuron 

(consistent with an overall rate remapping); 2) Overall bias to increased or decreased 

rates across the population of neurons; 3) Changes in peak firing rate; or 4) A shift or lag 

of the positional firing rate envelope. Other possibilities include more systematic changes 

(e.g., only positive or negative changes) in mean rate, peak rate, or forward (or backward) 

shifting. We note here that CP values do not imply higher or lower firing, only a 

differentiation; CP reflects the degree to which a neuron’s firing rates differentiate two 

factors (i.e trials), without heed to which factor is associated with higher vs lower rates. 

An overall rate increase, a bi-directional rate remapping, or a change in lag of a place 

field (either bi-directionally or in one direction systematically) all could differentiate trial 

1 from another trial on CP. 

Therefore, to further analyze the nature of the firing rate differentiation between 

trials for outbound runs, we examined the outbound rates themselves to find any bias in 

the direction of change from one trial to another. Figure 7a shows overall mean firing rate 

across all neurons for trial 1 (red) compared to trials 2-5 (blue) for HPC and PPC 

neurons, inbound and outbound runs. From figure 7a, it appears that outbound HPC rates 

are higher overall across neurons for trial 1 compared to other trials. PPC outbound rate 

differences that were observed in figure 6d appear less consistent in direction when 

examining across neurons in figure 7a. Inbound rates for both HPC and PPC do not look 

different across trials, consistent with the CP result in figure 6d.  A Wilcoxon rank-sum 

test was conducted to examine mean rate differences across all neurons and positions for 

each pairwise trial comparison for outbound runs. Overall mean rates were significantly 



	 73 

higher for trial 1 compared to means for all other trials (2-5) for HPC neurons during 

outbound runs, with trial 1 firing 12% higher than trial 2 (figure 7b upper bar plots; p-

values for comparisons involving trial 1 outbound ranged from p = 4.47e-10 to p = 1.03e-

10; p-values for non-trial 1 comparisons were statistically non-significant and ranged 

from 0.08 to 0.85). Far less evidence for change in overall rates across trials in a block 

was observed for PPC (figure 7b, lower bar plots), with the largest significant difference 

in firing rate (trial 1 vs 3) at 1.7% (p-values ranged from p = .007 to p = .820, with only 3 

comparisons yielding significant differences: trial 1vs2, 1vs3 and 3vs4). 

Figure 7b shows a cumulative distribution of mean HPC firing rates for all 

positions and neurons on trial 1 (red trace) compared to trials 2-5 (blue traces). The axes 

of this plot were adjusted to emphasize the difference between the distributions; not 

shown are the forty-five percent of all HPC positional firing rates at zero.  We note that 

the number of zero rates was evenly distributed across different trials ranging only from 

44-45%. As depicted, the axes cut off 35% of the lower end of the distribution (all zero 

rates) and 0.2% of the higher end of the distribution (rates above 35hz). Between these 

extremes, first trial rates are shifted toward higher values relative to trials 2-5.   
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Figure 7. HPC firing patterns exhibit higher rates and earlier firing during trial 1 of 
a block while PPC patterns exhibit rate remapping. (a) All neuron max-normalized 
mean firing rates for trial 1 vs other trials. All neuron mean trial 1 firing rates shown with 
dark red trace with +/- standard error shown in light red shading. All neuron mean trials 
2-5 firing rates shown in blue with +/- standard error shown in gray shading. Each 
individual trial 2-5 trace shown in black. Black dashed lines represent turn location. (b) 
Overall mean comparison. Cumulative distribution of all trial 1 rates (red trace) and all 
trial 2-5 rates (blue trace). Bar graphs depict overall mean firing rate for each trial 1-5 for 
HPC (upper) and PPC (lower) with standard error bars. (c) Bar graphs showing trial 1vs2 
(red) and 2vs3 (blue) peak firing rate differences (max-normalized) with standard error 
bars. (d) Mean firing rate traces for example HPC neurons. Trial 1 mean firing rates 
indicated by red trace, trial 2 by blue trace. Light red and blue dashed lines show field 
peak locations. Black dashed line indicates turn location. Upper: HPC example with lag 
between trial 1 and trial 2 peaks. Lower: HPC example with little to no lag between trial 
1 and trial 2 peaks. (e) Spatial cross-correlation comparing trial 1 and trial 2 of example 
neurons. Black trace shows spatial cross-correlation between trial 1 and trial 2 of example 
neurons in (d). Black dashed line shows center point of cross correlation. Light red 
dashed line shows peak of cross correlation. Upper: offset of peak from center shows 
offset between trial 1 and trial 2 fields with trial 1 firing earlier on the track. Lower: 
overlap of peak from center shows no offset between trial 1 and trial 2 fields. (f) Bar 
graphs showing trial 1vs2 (red) and 2vs3 (blue) mean lag between peak and center of 
cross correlation with standard error bars. 
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Consistent with the lack of overall change in mean rates for PPC neurons, the 

cumulative distribution plots for PPC showed no clear difference between any trial 

number. Trial 1 differentiation by PPC demonstrated in the CP analysis, therefore, was 

due to a rate remapping of individual neurons rather than an overall rate increase across 

the population of neurons as in HPC.  

The cumulative distribution plots of all positional firing rates indicates that the 

HPC neuron rate changes detected by CP analysis occur across a wide range of rates. 

