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ABSTRACT
The goal of this research was to determine how temperature gradients in series-connected

lithium-ion battery packs affect the performance and cycle-life degradation of each of the cells in
the battery pack as well as the pack as a whole. This degradation was compared to cells cycled
individually and cells subjected only to calendar aging. This allowed attribution of degradation
rates to specific usage conditions. Cell performance and capacity degradation was measured
by utilizing standard capacity and resistance checks, neutron radiography, and other battery
performance metrics. It was found that cells subjected to non-uniform temperatures within the
pack degraded faster, and battery pack capacity was reduced relative to an ideal battery pack. It
was also determined that the hottest cell in a series connected pack with a temperature gradient
will degrade faster than an equivalent cell cycled individually at the same temperature.

Despite the presence of large battery packs in modern electric vehicles, little work has been
done to verify pack performance and degradation models, especially when paired with non-
uniform pack temperature. This was due to the interwoven degradation stressors and mecha-
nisms at play that need to be separately investigated to gain a full understanding of the combined
effect of series packs and temperature gradients. In this work, the effects of calendar aging, cy-
cling aging, temperature, and temperature gradients were all measured and compared. The
causes of increased degradation measured on the packs with an applied temperature gradient
were determined to be the superimposed effects of varying depths of discharge and non-uniform
current distributions within the cells. It was also found that cell degradation did not scale lin-
early with applied temperature gradient. Rather, the relative rate of aging was found to follow
a second order polynomial in temperature and in temperature difference. This meant that de-
pending on the pack average temperature, the hottest or the coldest cell can degrade the most.
This behavior was quantified to allow for use in optimizing the design of battery thermal man-
agement systems, and an example analysis of thermal management performance was performed
on a battery pack from a Nissan Leaf.
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Part I

INTRODUCTION

Lithium ion batteries (LIBs) are an increasingly important part of personal devices, cars, and the

electrical grid. This is due to their relatively high energy density compared to other energy storage

technologies, their continually reducing costs, the push for more renewable sources of electricity, and

increasing demand for electric vehicles. World-wide demand for lithium-ion batteries is expected

to increase from 100 GWh in 2019 to 1300 GWh by 2030 [21]. The prevalence of LIBs also raises

some concerns: They are still expensive compared to energy production, degradation means that

they will eventually need to be replaced after an unknown, highly variable, and application-specific

period of time, and they are difficult to recycle.

In an attempt to predict the lifetime of products such as electric vehicles, companies invest in

extensive modeling and accelerated aging testing of the batteries to be used. This information

allows them to create warranty terms, expected maintenance costs, the required number of spare

parts to be produced, etc. However, many battery models apply uniform temperatures to an

entire battery pack, then model the temperature of each cell but do not model the transfer of heat

between adjacent cells [22–24]. Likewise, battery accelerated aging tests are typically conducted

at high temperatures and high cycle rates to reduce the time these tests take [25]. While this does

age the battery more quickly and can be used to help predict lifetime [26], it may also result in

different aging mechanisms than seen during “real” operation.

For example, some electric vehicles lack thermal management systems for their battery packs

(such as the Nissan Leaf). Despite the (presumably) extensive testing Nissan conducted to reach

the conclusion that Nissan LEAF batteries should last 7 years before losing 30% of their capacity,

drivers in Arizona found that the battery degraded that much in just one year. [27] While newer

models have an adjusted battery chemistry that better deals with warmer temperatures [28], this

incident illustrates the need for improved understanding of lithium-ion battery degradation.

1



One little-studied aging factor is the non-uniform temperature that develops across a lithium ion

battery pack [15,29,30]. Some work has been done on this for cells connected in parallel [17,31,32],

but electric vehicle battery packs primarily consist of cells connected in series (with a few notable

exceptions such as Tesla) and little work has been done to explore this front [33]. By understanding

the effect of non-uniform temperature on degradation, battery pack production and design and

testing costs can be reduced, and lifetime extended. Thus, this work aims to address one cause, of

two major problems with lithium-ion batteries, cost and lifetime.

1 Background

1.1 Lithium-Ion Batteries

Lithium-ion batteries are electrochemical cells made with carbon (typically graphite) for the

anode active material and lithium metal oxide or phosphate for the cathode. The cell electrodes

are formed by coating both sides of the current collectors with a slurry containing fine particles of

the active material mixed with a binder [34]. Copper is used for the anode current collector, while

aluminum is used for the cathode. The thickness of the active material coating on the current

collectors varies by cell design, but is on the order of 50µm [8]. The electrodes are then attached

to either side of a polyethylene/polypropylene separator that allows the transfer of Li+, but not

electrons [35]. This forms a single layer of the battery cell, which is then soaked in an electrolyte

made of lithium salts dissolved in an organic solvent. A diagram showing the cell structure is

shown in Figure 13. This layered assembly is then rolled or cut into the form of the cell and placed

in a sealed container to form the final cell assembly.

Lithium-ion batteries come in three primary form factors: there are cylindrical cells, pouch

cells, and prismatic cells. LIBs also come in ‘watch battery’ (coin or button cell) form, but these

cells have a much more limited applicability than the other three types of cells. Each form factor

is constructed in a slightly different way, but all start with a flat ‘sandwich’ of cell layers, for

example: separator, LFP cathode, aluminum current collector, LFP cathode, separator, carbon

anode, copper current collector, carbon anode. For a cylindrical cell, this is then wound in a spiral

and inserted into a metal can. For a prismatic cell, the layers are wound similarly to a cylindrical
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cell, but then compressed in one direction to flatten out the ‘jellyroll’. This is then inserted into

a rectangular can. For pouch cells, the cell material can be cut into strips and layered on top

of each other, or constructed in the same way as the prismatic cells. The jellyroll is then sealed

inside a pouch [36]. Each cell type has its advantages and disadvantages and may be chosen for a

specific application for various reasons including price, safety, ease of use, thermal properties, and

of course size.

Cylindrical cells are made by taking the layered battery materials and rolling them around a core

before inserting the resulting jellyroll into a canister. Similarly, prismatic cells are made by rolling

the cell around a flat sheet of (e.g.) nylon [37] to form an elliptical jellyroll that is then encased in

the cell can. Pouch cells are constructed by layering multiple stacks of cells, then connecting the

layers in parallel and wrapping the assembly in the aluminum foil pouch [38].

While charging the battery, electrons are forced out of the cathode which then frees the Li+

ion from the reaction sites. The electron travels through the external charger because it cannot

penetrate the separator, then into the anode. Simultaneously, the freed Li+ ions migrate through

the electrolyte and diffuses through the separator into the anode. When the Li+ ion enters the

anode, it regains an electron (that passed through the external circuit), reducing it and locking the

atomic lithium into the electrode’s structure [9]. During discharge, the opposite process occurs,

except that the electrons now perform work in the external circuit instead of being forced into the

anode [39]. The process of Li+ ions entering and exiting the latices structures is called intercalation

and deintercalation respectively.

The cathode materials of LIBs are made of crystalline structured materials with lattice spacing

such that Li+ ions can be bound in the structure (Figure 12) [40]. The anode has a layered

honeycomb structure resulting from the carbon-carbon bonds. The layered carbon structures form

crystallites held together by the Van der Waals force. The weak nature of the binding of the

layers means the structure of the carbon anodes can be easily adjusted (or damaged) to change

the charge/discharge characteristics [41]. For LFP, common particle sizes are 50 to 1000 nm [40],

and for the carbon anode particle sizes are 4-20µm [42–44]
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The choice of electrolyte is critical to the performance of a LIB. The electrolyte solution must be

chosen such that it remains electrochemically stable over the entire operational voltage of the cell,

has a long lifetime, high ionic conductivity, and exists as a liquid at temperatures the battery would

be exposed to [9]. The electrolyte’s decomposition at high temperatures is also a major contributor

to thermal runaway of LIBs [45], making electrolyte selection a battery safety consideration as well.

The electrolyte is primarily composed of a lithium salt and a mixture of organic solvents, typically

with some additives used to adjust the properties such as the viscosity [9]. Some common lithium

salts used are LiAsF6, LiClO4, LiBF4, LiPF6, Li(CF3SO3), and LiSO3CF3 [9, 46,47].

The solvent mixture usually contains a cyclic carbonate (i.e. the molecules have a ring structure),

either propylene carbonate (PC, C4H6O3) or more commonly ethylene carbonate (EC, C3H4O3)

[9, 41]. These are used due to their high polarity and dielectric constants which allow them to

easily dissolve the lithium salts [9], however they also have a high viscosity which reduces the ionic

conductivity of the electrolyte [35]. Therefore, these are mixed with at least one of a number of

linear carbonates (i.e. the molecules have a linear structure) such as dimethyl carbonate (DMC,

C3H6O3), Diethyl carbonate (DEC, C5H10O3), or Ethyl-methyl carbonate (EMC, C4H8O3). These

linear carbonates have lower viscosity, so when mixed with a cyclic carbonate, the result is a

balanced electrolyte solvent [9, 35]. In addition to the solvents, various additives can be included

in the electrolyte to adjust solid-electrolyte interface layer reactions, improve compatibility with

the cathode material, and improve safety among other uses [41,48].

A critical function of a good electrolyte for a lithium battery is its ability to form a stable solid-

electrolyte interface (SEI) layer [8, 35]. This is because the carbon/graphite anode is unstable in

direct contact with most electrolyte solutions, resulting in unwanted side reactions and physical

damage (exfoliation) to the structure of the anode from co-intercalation of the electrolyte with

the Li+ ions [46]. The SEI is a passivation layer that forms on the surface of the anode as a

result of irreversible reduction of the electrolyte [35]. In order to prevent complete conversion

of the electrolyte by reduction at the anode, the reduction products should be stable such that

they prevent further reactions between the anode and electrolyte. In addition, the SEI must be
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as conductive as possible of Li ions to allow the battery to function. Unfortunately, DEC, DMC,

and PC do not form stable SEI layers [9, 49], but EC does [35]. Some of the common reactions

resulting in the formation of the SEI are [33,49]:

2EC + 2e− + 2Li+ → (CH2OCO2Li)2 ↓ +CH2 or Li2CO3 ↓ +C2G4 ↑

DMC + e− + Li+ → CH3 · CH3OCO2L ↓ or CH3OLi ↓ +CH3OCO

DMC + 2e− + 2Li+ → Li2CO3 ↓ +C2H6 ↑ PF−
6 + ne− + nLi+ → LiF + 2HF ↓ +LixPFy ↓

EMC + e− + Li+ → LiOCOH3 + CH3CH2OLi

PC + 2e− + 2Li+ → CH3CH(OCO2Li)CH2OCO2Li+ Li2CO3 ↓ +C3H6 ↑
(1)

SEI formation can be easily visualized using Figure 1. The dark green area shows the window of

stability of the electrolyte. On the right, the anode’s nominal potential is shown and on the left the

cathode’s. When charging potential is applied to the cell, the anode’s potential is lowered, making

the electrolyte unstable and causing the reduction reactions [1] shown in Equation 1. Once the

initial layer of SEI is formed, further but slower reactions occur that are aggravated by increased

temperature and charging at low temperature. These effects are shown in Figure 13 along with

the progression of SEI layer growth on the anode and how these changes affect the cell’s internal

resistance and capacity.

There are many different chemistries of LIBs, and they are designated based on the material

used to form the cathode. Some of the more common cathode materials include NMC (Eq. 2)

(LiNi1/3Mn1/3Co1/3O2), NCA (Eq. 3) (LiNiCoAlO2), LMO (Eq. 4) (LiMn2O4), LCO (Eq.

