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A comparison of methods to harmonize cortical thickness 
measurements across scanners and sites

A full list of authors and affiliations appears at the end of the article.

Abstract

Results of neuroimaging datasets aggregated from multiple sites may be biased by site-specific 

profiles in participants’ demographic and clinical characteristics, as well as MRI acquisition 

protocols and scanning platforms. We compared the impact of four different harmonization 

methods on results obtained from analyses of cortical thickness data: (1) linear mixed-effects 

model (LME) that models site-specific random intercepts (LMEINT), (2) LME that models both 

site-specific random intercepts and age-related random slopes (LMEINT+SLP), (3) ComBat, and 

(4) ComBat with a generalized additive model (ComBat-GAM). Our test case for comparing 

harmonization methods was cortical thickness data aggregated from 29 sites, which included 

1,340 cases with posttraumatic stress disorder (PTSD) (6.2–81.8 years old) and 2,057 trauma-

exposed controls without PTSD (6.3–85.2 years old). We found that, compared to the other data 

harmonization methods, data processed with ComBat-GAM was more sensitive to the detection of 

significant case-control differences (X2(3) = 63.704, p < 0.001) as well as case-control differences 

in age-related cortical thinning (X2(3) = 12.082, p = 0.007). Both ComBat and ComBat-GAM 

outperformed LME methods in detecting sex differences (X2(3) = 9.114, p = 0.028) in regional 

cortical thickness. ComBat-GAM also led to stronger estimates of age-related declines in cortical 

thickness (corrected p-values < 0.001 ), stronger estimates of case-related cortical thickness 

reduction (corrected p-values < 0.001 ), weaker estimates of age-related declines in cortical 

thickness in cases than controls (corrected p-values < 0.001 ), stronger estimates of cortical 

thickness reduction in females than males (corrected p-values < 0.001 ), and stronger estimates of 

cortical thickness reduction in females relative to males in cases than controls (corrected p-values 
< 0.001 ). Our results support the use of ComBat-GAM to minimize confounds and increase 

statistical power when harmonizing data with non-linear effects, and the use of either ComBat or 

ComBat-GAM for harmonizing data with linear effects.

Keywords

Data Harmonization; Scanner Effects; Site Effects; Cortical Thickness; ComBat; ComBat-GAM; 
Linear Mixed-Effects Model; General Additive Model; PTSD
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1. Introduction

Large consortia, such as Enhancing Neuro Imaging Genetics through Meta-Analysis 

(ENIGMA) (Thompson et al., 2020), Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) (Hofer et al., 2020), and others have aggregated neuroimaging 

data acquired on many different scanners and recruited subjects at many different sites to 

conduct meta- and mega-analyses. By applying standardized analysis pipelines to extremely 

large datasets of thousands or tens of thousands of samples, consortia improve reliability, 

enhance reproducibility of results, amass sufficient statistical power to detect relatively small 

effect sizes, and support the ability to divide samples while retaining the power to delineate 

subsample (e.g., male vs female or young vs old) and interaction effects. The diverse ethnic, 

racial, geographic, and clinical demography of consortium data has provided results that are 

more representative of the wider population while also permitting exploration of clinical and 

neurobiological subtypes of neuropsychiatric disorders (Dennis et al., 2022; Thompson et 

al., 2020). Neuroimaging results generated by consortia are more robust and reproducible 

than studies that are generated by a single laboratory (Koshiyama et al., 2022), provided that 

consortia apply uniform methods to data originating from multiple sites and scanners.

However, several challenges are posed by the analysis of consortium data. A major concern 

of consortium-generated results is bias introduced by site-specific acquisition protocols and 

MRI scanners that may interact with site-specific demographic and clinical profiles (Radua 

et al., 2020).The challenge of post hoc combination of datasets stems partly from a lack of a 
priori harmonization of MRI acquisition sequences. Prospective data collection by consortia 

such as NCANDA (Brown et al., 2015), ABCD (Volkow et al., 2018), TRACK-TBI (Hicks 

et al., 2013), and others have prescribed harmonized acquisition parameters at study out- 

set with the expectation of superior performance and obviating the need for post-acquisition 

harmonization. However, even prospective standardization and prescription of acquisition 

parameters results in significant variance attributed to sites for relatively short scan duration 

(e.g., 5 min) that can be reduced significantly by increasing scan duration (e.g., 25 min) 

(Noble et al., 2017). It remains unclear whether further post hoc harmonization of these 

datasets may improve sensitivity and power of analyses.

Various methods to harmonize neuroimaging data across sites are gaining acceptance and 

will become commonplace. However, there is little empirical evidence to support the use of 

a single method due to the lack of formal comparisons of available methods. In this study, 

we compared four harmonization methods. First, we tested linear mixed-effects modeling 

(LME), also known as the mixed-effects mega-analysis (ME-Mega) (Radua et al., 2020), 

with site as a random intercept (LMEINT) to model the intercept location effects of site on 

brain measures. Second, we tested LME with both random intercept and age-related random 

slope for the site covariate (LMEINT+SLP). Third, we used ComBat, a method originally 

developed to minimize batch effects present in data originating from multiple gene arrays 

(Johnson et al., 2007), and later adapted for neuroimaging data. ComBat is designed to 

remove site-associated differences while preserving variation due to biologically relevant 

variables such as age, sex, and diagnosis (Fortin et al., 2018). ComBat has been widely used 

to harmonize neuroimaging data including cortical thickness (Fortin et al., 2018), surface 

area, subcortical volumes (Radua et al., 2020), diffusion tensor imaging (Fortin et al., 2017; 

Sun et al. Page 3

Neuroimage. Author manuscript; available in PMC 2022 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hatton et al., 2020), and resting-state functional connectivity (Yu et al., 2018). Radua et 

al. (2020) reported that ComBat and LMEINT produced similar results when harmonizing 

cortical thickness, surface area, and subcortical volumes, while ComBat harmonization led 

to slightly higher statistical significance when performing between-group comparisons, in a 

multisite imaging study of schizophrenia. The fourth method, by Pomponio et al. (2020), 

improves on ComBat by modeling non-linear effects of age with a generalized additive 

model (GAM). ComBat-GAM allows for varied distributions of scale (multiplicative, or 

variance) and location (additive, or mean) effects, respectively.