Nevertheless, to examine if trial differences were due mainly to peak firing rate 

differences rather than overall differences in non-maximal parts of a firing field, a 

Wilcoxon signed-rank test was conducted on peak rate differences for each pairwise trial 

comparison. None of the ten HPC trial-versus-trial comparisons were significantly 

different with a less than 1% change from trial 1 to trial 2 (figure 7c, upper, shows trial 

1vs2 and 2vs3 peak differences; P-values for all comparisons ranged from p = 0.32 to p = 

0.97), indicating that trial 1 differentiation was due to non-maximal parts of HPC 

positional rate vectors. However, peak firing rate comparisons between trial 1 and trials 

2-5 were all significantly different for PPC (p-values ranged from 0.0008 - 0.002; figure 

7c, lower, shows trial 1vs2 and 2vs3 peak differences). Conversely, no comparison 

among trials 2-5 reached statistical significance for PPC (p-values ranged from 0.555 - 

0.927). Thus, trial 1 differentiation in PPC seems largely due to changes in maximal parts 

of the firing patterns, rather than systematic overall mean increases or decreases. 

Lastly, a possible shift or lag in place fields was examined by calculating a spatial 

cross correlation of rate vectors for different trials. The offset, or lag, of the peak from the 

center point in these cross correlations was taken as a measure of the extent to which the 
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field has shifted or extended forward or backward on the track between trials (figure 7d-

e). Figure 7d shows firing rate vectors for two example neurons with trial 1 trace depicted 

in red and trial 2 trace depicted in blue. The top neuron shows a lag between the peaks of 

trial 1 and trial 2, while the bottom neuron shows a much smaller difference between the 

peaks. Figure 7e shows the corresponding cross correlations between trial 1 and trial 2 

traces for these neurons. The lag between the peak position bin and center of the cross 

correlation was calculated and averaged across neurons (figure 7f). A Wilcoxon signed-

rank test conducted on the lags revealed that HPC fired significantly earlier for trial 1 vs 

trial 2, 3, and 4 outbound runs (figure 7f, upper shows trial 1vs2 and 2vs3 lags). The trial 

1 vs 5 comparison was not significantly different despite similar direction and degree of 

change. P-values for trial 1 comparisons ranged from p = 0.0006 to p = 0.1. Of the non-

trial 1 outbound comparisons, only trial 2 vs 4 was significantly different (p = 0.002), but 

with a smaller lag change than for all trial 1 comparisons. A Wilcoxon signed-rank test 

for PPC revealed no significant differences in peak lag between trials (figure 7f, lower 

shows trial 1vs2 and 2vs3 lags; p-values ranged from 0.181 to 0.950).  

 As already considered theoretically and determined behaviorally, trial 1 outbound 

runs are a better test of the rat’s ability to use a track location-based strategy to solve the 

task. HPC and PPC neuron dynamics differ on the first trial in a systematic fashion, and 

may reflect increased task engagement on trial 1 compared to subsequent trials. Inbound 

runs do not involve solving an allocentric task, as the animal runs back to the start plate 

every time no matter the track location in the room, so we would not expect the neural 

representation of inbound runs to differentiate trial number. Despite differences in the 

form of positional firing rate changes for outbound HPC and PPC (mean rates vs peak 
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rates vs field shifts), dynamics in both regions support the idea that the animal has 

incorporated a schema of the full spatiotemporal structure of the task into its behavior and 

its neurophysiological mapping. Neurophysiologically, this takes the form of overall 

increased rates and a spatial shift of firing for HPC. Neither was seen in PPC indicating 

that trial differentiation in parietal CPs reflects balanced increases and decreases of rate 

over a stable positional firing pattern (i.e. rate remapping). 

4.3.2 Hippocampal Theta Rhythm Differentiates First Trial of a Block 

 To further examine the trial effect described in the previous section, we also 

analyzed the population activity given by the HPC theta rhythm in local field potentials 

(LFP). HPC spiking activity is temporally organized by the theta rhythm (O’Keefe & 

Recce, 1993; Dragoi & Buzsáki, 2006), which raises the possibility that the theta rhythm, 

as a measure of population level dynamics, could differentiate trials along with the units.  

 Eight hippocampal recordings were selected for analysis (2 randomly chosen from 

each animal). Raw LFPs were filtered for theta (6-10hz) and theta amplitude envelopes 

were calculated as described in methods. Figure 8 shows envelope means (colored dots) 

for each trial for all 8 recordings, all normalized to trial 1 to emphasize the change in 

amplitude on average from trial 1 to subsequent trials. Each animal is depicted by a color; 

the darker shade depicts one recording from that animal, while the lighter shade 

represents another recording from that animal.   The black trace represents averages 

across all four animals based on one of the two recordings from each animal. The gray 

trace depicts averages across each animal for each of the other recordings analyzed 

(essentially two “samples” across all animals).  
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Figure 8. Mean normalized HPC theta amplitude across trials for eight recordings. 
Two recordings were randomly chosen from each animal. Colored dots show theta 
amplitude envelope means for each trial and each recording chosen. Each dot is 
normalized to trial 1 (large, black dot) to emphasize the change in amplitude relative to 
trial 1. Each color represents data from one recording. The black trace represents 
averages across all animals for one set of chosen recordings, and the gray trace represents 
averages across animals for the second set of chosen recordings. All normalized means 
for all animals fell below the reference value for trial 1. 
 