5) (LiCoO2), and LFP (Eq. 6) (LiFePO4) [36, 39, 50]. The redox reaction pairs for each cell

chemistry are listed below in the charging direction [9]:

LiNi1/3Mn1/3Co1/3O2 → Ni1/3Mn1/3Co1/3O2 + Li+ + e− (cathode)

C6 + Li+ + e− → LiC6 (andoe)

(2)
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FIGURE 1. Figure showing the potential stability window for the electrolyte and how it changes as a result

of applying charging potential to the cell. Adapted from An et. al. [1].

LiNiCoAlO2 → NiCoAlO2 + Li+ + e− (cathode)

C6 + Li+ + e− → LiC6 (andoe)

(3)

LiMn2O4 →Mn2O4 + Li+ + e− (cathode)

C6 + Li+ + e− → LiC6 (andoe)

(4)

LiCoO2 → CoO2 + Li+ + e− (cathode)

C6 + Li+ + e− → LiC6 (andoe)

(5)
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LiFePO4 → FePO4 + Li+ + e− (cathode)

C6 + Li+ + e− → LiC6 (andoe)

(6)

Each cell chemistry has its advantages and disadvantages in terms of their cost, energy density,

power capability, safety, etc. For this work, cells made with LFP cathodes were considered. While

not common in automotive applications [50], it is one of the most common chemistries and often

used in stationary storage systems [51–53] due to its higher safety (higher thermal runaway initia-

tion temperature) [54]. LFP cells were also chosen to make data gathered directly comparable to

work done by Klein [17,31] using the same experimental setup.

The voltage of a lithium-ion battery can be calculated by looking at redox reaction potential

tables. These potentials are typically measured relative to the standard hydrogen electrode [13],

but LIB components are measured against a Li/Li+ electrode. These potentials can be seen

in Table 1. For example, a LIB constructed with a graphite anode and LFP cathode would be

expected to have a nominal voltage of 3.45V − 0.1V = 3.35V . From looking at datasheets for real

LFP cells, we can see that the nominal voltage is 3.2V [55, 56]. The difference can be attributed

to several factors, first, the data in Table 1 is collected under ideal conditions (i.e. high purity),

the data is for specific products sold by Sigma-Aldrich, so slight differences in chemistry between

these values and what cell manufactures used likely exist. Additionally, in order to ensure the

lifetime and safety of the cells, the manufactures may specify a more limited voltage range than

the material is capable of, lowering the cell’s average voltage.

A more theoretical method for calculating the maximum voltage of a cell is through the Gibbs free

energy, which represents the maximum possible “no loss” voltage the cell could have [13, 57]. For

example, consider a LFP cell (Reaction 6). For this reaction, LiFePO4 has ∆G◦
f = −1481kJ/mol,

FePO4 has ∆G◦
f = −1110kJ/mol, [58,59] and LiC6 has ∆G◦

f = 11kJ/mol [60]. The total change

in the Gibbs free energy for the reaction is then ∆G◦ = −1481 + 1110 + 11 = −360kJ/mol. We
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Electrode Material Potential Specific Capacity (mAh/g) Use

(V vs. Li/Li+)

LiCoO2 3.9 140 Cathode

LiNi0.8Co0.15Al0.05O2 3.8 180-200 Cathode

LiNi1/3Mn1/3Co1/3O2 3.8 160-170 Cathode

LiMn2O4 4.1 100-120 Cathode

LiFePO4 3.45 170 Cathode

Graphite 0.1 372 Anode

Li4Ti5O12 1.5 175 Anode

TABLE 1. Average redox potentials and specific capacity of various anode and cathode materials [12]

referenced to the Li+ + e− → Li reaction which has a standard (vs. H2/2H
+) of -3.05V [13]

also have

V ◦ = −∆G◦

nF
(7)

Where V is the cell voltage, n is the number of electrons transferred during the reaction (1 in

this case), and F is the Faraday Constant F = 96485C/mol. Using this equation, the calculated

voltage of a LFP cell should be VLiFePO4 = 3.73V , compared to a real cell’s maximum voltage of

3.70V [55]. It can be seen that the theoretical voltage is slightly higher than the real voltage, for

which there are a variety of reasons, many of which are affected by temperature.

The first modification to the ideal voltage is related to the change in the Gibbs free energy of a

reaction due to temperature and the entropy change of the reaction:

∆G = ∆H − T∆S (8)
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Where ∆H is the enthalpy change of the reaction, ∆S is the entropy change of the reaction, and T

is the temperature in degrees Kelvin. Since ∆G and ∆H are negative, the effect of higher or lower

temperature in terms of increasing or decreasing a cell’s voltage depends on the sign of ∆S, which

is positive for the SoC range of 25-100% according to [61], but for the cells considered here it was

found to be from 35-100% as shown in Figure 2. Thus, increased temperature, over the majority

of a LFP cell’s voltage range resulted in an increased OCV [61, 62]. Figure 2 was generated from

data gathered during the test described in Section 7.3.5, the results of which verified similar tests

done by Klein [17] on the same (by model number) cells.

FIGURE 2. Plot showing the change in cell voltage due to temperature vs. SoC. This can be easily

converted to cell entropy change using Equation 9
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The entropy change of the cell can be expressed in terms of voltage by combining Equations 7

and 8 into

VOC = −∆H

F
+
T∆S

F
(9)

Where VOC is the cell open circuit voltage. By differentiating with respect to temperature, we can

write the entropy change in terms of the cell’s OCV and the temperature change of the cell.

∆S = F
∂VOC
∂T

(10)

The effect of reactant concentration on the Gibbs Free energy is given by

∆G = ∆G◦ −RTln(Q) (11)

Where Q is the reaction quotient which describes the progress of the reaction and is equal to the

reaction’s equilibrium constant when equilibrium has been reached. It is defined as:

Q =
[C]γ [D]δ

[A]α[B]β
for reactions of the form : αA+ βB � γC + δD (12)

By writing this in terms of cell voltage using eq 7, we arrive at the Nernst Equation: [13], [63].

Vcell = Vstandard −
RTln(Q)

nF
and QLFP =

[LiFePO4]

[FePO4][Li+]
(13)
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Where Vstandard is theoretical voltage of the reaction as calculated above, R is the ideal gas

constant, T is the temperature in degrees Kelvin. According to the Nernst Equation, the open cir-

cuit voltage of the battery should be reduced at higher temperatures, but due to entropy changes,

we typically see an increase in cell voltage at higher temperatures. The effect of reactant concen-

tration is much stronger than the effect of temperature in the Nernst equation, and acts to reduce

the cell’s open circuit voltage especially as the cell is discharged.

The concentration of lithium in the anode or cathode, as used for calculating the reaction

quotient, can also be used to calculate the SoC of the cell. This is made simpler by first normalizing

the Li concentration by taking Θ = Cs
Cs,max

where cs is the concentration of Li in the electrode at

any given time and cs,max is the maximum concentration of Li in the electrode. The SoC can then

be calculated as

SoC = 100%× Θ−Θ0%

Θ100% −Θ0%
(14)

Where Θ0% and Θ100% are the concentrations of Li in the electrode at 0% and 100% SoC, respec-

tively. [64] This means that in the Nernst equation, the SoC can be substituted for the concentration

with the addition of a scaling factor.

While the Nernst equation describes reactant concentration losses to the open circuit voltage

of a cell, temperature also changes the reaction rate, diffusivity of ion transfer, and resistance to

electron flow in the battery which all change the cell’s voltage while under load [62]. For this reason

(and that the voltage drop can be measured as a resistance by Ohm’s Law), it is common to model

these effects as an effective resistance that is governed by the Arrhenius equation, [33, 65, 66], but

this ignores much of the physical meaning.

Reff = Rref exp

(
Ea
Rgas

(
1

T
− 1

Tref

))
(15)
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Where Rref is the resistance of the cell at the reference temperature, Tref is the reference tem-

perature in degrees Kelvin, Ea is the activation energy of the reaction, and Rgas is the ideal gas

constant. As can be seen, as the temperature increases, the resistance of the cell decreases.

Attempts have been made to justify the Arrhenius equation from thermodynamics. These ex-

planations start by noting that in order for a reaction to occur, the reactants must overcome a

potential barrier or activation energy (just as suggested in the Arrhenius equation), but not all

molecules of the reactants have the same energy. Statistical mechanics provides the means to

quantify this by considering the Maxwell Distribution that describes the three dimensional speed

distribution of particles in an ideal gas [18].

n(ν)dν =

(
Nλ3

D(T )m3

2π2~3

)
ν2 exp

(
− mν2

2KBT

)
dν (16)

Where ν is the speed of a particle, N is the number of particles λD is the thermal de Broglie

wavelength (Eq. 17), m is the mass of the molecule(s), and T is the temperature in degrees Kelvin.

λD =

√
2π~2

mKBT
(17)

This can be written in terms of the kinetic energy of the particles by substituting the definition

of kinetic energy for ν and dν.

n(E)dE = 2N

√
E

π

(
1

KBT

)3/2

exp

(
−E
KBT

)
dE (18)

Where E is the kinetic energy. As the temperature increases, the fraction of particles with higher

energy increases as can be seen in Figure 3. Now, this can loosely be written as
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n(E) = A(T ) exp

(
−E
KBT

)
(19)

Which bears a striking resemblance to the modified Arrhenius equation.

k = ATn exp

(
−E
RT

)
(20)

despite the fact that the Arrhenius equation was originally empirically derived,

This is not a mathematical derivation of the Arrhenius equation, but it does illustrate the

underlying physics. The Arrhenius equation was empirically derived, yet fits the form that would

be expected were it properly arrived at from first principals. Part of the reason this method does

not actually derive the Arrhenius equation is that it does not consider what fraction of the total

energy each particle has is available to the reaction [56]. Additionally, the partition functions used

to develop the Maxwell distribution apply to an ideal gas, so a different derivation and distribution

would be involved [18].

An electrochemistry-based understanding can be gained by considering the Butler-Volmer Equa-

tion (22) which was originally developed based on phenomenological observations [57] but can be

linked to physical properties of a cell as well as operating conditions such as reaction rate, temper-

ature, and current:

i =± ai0
(
e
αnFV
RT − e

−(1−α)nFV
RT

)
(21)

V =
RT

αnF
ln

 i

2ai0
+

√(
i

2ai0

)2

+ 1

 (22)
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FIGURE 3. Figure showing plots of the Maxwell distribution of molecular kinetic energy at various tem-

peratures.

Where α is the charge transfer coefficient and is ≈ 1
2 for LIBs [64, 67–70], i0 is the exchange

current density which is often considered to strongly depend on temperature by an Arrhenius

relation [67, 68], and a is the specific electrode active surface area. It is due to changes in i0 in

the Butler-Volmer equation (22) with temperature that the voltage of a LIB is higher at higher

temperatures while the cell is under load. The changes in i0 are directly related to the reaction

rate of the cell, when the reaction is slower than the current draw, the voltage drops, and when the

temperature is higher, the cell’s reaction rate is higher [67,70]. Some models considered expressions

of the following form to describe i0 [64, 67,68]

i0 = kαa (Cmax − C(T, SoC))cCαe C(T, SoC)α (23)
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The effect the Butler-Volmer equation has on the cell voltage is shown in Figure 4. The larger

and more positive the value, the more of a voltage drop is caused on the cell’s terminal voltage,

except when the cell current is negative, in which case the voltage ‘drop’ is actually a voltage

increase. Figure 4a shows how increasing the temperature affects the voltage when i0 is a function

of temperature but temperature is otherwise considered constant in Eq. 22. Figure 4b shows how

the applied current to the cell affects the Butler-Volmer equation. Figure 4c shows how the SoC

of the cell affects the Butler-Volmer voltage through i0. Figure 4d shows how temperature affects

the Butler-Volmer voltage if i0 is not a function of temperature. By comparing Figure 4a and 4d

it can be seen that i0 is more sensitive to changes in temperature than by the temperature term

in the numerator of Eq. 22.

