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ABSTRACT

A connectionist network has been used to simulate the solution, using a hill-climbing heuristic,
of the DOG- > CAT puzzle (changing | letter at a time, generate a sequence of 3-letter words
beginning with DOG and ending with C47) and a simpler variant of the 8-tile puzzle, the
dog-cat-mouse (DCM) 1auzzle devised by Klahr (1985). Distributed representations have been
used to represent the ditlcrent possible states of the puzzles. These states are learned by the
network and become local energy minima of the system. To simulate the sequence of states
corresponding to a solution of the puzzle, the initial state of the network is set to the start
state, and the goal state is presented to the network as a continuous input. A sequence of
states is generated by habituation, a short-term modification of the connection strengths when-
ever all the elements in the network are maximally or minimally activated, and by exploiting
the property that successive states comprising the solution are similar.

Puzzles and games have been studied
extensively because they illustrate the importance
of search in issues of problem solving. In the
classic 8-puzzle, for example, 8 uniquely num-
bered tiles fit into a 3-by-3 matrix with one open
space. To solve the puzzle, a tile adjacent to the
open space is slid into that position, which, in
turn, creates a new configuration with the open
space now in an adjacent position. This contin-
ues until the goal state (a particular
configuration of the tiles) is attained.

Although quite a large number of distinct
configurations exist (9! = 362,880, excluding
rotations and reflections), a few moves are
sufficient to get to the goal state from any start-
ing state. From any given configuration, there
are 2, 3, or 4 possible successive states depending
on whether the open space is at a comer, an
edge, or the center, respectively. If moves back
to the previous state are not allowed, even fewer
possibilities arise. The set of configurations that
are possible comprises the problem space or state
space. The different ways of transforming one
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state to another are known as operators.

One approach to solve this puzzle involves
the use of search trees (or graphs). Each node
in the tree represents a particular configuration
of the puzzle, and arcs connect possible succes-
sive configurations. Beginning at the root of the
tree, the start state, the tree can be systematically
searched in a breadth-first (exploring all the
nodes at one level before going to the next lower
level) or depth-first (following a path for a fixed
number of levels, then retracing that path and
exploring alternmative paths if the search fails)
manner.

In contrast to the algonthmic solution
described above, a simple heuristic can be used
instead. One such heunstic, Aill-climbing, con-
sists of selecting that child of the current node
that is closest to the goal state, then selecting the
best child of that node while ignoring its siblings
and offspring of those siblings. No memory of
previous states considered, nor the path that led
to the current state need be stored. Such
methods are appealing because they are usually
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faster (when successful) anhd seem to mirror at
least some of the processes of human problem
solvers.

One important charactensuc of possible
successive staies that will be exploited in this
study is that changes from one state to another
are incremental, with successive states being as
similar as they could possibly be without being
identical. Note, however, that not all such
minimally distinct states are possible successors
of each other. In the 8-puzzlé, for example, only
those involving the movement of a tile from its
current position to an adjacent empty position
are possible successors, whercas configurations
with two tiles switched are not.

In implementations to date, each state has
been been represented as a distinct node, with
arcs representing legal moves between two states.
A distnibuted representation (where each state 1s
represented as a pattern of activity over a set of
features) can, however, more naturally exploit
the hill-climbing heuristic. * There has been a lot
of discussion of distnbuted representations
(Anderson, Silverstein, Ritz, and Jones, 1977;
Hinton, McClelland, and Rumelhart, 1986;
Knapp and Anderson, 1984; McClelland and
Rumelhart, 1985) by investigators using an
approach known in some circles as parallel dis-
tributed processing, or more gencrally, connec-
tionism, that explores parallel computing archi-
tectures. Such distnibuted representations have
been shown to be important in issues of learning
and generalization. This study shows that this
representation scheme can be exploited in issues
of problem solving as well.