For each recording, t-tests were run comparing average envelope values from one 

trial type to all other trials types (e.g. trial 1 vs trials 2-4; trial 2 vs trials 1 and 3-4). Trial 

1 theta amplitudes were significantly higher compared to trials 2-5, for seven of the eight 

recordings analyzed (p-values ranged from p = 4.89e-9 to p = 0.087). These figures 

depict a reliable shift in global activity toward enhanced theta oscillations during trial 1 

that accompany increased firing rates among neurons for trial 1 as described in the 

previous section. 

4.3.3 Spatial Tuning of Hippocampal and Parietal Neurons Aligned to the Track, as 

Opposed to Environmental, Space 
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We next examined whether HPC and PPC activity differentiated upcoming choice 

behavior and how this relates to the environmental space that, by the applied rule, guides 

choice selection. Given the block structure of the task and that trial 1 of a block is 

differentiated both behaviorally and neurophysiologically, firing pattern differences on 

track locations (1-4) were examined using trial 1 data only (figure 9).  

Prior work indicates that both HPC and PPC neurons exhibit spatially-tuned firing 

rates in track-based environments (O’Keefe & Conway, 1978; McNaughton et al., 1983; 

McNaughton et al., 1994; Nitz, 2006).  For open tracks, such as the one used in the 

current study, spatially tuned firing fields of HPC neurons (i.e., “place cells”) change 

when the animal traverses the same route in different locations in the room, adhering to 

the boundaries of the experimental room space as the spatial reference frame (Alexander 

& Nitz, 2015).  PPC firing patterns do not change, instead adhering to the route space 

(Nitz, 2006; Nitz, 2009).  In addition, prior work on ‘prospective’ and ‘retrospective’ 

encoding of environmental location specifies that HPC in-field firing rates discriminate 

different routes taken through the same location, effectively reflecting both 

environmental location and the trajectory through that location (Frank et al., 2000; Wood 

et al., 2000; Ferbinteanu & Shapiro, 2003; Ainge et al., 2007; Nitz, 2006; Grieves et al., 

2016). Therefore we would certainly expect different HPC patterns for track locations 1 

versus 4 (where environmental location of the track is maximally different) as well as 

different HPC patterns for the different left versus right turn trajectories utilized 

according to the spatial/behavioral rule (e.g., track location 1 versus 3, 2 versus 3, etc.).  
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Figure 9. Choice probability analysis shows spatial tuning is aligned to track, not 
environment. (a-b) Outbound mean firing rates of example neurons. (a) Mean firing rate 
vectors for two example PPC neurons in each track location 1-4 (trial 1 only). Dashed 
line demarcates turn location. (b) Mean firing rate vectors for two example HPC neurons 
in each track location 1-4 (trial 1 only). Firing patterns anchored to track space even as 
the track moved to different locations in the room. It should be noted that the firing 
pattern for the neuron on the right followed the track space in locations 1 and 2 only, 
because the animal makes the opposite turn in locations 3 and 4 and ends up in a different 
space on the track.  (c) Location choice probability plots. Outbound and inbound mean 
choice probability plots for velocity, head direction, PPC firing rates, and HPC firing 
rates. Warm colors represent pairwise between-fragment comparisons (location 1vs3, 
2vs3, 1vs4, etc) while cool colors represent pairwise within-fragment comparisons (1vs2, 
3vs4). Black lines indicate 95th percentile of choice probabilities from shuffled data. 
Dashed black line indicates turn location. 
 

Paradoxically, linearized firing rate vectors of both HPC and PPC neurons follow 

the space of the track across multiple environmental locations of the track (1-4), similar 

to the pattern of the neurons depicted in figure 9a-b. It should be noted that the neuron on 

the right in figure 9b only fires when the track is placed in locations 1 and 2 because this 
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place field occurred after the turn. The turn required for locations 3 and 4 is the opposite 

turn from locations 1 and 2, so the location on the T-shaped track is different. Animals 

did not pass through this same place on the maze when turning the opposite direction for 

track locations 3 and 4, so this neuron did not fire here, but the firing pattern followed the 

track space from location 1 to location 2. Such a result is consistent with the earlier 

presented behavioral findings that rule out simple, independent place-choice associations 

as a means of solving the task.  But, the spatial tuning according to the space of the track 

itself distinguishes the present work from most prior work and may reflect the nature of 

the task. 

To quantify this effect across the full population of neurons, the same CP analysis 

used to examine trial comparisons was also used for track location comparisons (track 

locations 1-4; figure 9c). Essentially, the analysis asks whether HPC and/or PPC firing 

rates differentiate any of track locations (locations 1-4) from one another. Pairwise track 

location comparisons can be placed into two categories: ‘within-fragment’ comparisons 

where the firing pattern over a track location is compared to that from the same fragment 

(i.e., locations 1 versus 2 and 3 versus 4), and ‘between-fragment’ comparisons where 

firing patterns over track locations from separate fragment subspaces are compared (i.e., 

locations 1 versus 3 and 2 versus 4, etc.). Across the population, mean CP for between-

fragment differentiation did not appear in PPC or HPC until the animal was actually 

turning (Figure 9c, black dashed lines indicate turn location). Figure 9c depicts CP for 

head direction on left-turning versus right-turning trajectories, revealing a bias in 

orientation at a point approximately 38cm prior to the front edge of the T-juncture.  