FIGURE 4. Figure showing the effect of various parameters in the Butler-Volmer equation on the potential

of cell.

15



The end result of the effect of temperature on short-term battery performance is shown in Table

2. This table was based on data extracted from the cell datasheet [55] of the LFP cells used in the

experimental section. By comparing the plots in Figure 4 to the large drop in cell capacity at low

temperature observed in Table 2, it is clear that the performance impact was larger than would

be suggested by the Butler-Volmer equation. This is because the Butler-Volmer equation only

accounts for the charge transfer portion of the cell’s overpotential, while the total overpotential,

or voltage drop, is given by the sum of the contributions from the Ohmic, charge transfer, and

diffusion resistances [71]

η = ηΩ + ηct + ηdiff (24)

where ηΩ is the voltage drop due to the Ohmic resistance, ηct is the charge transfer overpotential,

and ηdiff is the diffusion-related overpotential.

At low temperatures, the cell becomes diffusion/mass-transfer limited, which is not accounted

for in the Butler-Volmer equation [71]. Therefore, porous electrode theory must be invoked to

explain these results [72]. Here, the concentration of lithium is modeled within the electrode stack

of the cell

ε
∂ce
∂t
− ∂

∂z

(
Deff
e

∂Ce
∂z

)
= ai(1− t0+) (25)

where ε is the volume fraction of the electrolyte, ce is the concentration of lithium ions in the

electrolyte, z is the direction perpendicular to the plane of the electrodes, Deff
e is the diffusion

coefficient (itself Arrhenius dependent) of the electrolyte, t0+ is the cation transference number, and

i is the current calculated from the Butler-Volmer equation [72]. Similar expressions can be found

in the literature for diffusion of lithium in the anode and cathode [23, 64, 73, 74]. Together, the
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Arrhenius dependency of the diffusion coefficient and transfer resistance of the SEI layer resistance,

as verified by EIS [75], accounts for the cell’s reduced capacity at low temperatures [76]. It is worth

noting that this reduced capacity is not permanently lost, and can be restored simply by heating

the battery.

TABLE 2. Cell capacity data as a function of temperature at a C/2 discharge of the AA Power Corp. LFP

18560 cells used in this work. Data was extracted from a figure in the cell datasheet [14].

Temperature ◦C Capacity (mAh)

-40 450

-20 750

-10 1000

0 1350

10 1450

30 1550

60 1575

1.2 Vehicle Applications

One of the largest uses for LIBs is in electric vehicles, including hybrids, plug-in hybrids, and

fully electric vehicles. The demand for electric vehicle battery packs is set to increase by 15x,

from 100 GWh to over 1500 GWh per year, between 2019 and 2030 according to Bloomberg

Businessweek [77]. This is driven by the global push to electrify transportation, with some countries

such as the Netherlands banning the sale of non-electric vehicles by 2025 [78]. In the U.S. as

of August 2019, 12 states have followed California and adopted ZEV (Zero Emissions Vehicle)

mandates that require a certain fraction of vehicle sales be electrified vehicles [79]. Then, in

September of 2020 California adopted more stringent standards under Executive Order N-79-20,

requiring that all new passenger cars and light-duty trucks be electric by 2035 [80]. This trend

shows no sign of slowing any time soon, and it is likely that more and more states and countries

will adopt similar requirements.
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This trend started with smaller vehicles such as the Toyota Prius and the Nissan Leaf as can be

seen in Figure 5 which shows the sales of EVs and PHEVs in the U.S. between 2011 and 2017 [2].

The Chevy Volt, Nissan Leaf, and Toyota Prius Prime dominated the US plug-in vehicle until

about 2015, when competition started to increase, particularly from Tesla. From 2011 to 2015, the

Nissan Leaf accounted for the majority of pure EV sales, at which point it was overtaken by the

Tesla Model S, and took a further market share hit in 2016 with the release of the Tesla Model X.

Since then, the release of the Tesla Model 3 has resulted in Tesla dominating the US EV market.

In 2020, Tesla sold 5 times the number of EVs than all other brands in the US, with Chevy’s Bolt

EV coming in second [81]. However, all of these vehicles have something in common: they are

small (by American standards, at least). Of all EVs and PHEVs sold in the U.S from 2011 to

2017, only 9% of them where SUVs, station wagons, or mini vans. This occurred during a time

when SUVs were gaining popularity at the expense of smaller vehicles [82]. The reason for this

was simply that larger vehicles require more energy to move, and since batteries were expensive

and have lower energy density than gasoline, larger vehicles were commercially impractical. [83].

But more recently, thanks to lowering battery costs that have dropped 80% between 2010 and

2018, producing vehicles with much larger batteries became financially feasible [84]. This, along

with advances in battery technology have lead to a slew of larger electric and plug-in SUVs an-

nounced or available in 2019 [85]. With the recent release of the electric Ford F-150 Lightning,

one of the most popular pickup trucks in the U.S. became an electric vehicle, potentially marking

a turning point for the market. Even commercial and industrial vehicles are now beginning to be

electrified, including long-haul trucks, transit buses, and even trains [86, 87]. Similar to the light

EV market forecasts, the demand for electric buses is likely to significantly increase in the U.S.

in the coming years. Several large cities have committed to fully electrifying their transit fleets,

including San Francisco [88], Los Angeles [89], Seattle [90], and New York City [91].

The battery packs of electric vehicles have generally been built using a modular design. A

module includes multiple cells that may be connected in series and parallel, voltage measurement

points for the battery management system, and embedded thermal measurement. Modules often
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FIGURE 5. Figure showing the sales figures for the most popular models of battery electric and plug-in

hybrid vehicles in the U.S. Figure generated with data from [2].

include external casing to reduce the possibility of damage to the cells, their terminals, and reduce

the possibility of short circuit. Some modules may include integrated thermal management. Some

examples of EV and HEV battery modules are shown in Figure 6. The cooling systems for the

batteries can be seen in Figure 6 a) and b). a) shows the Chevy Volt battery module which uses a

liquid cooling system with the coolant flow channel being at the bottom right of the image. The

voltage and temperature measurement connector can be seen on top of the module. In b), the

aluminum heat sinks attached to the modules can be seen. In the complete pack, these heat sinks

are enclosed in a plastic duct with a BMS-controlled blower attached to the end. The voltage

measurement connectors can be seen hanging off the back of the modules. Module c) shows an

external busbar (covered in orange insulating plastic), with the voltage measurement connectors

on the front of the module. The modules in d) contain no thermal management or temperature

measurement hardware and the connections to measure voltage share the power terminals of the
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modules.

As the vehicles powered by LIBs become larger, so to do their capacity and power demands grow,

reaching up to 660 kWh/380 kW for electric buses. [92]. This means the battery packs become

significantly larger and thus present a challenge in terms of thermal management. As was seen from

Figure 6, different manufactures have adopted different strategies to keep their batteries within

both a safe operating temperature and ensure maximum lifetime and performance of their batteries.

Nissan has been one of the few EV manufactures that includes no (active) thermal management

in their battery packs, but most manufacturers have adopted liquid cooling. The specifics of the

cooling strategy are different for each cell form factor, and there are several possibilities for each

form factor.
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FIGURE 6. Figure showing battery modules from different electric and hybrid electric vehicles. a) Chevy

Volt battery module. Note the cooling plate can be seen in the bottom of the image, along with the coolant

distribution system at the bottom right. b) Hyundai HEV battery modules. The aluminum heat sink that

can be seen of the left side of the modules formed a duct within the pack that was attached to a blower fan.

c) A different Hyundai HEV battery module with a smaller heat sink assembly. d) Second gen Nissan Leaf

battery modules, which had no integrated thermal management system.

For cylindrical cells, Tesla’s liquid cooling system provides an example in Figure 8. In this design,

a coolant tube is placed between every other row of cells in a battery pack or module [4, 93]. It

can be seen that this strategy is likely to not uniformly cool the cells such that one side of the cell

is cooled better than the other side of the cell. Cylindrical cells can also be cooled using forced air
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cooling as shown in Figure 7. In this method, the cells are aligned similarly to the Tesla design, but

instead of a cooling tube, air is blown through the pack or module to directly cool the cells. For

air-cooled systems, the battery pack typically shares air with the passenger compartment since the

optimal temperature range for LIBs is similar to temperatures most people find comfortable [94].

FIGURE 7. Figure showing air cooling method for cylindrical cells. Diagram inspired by Pesaran [3]

FIGURE 8. Figure showing the thermal management system developed by Tesla for cooling cylindrical

cells. The wrapped coolant flow guides increase the contact surface area with the cell, increasing heat

transfer efficiency. Figure based on information from Tesla Patent [4]

For pouch or prismatic cells, liquid cooling is exemplified by the Chevy Volt, which places

cooling plates with liquid channels between every other cell in a manner similar to that shown for
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cooling fins in Figure 9, except with one crucial difference. On one side of the pack, an incoming

liquid coolant is distributed to the cooling plates in parallel flow channels etched into each cooling

plate/fin. The warm coolant is then collected on the other side of the pack [95]. This is an effective

but more complex and expensive method of cooling the battery. The simpler design shown in

Figure 9 represents the cooling system in the Chevy Bolt and Hyundai HEVs [95]. For the Bolt

with liquid cooling, the liquid coolant flows through the bottom cold plate, while the Hyundai

HEVs replace the cold plate with an aluminum heat sink in a plastic duct. On top of the heat

sink or cold plate is a layer of thermal interface material (TIM) to improve heat transfer. The cells

may be placed directly against this or there maybe heat sink fins extending between the cells in

the battery pack (as in the Bolt [96]). Another option for air cooling of prismatic or pouch cells is

to replace the cooling fins from Figure 9 with a flow channel for forced air cooling.

FIGURE 9. Figure showing the other methods of cooling prismatic cells with cold plate or heat sink.

These different approaches offer obvious advantages and disadvantages, for example liquid cooling

is significantly more effective and can be directly controlled by the BMS rather than relying on

the driver’s temperature preference, but also incurs additional costs and complexity. The cooling

system chosen also impacts the uniformity of temperature of the battery cells, which is recognized

as a critical function of the thermal management system [94].
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1.3 Stationary Applications

Another growing use for a large quantity of LIBs is stationary energy storage systems. These

systems vary in size and purpose from a few kWh for home use to several MWh for grid scale

systems. While the individual systems for stationary storage can be much larger than a vehicle’s

battery pack, due to the sheer quantity of electrified vehicles forecasted to be sold out to 2030, the

stationary storage market is expected to be comparatively tiny. Between 2019 and 2030, stationary

energy storage demand is expected to grow from around 10 MWh/year to 150 MWh/year [77].

However, this prediction appears small compared to industry group predictions of total installed

stationary energy storage capacity of 110 GWh with annual installations rising from 1.9GW/yr in

2019 to 9.2 GW/year in 2025 [97]. At the end of 2017, the U.S. had installed 708 MW and 867

MWh of energy storage systems [98].