ComBat-GAM was designed to capture age-related non-linearities across the lifespan by 

fitting a GAM with a penalized nonlinear term. Pomponio et al. (2020) examined cortical 

and subcortical gray matter volumes without harmonization, harmonized by ComBat, and 

harmonized by ComBat-GAM in a large sample of 10,477 healthy subjects aggregated 

from 18 sites who ranged in age from 3 to 96 years. They reported that gray matter 

volumes harmonized by ComBat-GAM achieved the best performance in an age prediction 

task that minimized the difference between actual age and predicted age. They also found 

that ComBat-GAM, compared to other approaches, consistently led to improved prediction 

accuracy for each dataset in a leave-one-site-out validation experiment. However, Pomponio 

et al. (2020) only investigated data from healthy participants, which did not involve case-

control comparisons, nor formal comparisons to LME methods.

Consequently, the goals of the present study were to investigate (1) the performance of 

ComBat-GAM for comparing clinical cases to controls, (2) how performance is influenced 

by age, and (3) how well performance characteristics compare to LMEINT, LMEINT+SLP, 

and ComBat. Although the random-effects meta-analysis (RE-Meta) has been widely 

used by ENIGMA projects (Zugman et al., 2022), we did not include RE-Meta in this 

study because several studies showed that LME and ComBat produce results with greater 

statistical power than RE-Meta (Boedhoe et al., 2017; Favre et al., 2019; Radua et al., 2020; 

van Rooij et al., 2018). The increase in power is based on the premise that the site effect 

being removed represents random noise, and its removal leads to larger effect sizes and 

greater efficiency requiring fewer subjects to reject the null hypothesis at a pre-specified 

power.

An important caveat is that performance was measured by the number of brain regions 

with significant case-control differences. We recognize that neither the method with the 

greatest number of regions reaching significance nor the method that maximizes the 

magnitude (absolute value) of regression coefficients reflects the true underlying cortical 

thickness - the so-called ground truth. However, harmonization can move the values further 

from the ground truth and still be useful. The main aim of harmonization is to make 

uncalibrated measurements more comparable to each other. It is possible that measurable 

differences between cases and controls are potentially masked by scanner bias and effective 

harmonization should increase the difference between the distribution of cases and controls. 

Therefore, it is advisable to count the number of regions that are statistically significant after 

implementing harmonization. Nonetheless, there is a risk that harmonization may introduce 

variability that was not present in the original data.
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Data aggregated from 29 sites served as our test case for comparing harmonization methods. 

Subjects’ data was grouped into cases with PTSD (N = 1340) and trauma-exposed controls 
without PTSD (N = 2057). PTSD is associated with anatomical and functional alterations 

in widely distributed regions of the brain (Dennis et al., 2022; Logue et al., 2018; Wang 

et al., 2021). Military service members with PTSD and comorbid mild traumatic brain 

injury (mTBI) experience faster age-associated decline in cortical thickness than controls 

(Santhanam et al., 2019; Savjani et al., 2017). We hypothesized significant case-control 

differences in cortical thickness and age-related cortical thinning would be detectable in 

more brain regions by utilizing ComBat-GAM relative to LMEINT, LMEINT+SLP, and 

ComBat.

2. Methods

2.1. Participants

Data were obtained for secondary analysis from the ENIGMA-PGC PTSD Working Group. 

The dataset originated from 29 sites located on five continents (PTSD, N = 1340; Trauma-

Exposed Controls, N = 2057) from a broad age group (6.2–85.2 years old). Three sites were 

the source of all children and adolescents (Duke De Bellis 9.9 ± 2.5; Leiden University 16.0 

± 1.9; University of Washington 13.2 ± 2.9) and one site was the source of older participants 

(ADNI-DoD 67.9 ± 3.6), with minimal overlap between the 3 sites with participants under 

20 years and sites with participants over 20 years. Only one site contributed both children 

(Duke University-De Bellis) and adults (Duke University-Morey). Demographic information 

is summarized in Table 1. Clinical measures and assessment of PTSD are explained in the 

Supplementary Table S1. The scanner information is listed in Supplementary Table S2. All 

study sites obtained approval from local institutional review boards or ethics committees. 

All participants provided written informed consent. Data is available upon request from the 

corresponding author.

2.2. Imaging data preprocessing

Anatomical brain images were preprocessed at Duke University through a 

standardized neuroimaging and QC pipeline developed by the ENIGMA Consortium 

(http://enigma.ini.usc.edu/protocols/imaging-protocols/) (Logue et al., 2018). Cortical 

thickness measurements were generated using the FreeSurfer software (https://

surfer.nmr.mgh.harvard.edu ) based on the Destrieux atlas (Destrieux et al., 2010) that 

contains 74 regions per hemisphere. All sites used FreeSurfer 5.3 for parcellation except 

ADNI-DoD, Minneapolis VA, and the Waco VA, which used FreeSurfer 6.0, as well as 

Amsterdam Medical Center and University of South Dakota, which used FreeSurfer 7.1.1 

(Supplementary Table S2). Briefly, white matter surfaces were deformed toward the gray 

matter boundary at each surface vertex. Cortical thickness was calculated based on the 

average distance between the parcellated portions of white and pial surfaces within each 

region per participant. In each region, any missing value was replaced by the mean cortical 

thickness averaged across same group of participants (either PTSD or trauma-exposed 

controls) at the same site
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2.3. ComBat harmonization

ComBat removes the effects of site while preserving inherent biological variance in the data 

(Fortin et al., 2018). In the present study, PTSD diagnosis, age, and sex were designated 

as biological variables. The ComBat approach was implemented using R scripts (https://

github.com/Jfortin1/ComBatHarmonization) running on RStudio (ver. 1.3.1073) and R (ver. 

4.0.2). Unlike implementations of LME models that merge data harmonization and statistical 

analyses, ComBat and ComBat-GAM perform only harmonization and make harmonized 

data available to the user.

2.4. ComBat-GAM harmonization

PTSD diagnosis, age, and sex were designated as biological variables, and age was specified 

as the only smooth term in the model. We employed the default setting so that the empirical 

Bayes estimates were used for site effects, and there were no custom boundaries for the 

smoothing terms. The ComBat-GAM approach was implemented using Python (ver. 3.8.5) 

scripts (https://github.com/rpomponio/neuroHarmonize).