To date, one drawback with a connection-
1st approach anses from the fact that once the
network of elements settle into a state, the net-
work remains in that state. Thus, criticisms exist
that while a solution bound by a set of con-

* The reader is cautioned to be aware that two closely
related notions of hill-climbing are used in this paper.
One 1s from the Al lterature on search heursitics, and
the other one, quite simular 1n spirit, anses from the
connectionust literature in terms of searching for a par-
ticular state (energy mimimum). In the framework of
this paper, the former influences the selection of subse-
quent states, and the latter allows the network to find
local energy minima. To mimmize possible confusion,
the terms relaxing or seftling will be used in discussions
of finding local energy minima.

strunts can be found in parallel, serial behavior
e unng transitions to successive states cannot
be simulated by these networks.

Rumelhart, Smolensky, McClelland, and
Hinton (1986) pointed out that the dilemna
regarding sequences of states can be resolved by
noting that the system can change with a change
in the external environment, a change that can
be effected in some cases by the expenencer
(e.g., game playing). They also noted that these
ideas can be extended in a way that allows these
networks to simulate mental simulation.

There 1s, however, a class of stimuli that
are rmultistable (e.g., the Necker cube). In these
cases, a fixed stimulus can be perceived in two
different configurations that alternate with each
other. These stimuli suggest an alternative based
on the notion of habituation, whereby continued
activity of a pair of elements results in a short-
term attenuation of that connection (Kawamoto
& Anderson, 1985). This property will be used
to simulate the solution, using "weak” methods,
of two simple puzzles, the DOG -> CAT puzzle
(i.e., change DOG to CAT by replacing one
letter such that each letter triplet is a legal word)
as well as a simpler variant of the 8-puszle dev-
ised by Klahr (1985) known as the dog-cat-
mouse (DCM) problem.

THE MODEL

The approach used here is based on the
work of Anderson and his colleagues (Anderson,
Silverstein, Ritz, & Jones, 1977; Anderson,
1983). Since this model has been described in
detail elsewhere (Anderson, et al., 1977; Ander-
son, 1983; Kawamoto & Anderson, 1985), only
the major points and more recent developments
will be noted here. The use of a network of sim-
ple processing elements operating in parallel to
simulate cognitive phenomenon is very similar to
many others (see Feldman, 1985; McClelland &
Rumelhart, 1986; Rumelhart & McClelland,
1986).

Network architecture

Auto-associative network. The pnnciple
network consisted of 216 elements, with each
element forming connections to every other ele-
ment in the network (hence the name, auto-
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associative). The activity of an element is
represented as a real value ranging between -1.0
and + 1.0. These limits constrain the activity of
the network within a high-dimensionality hyper-
cube and 1s the basis for refernng to this model
as the "brain-statc-in-a-box.” The activity of an
element changes with time, where time changes
in discrete steps, such that subscquent activity of
an element, x,, is simply the sum of the input,
s,, some fraction, &, of its activity at the previous
iteration, and the activity of all the other ele-
ments, x;, weighted by the connection strength,
@;;. That 1s.

x,(t+1y=LIMIT[s, + 8, () + To, x,(0)],(1)
J

where LIM[T ‘constrains the activity to the range
from -1.0 to + L1.0. The strengths of these con-
nections arc determined adaptively duning the
learning phase in the manner descnibed in a later
section. Since each element is connected with
every other element, a feedback loop is formed
and the state of the system continues to change
until all the elements in the network are
saturated (i.e., minimally or maximally
activated).

Associative network. For the DCM puzzle
only, the network will be supplemented with a
second set of 216 elements whose activity
represents the most recent puzzle configuration.
Connections from i th element of this set of ele-
ments forms connections v,; to the ;j th element
of the first set of elements. The connections v;;
capture the constraint on legal moves.

Representation

In this approach, each state is represented
as a pattern of features that are either on (a
value of + 1.0) or off (a value of -1.0). For both
the DOG -> CAT puzzle and the DCM puzzle,
there are always a fixed number of components
that comprise the configuration. In the first
case, there are always only 3 letters, and in the
second case, there are always a fixed number of
positions and 3 tokens placed in those positions.
A word or configuration is formed simply by
concatenating patterns corresponding to letters,
or tokens and their positions. A more detailed
description of the representations will be post-
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poned until the puzzles themselves are discussed.