Inconsistent with most prior reports, neither HPC nor PPC neurons indicated choice prior 
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to the behavioral manifestation of the choice. Instead, the time course of firing rate 

differentiation between fragments maps well with the time course of head direction 

differentiation, the earliest behavioral indicator of the animal’s choice. Essentially, we 

find little to no evidence for reliable encoding of upcoming choice (‘prospective’ 

information) in either brain region. Firing rate CPs also did not differentiate within-

fragment track locations despite the fact that the track was moved across environmental 

space and despite the fact that the task demands an appreciation of position in 

environmental space.  

We next determined whether HPC or PPC neurons differentiate track location 

and/or trajectory on the return or ‘inbound’ trips back to the base of the T-maze stem.  

Between-fragment differentiation was found for these inbound runs, but only for track 

regions near the turn site (Figure 9c). Furthermore, these differences were over regions of 

the track that differ in location (left versus right side of the T stem) and for which the 

animal’s head orientation differs (Figure 9c). The results for inbound runs provide 

evidence that the animal may be encoding memories for the prior outbound action. Such 

a strategy would be consistent with trials 2-5 having near perfect choice accuracy that is 

significantly greater than that for trial 1. 

 Thus, for both inbound and outbound trajectories, mean CP values across the 

population yield little evidence for differentiation of track location or trajectory that 

cannot be explained by differences in head orientation.  Yet, small differences among a 

large population of neurons might together yield discriminable ensemble firing patterns 

depending on how output from HPC and/or PPC is read by their efferent targets.  To 

investigate ensemble differentiation within- and across-boundary, correlation matrices 
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were constructed for each of the pairwise location comparisons (figure 10a-b). Such 

matrices depict the correlations among firing patterns from the entire population of 

neurons for every track position bin against all others. The diagonal of such a matrix 

depicts correlations among firing patterns from the same track bins, but at different track 

locations (i.e., track locations 1-4). This yields visualization of the extent to which HPC 

or PPC ensembles exhibit similar firing patterns across different bins of the track (bins 1-

100) and different track locations in the room (1-4). The matrices themselves are meant 

to be descriptive, and in this case, the ones pictured illustrate a high degree of similarity 

in firing within fragment (location 1vs2) as well as a high degree of similarity along the 

stem of the T between fragments (location 1vs4). 

 When considering track bins along the stem portion of the T-maze (prior to the 

turn), PPC ensemble correlations along the diagonal of these matrices were fairly strong 

(0.5-0.7) for within-fragment track location pairings (track locations 1 versus 2 and 3 

versus 4) and for between-fragment track location pairings (1 versus 3, 1 versus 4, 2 

versus 3, 2 versus 4). For some T-stem locations, HPC ensemble pattern correlations 

were somewhat stronger for within-fragment than for between-fragment track location 

pairings (figure 10a). Yet, for most positions, the correlation values fall within the 95% 

confidence intervals for a distribution of correlations taken following randomization of 

track location identities, illustrating a high degree of similarity across all locations.  In all, 

the ensemble correlations for both HPC and PPC are in close agreement with the CP 

analyses made on single neurons.  Both HPC and PPC discriminate locations along the 

track, but not the track locations in the environment; overall spatial tuning in both follows 

the frame of reference given by the track.  
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Figure 10. Ensemble correlation matrices show HPC and PPC ensembles 
discriminate locations along the track, but not the track locations in the 
environment. (a) Ensemble correlation matrices for outbound runs. Upper: Parietal 
correlation matrices for locations 1vs2 (left) and 1vs4 (right; within and between-
fragment comparisons, respectively). Lower: Hippocampal correlation matrices for 
locations 1vs2 (left) and 1vs4 (right). Turn location is demarcated by dashed line. (b) 
Ensemble correlation matrices for PPC (upper) and HPC (lower) inbound runs. Left 
column shows within-fragment correlations (1vs2) and right column shows between-
fragment correlations (1vs4). (c) Pairwise track location correlations across matched 
position bins. Left column: PPC and HPC outbound correlations of all pairwise 
comparisons over the same track space (diagonal of correlation matrices in a-b). Within-
fragment comparisons (1vs2, 3vs4) are shown in dark green while between-fragment 
comparisons are shown in light green. Bold black line shows mean correlation from a 
distribution of shuffled data. Flanking gray lines depict 95th percentile (above) and 5th 
percentile (below) correlation from a distribution of shuffled data. Dashed line 
demarcates turn location. Right column: Correlation traces for inbound runs. 
 

In both PPC and HPC, stronger differentiation between ensemble correlations 

occurred closer to the turn where differentiation in head orientation has already occurred.  

This finding is also in accord with the CP analysis on individual neurons. Figure 10c 
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plots pairwise correlations between different track locations (1-4) over the same track 

space (diagonals from figure 10a-b; dark green traces = within-fragment; light green 

traces = between-fragment), along with a mean (bold black trace), 5th percentile (lower 

thin gray traces), and 95th percentile (upper thin gray traces) of correlations generated 

after random shuffling of track location, allowing easier visual comparison of correlation 

matrix diagonals. Dark and light green traces did not show fragment differentiation until 

approaching the turn (black dashed line).  