2.5. Distribution of non-harmonized, ComBat harmonized, and ComBat-GAM harmonized 
data

Pairwise comparisons of non-harmonized, ComBat harmonized, and ComBat-GAM 

harmonized data using the function pairs() (from the R package emmeans) were applied 

to the absolute differences between the site-specific mean values and the mean value 

averaged across sites. The absolute, but not signed values, of the differences were 

investigated in order to test whether ComBat and ComBat-GAM harmonization led to 

more consistent distributions Specifically, smaller differences between the site-specific mean 

values and the mean across sites). The pairwise comparisons were also applied to site-

specific standard deviations for cortical thickness across cortical regions. The p-values were 

adjusted using Bonferroni correction for three pairwise comparisons (i.e., ComBat vs. non-

harmonized, ComBat-GAM vs. non-harmonized, ComBat-GAM vs. ComBat). The effects 

of harmonization by LME models cannot be observed directly because data harmonization 

and statistical analyses are inseparable in LME methods.

2.6. Statistical models

In all models, we included sex, age, and PTSD diagnosis as fixed factors to estimate their 

effects on regional cortical thickness, and as co-variates for testing interaction effects of 

interest. Either age by diagnosis interaction, or sex by diagnosis interaction was included 

in the models as a fixed factor when the corresponding interaction was of interest. The 

supplementary materials report on the influence of age 2 as a fixed-factor to estimate 

effects on regional cortical thickness, and for testing interaction effects. Linear modeling 

was used to analyze data harmonized by ComBat and data harmonized by ComBat-GAM. 

Cortical thickness data without harmonization was entered into the LME models. The 

LMEINT models employed study site as a random factor to model random intercepts. 

The LMEINT+SLP modeled both the site-specific random intercepts and age-related random 

slopes to reflect different age-related slopes in cortical thickness across sites. Bonferroni 

correction was employed for multiple testing of 148 cortical regions with a corrected α = 
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0.0003 (0.05/148). The functions lm() and lmer() (from the R package lme4) were used 

to calculate the unstandardized regression coefficients for lineal models and the random 

effects models, respectively. The R package lmerTest was utilized to extract the statistical 

significance of models. The fitted curves in this manuscript were made using default settings 

(i.e. loess) of the R ggplot2 function geom_smooth().

The number of regions with significant findings and the magnitude of effect size was 

compared separately between the 4 harmonization methods. A chi-squared test based on the 

function chisq.test() (from the native stats package in R) was used to compare the number 

of cortical regions showing significant effects. The region-specific regression coefficients 

were compared using repeated-measures ANOVA based on the function aov_ez() (from the 

R package afex ). If the omnibus ANOVA results were statistically significant, then post-hoc 

pairwise comparisons of the 4 harmonization methods were conducted using the function 

pairs() (from the R package emmeans ). The p-values were adjusted using the Bonferroni 

method for the 6 pairwise comparisons made with the outputs of the 4 harmonization 

methods.

3. Results

As shown in Fig. 1 and the interactive plot at https://4n8ygg-delin-sun.shinyapps.io/

SDL_Shiny/, data distribution and age-related slops are largely modulated by site. Visual 

evidence of a non-linear age effect in participants under 20 years originate from 3 sites 

(Duke-De Bellis; Leiden University; University of Washington). Therefore, it is paramount 

and meaningful to harmonize the data by removing site effects.

3.1. Distribution of non-harmonized, ComBat harmonized, and ComBat-GAM harmonized 
data

Distributions of non-harmonized and harmonized data are shown in Fig. 2. Relative to 

non-harmonized data, ComBat (controls: range of t-values: [−10.120,−3.225], p-values: 

[<0.001,0.006] corrected; PTSD: t-values: [−9.653,−3.475], p-values: [<0.001,0.003] 

corrected; across regions) and ComBat-GAM harmonized data (controls: t-values: 

[−10.046,−1.856], p-values: [<0.001,0.207] corrected; PTSD: t-values: [−9.590,−2.284], 

p-values: [<0.001,0.078] corrected; across regions) resulted in smaller differences overall 

between the site-specific data and the mean across sites. There was no significant difference 

between ComBat and ComBat-GAM harmonized data (controls: t-values: [−2.373,0.075], 

p-values: [0.064,0.999] corrected; PTSD: t-values: [−2.183,0.066], p-values : [0.100,0.999] 

corrected; across regions).

There was no significant difference in the site-specific standard deviations between all 

data-pairings across all regions (controls: t-values : [−0.961,1.995], p-values: [0.154,0.999] 

corrected; PTSD: t-values : [−1.174,2.354], p-values: [0.066,0.999] corrected; across 

regions).

3.2. Main effect of age

As shown in Fig. 3, linear age-related trends are evident with ComBat harmonization, 

whereas non-linear trends are evident with ComBat-GAM harmonization with a dramatic 
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decline in cortical thickness before 20, and a relatively slow decline after 20 years. This 

pattern holds true for both PTSD and control groups.

As shown in Figs. 4A and 5, the number of regions showing a significant main effect of 

age was significantly different across harmonization methods (X 2(3) = 89.658, p < 0.001). 

The age-related declines in cortical thickness were detected by ComBat-GAM and ComBat 

in 147 (99.3%) regions, by LMEINT in 145 (98.0%) regions, and by LME INT+SLP in 113 

(76.4%) regions, see Table 2. As shown in Table 3, the ratio of detection (> 95%) indicated 

that the significant regions detected by one method was also detected by another method 

except for LMEINT+SLP, which is less efficiently (< 80%) in replicating the findings of age 

effects detected by the other methods.

The regression coefficients were significantly different across harmonization methods 

(F(1.6, 231.8) = 207.13, p < 0.001). As shown in Fig. 4B and Table 4, ComBat-GAM 

produced stronger estimates of age-related declines in cortical thickness than the other 

methods, while the other three methods were not significantly different from each other.

3.3. Main effect of diagnosis

The number of regions showing a main effect of diagnosis was significantly different 

across harmonization approaches (X 2(3) = 63.704, p < 0.001). As shown in Fig. 6A, and 

Table 2, case-related reductions in cortical thickness were found by ComBat-GAM in 31 

(20.9%) regions, by ComBat in 5 (3.4%) regions, by LMEINT and by LMEINT+SLP in 

2 (1.4%) regions. As shown in Fig. 7, the regions discovered by ComBat-GAM include 

those within the salience network (SN; bilateral insula regions), executive control network 

(ECN; bilateral intraparietal sulcus and supramarginal gyri), default mode network (DMN; 

left ventromedial prefrontal cortex, and bilateral precuneus), and bilateral superior and 

inferior temporal gyri and sulci, which are consistent with previous reports ( Shalev et al., 

2017 ). As shown in Table 3, the significant regions detected by LMEINT were also detected 

by ComBat, and the significant regions detected by LMEINT+SLP were also detected by 

ComBat-GAM, while the opposite was not true (ratio of detection <= 40%).