Learning

An important aspect of modeling efforts of
this type is the training involved in producing a
network that successfully generates the desired
output for a given input. This is achieved by
modifying the connection strengths between
pairs of elements to capture the correlations in
their activities. One approach introduced by the
early investigators of leaming 1n networks
(Rosenblatt, 1962; Widrow & Hoff, 1960) is to
use "error-correction” schemes. Modification of
the synaptic weights proceeds by minimizing
(1e., correcting) the error between the desired
output and the actual output. For example, if
the pattern g (representing a 3-letter word or a
particular puzzle configuration) is to be learned,
the difference between the correct value of the i
th element of g, g;, and its actual value after a
single iteration through the network, g/, is used
to determine the extent of the modification.
Here, g; is simply

g:: LIMITIZ_“)U g (2)
/

After a learning trial, each connection strength
®,; is modified by

amu =n(g; _g:)gjr (3)

where 7 is a scalar learning constant.

For the DCM puzzle, the connections v;;
capture the constraint of allowable moves. In
this case, the location of the open position of the
puzzle always changes with each move. This has
been implemented by associating the pattem
representing the open position in each of the 4
different slots with possible successive open posi-
tions. These connections were modified accord-
ing to a Hebbian learning scheme (Anderson, et
al., 1977).

Energy

Although learning is generally an important
consideration for this modeling approach, this
particular aspect is not of pnmary importance in
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this study. Rather, this simulation exploits the
property that learning algorithms of the type
used here lead to the input patterns becomung
local energy minima (i.c., stable states) of the
system (Golden, 1986; Hopfield, 1982). In these
networks, each successive state, x, 1s more ener-
getically favorable than the previous state. For
the DOG -> CAT puzzle, an energy measure
analogous to one used by Rumelhart, et al.
(1986) is used,

E(t)= —3 3o; x(0)x,(6)—xx; (1)s;. (4)
LI | i

The hill-climbing search heuristic arises from the
contnbution of the stimulus, s, and the current
activity, Xx. For the DCM puzzle. the additional
constraint imposed by allowable transitions
yields

E(t)= -z s, x,(O)x, ()= TX, (1)s; (5
g i
= E‘ﬁ; CJKJ(I),
- d

where ¢ represents the most recent ssuble state.

Habituation

Since the elements at one layer are inter-
connected, a positive feedback loop is formed.
Thus, once all the elements in the network are
saturated, they tend to remain saturated. One
solution to get the system out of this stable state
18 to habituate the system by a short-term
modification of the connection strengths
(Kawamoto & Anderson, 1985). Given the
stable state ¢, a "comner” of the hypercube, the
connections are modified by

Aw; =vye,c;, (6)

where y 1s negative valued scalar constant. This
modification takes place on each iteration the
system 1s in the stable state. However, this
modification is only temporary as the effect
decreases exponentially with time.

Essentially, habituation results in a change
in the energy landscape; i.e., the current stable
state becomes less energetically favorable. At
some point, that state no longer corresponds to

a local energy minimum and the state of the net-
work moves away from this point toward a new
local energy minmimum.

DOG->CAT PUZZLE

Puzzle Description

The objective of this puzzle is to transform
a given 3-letter word, DOG, to a different 3-letter
word, CAT. by replacing a single letter of the
current word on each successive move such that
each new letter trplet forms a valid word.

Representation

In this simulation, the 30 3-letter words
listed in Table | were learned by the network.
Each letter is represented by a 72-dimensional
random vector. These patterns are simply con-
catenated in the appropriate order to produce
the pattern for each word.

Simulation

One aspect of this puzzle that makes it
somewhat difficult is the large number of possi-
ble operators (25 possible letter replacements at
each of 3 letter positions) for any given state,
most of which lead to non-legal states (ie.,
non-words). Rather than trying all possibilities,
one strategy 1s to substitute a letter from the
current word with the letter in the corresponding
position from the goal, e.g., C in position 1.
(These possiblities would all be "uphill” 1n terms
of the hill-climbing heuristic.) This will limit ini-
tial consideration to just 3 very likely possibili-
ties. Once a possibility has been generated, it
can be tested to see whether or not the resulting
triplet is a word or not. In contrast to this
sequential method of considenng different possi-
bilities, the approach used here essentially con-
siders all choices in parallel. Moreover, the
model, in general, "considers” only legal words.