On the East Coast, most energy storage systems were installed to regulate power quality (fre-

quency regulation) and thus have a high output power, but low energy storage capacity. For

example, PJM (North East Transmission Operator) in 2017 had 278 MW and 269 MWh of energy

storage capacity connected to their network and an average energy storage duration of 45 minutes.

However, in California, CAISO (California Independent System Operator) in 2017 had 130 MW

and 381 MWh of energy storage for an average duration of 4 hours and average power of 5 MW.

The longer energy storage duration in California is due to a California Public Utilities Commission

requirement that energy storage systems be able to supply their rated power for 4 hours in order

to be counted as reliability reserve capacity [98]. The U.S. Energy Information Agency provides

breakdowns of energy storage power and capacity by grid operator. In 2017, CAISO (California)

accounted for only 18% of the national energy storage power capacity, but 44% of the energy

storage capacity [98].

The demand for stationary storage in California has been driven by state regulations that re-

quired utilities to procure at least 1.3 GW of energy storage by 2020 [99]. As of the California

Energy Commission’s 2018 report [100], PG&E was required to install 310 MW of energy storage

capacity, had procured 692.5 MW, none of which was operational. PG&E claimed in 2021 to have
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procured 1.4 GW of energy storage capacity, but did not specify their operational status [101].

Thus, PG&E alone exceeded California’s targets for installed energy storage. Note that utilities

measure energy storage in MW, and it is therefore likely that the installed energy capacity of these

systems could be in the range from 1.4-5.6 GWh. In addition to requirements imposed on utilities,

California created incentives for private entities to install energy storage. One such incentive pro-

gram was the Self-Generation Incentive Program (SGIP), which offered up to $378M in funding

for customers who installed energy storage when they installed it along with PV generation [102].

SGIP funding was contingent on using renewable energy to charge the battery system, and thus

was also a driver towards DC-coupling of solar generation and energy storage systems. The pro-

gram offered at least $250/kWh towards the procurement price of the energy storage system [103].

The California state government has been pushing energy storage incentives to address peak en-

ergy usage (load shifting), defer transmission line and equipment upgrades, reduce greenhouse gas

emissions, reduce transmission losses, provide ancillary services (frequency and voltage regulation),

improve the performance of solar and wind generators, and reduce the need for natural gas powered

peaker power plants [104].

Energy storage is especially well suited for these uses due to its low response time and high

efficiency. Peak energy use has become a problem as more solar generation is connected to the

grid. Figure 10 shows what is referred to as the CAISO Duck Curve [105]. It shows the demand

for electricity in California and the net demand which is the demand minus the non-controllable

(renewable) generation. Therefore the net demand is the demand that must be met by controllable

(traditional) generation plants. It can be seen that during the day, solar generation results in a

low net demand, but in the late afternoon, the peak demand coincides with the fall-off of solar

generation. As a result, a high ramp-up of traditional generation is required, which is met by

the use of inefficient ‘peaker’ power plants since larger more efficient plants have a slower ramp

rate [105]. Energy storage can address this issue by charging from the solar generation during the

day which increases the demand during the day, allowing traditional generators to avoid ramping

down and for increased deployment of renewable generation onto the grid. Then in the evening,

energy storage can discharge to reduce the peak demand and reduce the ramp rate required to
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maintain the grid’s stability. Peaker power plants are then not required, increasing the efficiency

of the grid.

FIGURE 10. Figure showing the electrical demand in CA on June 6, 2021 comparing the total demand to

net demand to show the afternoon generation ramp. Figure generated with data obtained from CAISO’s

website [5].

There is a potential advantage to the fact that stationary storage’s market demand has been

predicted to be smaller than that for electric vehicles. Since the degradation of LIBs is a function of

the usage pattern (see section 4.1) and different applications have varying sensitivities to the health

(degradation) of their battery packs, a battery that is considered ‘end-of-life’ for one application

may be perfectly suited for use in another. Stationary storage designed for load shifting charges

and discharges the battery more slowly (C/4) and with fewer high current events than driving an

electric vehicle. In addition, energy density is not as large a concern for stationary systems as it is

for electric vehicles, meaning using degraded cells may be an acceptable trade off for the reduced

cost of energy storage achieved by utilizing retired batteries for new purposes [106]. Reused and

repurposed batteries are called second-life batteries, and they have the potential to reduce costs

for the original owner by increasing the scrap value and the costs for the second owner by nature
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of being older.

There are strong environmental and economic reasons to reuse electric vehicle batteries after

they have degraded to the point where the driver is no longer happy with the range the battery

provides. In 2018, an estimated 50% of retired LIBs were recycled [107], leaving the remaining

50% to be buried, burned, or stored [108]. A major factor contributing to the low rate of recycling

has been the high cost of recycling LIBs. Depending on the chemistry of the cell, the value of the

recovered materials has been around 1/3 the cost of recycling the battery, even lower for cells with

less valuable material such as LFP [109, 110]. If instead of recycling a battery after its first life,

it is reused, then the cost of recycling is deferred. Also, since more use is made of the battery,

the delivered kWh of the battery is increased, reducing the environmental impact per kWh of

manufacturing and recycling of the cell. Further, if stationary energy storage systems are built

from used EV batteries, then the need to produce new cells to meet the stationary storage demand

is (partially) negated. This could also have a large positive environmental impact as lithium-ion

battery production is an energy and mining intensive process [111].

Cooling strategies for stationary storage are just as diverse as they are for vehicle applications.

For example, Tesla’s Power Pack stationary energy storage system also uses liquid cooling [112],

though the details of the internal cooling are not public, a reasonable guess would be that it is

similar to the system used in their EVs. Several companies such as Spiers New Technologies and

RePurpose Energy, and even Nissan themselves have reused Nissan Leaf batteries in stationary

systems, and like Nissan, use passive air cooling for their systems [113,114]. The UC Davis Robert

Mondavi Institute’s Microgrid Energy Storage System uses climate control for a walk-in container

as well as forced air cooling on the battery modules [106,115]. Some stationary storage systems use

EV battery packs “as-is” and so keep the same variety in thermal management strategies discussed

above. The longer duration 4 hour systems adopted by California utilities may not need advanced

cooling beyond a climate controlled room due to the low charge and discharge rate. However the

higher power EES designed for frequency regulation may require additional cooling as in EVs since

the power demand is much higher then the demand shifting systems.
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2 Problem Definition

It is well known that LIB performance and lifetime is a function of temperature, and that this

temperature dependency is exponential (see Section 1.1). In the short term, increased temperature

results in increased performance due to lowered electrochemical resistance (more favorable reaction

kinetics), but in the long term causes accelerated degradation (also due to more favorable reaction

kinetics). Additionally, it is known that variances in resistance between cells, especially second-life

cells, result in differing heat generation throughout the battery pack [33]. This has been shown to

result in a temperature difference of up to 20◦C [15,29] within a battery pack. When this occurs,

the operating voltages and internal resistances of the cells are affected. This may cause the battery

management system (BMS) to believe the cells are out of balance and begin balancing, even if

their real SoC was the same. As a result, the cells would be made unbalanced by the BMS and

the pack be at a lower overall SoC due to lost energy to balancing [94].

Since degradation is also a function of temperature, when the cells in a pack are at different

temperatures, the pack will experience non-uniform aging. Over time, this can result in an overall

healthy battery pack becoming unusable due to a small number of degraded cells. While the goal

of a thermal management system (TMS) is to prevent the battery from getting too hot or cold

(15− 45◦C) and to keep the temperature uniform to within 3− 5◦C [3, 116], practically the TMS

cools the cells closer to the coolant inlet and coolant channels better than it cools the rest of the

cells, resulting in non-uniform temperatures. If the battery pack has no TMS (such as the Nissan

LEAF), the cells at the center of the pack can be expected to be warmer and degrade faster.

For cells connected in series, the internal resistance differences induced by the non-uniform

temperature limit the performance of the battery pack. In this case, since the cells are connected

in series, they all experience the same current, but a cold cell has higher internal resistance which

results in a larger voltage drop when current is drawn from the pack. This means the cold cell

reaches its end of discharge voltage before the warmer cells. When this happens, there are two

possible actions, continue to discharge to extract the energy from the warmer cells thus over-

discharging the cold cell, or stop discharging and reduce the available energy in the battery pack.
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The same problem occurs while charging, except with the upper voltage limit, which reduces the

rate at which the battery can be charged.

3 Research Objectives

The objective of this work was to quantify the effects of non-uniform temperatures on series-

connected battery cells. This included changes to the degradation rate, degradation mechanisms,

cell internal resistance, pack resistance and pack usable energy. By measuring these effects, battery

pack designers could use the results combined with the expected operating environment of their

battery packs to optimize their TMS to both ensure battery pack design lifetime and minimize

costs associated with cooling and heating the pack. In addition, depending on the use-case and

duty cycle (the ratio of cycle aging to calendar aging) of the pack, the design requirements of

the pack and TMS may be different due to the differing aging mechanisms. This research sought

to provide the insights required into the long-term ramifications of non-uniform temperatures, as

compared to a battery pack kept at a uniform temperature. Some key questions this work will

help address are:

• What proportion of the total degradation in capacity and performance is caused by calendar,

cycling, temperature and non-uniform temperatures?

• How do the effects of non-uniform temperature differ between parallel and series connected

cells?

• How does non-uniform temperature in a pack affect the rate of aging of the battery pack?

• How does non-uniform temperature affect the performance of a series connected battery pack?

• Is the effect of non-uniform temperature different at different average temperatures?

• What is difference between battery pack power capability and individual cell power capability?

• Which aging mechanisms are made worse by non-uniform battery pack temperature?
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In this work, experiments were conducted to answer these questions and generate directions for

future research to pursue to develop a comprehensive understanding of the effect of non-uniform

temperature on the performance and lifetime of lithium-ion battery packs.

3.1 Motivation

While work has been done on parallel connected cells subjected to non-uniform temperatures,

less effort has been directed towards series connected cells. At the same time, EV battery packs

are built from many series connected cells [94]. In addition, EV battery packs are used in harsh

environments, whether that be the desert in Arizona [27] or winter in Minnesota. These environ-

ments are conducive to the formation of temperature differentials within the battery pack. As

the demand for large battery packs increases exponentially, so does the need to understand how

temperature non-uniformity within these packs affects their lifetime and performance.

For stationary applications, utilizing second-life cells increases the importance of thermal man-

agement systems for battery pack design due to the degraded and inconsistent performance of the

cells. The varied cell internal resistances can increase the magnitude of temperature differences

within the pack, thus a good understanding of how temperature gradients change battery pack

performance and lifetime is critical. For example, Pesaran modeled a HEV battery pack under

the US06 drive cycle and predicted the formation of an 18◦C ∆T [117]. Meanwhile, a Nissan Leaf

battery pack that was disassembled showed that individual cell health from the same pack can

vary up to 14%. The impact of these variances on second-life pack performance could be mitigated

by testing each cell before usage, but work designing and building a 320kWh second-life energy

storage system for the UC Davis microgrid showed that this is a time-consuming and expensive

method of pack construction [106]. Understanding of the magnitude of the effect of non-uniform

cell temperature on pack performance and degradation may allow faster but less accurate cell

testing methods to be used to reduce pack production time.

A battery pack’s BMS is capable of measuring the temperature of the pack in multiple locations,

as well as the voltage of each cell (set of cells connected in parallel). This information allows the

BMS to estimate the state of health (SoH) of the cells, and over a period of time allows the BMS to
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estimate the remaining useful life of the cells. However, the accuracy of these estimations is limited

in the case of non-uniform temperature that causes non-uniform cell degradation. Thus, a more

complete understanding of the effects of temperature differentials between cells could improve the

implementation of second-life battery packs and improve the accuracy of BMS calculations.