Regression coefficients were different across harmonization methods (F(1.4, 205.1) = 

335.79, p < 0.001). As shown in Fig. 6B and Table 4, ComBat-GAM produced stronger 

estimates of case-related cortical thickness reduction as well as weaker estimates of case-

related cortical thickness increase than the other three methods, and ComBat produced 

stronger estimates of case-related cortical thickness reduction as well as weaker estimates of 

case-related cortical thickness increase than the two LME methods.

3.4. Age by diagnosis interaction

As shown in Fig. 8A, significant age by diagnosis interactions were detected by ComBat-

GAM in 4 (2.7%) regions, while no significant in- teractions were detected by ComBat, 

LMEINT, and LMEINT+SLP. ComBat-GAM outperformed the other methods in detecting 

this interaction effect (X 2(3) = 12.082, p = 0.007), see Table 2. As shown in Fig. 9, 

age-related declines in cortical thickness were slower in cases than controls for 4 regions: 

right posterior-dorsal part of the cingulate gyrus, right marginal branch of the cingulate 

sulcus, right inferior temporal gyrus, and right fusiform gyrus. The linear (Fig. S1) and 
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non-linear (Fig. S2) fits of the age-related distributions of cortical thickness harmonized by 

ComBat-GAM in these regions are shown in the supplementary materials.

Regression coefficients differed across harmonization methods (F(1.3, 197.3) = 246.41, 

p < 0.001). As shown in Fig. 8B and Table 4, ComBat-GAM compared to the other 

methods produced weaker estimates of age-related declines in cortical thickness in cases 

than controls, and both ComBat and LMEINT compared to LMEINT+SLP produced weaker 

estimates of age-related declines in cortical thickness in cases than controls.

3.5. Main effect of sex

The number of regions showing a significant main effect of sex was significantly different 

across harmonization methods (X 2(3) = 9.114, p = 0.028). As shown in Fig. 10A and 

Table 2, the differences between males and females in cortical thickness were detected by 

ComBat-GAM and by ComBat in 43 (29.1%) regions, by LMEINT in 26 (17.6%) regions, 

and by LMEINT+SLP in 29 (19.6%) regions. As shown in Fig. 11, The analyses based on 

ComBat-GAM harmonization showed that females had greater cortical thickness than males 

in bilateral precentral and postcentral regions, bilateral middle cingulate cortex, bilateral 

superior frontal gyri, bilateral angular gyri, bilateral medial occipito-temporal sulci and 

lingual sulci, left frontal pole, left superior temporal sulci, and right parahippocampal gyrus. 

By contrast, males had greater cortical thickness than females in bilateral inferior temporal 

regions, left rectus, left planum polare of the superior temporal gyrus, left vertical ramus of 

the anterior segment of the lateral sulcus, bilateral calcarine sulci, left insula, left inferior 

and middle frontal sulci, left orbital sulci, right ventral posterior cingulate cortex, right 

temporal pole. As shown in Table 3, most regions showing statistical significance detected 

by the LME methods were also detected by ComBat and ComBat-GAM (ratio of detection > 

90%), and the opposite is not true (ratio of detection <= 70%).

Regression coefficients were different across harmonization methods (F(1.8, 259.6) = 

123.25, p < 0.001). As shown in Fig. 10B and Table 4, ComBat-GAM compared to the 

other methods produced stronger estimates of cortical thickness reduction in females than 

males as well as weaker estimates of cortical thickness increase in females than males. 

ComBat compared to LME methods as well as LMEINT compared to LMEINT+SLP produced 

stronger estimates of cortical thickness reduction in females than males as well as weaker 

estimates of cortical thickness increase in females than males.

3.6. Sex by diagnosis interaction

As shown in Fig. 12A, no significant sex by diagnosis interactions were found using data 

from any of the four methods. Regression coefficients were significantly different across 

harmonization approaches (F(1.2, 178.3) = 12.40, p < 0.001). As shown in Fig. 12B and 

Table 4, ComBat-GAM compared to the other methods produced stronger estimates of 

cortical thickness reduction in females relative to males in cases than controls, as well as 

weaker estimates of cortical thickness increase in females relative to males in cases than 

controls. ComBat compared to the LMEINT+SLP methods produced stronger estimates of 

cortical thickness increase in females compared to males in cases than controls, as well as 
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weaker estimates of cortical thickness reduction in females compared to males in cases than 

controls.

3.7. Results after removing sites with children, adolescents, and older participants

To test whether our findings were influenced by the data from children, adolescents, and 

very old participants, we re-analyzed the data after removing 3 sites with participants under 

20 years and one site with older participants (~70 years). ComBat-GAM, ComBat, and 

LMEINT detected more regions with age-related cortical thinning compared to LMEINT+SLP. 

Both ComBat and ComBat-GAM compared to two LME methods detected more regions 

with sex-related cortical thickness differences. There was no significant difference among 

harmonization methods in detecting other effects. More details see Supplementary results 

section, and Table S4, S5, and S6.

4. Discussion

We compared the performance of four harmonization methods by applying them to cortical 

thickness data in participants grouped into clinical cases and controls from 29 different sites. 