We also examined ensemble correlations of inbound runs to determine any 

differentiation within- or between-boundary track location pairings. In HPC, inbound, 

between-fragment (light green traces) differentiation occurred throughout most of the 

run.  Ensemble patterns for inbound runs from different track locations are less alike over 

the entire track when those track locations are ‘between-fragment’ (requiring different 

outbound turn choices); this is true even for positions along the T-maze stem for which 

head orientation does not differ (figure 9c).   Thus, unlike the CP analysis, the ensemble 

pattern observable from the correlations reveals a much greater tendency for between-

fragment representations to be different as the animal returns, potentially contributing to 

better performance on subsequent trials by encoding memory for the prior trial. Such a 

finding is in line with improved behavioral accuracy on trials 2-5 of each block. We 

speculate that a working memory representation for the prior choice is being held during 

return runs so that accuracy can be improved (or sustained if already correct) on 

subsequent trials, and this would be consistent with other studies (Jadhav, Kemere, 

German, & Frank, 2012; Wang, Romani, Lustig, Leonardo, & Pastalkova, 2015). This 

would also suggest that the increase in HPC activity during trial 1 outbound runs supports 
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a short-term memory formation in which the rat holds the memory for his prior action 

and outcome during return runs, and can decide his next action accordingly. 

4.4 Discussion 

Under circumstances in which decision-making rules arbitrarily divide an 

environment, HPC and PPC spatial firing patterns exhibited three unexpected features 

that align with the choice behavior of the animals. First, spatially tuned firing rate 

magnitudes were augmented in HPC and modulated in PPC on the first trial of each block 

relative to trials 2-5.  These changes parallel changes in task demands and performance 

accuracy from the first trial to subsequent trials of a five-trial block. In HPC, such 

modulation was biased toward increased firing and backward shifts in firing fields on 

trial 1. Second, across trial blocks with the T-maze at different environmental locations, 

the spatially tuned firing in both HPC and PPC shifted with the maze itself as opposed to 

taking the experimental room as the frame of reference.  Effectively, this resulted in a 

shared, maze-based spatial reference frame across both environmental fragments and a 

highly generalized set of firing patterns across all choice locations. Third, along the T-

maze stem, HPC and PPC firing patterns did not discriminate the upcoming turn choice 

beyond what might be expected based on differences in the animal’s speed and 

orientation.  Most, if not all, prior studies find extensive discrimination of trajectories for 

portions of mazes held at single environmental locations (Wood et al., 2000; Grieves et 

al., 2016; Ainge et al., 2007; Frank et al., 2000; Nitz, 2006; Ferbinteanu & Shapiro, 

2003).  Together, the results suggest a novel, shared dynamic by which HPC and cortex 

can interact to guide choice behavior in complex, path-based environments where correct 
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choice behavior varies across multiple environmental locations and as a function of 

recent experience. 

Both HPC and PPC ensembles differentiated trial 1 of a block from subsequent 

trials (figure 6d). In HPC this arose by way of systematically higher firing rates and 

earlier onset of within-field firing on trial 1 as compared to trials 2-5 (figure 7b-f). In 

PPC, rate differentiation according to trial number was strong overall across the 

ensemble, but was not systematic in the sense of net higher or lower firing rates among 

the neuron population.  This can be interpreted as a balanced, bi-directional rate 

remapping (figure 7b-c). Notably, trial differentiation is also reflected in the rats’ 

behavior as it parallels significantly lower accuracy on trial 1 compared to subsequent 

trials. The trial-dependent changes in activity may reflect the extra difficulty in the first 

trial decision-making inherent to the structure of the task.  As discussed below, this could 

reflect alterations in the strategy used to determine choice and/or alterations in attention, 

or perhaps a greater demand on retrieval mechanisms on the first trial. 

The results pertaining to differences in spiking activity across trials suggest a 

unique strategy-based modulation of HPC and PPC dynamics. Such a robust distinction 

between trial 1 and trials 2-5, both behaviorally and neurophysiologically, implies two 

strategies are used by the rat depending on recent experience at a track location: 1) a trial 

1 ‘track location based strategy’ in which the rat needs to know its allocentric room 

location; and 2) a trial 2-5 ‘prior response strategy’ in which the rat simply needs to 

execute the same procedure as in the prior trial, if rewarded, or the opposite procedure if 

not rewarded. In this respect, it is notable that ensemble firing patterns for inbound runs 

discriminated return-path positions along the stem, consistent with encoding of the just-
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executed left-right turn choice. It is also possible that the rat has already encoded the trial 

1 choice before starting the first inbound run, and that inbound activity reflects 

prospective planning of the next choice on trials 2-5. The prior response strategy could 

seemingly take advantage of such encoding of recent history, but would not require any 

knowledge as to room location for decision-making.  Nevertheless, spatial tuning in PPC 

could still contribute a transformation to action-tuning, consistent with multiple reports of 

minority PPC neuron populations with consistent left/right turn discrimination in their 

firing rates (McNaughton et al., 1994; Nitz, 2006; Whitlock et al., 2012; Wilber et al., 

2014).  