3.2 Contribution

Since EV battery packs usually consist of many cells connected in series and only a few in parallel

(for example the Nissan Leaf has around 100 cells in series and only 2 in parallel), the effect of tem-

perature gradients on series cells is an important topic for the automotive industry. Additionally,

second-life batteries have varying internal resistances which induce temperature gradients in the

pack at lower C-rates when compared with new cells. M. Klein [17] has shown that temperature

gradients in parallel connected cells cause SoC imbalances between cells. He found that the hotter

cells contributed more current to the discharge or charge than the colder cells, causing the hotter

cells to become discharged sooner than the colder cells. However, the effect on series connected cells

and the aging of the pack is yet unverified especially when long-term degradation is considered.

Since there are multiple degradation mechanisms at play for series-connected cells at non-uniform

temperature, multiple experiments with the same cells must be done to quantify the contribution

of each mechanism. There has been some simulation work done [33], but with simple degradation

assumptions, limited experimental work, and no determination of the magnitude of the effects

from different degradation conditions. Additionally, it is difficult to compare between studies to

determine the magnitude of degradation for each testing condition because different cells were

used. It is well known that the specific cell choice, even of the same general chemistry, influences

the rate of degradation [118, 119]. For example, it is unknown how much the DoD imbalance

contributes to the aging of the cells compared to the effects from simple storage/cycling at high or

low temperatures.

This work was designed to isolate these effects by conducting experiments to quantify the effect

of different aging conditions as applied to lithium-ion battery packs consisting of cells connected

in series while under a temperature gradient. Additionally, the exact same cell model used by
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Klein [17] for studying parallel connected cells were used such that a direct comparison between

series and parallel packs could be made. This could improve the state of understanding regarding

how battery pack thermal design affects the aging and performance of the battery pack. Just

as how [17] determined the maximum acceptable temperature gradient within a battery pack for

parallel connected cells, this work determined the corresponding limits for series connected cells

while taking into account the effect on aging, not just short-term performance.

This work also provided data useful to second-life battery applications. One of the most impor-

tant and time-consuming tasks when building second-life packs is matching the cell’s properties

as closely as possible to maximize pack performance. This work provided guidelines based on

the degradation results that could help establish a baseline regarding the difference in capacity

and internal resistance that are acceptable in a series-connected pack to minimize aging due to

non-uniform temperatures.

Part II

Literature Review and Theoretical Approach

4 Theoretical Background

4.1 Cell Degradation

Aging, or degradation in the usable capacity and available power of a lithium-ion battery can

be categorized into three groups: Calendar aging, cycling aging, and abuse. Calendar aging occurs

regardless if the cell is used, and acts as a baseline minimum amount of degradation that cell will

experience. Cycling aging occurs due to stresses induced by routine use of the cell. Abuse damages

the cell by applying excessively high currents, over charging, over discharging, or subjecting the

cell to extreme temperatures. These aging types consist of different, but overlapping stress factors

such as current, temperature, and time. These stress factors each affect a set of aging mechanisms

such as SEI formation, lithium plating, or gas formation. Each aging mechanism affects the cell’s

performance through one or more aging modes such as loss of active lithium, loss of anode material,
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FIGURE 11. Figure illustrating the relationship between degradation stress factors, mechanisms, modes,

and effects. Figure generated from information from [6].

or loss of cathode material. Finally, these aging mechanisms and modes have an aging effect on the

cell, which is the measurable change in the cell’s performance such as reduced capacity, increased

internal resistance, and the interaction these properties have with the SoC and voltage of the cell [6].

The relationship between these degradation factors is shown in Figure 11. This also illustrates the

difficulty in determining the exact relationship between applied stress factors, measured aging

effects, and actual aging mechanism. While it is nearly impossible to determine the relationships

exactly, various tests have been developed, that in combination with modeling, can quantify some

aging mechanisms.

An overview of aging mechanisms is shown in Figure 12. These are the physical mechanisms

through which calendar, cycling, and abuse degradation affect the performance and lifetime of a

cell [7]. Each of these mechanisms are affected by a different linear combination of the stress factors

shown in Figure 11. Below is a review of how calendar and cycling each uniquely contribute to the

degradation of lithium ion cells.

Calendar aging’s primary mechanism is growth over time of the solid-electrolyte interface (SEI)

layer. Calendar aging is primarily a function of the stress factors of time and temperature, but is

also affected by storage SoC/voltage [120]. It is commonly modeled in a form similar to:

Qloss = A exp

(
−Ea(SoC)

RT

)√
t (26)
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FIGURE 12. Figure showing the operation of a lithium-ion cell discharging as well as the underlying causes

of lithium ion battery degradation in addition to those shown in Figure 13. Each of these physical phenomena

are influenced differently by cycling, calendar, and abuse aging. Figure created based on information from

Merla et. al. [7].

Where Q is the capacity loss, A is an experimentally determined pre-exponential factor to fit the

degradation model to a particular chemistry, Ea is the activation energy of the degradation side

reactions in Joules per mol, R is the ideal gas constant, T is the temperature in degrees Kelvin,

and t is the experimental time. This form shows that the rate of capacity loss slows over time,

which can be attributed to the thickening of the SEI layer as illustrated in Figure 13. Since the

SEI layer forms when the electrolyte reacts with the anode, as the SEI forms the anode becomes

protected by the SEI, slowing the reaction rate and thus the calendar aging.
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FIGURE 13. Diagram showing the various aging mechanisms associated with the solid-electrolyte interface

and how it grows over time. Figure recreated based on information from [8].

If the temperature is increased, the reaction kinetics become more favorable and the side reactions

accelerate resulting in faster calendar aging [120]. Kassem et. al. showed that this degradation also

resulted in increased battery resistance resulting in a reduction in maximum power output. They

determined that temperature was the most significant stressor that caused power fade, but that

for any given temperature, cells stored at higher SoCs degraded more, with power fade ranging

from 5-15% after 4 weeks of storage between 40− 70◦C [121].

Similarly to power fade, the capacity of cells is also degraded by storage at elevated temperatures.

Nauymann et. al. showed how storage SoC and temperature affect cell remaining capacity [122].

It was found that the capacity degradation was strongly dependent on cell temperature, and that

the effect was non-linear in temperature. They found a linear relationship to capacity fade vs time

for temperatures under 60◦C. Storage SoC was also seen to affect the capacity fade, but like power

fade, to a much smaller degree than storage temperature. Their cell stored at 0◦C experienced
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approximately 1% capacity degradation over one year, while the cell stored at 40◦C and 50% SoC

degraded by 5%. Further tests of these calendar aged cells showed that the aging mode of capacity

loss was loss of cyclable lithium to side reactions at the anode (i.e. SEI formation) [121]. It has

been suggested that the impact of storage voltage is due to an increased rate of cathode metal

dissolution into the electrolyte, which then reacts with the lithium in the electrolyte which both

increases SEI resistance and capacity fade [123].

Calendar aging also affects the internal resistance of LIBs, which in turn reduces the maximum

power the cell can deliver. Amine et. al. showed this in their paper in which they constructed

custom cells to examine the changes to the electrode and the SEI caused by degradation. This

revealed that cells stored at higher temperature exhibited a much higher rate of internal resistance

increase than cells stored at cooler temperatures. [124] The effect of storage voltage/SoC can

also be seen, but it is smaller than the effect of temperature. It was also found in [124] that

the internal resistance at the cathode was increased during calendar aging resulting in significant

power fade. This is likely caused by high storage potential resulting in dissolution of some cathode

material [123]. The decomposition of the electrolyte following LiPF6 → LiF + PF5 also has the

effect of increasing the resistance of the cell by reducing the ability of the electrolyte to transport

lithium ions.

Cycling aging includes the stress factors of cumulative charge/discharge capacity, temperature,

current magnitude, depth of discharge, and average SoC [6, 125–127]. These result in volumetric

changes, cell delamination, dendrite growth, binder decomposition, SEI formation, and metal dis-

solution aging mechanisms. This leads to all three of the aging modes listed in Figure 11, loss

of active lithium, and loss of active material at the anode and the cathode. The aging effects of

cycling are reduced capacity and increased internal resistance, both Ohmic and electrochemical.

The primary mechanism of cycling aging is, as with calendar aging, due to SEI formation [127].

However, cycling aging further grows the SEI due to volume changes at the anode and due to co-

intercalation of the electrolyte into the anode. Damage to the anode and the cathode is expected

during cycling, as they both experience a volume change when lithium is (de)intercalated. For
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LFP cells, the volume change is up to 6.8% [40]. This volume change results in the SEI cracking,

re-exposing the anode to the electrolyte, resulting in additional SEI formation which consumes

more active lithium and contributes to the SEI thickening over time, increasing the cell’s internal

resistance [8]. This phenomenon was verified by Waldmann et. al. [125] by using x-ray computer

tomography and scanning electron microscopy to view the internal structure of cylindrical cells

cycled at different C-rates and cells kept at rest. They found that higher C-rates resulted in

significant deformation of the cell’s jelly roll and caused delamination of the separator from the

active material of the cell along with extensive cracking of the anode and cathode. This process

both increases the Ohmic resistance of the cell through lowered conductivity of the anode and

cathode, but also increased the electrochemical resistance by increasing the SEI thickness. It has

been observed using scanning electron microscopy that the SEI thickness can increase by around

10x (4̃0nm to ˜400nm) from storage at elevated temperature or from as little as 12.5% capacity fade

from cycling [128,129]. When the SEI in one area of the cell becomes thicker, it clogs the pores in

the anode where lithium ions (de)intercalate, which decreases the reaction kinetics of (especially)

charging and discharging [130]. Anode porosity has been observed to reduce by 50%, from 0.25 to

0.12 due to this phenomenon [131]. This causes the current density at other sites to increase which

leads to locally high lithium concentration. When enough intercalation sites are blocked by the

SEI, the lithium concentration becomes high enough to result in lithium plating while charging,

even at normal rates and temperatures [132,133]. Once this occurs, the degradation rate becomes

non-linear again and degradation accelerates exponentially [130,134].

Capacity loss from cycling is generally modeled as linear for constant C-rate, temperature, and

DoD [127,130,135,136], but with different slopes for each different battery type. The first several

cycles typically result in more rapid aging, which then levels off for most of the life of the cell [134].

The relationship between the slopes for different C-rates is exponential, and a function of total

current throughput, as described by Wang et. al. [127].

Qloss,% = A1 · exp(A2 · Crate) ·
∫ tend

t=0
|I|dt (27)
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where A1 and A2 are fitting constants for the particular cell type. This model contains no

explicit reference to temperature, but if the cell is cycled at constant temperature, the effect will

be baked into the fitting constants. Then, by observing how the fitting constants change with cells

cycled at different temperatures, the relationship can be adapted to include the effect of (constant)

temperature on cell lifetime:

Qloss,% = (a · T 2 + b · T + c)exp ((d · T + e) · Crate) ·
∫ tend

t=0
|I|dt (28)

where the fitting constants have units of a = (Ah · K2)−1, b = (Ah · K)−1, c = Ah−1, d =

(K · Crate)−1, e = Crate
−1, and f = day−

1
2 .