The four harmonization methods included LMEINT, LMEINT+SLP, ComBat, and ComBat-

GAM. We acknowledge that the number of regions reaching significance by any method 

does not necessarily reflect the ground truth, but the principle goal of harmonization is 

to convert uncalibrated measurements from multiple sources to be more comparable to 

each other. As summarized in Table 2, ComBat-GAM, ComBat, and LMEINT detected 

more regions with age-related cortical thinning compared to LMEINT+SLP (Figs. 4A and 

5). Consistent with our a priori hypothesis, ComBat-GAM harmonization uncovered more 

regions with significant case-related reductions in cortical thickness (Figs. 6A and 7), 

and more regions displaying slower rates of age-related cortical thinning in cases than 

controls compared to the other methods (Figs. 8A and 9). ComBat and ComBat-GAM 

outperformed LME methods in detecting sex-related differences (Figs. 10A and 11), but 

not sex by diagnosis interactions (Fig. 12A). As summarized in Table 3, most regions 

showing significant effects of age and sex detected by LME methods were also detected 

by ComBat and ComBat-GAM, while the opposite was not true, except that LMEINT 

performed comparably to ComBat and ComBat-GAM for the main effect of age. Regression 

coefficients (Table 4) showed that compared to other methods, ComBat-GAM produced 

stronger estimates of age-related declines in cortical thickness (Fig. 4B), stronger estimates 

of case-related cortical thickness reduction (Fig. 6B), weaker estimates of age-related 

declines in cortical thickness in cases than controls (Fig. 8B), stronger estimates of cortical 

thickness reduction in females than males as well as weaker estimates of cortical thickness 

increase in females than males (Fig. 10B), stronger estimates of cortical thickness reduction 

in females relative to males in cases than in controls, and weaker estimates of cortical 

thickness increase in females relative to males in cases than in controls (Fig. 12B).

ComBat models the expected values of the imaging features as a linear combination of 

the biological variables and the site effects whose error term is modulated by additional 

site-specific scaling factors (Fortin et al., 2018). It also uses empirical Bayes to improve the 

estimation of the model parameters in studies with small sample size. Radua et al. (2020) 
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used cortical thickness, surface area, and subcortical volume data in cases and controls 

from ENIGMA-Schizophrenia to compare ComBat to random-effects meta-analysis and 

random-effects mega-analysis, which we term LMEINT in the present study. They reported 

that ComBat delivered more results that were statistically significant than random-effects 

meta-analyses, and slightly more than LMEINT. However, they did not report results of 

non-linear age effects on cortical thickness, which are well documented (Frangou et al., 

2022; Pomponio et al., 2020; Walhovd et al., 2017), nor did they report on effects of 

group membership on age-related changes in cortical thickness. By contrast, Pomponio et 

al. (2020) developed ComBat-GAM to support harmonization of neuroimaging data with 

non-linearities related to age or other variables by investigating cortical and subcortical gray 

matter volumes in 10,477 healthy subjects ranging in age from 3 to 96 years collected 

at 18 sites. They concluded that ComBat-GAM is superior to ComBat at predicting age 

based on regional volume data. However, Pomponio et al. (2020) only investigated healthy 

participants, which lacked guidance on harmonization of data for case-control comparisons. 

Finally, prior studies did not report the magnitude of regression coefficients obtained from 

various harmonization methods, in spite of an urgent plea by researchers to understand how 

harmonization influences the output of statistical models run on harmonized data.

Our study sought to fill these gaps by formally comparing regression coefficients and the 

number of regions showing statistically significant results, including case-control differences 

in cortical thickness across the lifespan. As shown in Fig. 2, ComBat and ComBat-GAM led 

to smaller differences between site-specific data and the mean values averaged across sites, 

and they did not change the site-specific standard deviations for cortical thickness. These 

results demonstrated that both ComBat and ComBat-GAM are effective at minimizing the 

effects of site without distorting the data distribution. Harmonization with ComBat-GAM 

was the most effective at detecting case-control differences as evidenced by significantly 

more regional findings as compared to other harmonization methods. ComBat-GAM was 

one of the most effective methods at detecting age-effects in cortical thickness, and the 

only method to uncover regions with different rates of age-related cortical thinning in cases 

compared to controls. Furthermore, most of the regions showing statistical significance 

following harmonization with other methods were also detected following ComBat-GAM 

harmonization. Whereas we have no collateral information to corroborate the findings from 

ComBat-GAM harmonization pertaining to case-control differences or age-dependent case-

control differences, the literature offers consistent evidence of age-related patterns of cortical 

thickness across the lifespan (Frangou et al., 2022; Mutlu et al., 2013). One caveat is that 

motion related artifact, which is associated with lower cortical thickness measurements, 

increases with age (Savalia et al., 2017). Consequently, reduced cortical thickness with aging 

may be partially artifactual. Nonetheless, Fig. 3 shows concrete evidence of erroneous 

harmonization by ComBat that is handled correctly by ComBat-GAM. Our finding is 

corroborated by independent studies, which demonstrate that the highest cortical thickness 

occurs in childhood and that age is negatively correlated to cortical thickness with a steeper 

decline up to the third decade of life more gradually thereafter (Frangou et al., 2022; 

Mutlu et al., 2013). By contrast, ComBat harmonized the data along a linear pattern with 

age throughout the lifespan. Thus, ComBat-GAM harmonization may be advantageous, 
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particularly for consortia studies with participants of all ages, particularly youth and young 

adults.

The performance of ComBat-GAM is attributable to its algorithm. LME models assume that 

the error terms follow the same normal distribution at all sites, which is rarely the case 

(Radua et al., 2020). ComBat overcomes this shortcoming by assuming different normal 

distributions at different sites for the error terms (Radua et al., 2020). ComBat-GAM further 

improves on ComBat by using a normal distribution as the prior for the intercept and 

an inverse-gamma distribution as the prior for the scale effect of the sites. It also uses 

generalized additive model (GAM) to capture non-linear variations in age-related changes in 

cortical thickness while avoiding overfitting (Pomponio et al., 2020).

In our study, participants at most sites were aged 20–60 years old, while volunteers from 

three sites were mostly below 20 years old, and participants from one site were mostly 

over 70 years old. We found that after removing the data from the four sites with either 

very young or very old participants, ComBat-GAM is not better than other harmonization 

methods at detecting regions with significant case-control differences and age by diagnosis 

interactions (see supplementary results section). We could not exclude the possibility that 

the superiority of ComBat-GAM versus the other methods is driven by overfitting data 

from sites with very young or very old participants. Fig. 1 shows the data distributions of 

the four sites are consistent with the literature, with steeper cortical thickness declines in 

youth and flatter age-appropriate declines in older adults (Frangou et al., 2022; Mutlu et al., 

2013). Furthermore, the three sites with participants < 20 years old exhibit similar slopes 

of age-related declines in cortical thickness. Therefore, rather than concluding that ComBat-

GAM overfits data from children contributed by specific sites, there is stronger evidence to 

conclude that ComBat-GAM accurately captures nonlinear age trends in cortical thickness. 