 The distinction between strategies may also reflect heightened attention or task 

engagement during trial 1 of a block when the track location has just been shifted. For 

any first trial, the rat must pay greater attention to its location in order to determine a 

correct turn decision as repeating the decision on the prior trial at another room location 

would yield only chance-level performance (50% correct). Alternatively, differences in 

behavioral performance and/or spiking activity on trial 1 could be due to greater taxation 

on retrieval mechanisms due to increased task demands or task engagement on the first 

trial of a block. Several findings in the literature suggest that HPC activity can track the 

recent history of exposure to a given environment and decision-making context.  In 

humans, the hippocampal BOLD signal has been shown to decay over time with repeated 

experience on Y-maze tasks (Wimmer & Büchel, 2019). Similarly, c-FOS 

immunoreactivity in hippocampus tends to decay over time for animals that use a 

‘response’ strategy, as opposed to a ‘place’ strategy when navigating to a reward site 

(Colombo et al., 2003). Overall increased firing rates among interneurons (Nitz & 
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McNaughton, 2004) and higher degrees of co-activity among place cells with overlapping 

fields (Cheng & Frank, 2008) has been shown in novel environments compared to 

familiar. Additionally, increased temporal coordination among place cells decays with 

subsequent experience (Cheng & Frank, 2008). Finally, both HPC sharp-wave ripple 

events and HPC phase precession of spiking relative to LFP theta-frequency oscillations 

are modulated by the degree of experience within single recording sessions (Jackson, 

Johnson, & Redish, 2006; Silva, Feng, & Foster, 2015). Each of these results is consistent 

with the observed trial-dependency in firing rates that we observed.  The present findings 

therefore suggest that history-dependence in spatial tuning of HPC and PPC neurons 

dynamics can follow trial-by-trial variation in task demands even for familiar, learned 

environments 

HPC theta rhythm amplitudes were significantly larger for trial 1 compared to 

trials 2-5, consistent with the observed firing rate increases on trial 1. Previous reports 

have found that theta power increases in a novel space, but such changes are also 

associated with changes in running speeds (Feng et al., 2015; Penley et al., 2013). 

Additionally, reduced theta frequency has been associated with novel environments in 

which the animal’s running speeds are slower (Jeewajee, Lever, Burton, O’Keefe, & 

Burgess, 2008; Feng et al., 2015). 

Changes in theta amplitude could conceivably reflect a boost in overall membrane 

potential of interneurons from neuromodulatory inputs. Norepinephrine applied to HPC 

has excitatory effects on HPC interneurons and principal cells in CA1 and dentate gyrus 

(DG) via beta-noradrenergic receptors (Pang & Rose, 1987). Locus coeruleus activation 

in vivo is associated with potentiation in population spike amplitude in DG (Klukowski 
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& Harley, 1984). Such noradrenergic-driven effects could enhance responses to relevant 

distal visual cues on the first trial of each block. Further work is needed to disentangle 

whether the overall shifts in population activity reflected by changes in theta-frequency 

LFP oscillations are induced indirectly through inputs from regions such as the septal 

nucleus (Petsche, Stumpf, & Gogolak, 1962; Leung, Martin, & Stewart, 1994). 

Regardless, the HPC spiking and LFP data together indicate that the output of HPC is 

intensified when task demands are higher. 

Although firing rates discriminated the presence (trials 2-5) or absence (trial 1) of 

recent experience of choice outcome, HPC and PPC firing patterns on outbound routes 

followed the track space to different environmental locations. That is, the envelopes (i.e., 

patterns) of individual neuron firing rates across spatial bins of the track itself were 

largely unchanged for different track locations in the room.  This result would appear to 

be related to the task conditions as opposed to the specific features of the recording 

environment; prior experimental work undertaken in the very same environment and on 

similarly constructed tracks found clear discrimination of track location for both HPC and 

retrosplenial cortex (Alexander & Nitz, 2015). 

While the relevance of route position, but irrelevance of room position was 

expected for PPC, generalization of mapping across different environmental locations 

was unexpected for HPC.   Prior research supports a model where HPC room-location 

encoding and PPC route-specific patterning would inform and guide the animal’s 

navigational decision-making. Mapping of the animal’s location relative to the 

boundaries of the observable environment (the experimental room in this case) is the 

most robust finding across many decades of investigation of spatial tuning in firing for 
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HPC neurons. There is also precedent for HPC cells to encode room changes on the same 

maze (Burke et al., 2005), analogous to the task used in the present study.  Our results are 

in contradiction to this and indicate that our particular task reflects a fundamentally 

different navigational problem than for the more restricted case of a simple T-maze fixed 

to a location and absent a relationship to other choice point locations. However, there is 

precedent for at least some HPC neurons to maintain similar firing patterns at different 

locations (Tanila, Shapiro, & Eichenbaum, 1997; Siegel, Neunuebel, & Knierim, 2008), 

particularly in an environment when those locations occupy analogous positions in routes 

that share the same shape and directions of travel (Frank et al., 2000; Singer et al., 2010; 

Nitz, 2011). Additionally, depending on the task circumstances (i.e. passive placement of 

the animal vs. self-locomotion), it has been shown that head direction cells will 

sometimes use a local reference frame even in different room locations, and at other 

times use a global reference frame (Taube et al., 2013). Thus, the current results suggest 

that under the circumstances of the current task when multiple, independent T-juncture 

choices are made within a single environmental setting, the tendency for CA1 neuron 

spatial tuning to align to the T-maze space as opposed to the environmental space is 

maximal.  Such environmental location independent spatial tuning in HPC would 

necessarily demand different models for cortico-hippocampal interaction in T-maze 

choice-making, a topic we return to later in this discussion. 