The non-linear portion of cycling degradation for the first few cycles is generally considered to be

due to initial formation of the SEI. An empirical method similar to the one proposed by Wang et.

al. above, but with more physical meaning ascribed to the fitting constants was proposed by Bolun

et. al. [134]. This method of modeling the capacity loss per cycle due to SEI formation (αSEI) is

to assume (or measure) the portion of the total capacity that is lost during the first cycles. This

portion is highly dependent on the physical construction of the cell’s anode, and can vary from 3%

to 16% of the cell’s nominal capacity. This value is then used in the simple exponential degradation

function

Qloss,% = 1− αSEI · e−fSEI · 100% (29)

to model the initial high rate of degradation. Where fSEI is a linearized degradation rate which

must be obtained through fitting the model to measured degradation data for the particular cell

(i.e. cell of the same model number).
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Similarly, the non-linear portion of the degradation curve that occurs at the end of the cell’s

life is modeled by scaling the exponential degradation factor based on the current SoH of the cell.

Considering Equation 27, the scaling based on SoH can be implemented as

Qloss,% = A1 · exp (A2 · (1− SoH) · Crate) ·
∫ tend

t=0
|I|dt (30)

This approach to battery degradation modeling is extremely empirical, but is also very common

in the literature due to a lack of comprehensive battery degradation modeling theory [137].

4.2 Degradation Identification

4.2.1 Aging Effects

Aging effects are the easiest to identify because they are directly measurable. They include cell

internal resistance, maximum power capability, efficiency, available capacity, time to full charge,

and self-heating rate. All of these effects are representative of the real “SoH” of the cell, and many

are functions of charge/discharge rate or SoC. Measuring each of these effects for each degradation

state of a cell is time consuming. Therefore, SoH is typically summarized either by available

capacity or by internal resistance, depending on cell application as an energy battery or a power

battery [94]. In some cases, SoH is normalized to a pre-defined end of life condition of the cell, for

example 80% remaining capacity. Then the SoH = 0% occurs when the cell’s capacity is 80% of

its original capacity. In this work, SoH is defined as the capacity of the cell compared to its new

capacity with no normalization for a defined end of life.

Internal resistance is typically measured using a test similar to that shown in Figure 14. A high

current pulse is applied to the cell and the voltage change of the cell is recorded over a period

of 10 seconds. The Ohmic resistance is measured as the ‘instantaneous’ (smallest measurable

time step) voltage drop (or rise) of the cell (also referred to as 0.1s resistance after the time

step used to measure it). The electrochemical, or diffusion, resistance of the cell is measured by

the change in voltage over the 10 second current pulse, not including the initial Ohmic voltage
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FIGURE 14. Figure showing an example cell test measuring the internal resistance of a Nissan LEAF

battery cell. The time resolution of the measurement is 0.1 seconds. This cell has an Ohmic resistance of

2.09mOhm and an electrochemical resistance of 0.50 mOhm.

drop. Alternatively, the 10s internal resistance is the sum of the Ohmic (0.1s) resistance and

the electrochemical resistance and measures the resistance over the total voltage change over the

entire current pulse. Ohms Law is used to calculate the resistance from the applied pulse current

and the measured voltage response. Lithium-ion cells do not have just one pair of Ohmic and

electrochemical resistances. The resistances are functions SoC and temperature, as discussed in

Section 1.1. An example of the dependence on SoC and temperature of the same cell type as shown

in Figure 14 is shown in Figure 15. As cells age, both their Ohmic and electrochemical resistances

increase.

The maximum power capability of a cell is strongly dependent on the internal resistance of the

cell. The maximum power the cell can deliver is set by the highest current that can be drawn from

the cell without the voltage dropping below the cell’s discharge cutoff voltage. When the internal

resistance of the cell is higher, the voltage drop from current draw is larger, which reduces the

maximum power the cell can deliver. The maximum power is also a function of SoC of the cell, as

higher SoCs (i.e. higher cell voltages) result in a larger available maximum current.
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Cell efficiency can also be measured directly, and decreases over time as the cell ages. There are

two efficiencies that are considered in terms of LIBs. The first is the standard definition of efficiency,

energy output/energy input or discharge energy / charge energy. For LIBs, this is measured as

ηenergy =

∫ SoC=0%
SoC=100% I(t)V (t)dt∫ SoC=100%
SoC=0% I(t)V (t)dt

(31)

FIGURE 15. Figure showing an example module test measuring the internal resistance of a Nissan LEAF

battery module at different SoCs and temperatures. The values for resistance shown here are the sum of

the Ohmic and the electrochemical resistances.

The second is Coulombic efficiency, which considers the amount of current discharged/charged

into the battery.

ηCoulomb =

∫ SoC=0%
SoC=100% I(t)dt∫ SoC=100%
SoC=0% I(t)dt

(32)
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The energy efficiency of the battery takes into account the effect of voltage drop due to the

internal resistance of the cell, while the Coulombic efficiency measures the effect of irreversible

side-reactions within the cell that consume active lithium and electrons. As such, the Coulombic

efficiency is a measure of the degradation rate of the cell, which is typically slow, so ηCoulomb is

typically very near 1 (> 99.8%) [138, 139]. As cells age, the Ohmic resistance steadily increases

(hence the energy efficiency of the cell decreases) [94] as the SEI layer thickens and the anode

and cathode become damaged. Meanwhile, the Coulombic efficiency exhibits more complicated

trajectories. For LFP cells, it tends to be lower during the first several cycles as the SEI forms,

but then increases and remains steady for the majority of the life of the cell, reflecting the rate of

degradation of the cell [138]. The efficiency of a cell is dependent on cycling temperature and cycling

rate. A higher temperature means lower resistance, so a higher energy efficiency [17]. However,

higher temperature also increases the rate of side reactions and thus decreases the Coulombic

efficiency of the cell [139]. Higher cycling rates result in lower efficiencies [140,141]

Available capacity can be measured in terms of Ah or Wh, as calculated in Equations 31 and

32. Measuring cell capacity in Ah is most common in the battery literature because it is more

representative of the amount of available reactants within the cells. The measured capacity is

dependent on temperature and cycling rate. The end of discharge cutoff voltage of a cell is reached

sooner when the current is higher due to increased voltage drop due to internal resistance, thus

lowering the extractable energy. Likewise, when the cell temperature is lower, internal resistance is

increased, leading to the cutoff voltage being reached sooner. When charging, a constant current

constant voltage charge is typically used. When the cell’s maximum voltage is reached, the charger

switches to constant voltage mode and the charging current gradually decays towards zero. High

charging currents and lower cell temperatures result in the constant voltage phase of charging to

start sooner, extending the charging time. Reported values of cell capacity should therefore always

include the temperature and C-rate at which the cell was tested.

The cell’s self-heating rate is a function of its internal resistance, applied current, and entropy

generation. The cells’ entropy generation is a function of SoC and SoH of the cell, specifically, of
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the entropy of the crystal structures in the anode and cathode of the cell. As the cell ages and

the structure of the crystal degrades, the cycling entropy profile of the cell changes [141–144]. The

entropy change can be calculated as shown in Equation 9. Wu et. al. [145] have shown a linear

relationship between the cell’s SoH and the time from beginning of charge to the minimum of

dT/dt, showing that the cell’s entropy change is a good measure of SoH. Therefore, by measuring

a change in the rate at which a cell’s temperature changes during operation, information about

the degradation of the cell can be obtained.

4.2.2 Aging Modes

Aging modes are the effects on the cell caused by aging mechanisms. Each aging mechanism

causes cell performance degradation through a linear combination of the aging modes shown in

Figure 11. Aging modes are more difficult to identify, as for example, a loss of lithium inventory

and loss of active material both result in reduced cell capacity. A loss of lithium inventory (LLI)

occurs when the lithium-ions in the cell participate in irreversible side reactions or become trapped

in unreachable sections of the anode or cathode [146]. LLI can be detected using incremental

capacity analysis, which measures ∆Q/∆V (Ah/V) to generate a plot showing which operational

voltage ranges of the cell contain the most usable charge. This is important to understanding the

cell’s health because it represents each of the lithinination phases of the cell (i.e. LiC12 → LiC6

in the anode). Each of these phases has a different capacity, and degrades uniquely as the cell

ages. Since these phase transitions happen at constant cell voltages, dQ/dV is able to detect the

different aging of each of these phases, and thus the degradation of the cell [147–149].

Loss of active material (LAM) occurs when the anode or cathode become damaged. This can

be caused by island formation (loss of contact of active material particles with the bulk of the

material), cracking of the electrodes, dissolution of cathode metals into the electrolyte, or loss of

electrical contact of parts of the electrodes, among other modes [7, 149], as shown in Figure 12.

This can be detected using high resolution X-ray computed tomography as done by Waldmann

et. al. [150]. It has also been shown that careful analysis of incremental capacity and differential

voltage curves can qualitatively identify LAM, and from which electrode the material was lost [149].
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4.2.3 Aging Mechanisms

Aging mechanisms are the physical and chemical changes within the cell that occur as it de-

grades, acting through the aging modes described above. Aging mechanisms are invoked through

the operation and storage conditions of the cell. As previously mentioned, SEI formation is the

primary degradation mechanism under normal operating conditions, as it occurs during calendar

and cycling aging [120, 127]. The SEI, introduced in Section 1.1, is a function of cell age, stor-

age/cycling temperature, average voltage/storage SoC, and cell cycling rate [120,151,152]. Despite

the importance of the SEI to the performance and degradation of LIBs, quantitative descriptions

of its formation from first principles that can be applied to test measurements of real cells are

still lacking in the literature due to the large number of factors affecting it’s formation [153]. For

example, consider the model proposed by Ploehn et. al. [154]

L(t) = 2λ

√
D0
S exp

(
− Ea
RT

)
t (33)

where L is the thickness of the SEI, D0
S is the Arrhenius diffusion constant, Ea is the activation

energy of the diffusion process of the electrolyte through the SEI, and λ is

λ =
ceq√
πcP

exp
(
−λ2

)
erf(λ)

(34)

where ceq is the concentration of the solvent at the SEI/electrolyte boundary, and cP is the con-

centration of the irreversible reaction products in the SEI (i.e. the concentration of the SEI). The

use of concentrations makes this difficult to apply to arbitrary commerical cells, however we can

note the similarity of the SEI formation model to the experimental calendar aging model given in

Equation 26, which is more practical to apply.
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Elevated temperature increases the rate of SEI formation through improved reaction kinetics of

the irreversible side reactions within the cell [151]. Temperatures above 40C lower the oxidation

potential of the electrolyte below the cathode voltage in many cell chemistries to 4V, and at 60C, to

3.8V. This results in an SEI layer forming on the cathode as well as the anode [153]. SEI formation

primarily results in LLI, and causes reduced cell capacity and increased resistance. Cycling of

the cell increases SEI formation rate by providing electron and Lithium-ion flux through the SEI,

increasing the chances for co-intercalation of electrolyte and concentration of reactants for side

reactions [152]. High average voltage increases the SEI formation rate by reducing the activation

energy of the side reactions [1]. EIS has been shown to be able to detect the increase in resistance

of the SEI, and hence the growth of the SEI layer [155,156]. By fitting the EIS results to a circuit

model similar to that shown in Figure 16, with several RC pairs in series it has been determined

that the SEI resistance can be measured by considering the mid-range frequencies from about

10-1000 Hz [156,157].