Data from sites with a larger age range may address this concern more conclusively.

We found slower rates of age-related decline in cortical thickness in cases compared to 

controls for 4 regions, but only for data harmonized with ComBat-GAM (Figs. 8 and 9). As 

shown in supplementary Figs. S1 and S2, cases exhibited lower cortical thickness compared 

to controls in youth and greater cortical thickness in elderly in the 4 regions. It is possible 

that PTSD induces more powerful cortical thinning in youth and delayed age-appropriate 

declines in cortical thickness in elderly. This explanation is partly consistent with previous 

findings that maltreated youth with versus without chronic PTSD have smaller volumes in 

the posterior brain structures (De Bellis et al., 2015). More studies are warranted to test 

whether case-control differences in age-related cortical thinning is overfit by ComBat-GAM.

A study by Ritchie et al. (2018) examined sex-differences in adults from UK Biobank (2750 

females; males 2466; 44–77 years old) reported thicker cortex across most of the cortex 

in females than males except for the right insula. By contrast, harmonization with ComBat-

GAM in our study showed that females have greater cortical thickness in prefrontal cortex, 

inferior parietal regions, and cingulate cortex, whereas males had greater cortical thickness 

in ventromedial prefrontal cortex, bilateral insula, posterior cingulate areas, and occipital 

lobe (Fig. 11). This difference may be explained by the large difference of age range in 

the present study (6.2–85.2 years old) compared to Ritchie et al. (2018) (44–77 years 
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old). As shown in Fig. 3, the slopes of age-related changes in cortical thickness are quite 

different between young (especially < 20 years old) and old participants. The significant 

differences between males and females in cortical thickness may be driven by the data of 

relatively young participants. We found that ComBat and ComBat-GAM outperformed LME 

harmonization methods for detecting differences between females and males. While we did 

not formally test harmonization methods to detect age-related sex differences in cortical 

thickness, Frangou et al., 2022 reported that age-related declines in mean cortical thickness 

were more rapid in males than females in the mid-life group (30–59 years), but not in the 

early-life group (3–29 years) and late-life group (61–90 years).

The comparison of the regression coefficients showed that the selection of harmonization 

methods may either overestimate or underestimate effects of interest, even though the 

corresponding comparisons of the number of regions exhibiting significant effects were 

identical between methods. These findings are critical to interpreting statistical outputs. 

For instance, the magnitude of reductions in cortical thickness per year are biased by the 

harmonization method being used.

In reporting that ComBat-GAM is more sensitive than other methods, we must be clear 

to specify our narrow definition of “sensitive”, as the harmonization method that leads to 

the maximum number of brain regions with statistically significant effects. In fact, this 

metric does not necessarily determine better performance if we adopt a preferred definition, 

namely the method that produces results that are most consistent with the ground truth. 

Unfortunately, identifying ground truth is a challenging proposition, but we consider two 

options that may be informative and feasible. The first option is to acquire MRI scans and 

calculate cortical thickness from the same group of participants (or “travelling subjects”) 

on a variety of scanner manufacturers and MRI facilities. However, a sufficient sample size 

is essential as it must contain (1) a representative number of cases and controls from (2) 

across the lifespan in (3) participants of both sexes, (4) scans at each MRI facility and 

on scanners from each manufacturer. This is required to avoid possible confounds from 

interactions of scanner type and age, scanner type and diagnosis, and scanner type and sex. 

A second option is to generate simulated data from a large enough sample of participants, 

sites, and MRI facilities. The simulated data could be generated by adding characteristic 

noise, covariance, and bias profiles for each scanner manufacturer and each MRI facility. 

The simulated data could then be harmonized with several tools of interest to determine 

the method that produces data that most closely resembles the pre-noised data. Along the 

same lines, the post-harmonization data and the pre-noised data could be modeled for case-

control effects, age effects, and interaction effects. The results of statistical modeling on 

post-harmonization datasets could be compared to the results from modeling the pre-noised 

dataset. The harmonization method that leads to results that most closely resemble the 

results obtained from modeling the pre-noised data would be deemed most faithful to the 

ground truth. Scanning an appropriate phantom may add value to ascertaining the ground 

truth, but is unlikely to add value to characterizing the role of age, sex, and diagnosis on 

harmonization methods.

While our study focused on 4 widely adopted harmonization methods, these represent only 

a small number in a large array of available methods. There has been a recent explosion in 
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methods that apply machine learning and other advanced multivariate techniques to tackle 

harmonization. More detailed discussions about machine learning in data harmonization 

please see supplementary section “Machine learning in data harmonization”. The dawn 

of the big data age has heralded the need for harmonization methods that operate well 

beyond neuroimaging data to flexibly and extensibly harmonize manifold data types from 

social media, mobile devices, and sensors (Agarwal et al., 2013; Davatzikos, 2019). The 

rapid proliferation of data harmonization methods and the ubiquity of machine learning 

applications will require careful vetting and rigorous comparisons between competing 

methods using standard criteria for ascertaining harmonization performance. The urgent 

goal of advancing open science will be facilitated by developing and embracing advanced 

harmonization methods (Foster and Deardorff, 2017).

4.1. Limitations

There are four major limitations in the present study. Firstly, we investigated age-related 

changes in cortical thickness. However, only cross-sectional data was available. New 

approaches have been developed to harmonize data across scanners and sites as well as 

longitudinal visits (Beer et al., 2020; Dewey et al., 2019). Age-related cortical thinning 

estimated by one longitudinal study design was 3 times greater than cortical thinning from 

a cross-sectional study (Rast et al., 2018). Secondly, we only investigated cortical thickness, 

which is one of many brain measures that is disturbed in neuropsychiatric disorders. Further 

studies should investigate the performance of harmonization methods on multi-modal 

neuroimaging data with various anatomical, diffusion, functional, and clinical/behavioral 

measures. Thirdly, only three sites constituted participants under 20 years, and one site 

constituted participants over 70 years. After removing these data, ComBat-GAM did not 

outperform other harmonization methods in detecting regions with significant case-control 

differences and age by diagnosis interactions. Data from sites with a larger age range may 

address this concern more conclusively. Finally, we applied the same statistical model to 

the output of all harmonization methods to pinpoint differences between harmonization 

methods rather than statistical models or the interaction of harmonization methodology and 

statistical modeling. In the main text, the statistical model includes age, sex, and PTSD 

diagnosis as fixed factors. This model is simple and widely used in most psychiatric studies. 