In situations where different trajectories overlap over a shared space (as on the T-

maze stem), trajectory-specific firing is encoded in conjunction with, and secondary to, 

firing tuned to location in the room.  HPC ‘place-cells’ with such differential activity 

have been referred to as ‘splitters’ (Grieves et al., 2016) or as having ‘prospective’ 
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modulation of in-field firing rates (Ferbinteanu & Shapiro, 2003).  While trajectory-

specific spatially tuned firing is observed on inbound runs discrimination of trajectories 

on outbound runs was not observed in the present work despite the fact that both the 

room location of the track and the ultimate turn choice co-varied. One distinguishing 

factor associated with the present task is that the animal does not alternate on the T-maze 

while it remains in the same room location, as is done in many studies showing 

prospective coding. The present study does not have a true working memory component 

on the first trial of a block (only trial 1’s were included in the location analyses). 

Although animals may carry a working memory from the previous block, it cannot be 

used effectively to solve the present task on trial 1. The track is shifted between blocks in 

a random fashion, so the animal is equally likely to be placed in a left-turning vs. a right-

turning case. If the animal were operating under the assumption that he should turn in the 

same direction as in the previous block, his performance would be at chance levels. Our 

animals are all above chance performance. Working memory will only allow success on 

the task in trial 2 after being rewarded (or not) for trial 1. This may explain why our 

paradigm doesn’t elicit strong prospective encoding, since only trial 1 data was included 

in the location analyses.  

The lack of observed trajectory-encoding along the T-maze stem for PPC neurons 

is supported by recent work indicating that PPC discrimination of upcoming choice is 

secondary to heading angle, and that PPC encodes a conjunction of direction of motion, 

spatial position, and type of locomotor action (Krumin et al., 2018; Nitz, 2006; Wilber et 

al., 2014; Whitlock et al., 2012). We again note that responses to locomotor action may 

actually reflect postures taken by the animal during turning (Mimica et al., 2018).  While 
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PPC has been suggested, in one study performed in virtual reality and under head 

restraint, to exhibit trajectory specific firing along T stems preceding T intersections 

(Harvey et al., 2012), other work suggests that such trajectory specificity is secondary to 

differences in heading angle (Krumin et al., 2018). Accordingly, our results demonstrate 

the timing of PPC ensemble differentiation of turn choice was directly coherent with head 

direction differentiation of turn choice, our first behavioral indicator of a decision (figure 

9c). 

In prior work on trajectory mapping and navigational decision-making for path 

networks with multiple intersections, ‘prospective’ encoding of upcoming trajectory was 

observed for HPC neurons at path positions shared by multiple trajectories (Ainge et al., 

2007; Grieves et al., 2016) and trajectory differentiation was particularly strong if the 

eventual goals for multiple routes were in the same location (Grieves et al., 2016). 

However, in these cases, the entire turn-by-turn trajectory was known by the animal and 

was often executed in an uninterrupted fashion.  What differentiates the current task from 

these others is that trials were, in the present case, segmented into distinct, unchained 

navigational decisions.  In other words, there was no sequence of turns to be learned or 

encoded.  Thus, one interpretation of the unexpected persistence in track-based firing 

patterns across environmental space and across left-going versus right-going trajectories 

is that HPC creates a generalizable firing pattern that maps the animal’s location relative 

to any upcoming choice point. Across the locations of the maze in the environment, the 

HPC firing patterns leading to the T-maze intersection are the same, but the associated 

visual cues vary. Under this circumstance, and given that the only way to solve the task is 

by using the distal visual cues, a possible model for a solution to this task is one in which 
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a decision is made based on a conjunction between the ensemble HPC location-on-track 

encoding and different visual scenes in which location, distance, and perspective of distal 

visual cues all vary. The combination of these features could determine one’s location in 

the room (see figure 11 for illustration of this model) as required to perform a correct 

choice. Retrosplenial cortex and/or PPC could potentially contribute to the comparison of 

different environmental views (of each track location) against the current encoding of 

track position by HPC in order to determine left-right choice.  Given the large body of 

work finding action correlations in PPC neuron populations, it is plausible that PPC then 

generates a pattern of activity reflecting turn choice and outputs this to secondary motor 

cortex, thereby translating cognition into action (Olson et al., 2020).  
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Figure 11. Schematic depicting possible decision model based on conjunction 
between population HPC location-on-track encoding and different visual scenes. T-
shaped track laid out in track locations 1-4 is depicted in gray. The green circles represent 
firing patterns of the hippocampal population at the different room locations. (a) The 
population firing patterns are different at different allocentric room locations. (b) The 
population firing patterns are the same at the different room locations (consistent with the 
current study). The blue chair represents a distal cue in the room, and the rat’s visual 
perspective of the cue at different room locations is depicted inside the thought bubbles. 
The red half circles symbolize the rat’s visual field, and the blue X’s show the location of 
the chair in the animal’s field of view at the different room locations. 
 