Gases can develop within a LIB due to undesirable side reactions and due to the initial formation

of the SEI as seen in Equation 1, after which the gas formation rate drops significantly [158]. It has

been shown that under typical cycling conditions, internal gas formation is a negligible degradation

mechanism [158, 159]. Gas formation occurs in LFP cells primarily due to abuse, application of

high temperatures in the range of 42-69C, depending on cell composition [160], and severe over

discharge (down to 0V). The gases formed in the cell due to these conditions are mainly H2, CH4,

and C2H5. The gas formation was attributed to extensive side reactions occurring at low cell

voltages [161]. For cells containing cobalt in their cathode, overcharging has been shown to result

in significant gas production due to migration of Co to the anode SEI where it participates in

additional side reactions which can generate oxygen, leading to additional safety concerns [162].

Formation of gases within the cell can result in damage to the anode and cathode (LAM), leading

to reduced cell capacity [8].

During charging, the low potential of the anode, < 0V vs. Li/Li+ results in Li metal precipi-

tating out of the electrolyte and plating onto the anode, and higher charging currents and voltages
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FIGURE 16. Diagram of a typical equivalent circuit model of a LIB. ECMs consist of a voltage source that

produces the OCV curve of the battery as a function of the state of charge. The resistor DCIR represents

the Ohmic resistance of the cell, while the resistor-capacity pairs represent the electrochemical resistance of

the cells through modeling of the double layer capacitance and charge transfer resistance. [9, 10]

increase the rate at which lithium plates [7,126,163–166]. Reduced temperature lowers the poten-

tial of the anode, further inciting lithium plating. Lower temperatures also reduce diffusion of Li

into the anode, resulting in larger concentration gradients of Li ions at the anode’s surface lead-

ing to more lithium plating [126, 166, 167]. Eventually, lithium plating can lead lithium dendrites

growing on the surface of the anode. Left unchecked, these dendrites can penetrate the separator

and cause an internal short-circuit in the cell [45, 168]. The plated lithium also reacts with the

electrolyte to form a second SEI, which is added to each time additional lithium is plated. This

leads to a significant increase in SEI thickness, internal resistance, LLI, and lowered Coulombic

efficiency [8,169,170]. However, if the cell is discharged soon, the plated lithium can dissolve back

into the electrolyte and the capacity of the cell can be restored. The ratio of reversible lithium

plating to irreversible lithium plating is SoC dependent. At low SoC (SoC < 90%), lithium plat-

ing is primarily reversible, but lithium plating occurring above 90% SoC is primarily irreversible

and results in cell capacity loss. Lithium plating can be detected using differential voltage (DV)
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analysis iff the plating occurred on the previous charge step. This is achieved by observing the

discharge voltage plateau caused by stripping the lithium off the anode, which occurs before normal

deintercalation of lithium ions from the anode [170]. Lithium plating can also be detected using

neutron radiography, but due to the low resolution of measurements and the requirement for a

nuclear reactor, this is not a practical detection method for real-world applications [168].

When cycling a cell, the volume of the electrodes changes due to the intercalation and deinter-

calation of lithium ions into them. This results in a measurable change in the thickness of the cell

on the order of 0.1-0.2mm per cell [171]. Considering the Nissan Leaf battery pack with 192 cells,

this amounts to a thickness change of 19.2-38.4mm, which is not insignificant. To mitigate this

expansion, pack manufactures apply pressure to the ends of the cell stacks, which reduces delami-

nation of the anode/separator/cathode stacks within the cells due to volume changes [172]. X-ray

diffraction measurements have shown that a fully charged anode has around a 10% larger volume

than a fully depleted anode [173]. Lee et. al. [171] observed a typical volume change of 4% on the

first cycle, and 2% on subsequent cycles. This at first does not seem consistent with a 10% volume

increase of the anode and a 6.5% decrease in the volume of the cathode of LFP cells [40] when

going from 0-100% SoC. However, when considering that the anode is over sized in most cells as to

help avoid overcharge of the anode [174], that the largest increase in anode size occurs at the last

stage of graphite intercalation [173], and the variations between different cell construction, these

results can be considered to agree. The volume change of the electrodes during cycling results in

increased cell degradation due to cracking of the electrodes, SEI, and folding of the jelly roll, and

is enhanced at high cycle rates [150]. This results in an increase in the cell’s resistance, a loss of

active material, and loss of active lithium to the additional SEI formation [8]. For pouch cells, the

volume change can be detected directly by measuring the thickness of the cell [171], however this

is not possible with cylindrical cells contained within a rigid metal can.

The binder in a LIB is what holds the electrode particles together and attaches the electrode

to the current collectors. As such, it is a critical component of a well-functioning cell, but is also

prone to degradation [7]. The main degradation mechanism of the binder is a reaction with the
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fully charged anode that forms LiF [8, 175].

−CH2 − CF2 −+Li→ LiF +−CH = CF −+
1

2
H2 (35)

Binder decomposition takes place along with SEI formation reactions in the anode, leading to

reduced cell capacity [176]. Eventually, a lack of binder strength can result in delamination of the

electrode from the current collector, which increases the resistance of the cell [177]. Just as with

SEI formation, these reactions are accelerated at high temperatures and high cell voltages (low

anode potential) [8]. Waldmann et. al. [125] also found that physical deformation caused by high

cycling rates also resulted binder decomposition due to cracking of the anode and exposure to the

electrolyte. Detection of binder decomposition is limited to X-ray diffraction, scanning electron

microscopy, and comparing custom cells with different binder compositions [125,176].

Metal dissolution can occur from the cathode material or from the cell current collectors. Current

collector dissolution only occurs under extreme overcharge or over discharge [178,179], and is thus

out of scope. Dissolution of the positive electrode metal oxides is strongly dependent on the cell

chemistry, with cathodes containing manganese being particularly vulnerable. At low voltage and

elevated temperature, Mn dissolves into the electrolyte resulting in a loss of active material at the

cathode [8]. For LFP cells, iron ions from the cathode can dissolve into the electrolyte and migrate

to the anode, where they are reduced. The iron at the anode then catalyzes SEI formation reactions,

increasing the cell’s resistance and consuming active lithium. This is enhanced at temperatures of

55C. However, this is not a major degradation mechanism for LFP cells under normal operating

conditions due to the general stability of LFP [180, 181]. Detection of this effect was achieved

through X-ray diffraction, energy-dispersive X-ray analysis, Raman spectroscopy, and scanning

electron microscopy.
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4.3 Effect of Temperature Summary

Before investigating non-uniform temperature distributions in battery systems, the effects of

uniform temperature distributions must be understood and then applied to the more advanced

problem. The effect of elevated and reduced temperatures on the aging [33, 182–184] and perfor-

mance [7, 15, 20, 65, 66, 69, 183–187] of LIBs is well documented in the literature and the effect on

performance was discussed in Section 1.1 while the effect on aging mechanisms was discussed in

Section 4.2.3. In general, higher temperature improve the performance of LIBs by reducing their

electrochemical resistance, but also reduces the service life of the battery by promoting degrada-

tion mechanisms as discussed in Section 4.2.3. Conversely, lower temperatures may extend the

lifetime of the battery, but reduce its performance. A summary of the effects of temperature on

cell behavior and lifetime is provided in Table 3.

TABLE 3. The effect of increasing or decreasing temperature relative to 25◦C on various battery param-

eters. References: a [15], b [16], c [17], d [18], e [19], f [20].

4.4 Formation of Non-Uniform Temperature Distributions

It is well established that temperature distributions naturally arise within both Li-ion cells and

battery packs [15,29,65,150,182,186–197]. For cells, the manner in which they form is dependent

both on the cell geometry and the specific design of the components within the cell. For battery

packs, it is dependent on the included cell, the battery module design, the battery cooling system
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design, battery management system settings and packaging material conductivity. In practice,

factors such as operating environment and usage pattern are also important.

4.4.1 Cell Internal Temperature Distributions

Temperature gradients have been observed to form in pouch and cylindrical cells. In pouch cells,

the hotspot is located half way between the terminal tabs of the cell, and slightly above the center

of the cell [22,29,189]. This distribution can be explained by the internal construction of the cell.

Since the current must pass between the terminals, reactants nearer the terminals will be utilized

first. Additionally, a longer distance from the terminals also implies higher impedance along the

current collectors leading to an increased resistance and an effectively lower potential of the cell,

resulting in lower localized current density and utilization of reactants [15,20,32,65,183–186,195].

On the surface of a pouch cell, the change in temperature from this is in the range of 7◦C [22],

10◦C [29] to 14◦C [189] depending on the C-rate. The temperature gradient through a pouch cell

is even more extreme by a factor of 4.5 than the gradient along its surface since LIB cells are more

thermally conductive in the plane of their electrodes than through them [22]. This leads to a high

temperature at the center of the cell (in the through-plane direction) that spreads planarly within

the cell more than to the surface of the cell, making it difficult to detect. For the temperature

gradient measured by [189] of 14◦C on the surface of the cell, [22] suggests that this implies a

temperature gradient of 63◦C through the plane of the cell from a 6C discharge.

For cylindrical cells, Fleckenstein et. al. [15] considered 18650 LFP cells cycled at high rates

which measures the effect of the thermal conductivity of the cell on the formation of thermal

distributions within the cell. They emulated the effect of non-uniform temperature within a cell

by considering three parallel connected cells at different temperatures, and validated this setup

using thermal modeling. Due to the internal heat generation of the cell, the center of the cell was

found to be 19.5◦C hotter than the outer edge on the cell after cycling at 8C for 2 hours. The non-

uniform temperature resulted in current density distributions within the cell due to the lowered

resistance of regions with higher temperature. The non-uniform current resulted in a non-uniform

SoC distribution within the cell, which was determined to only equalize by 33% after allowing the
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cell to rest. This result was ascribed to electrochemical hysteresis. They proposed that these issues

would result in additional aging of the cells, but did not investigate further.

Waldmann et. al. [29] investigated the effect of cell design on the formation of temperature

distributions within cells. They compared cylindrical and pouch cells, with models designed for high

power applications and other models designed for high energy density applications. Temperature

was monitored by thermal imaging cameras as well as thermocouples built into the cells. Cells

were cycled at rates from 1 to 8C. Their results confirmed the radial temperature distribution

for 18650 cells found by Fleckenstein et. al. [15], and indicated that a temperature difference of

up to 10◦C is formed in cells when discharged at the rates specified on their datasheets. Cells

designed for high energy density were found to accumulate temperature differences three times

higher than cells deigned for high power applications. This was ascribed to the thicker electrodes

which allow for more active material to fit in the cell, but the increased resistance leads to more

heat generation [198]. When the maximum temperature rise of the cells at a specified C-rate is

considered as a function of their capacity, both high power and high energy cells followed the same

trend. The following expression was developed to estimate the internal temperature of the cell

based on surface temperature measurements

∆T = TSurf − Tcenter ≈
R× c× I

C
(36)

where C is the heat capacity of the cell, R is the resistance of the cell, I is the cell current, and c

is a fitting constant. They also speculated on the effect on aging but did not investigate.

For cylindrical cells containing protective elements in one of their terminals, Robinson et. al.

[190] observed that the additional resistance induced by these components resulted in a significant

temperature increase at the terminal of the cell (cathode in their case) where the multi-component

cell tab was located for discharge rates above 0.75◦C. This caused an axial temperature gradient

in the cell that increased in magnitude both with discharge rate and discharge time up to 10◦C.

On the other hand, for cylindrical cells that do not contain complex cell caps, the maximum
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temperature gradient is experienced radially [29,150,199] due to the greater thermal conductivity

and dissipation along the cell and at the metal cell terminals [22]. These temperature gradients

can reach up to 36◦C [150].