After the 30 words from Table 1 were
learned, the network was tested to determine
whether a sequence of stable states correspond-
ing to a solution could be generated. The ntial
state of the network was set to DOG, and on
each iteration, the pattern corresponding to the
goal state CAT, was provided as input to the
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Table |. List of the 30 3-letter words learned by the
network.

AIM  DOT LIP
APE DUB MAD
ARC EEL PIN
BUN EGO ORE
CAR GNU ROB
CAT GUM SUB
COG ILL SUN
COT [IMP TIP
DIG IRE URN
DOG LED LUSE

Table 2. A simulation of the solution DOG -> COG
-> COT -> CAT.

0. DOG
. DOG
20 _OG
2. O
36. _0OG
47. COG
48. COG
9. CO_
78. _O_
87. COT
88. COT
95. C.T
98. _ T
in €71
114.  CAT

Note: The underscores indicate that the subset of ele-
ments are not all saturated.

network. A selected sample of states durning the
iteration are displayed in Table 2. Whenever the
network reaches a stable state, the connections
are habituated in the manner described earlier.

The sequence of stable states is DOG - >
COG -> COT -> CAT. While there are no
characters common to both the starting state,
DOG, and goal state, CAT, each successive state
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is always closer to the solution: i.e., the solution,
in terms of heunstic search, is strictly uphill.
Note that the model did not generate non-words
such as DAG. This is a general tendency that
arises because the lowest energy states of the net-
work correspond to the words leamed dunng the
initial training period.*

There are actually two solutions to this
puzzle. In addition to the solution generated
here, an alternative is the sequence DOG ->
DOT -> COT -> CAT. Both DOT and COG
represent ‘equally good states with respect to the
goal state. In this particular solution, the non-
determinism has becn resolved successfully and a
legal stable state was generated.

When an impasse in problem solving is
reached, headway can often be made by working
backwards from the goal state toward the ‘start
state. In the Al literature, such an approach 1is
used in searching simultaneously from the start
state to the goal state and from the goal state to
the start state. "Here too, such an approach can
be used, and the network successfully simulates
the solution in the reverse direction, CAT ->
COT -> DPOT -> DOG. Note that here, the
solution takes DOT as an intermediate state
rather than COG.

Although there are false peaks in this prob-
lem, a problem does not arise because the initial
state is at-the base of the tallest peak. The next
puzzlo illustrates a case where the network
begins at a false peak and gets down from it.

DCM PUZZLE

Puzzle Description

In this varnant of .the 8-puzzle, there are 3
different pieces, a dog, a cat, and a mouse, that
must be placed in the configuration shown in
Figure 1. A piece can be moved only to the
open position, and only if there is a connection,
indicated by the solid lines, from its current posi-

* There is, however, no guarantee that the network will
not generate non-words because there are essentially
only pair-wise connections between elements compris-
ing a pair of letters. The probability of settling into
states corresponding to words increases if there are ad-
ditional units unique to a given word as proposed by
Hinton (1981).
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Figure 1. Configuration of the DCM puzzle. There
are 4 positions and three tokens, with a token allowed
to move only to the open position (if there is a
connnection between the two locations).

Figure 2. State space representation of the DCM
puzzle. [From Klahr, 1985. Copyright 1985 by The
Society for Research in Child Development. Reprinted

by permission.)
tion to the open position.

Representation

Disregarding rotations and reflections, there
are 24 possible configurations. A graph showing
all possible states and legal transitions is shown
in Figure 2.

Table 3 shows the representation of the 24
possible states of the puzzle. Each configuration
1s represented in the following way: The piece at
each of the 4 positions (D, C, M, and O)
representing Dog, Cat, Mouse, and the Open
position, respectively) as well as each piece’s

Table 3. Representation of all possible configurations.