We also consider age by diagnosis, and sex by diagnosis interactions because they are 

frequently tested in the literature. The statistical models listed in the main text may not fully 

reveal potential influences on cortical thickness, and the optimal statistical model may differ 

depending on the harmonization method. However, investigating potential interactions of 

harmonization method and statistical model are well beyond the scope of this study.

5. Conclusion

Cortical thickness data harmonized with ComBat-GAM relative to LMEINT, LMEINT+SLP, 

and ComBat is more sensitive at detecting significant case-control differences, and case-

control differences that vary by age. Both ComBat and ComBat-GAM outperformed LME 

methods in detecting significant sex differences. ComBat-GAM provides stronger estimates 

of age-related declines in cortical thickness, stronger estimates of case-related cortical 

thickness reduction, weaker estimates of age-related declines in cortical thickness in cases 
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than controls, stronger estimates of cortical thickness reduction in females than males, 

stronger estimates of cortical thickness reduction in females compared to males in cases than 

in controls. Our results support using ComBat-GAM to harmonize cortical thickness data 

across study sites to recover statistical power potentially lost by instrumental bias.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Scatter plots of mean cortical thickness averaged across regions for each study site. Data 

distribution and age-related linear trends are markedly different across sites. Mean cortical 

thickness averaged across regions is shown to avoid regional biases. Participants are color-

coded based on study site.
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Fig. 2. 
Site-specific cortical thickness averaged across regions. Non-harmonized (A), ComBat 

harmonized (B), and ComBat-GAM harmonized (C) data in participants with PTSD. 

Non-harmonized (D), ComBat harmonized (E), and ComBat-GAM harmonized (F) data 

in trauma-exposed controls. The order of sites in the figure is consistent with the order 

of site names in the legend from top to bottom to facilitate with interpretation. Compared 

to non-harmonized data, ComBat and ComBat-GAM lead to smaller differences between 

site-specific data and the mean values averaged across sites, and they do not change the 

site-specific standard deviations for cortical thickness. The effects of harmonization by 

LME models cannot be shown here because data harmonization and statistical analyses are 

inseparable in LME methods. Mean cortical thickness averaged across regions is shown 

to minimize regional biases. The boxplots were made using the default settings of the R 

ggplot2 function geom_boxplot(). The lower and upper hinges correspond to the first and 

third quartiles (the 25th and 75th percentiles). The upper whisker extends from the hinge to 

the largest value no further than 1.5 * IQR from the hinge (where IQR is the inter-quartile 

range, or distance between the first and third quartiles). The lower whisker extends from 

the hinge to the smallest value at most 1.5 * IQR of the hinge. Data beyond the end of the 

whiskers are called “outlying” points and are plotted individually.
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Fig. 3. 
Scatter plots and non-linear trends of mean cortical thickness averaged across regions. 

Non-harmonized (A), ComBat harmonized (B), and ComBat-GAM harmonized (C) data 

in participants with PTSD. Non-harmonized (D), ComBat harmonized (E), and ComBat-

GAM harmonized (F) data in controls. Both ComBat and ComBat-GAM reduce variances. 

ComBat-GAM is superior to ComBat at capturing the age-related non-linear trends in 

cortical thickness. Mean cortical thickness averaged across regions is shown to avoid biases 

by particular regions. The fit curves were made based on the default settings (i.e. loess) of 

the R ggplot2 function geom_smooth(). The shaded regions represent the 95% confidence 

intervals.
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Fig. 4. 
Main effect of age. (A) Negative log-transformed statistical significance, i.e. −log10 (p). 

All four methods can detect multiple regions showing significance. The dashed and 

solid vertical lines represent thresholds p = 0.05 (uncorrected) and p = 0.05 (Bonferroni 

corrected), respectively. (B) Magnitude of regression coefficients. ComBat-GAM compared 

to the other methods provided stronger estimation of age-related cortical thickness reduction. 

The ordering of regions from top to bottom in both (A) and (B) is by ascending order of 

regression coefficients from cortical thickness data harmonized by ComBat-GAM. LMEINT, 

LME models site-specific random intercept. LMEINT+SLP, LME models both site-specific 

random intercepts and age-related random slopes. The fit curves were made based on the 

default settings (i.e. loess ) of the R ggplot2 function geom_smooth().
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Fig. 5. 
Regions with significant main effect of age. The color bar represents the magnitude of the 

regression coefficient. LMEINT+SLP compared to the other methods detected fewer regions 

showing significant age effect. Cooler colors represent stronger age-related declines in 

cortical thickness. LMEINT, LME models site-specific random intercept. LMEINT+SLP, LME 

models both site-specific random intercepts and age-related random slopes.
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Fig. 6. 
Main effect of diagnosis. (A) Negative log-transformed statistical significance, i.e. −log10 

(p). ComBat-GAM compared to the other methods detected more regions showing statistical 

significance. The dashed and solid vertical lines represent thresholds p = 0.05 (uncorrected) 

and p = 0.05 (Bonferroni corrected), respectively. (B) Magnitude of regression coefficients. 

ComBat-GAM compared to the other methods provided stronger estimation of case-related 

cortical thickness reduction as well as weaker estimation of case-related cortical thickness 

increase. The ordering of regions from top to bottom in both (A) and (B) is by ascending 

order of regression coefficients from cortical thickness data harmonized by ComBat-GAM. 

LMEINT, LME models site-specific random intercept. LMEINT+SLP, LME models both 

site-specific random intercepts and age-related random slopes. The fit curves were made 

based on the default settings (i.e. loess) of the R ggplot2 function geom_smooth().
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Fig. 7. 
Regions with a significant main effect of diagnosis. ComBat-GAM compared to the other 

methods detected more regions showing significant case-control difference. The color bar 

represents the magnitude of the regression coefficient. Cooler colors mean lower cortical 

thickness in PTSD than controls. LMEINT, LME models site-specific random intercept. 

LMEINT+SLP, LME models both site-specific random intercepts and age-related random 

slopes.
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Fig. 8. 
Interaction of age and diagnosis. (A) Negative log-transformed statistical significance, i.e. 