 In summary, both HPC and PPC patterns generalize across multiple T-maze room 

locations and differentiate the experiential context that arises from the recent history at a 

location.  These unexpected features are found under a navigational context in which 

repeated T-like intersections are encountered independently.  Straight paths leading to left 

versus right turn choices occur regularly in both the wild and city-situated navigation 

where obstructions to travel are distributed throughout the space. In particular, these 
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scenarios frequently occur in a city with intersections organized in a regularly patterned 

grid. Any single intersection located within such a city has an experiential context where, 

upon first approach, one has to know their absolute location in the environment in order 

to turn correctly toward a goal. However, upon repeated approaches to the same 

intersection one simply has to recognize the visual cues at that intersection, and repeat 

what becomes a more automatic procedure. In considering not recent experience, but 

instead the locations of multiple T-intersections in a single, continuous environment, the 

present work emphasizes the importance of navigation under circumstances in which 

these multiple T-choices are independent as opposed to occurring in a series along a 

single complex trajectory (e.g., a L then R then R pattern).  However, multiple 

intersections can be non-serially organized into neighborhoods within a city. Under these 

circumstances, correct decisions often cluster within neighborhoods in which to get to an 

area in one neighborhood (e.g. to get to the nice restaurants) one could turn right at any of 

the intersections, but to get to an analogous area in a different neighborhood, left turns 

would cluster together. Therefore the correct turn decisions themselves could define and 

fragment the environment based on a ‘navigational rule.’  The unexpected spatial tuning 

for HPC in the present study appears, at least, to be consistent with expression of such 

rule knowledge inasmuch as the animals in the present work applied the fragmentation 

rule robustly to novel track locations.  We conclude that for complex environments in 

which multiple navigational decisions must be made, the context of navigation may have 

a strong effect on fundamental spatial tuning properties of HPC, including in-field firing 

rates and spatial frame of reference.  The results also pave the way for future work to 

further identify spatial firing dynamics that reflect any of the multiple ways that division 
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of continuous spaces into fragments or ‘neighborhoods’ can occur (Wang, Monaco, & 

Knierim, 2020).  

 Chapters 3 and 4, in part, have been published in Neurobiology of Learning and 

Memory, Shelley, L.E., Barr, C. I., & Nitz, D.A. (2022). The author of the dissertation is 

the primary author of this publication. 

 

 

 

  



	 98 

Chapter 5: General Discussion 

 In the experiments discussed, we sought to examine posterior parietal and 

hippocampal dynamics involved in representation of complex environments and spatial 

tasks. Experiment 1 examined spatially specific firing patterns of HPC and PPC as they 

relate to movement through locations in an environment and locomotor behaviors 

associated with such movement. The recursion in path shape on a spiral track allowed for 

examining analogous locomotor actions in different room locations, and the three-

dimensional aspect of the track allowed for examination of stair hopping and ramp-

running behaviors. We found that PPC population activity mapped location, actions, and 

progress through a trajectory, and that PPC and HPC’s scale of representation followed 

the variation in the locomotor action being performed as animals traversed the track. 

These results shed light on encoding of path running episodes in a way that goes beyond 

memory for locations visited during a trajectory and includes the locomotor actions taken 

along those trajectories. 

 Using a different paradigm, experiment 2 examined behavior associated with a 

complex and abstract feature of space involving dividing a room into two fragments 

using only a behavioral rule, absent any physical or visual dividing line. All animals very 

quickly learned to apply the behavioral rule at different room locations. To our 

knowledge, this represents the first work using decision-making rules to force an 

arbitrary division of an environment. In addition to the environmental fragmentation, we 

found lower accuracy on the first trial of a block compared to subsequent trials, which 

gives rise to the possibility that animals may be using different strategies on the first trial 

of a block, and also that the neural mapping of the space might differentiate trials.  
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Following the logic and paradigm used in experiment 2, experiment 3 examined 

both fragment and trial differentiation by PPC and HPC. Experiment 3 found three 

unexpected features of HPC and PPC firing patterns. First, rate magnitudes of spatially 

tuned firing patterns differentiated the first trial of a block compared to subsequent trials, 

paralleling experiment 2’s poorer behavioral accuracy for trial 1. In HPC, firing rate 

modulation was characterized by overall increased rates and a backward-shift in the 

location of firing fields in trial 1. Second, HPC and PPC spatially tuned firing remained 

with the maze itself across environmental locations, as opposed to differentiating the 

different room locations (which would have been expected of HPC neurons as found in 

most prior work on HPC mapping), creating a maze-based spatial reference frame across 

both environmental fragments and all choice locations. Third, HPC and PPC firing 

patterns did not discriminate the upcoming turn choice while on the stem beyond what 

could be attributed to differences in the animal’s speed and orientation between turn 

choices. Most, if not all, prior studies find trajectory discrimination for such portions of 

mazes that are at the same location, prior to (or after) a turn. We presented a model for 

how HPC and PPC firing patterns could lead the animal to solve the task in Experiment 

3. Our interpretation is that across although HPC patterns remained stable, visual cues 

changed across track locations within the environment. Such pairing would map location 

on the track but differentiate track location and lead to a correct turn decision. 

Such studies investigating HPC and PPC mapping uncover the remarkable forms 

by which these two networks work together to map position and actions within 

allocentric and egocentric frameworks. These two brain areas share some tasks but are 

generally complementary in their function taking spatial cognition into actions within that 
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space, and translating that into spatial decision-making. Experience cannot be separated 

from its spatial context, almost everything we experience and memory for those 

experiences is rooted in environmental space. The spatial and action dynamic mapping by 

HPC, PPC, and other related structures give rise to complex and sometimes abstract 

cognitive phenomena, connecting behavior and neural activity to create a cohesive 

cognitive experience of an event, and form the basis by which an event of moving 

through space is experienced and remembered. 
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