1 DCMO d c,my
2 0OCMD d,cymy
3 COMD d,c,my
4 CMOD d,c m,
5, CMDO dcym,
6 OMDC dicym,
7 MODC dscym,
8 MDOC dycym,

9 MDCO dycym,
10 ODCM dycym,
11 DOCM dcym,
12 DCOM dc,m,
13 OCDM dscom,
14 MCDO dcym,
15 MCOD dc,m,
16 MOCD dycym,
17 OMCD dycym,
18 DMCO d,cym,
19 DMOC dcym,
20 DOMC d,c,m,
21 ODMC d,cqm,
22 CDMO dyc,my
23 CDOM dycym,
24 CODM dycym,

Note: The number for each configuration corresponds
to that depicted in Figure 2.

position (d, ¢, and m) with a numerical sub-
script from | to 4 corresponding to its position),
are indicated by a distinct slot.

Simulation

Once the legal positions and constraints on
the operators have been learned, the ability of
the network to simulate the solution of the puz-
zle was observed. One example run is shown 1n
Table 4. The start state is configuration 14, and
the network successively reaches configurations
13, 12, and 1, the goal state.

During the course of running a number of
simulations, it was observed that not all states
the network settled into corresponded to a
configuration. For example, two pieces were
sometimes "moved” simultaneously to the open
position, creating 2 new open positions and
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Table 4. Simulation of solution of the DCM puzzle.

0 MCDO dsyem

l MCDO d363m|
19 _CDO dycom,

42 _CD__ dyc,m,
51 _CD dycy
56 OCD__ dyc,
57 OCD__ dycmg

58 OCDM daycomy

59 OCDM dycymy
66 _ CDM dyc,m,
g9 _C_M dyc.my
95 _C_M c,m,

—_—

100 _C_M  _c,
105_C_M  die,
107 _COM dic,
108 _COM dcym,

109 DCOM d,c,m,

110 DCOM dc,m,
117DC_M  dcym,
149 DC_M  dic,
150D___ M dyc,

154 DC____ dic, _
158 DC____ dc;**
161 DC____ dic, _
163 DC____ _ ey
167 DC____ __Ccomy
168 DC__ O __Comy
169 DCMO __Cymy
171 DCMO d com,

Note. The underscores indicate that the correspond-
ing set of units are not saturated. The asterisk indi-
cates that although the set of units are saturated, they
do not correspond to a defined pattern.

combination of the two pieces at the position
that was formerly empty. This was a manifesta-
tion of the non-determinism involved in choos-
ing a successive state and has been observed in
young children (Klahr, 1985). In other cases,
the equivalent of 2 moves were sometimes taken
dunng one settling period.

In solving puzzles, one way to minimize
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the path length for a solution 1s to avoid backup,
1.e., not returning to the previous state. Here,
this constraint 1s imposed as a result of habitua-
tion. Previous states are less likely to be
returned to simply because these states are no
longer energetically favorable.

DISCUSSION

In this study, the solution of two puzzles
using a hill-climbing search heuristic has been
simulated within a connectionist framework.
This is implemented by using a distributed
representation to capture similanty of the states
in the problem space. When the goal state is
provided as an input, the more sumilar a state 1
to the goal state, the more energetically favorable
that state is. Since the network settles into local
energy minima, the states the network settles
into are similar to the goal state. Once the net-
work settles into a stable state, the connections
are habituated. This changes the energy
landscape and allows the network to move from
the current state to a new stable state that is
closer to the goal state.

Networks of this type can also go from one
stable state to another (with a fixed input) if the
activity of umits are stochastic. In such cases,
the probability that the network is in a particular
state is determined from the Boltzmann distribu-
tion (Ackley, Hinton, & Sejnowski, 1985; Sel-
man, 1985).

Although it has been demonstrated here
that connectionist networks can simulate solu-
tion of puzzles, the behavior simulated is that of
a naive problem solver. It would be nice if the
network could also learn the optirmal solution
given a particular start state and goal state. An
even more ambitious goal is for the network to
generate a representation scheme that would
allow it to generalize to configurations that were
isomorphic. This would almost surely require
the network to be able to train hidden units
using methods studied by Ackley, et al. (1985)
and Rumelhart, Hinton, and Williams (1985).
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