−log10 (p). Only ComBat-GAM detected four regions showing statistical significance after 

correction. The dashed and solid vertical lines represent thresholds p = 0.05 (uncorrected) 

and p = 0.05 (Bonferroni corrected), respectively. (B) Magnitude of regression coefficients. 

ComBat-GAM compared to the other methods produced weaker estimates of age-related 

declines in cortical thickness in cases than controls. The ordering of regions from top to 

bottom in both (A) and (B) is by ascending order of regression coefficients from cortical 

thickness data harmonized by ComBat-GAM. LMEINT, LME models site-specific random 

intercept. LMEINT+SLP, LME models both site-specific random intercepts and age-related 

random slopes. The fit curves were made based on the default settings (i.e. loess) of the R 

ggplot2 function geom_smooth().
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Fig. 9. 
Regions show significant age by diagnosis interaction. Only ComBat-GAM detected four 

regions showing statistical significance. The color bar represents the magnitude of the 

regression coefficient. Warmer colors mean that age-related declines in cortical thickness are 

smaller in PTSD than controls.
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Fig. 10. 
Main effect of sex. (A) Negative log-transformed statistical significance, i.e. −log10 (p). 

The dashed and solid vertical lines represent thresholds p = 0.05 (uncorrected) and p = 

0.05 (Bonferroni corrected), respectively. (B) Magnitude of regression coefficients. ComBat-

GAM compared to the other methods produced stronger estimates of cortical thickness 

reduction in females than males as well as weaker estimates of cortical thickness increase 

in females than males. The ordering of regions from top to bottom in both (A) and (C) 

is by ascending order of regression coefficients from cortical thickness data harmonized 

by ComBat-GAM. LMEINT, LME models site-specific random intercept. LMEINT+SLP, 

LME models both site-specific random intercepts and age-related random slopes. The fit 

curves were made based on the default settings (i.e. loess) of the R ggplot2 function 

geom_smooth().
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Fig. 11. 
Regions with a significant main effect of sex. The color bar represents the magnitude of the 

regression coefficient. Cooler (warmer) colors indicate lower (higher) cortical thickness in 

females compared to males.
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Fig. 12. 
Sex by diagnosis interaction. (A) Negative log-transformed statistical significance, i.e. 

−log10 (p). The dashed and solid vertical lines represent thresholds p = 0.05 (uncorrected) 

and p = 0.05 (Bonferroni corrected), respectively. None of the four methods detected 

significant regions. (B) The magnitude of regression coefficients. ComBat-GAM compared 

to the other methods produced stronger estimates of cortical thickness reduction in females 

relative to males in cases than controls, as well as weaker estimates of cortical thickness 

increase in females relative to males in cases than controls. The ordering of regions from top 

to bottom in both (A) and (B) is by ascending order of regression coefficients from cortical 

thickness data harmonized ComBat-GAM. LMEINT, LME models site-specific random 

intercept. LMEINT+SLP, LME models both site-specific random intercepts and age-related 

random slopes. The fit curves were made based on the default settings (i.e. loess) of the R 

ggplot2 function geom_smooth().
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Table 3

Ratio of detection (%) based on number of regions that met Bonferroni-corrected significance.

LMEINT LMEINT+SLP ComBat ComBat-GAM

Effect of Age 

LME INT - 77.9 100 100

LME INT+SLP 100 - 100 100

ComBat 98.6 76.9 - 100

ComBat-GAM 98.6 76.9 100 -

Effect of Diagnosis 

LME INT - 50 100 50

LME INT+SLP 50 - 50 100

ComBat 40 20 - 80

ComBat-GAM 3.2 6.5 12.9 -

Age by Diagnosis Interaction 

LME INT - NA NA NA

LME INT+SLP NA - NA NA

ComBat NA NA - NA

ComBat-GAM 0 0 0 -

Effect of Sex 

LME INT - 100 100 100

LME INT+SLP 89.7 - 100 93.1

ComBat 60.5 67.4 - 93

ComBat-GAM 60.5 62.8 93 -

Sex by Diagnosis Interaction 

LME INT - NA NA NA

LME INT+SLP NA - NA NA

ComBat NA NA - NA

ComBat-GAM NA NA NA -

Note: The ratio of detection is defined as the proportion of cortical regions showing statistical significance that were identified by the methods in 
rows were also detected by the methods in columns. Higher ratio of detection means that the method in columns was as effective as the method in 
rows at detecting significance. NA indicates not available because no significant finding was detected by the method in rows.

Neuroimage. Author manuscript; available in PMC 2022 November 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sun et al. Page 42

Table 4

Comparisons of regression coefficients.

LMEINT LMEINT+SLP ComBat ComBat-GAM

Effect of Age 

LME INT - 0.6e-04 −0.6e-04 10.8e-04

LME INT+SLP 0.703 - −1.2e-04 10.2e-04

ComBat 0.677 0.125 - 11.4e-04

ComBat-GAM <0.001 <0.001 <0.001 -

Effect of Diagnosis 

LME INT - 0.4e-03 1.2e-03 6.6e-03

LME INT+SLP 0.277 - 0.7e-03 6.2e-03

ComBat <0.001 0.011 - 5.4e-03

ComBat-GAM <0.001 <0.001 <0.001 -

Age by Diagnosis Interaction 

LME INT - 3.8e-05 −0.3e-05 −44.4e-05

LME INT+SLP 0.262 - −4.1e-05 −48.2e-05

ComBat 0.999 0.197 - −44.1e-05

ComBat-GAM <0.001 <0.001 <0.001 -

Effect of Sex 

LME INT - −1.8e-03 0.6e-03 1.6e-03

LME INT+SLP <0.001 - 2.4e-03 3.4e-03

ComBat 0.012 <0.001 - 1.1e-03

ComBat-GAM <0.001 <0.001 <0.001 -

Sex by Diagnosis Interaction 

LME INT - 6.0e-04 −0.4e-04 12.0e-04

LME INT+SLP 0.056 - −6.3e-04 6.1e-04

ComBat 0.999 0.037 - 12.4e-04

ComBat-GAM <0.001 0.049 <0.001 -

Note: The upper triangle of the matrix are the differences between regression coefficients from methods in rows and columns. Higher values mean 
that the method in columns lead to more negative (i.e., weaker positive coefficients, or stronger negative coefficients) estimates than the method in 
rows. The lower triangle represents the corresponding p-values (Bonferroni corrected).
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