Osswald et. al. [20] demonstrated more thoroughly through experiment the non-uniformity of

current within cylindrical cells by using EIS (100 mHz - 10 kHz) on modified cells with multiple

current tabs along the length of the cell current collectors. They observed a strong dependence on

signal transmissions though the cell with signal frequency, with lower frequency signals having lower

attenuation. By performing the experiments at different temperatures, they found lower attenu-

ation at higher temperatures. The attenuation can be related to the current distribution during

different operational conditions of the cell and indicates that cell construction results in inherent

current non-uniformity within the cell which in turn can lead to locally increased temperatures.

Brand et. al. [32] investigated the current distributions between parallel connected cells of

differing capacity and resistance. However, as demonstrated by Fleckenstein et. al. [15] and

Klein [17], these results are indicative of internal cell variations. The theoretical analysis presented

demonstrates that when cells of the same capacity but different resistance are connected in parallel,

the current distribution follows the standard current divider equation

In = Itot
Rtot

Rn +Rtot
(37)

until the unequal currents result in the OCV of the cells becoming unequal, which cancels out the

effect in the long term. However, this results in a non-uniform SoC distribution between the cells

(or within the cell), lowering overall energy density. This scenario corresponds to different regions

of a cell being at different temperatures, distances from a current collector, or different states of

degradation. When considering differences in capacity, initially the current between the cells is

equal, but as the charge or discharge continues, the cell with lower capacity changes voltage more
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quickly, resulting in a non-uniform current between the cells that can be described by

I1 = Itot
C1

C1 + C2
(38)

for a two cell system with capacities C1 and C2. This corresponds to regions of a cell being

non-uniformly degraded. They also demonstrated that these scenarios are not unreasonable by

testing the capacity and resistance of 172 brand-new cells of the same model and observing that

the relative coefficient of variation (standard deviation divided by mean) of 0.72% capacity and

1.83% for internal resistance.

Erhard et. al. [69] developed a custom NMC pouch cell with 44 voltage measurement tabs at

different locations around the cell to measure the voltage, SoC, and current distributions that

arise within a cell. By cycling the cell between 0.1C and 2C and at 5◦C, 25◦C, and 40◦C, they

found increased cell temperature resulted in decreased uniformity of current distribution and SoC

distribution. This was attributed to the increased current collector resistance with increased tem-

perature and to the reduced electrochemical resistance at higher temperature combining to increase

the favorability of the reactions closest to the cell terminals. This resulted in an SoC difference

of 1.3% across the cell. The temperature of the cell was kept constant by nature of it being a

single-layered cell, but the non-uniform current observed would result in non-uniform temperature

distributions in a standard cell. No conclusions about degradation of the cell were made.

In another work, Osswald et. al. [183] measured how cell temperature affected the current

distribution within standard 18650 cells by the same method used in their previous paper [20].

Cells were cycled at 0.1, 0.5, 1, and 2C rates at 10, 20, 30, and 40◦C to observe how the current

distribution was affected by these conditions. During phase transitions of the graphite electrode

(for example, transitioning from LiC12 to LiC6, which causes a characteristic kink in the cell’s

voltage profile [34]), they observed a voltage difference between the two ends of the electrode of up

to 16 mV (4.3% SoC) (at 40◦C, 0.1C) indicating that the local SoC along the electrode was not

uniform. At 10◦C, this difference was reduced to 12 mV (1.1% SoC). The proposed explanation
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for the increased SoC gradient in the cell at higher temperatures was the same as their previous

paper, that as the electrochmeical resistance is decreased, the positive temperature coefficients of

the current collectors has a larger effect on the performance of the cell. They also determined

that C rates above 0.5C resulted in internal temperature gradients within the cell, but did not

comment on the magnitude or effect of such phenomenon. Additionally, the cells were discharged

in 5% SoC steps at a 1C rate with 150 minutes of rest between each discharge pulse. During

the rest, the voltage along the electrodes was measured to determine how distance from the cell

terminals affected relaxation of SoC inhomogeneities. This was repeated for ambient temperatures

of 10, 20, 30, and 40◦C. It was found that for SoCs where the voltage curve is not flat, the

SoC/voltage difference along the electrode equalized within minutes, but for flat regions of the

SoC curve, equalization can take between 45-90 minutes.

Troxler et. al. [66] investigated the effect of temperature gradients on the short-term performance

of pouch cells. A thermal gradient of up to 40◦C was applied through the cell’s face using Peltier

elements. Under these conditions, EIS spectra of the cell were taken in the range from 0.1 Hz-10

kHz. The observed, as with many others, that the cell’s internal resistance decreased with increased

temperature as described by the Arrhenius equation, noting the ionic conductivity of the electrolyte

as a major factor for this dependence. When a temperature gradient was applied to the cells, the

EIS data showed a decrease in the cell’s resistance compared to the tests performed at the cell’s

average temperature. Further investigation showed that the reduction in the diffusion resistance

was larger than the reduction in the Ohmic resistance. The explanation for the lower total cell

resistance when non-uniform temperature is applied to the cell follows from the parallel resistor

equation where the effective resistance is lower than the lowest parallel resistor. Considering the

layers of the lithium-ion cell as individual resistors, with the hotter layers have lower resistance,

the observed results should be expected. As a result of this, following Equation 37, it is clear that

internal current non-uniformities must also exist within the cell. However, testing was only done

on cells under no load other than EIS.
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The non-uniformities detected in above works indicate inherent non-uniform currents throughout

lithium-ion cells, which are influenced by temperature, local cell potential, applied current, and

cell design. These result in a non-uniform internal temperature profile of the cell, which in turn

influence the internal current distributions. Since many aging processes are, as discussed in Section

4.2.3 are dependent on current and temperature, an investigation on the long-term effects of such

distributions is required, and has been partially completed for the case of parallel connected cells,

as discussed in Section 4.4.2.

4.4.2 Battery Pack Temperature Distributions

Electric vehicle batteries have become a focus in the literature in recent years, and one of the

important areas of research is thermal management. Bruen and Marco [186] investigated how

parallel connections between cells, when taking into account inherent cell inconsistency, in battery

packs affect the performance of the battery system for electric vehicles. This was investigated

through a combination of a novel equivalent circuit model that took into account parallel cell

variations as well as cell interconnection resistance, and an experimental setup consisting of 4

18650 cells connected in parallel through shunt resistors to measure the individual current. The

cell chemistry was unspecified, but based on the cutoff voltages listed, they were likely NMC cells.

The cells were each aged to a different SoH in order to generate non-uniformity between the cells of

up to 12.5% SoH, which is substantially larger than manufacturing differences [32], but is potentially

illustrative of the effect on a degraded battery pack. Relative cell performance was characterized

by the maximum current experienced by each cell as well as the total charge throughput of each

cell as compared to if all cells were perfectly matched. For a HEV style cycle, it was found that

the difference in cell resistance was the determining factor for each cell’s contribution, whereas for

deep cycling (or EV-style) usage, the change difference in cell capacity was the determining factor.

For the HEV cycle, the least aged cell contributed 28.6% of all charge while the most aged cell

contributed only 21.9%. Meanwhile, the peak current of the least aged cell 114.4% of the nominal

value while the peak current of the most aged cell was only 91.5% of the nominal value. Together,

these differences are likely to further increase the rate of aging of the battery pack. For EV-style
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cycling, the charge throughput is more even, but the peak current was more erratic, with all cells

at some (but different points) contributing to more than 100% of the nominal current. The most

and least aged cells had the highest peak currents of 159.1% and 149.2% respectively. The fact

that the most aged cell experiences the highest current is concerning for long-term battery health

as this effect may serve to worsen the imbalance of cell SoH. This paper did not investigate the

effect of temperature on these current distributions or vise-versa, but it is known that high currents

affect cell temperature, so this can be expected to lead to non-uniform temperatures in battery

packs.

Non-uniform temperature in a similar experimental setup was investigated by Yang et. al. [184].

They developed an electrochemical model to investigate how non-uniform temperature affected

the degradation of parallel connected cells. This model was compared to experimental results

from two 18650 LFP cells which were connected in parallel. The pack was cycled at a constant

rate, similar to the “EV-like” case in [186], with similar results. However, here the non-uniform

temperature applied to the cells (∆T = 0◦C to 12◦C) was the cause of the current distribution

rather than different cell SoH. They also observed that the ambient temperature had an effect on

the magnitude of the effect from the non-uniform temperature. When the ambient temperature was

5◦C and ∆T = 12◦C, the two cells had an effective difference in capacity of 20%, where as when

the ambient temperature was 25◦C, the effective capacity difference was reduced to 4%. Based on

their simulation results, they determined that increasing ∆T results in increasing pack aging, with

the pack aging nearly twice as fast with a ∆T of 12◦C than with no ∆T . This was true for both an

average temperature of the 5 and 25◦C, but the absolute degradation was three times higher at 25◦C

than at 5◦C. This lead the authors to conclude that battery thermal management systems should

be designed to keep the temperature difference within battery packs below ∆T ≤ 5◦C. However,

their experimental investigation was primarily limited to parametrization of their electrochemical

model, long-term experimental validation of the effect of thermal inhomogeneity is still required.

Additional modeling of non-uniform thermal performance in battery packs was provided by Wu

et. al. [70]. They investigated the effect of interconnection resistance on non-uniform current
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distributions and the effect on the thermal behavior of the battery pack. This was done through

electrochemical modeling of a battery pack consisting of up to 12 cell connected in parallel while

taking the interconnection resistance into account. They found that even for packs with uniform

interconnection resistances between each cell, the cells closest to the pack terminals contribute the

most current, and the effect scales linearly with the number of cells connected in parallel. The

current mismatch was found to scale logarithmically with the ratio of interconnection resistance/cell

resistance. For example, a pack with 8 cells in parallel and the interconnection resistance being 10%

of the cell resistance, the cell closest to the terminals was found to contribute 220% more current

than the cell farthest from the terminals. This situation is clearly not sustainable over an entire

discharge, and was found to ‘flip’ as the cells closest to the terminals became discharged faster than

the cells farther away. This suggests that real battery packs will almost always have significant

current imbalances between parallel connected cells, and that the magnitude of these imbalances is

strongly dependent on the physical construction of the pack. The thermal implications of this were

also investigated, and it was found that the load profile was also a critical factor. For a load-profile

consisting of narrow SoC discharge/charge windows or current pulses as might be expected from

a hybrid vehicle, the current distribution always favored the cells closest to the pack terminals.

This was sustainable because during the rest periods, the parallel cells self-equalized. As a result,

the temperature of the favored cells increased much faster than the unfavored cells, achieving a

∆T of 5◦C in only 16 minutes (1000 s). It should be noted that the rate of ∆T increase was still

significant after 16 minutes, but their simulation did not continue for longer. A simulation using a

real EV’s dynamic drive cycle found that one cell with an unspecified “increased resistance” caused

nonuniform heating of the pack of ∆T = 30◦C, with the maximum temperature of 70◦C, which was

above the maximum operating temperature of the cell. The long-term degradation implications

of this was not explored, but accelerated aging should be expected if the cells closest to the pack

terminals experience over twice the current of cells farther away.

Karimi and Li [200] investigated how cooling system design affected the temperature distribution

in EV battery packs consisting of pouch cells. Battery packs were modeled, with internal heat

generation at the cell level based on current draw (Ohmic heating) and entropy effects. The
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battery pack they considered consisted of 20 battery modules of 10 cells each. When natural

convection air cooling ducts were placed between the modules, the pack temperature increased by

19◦C in 24 minutes, with the cells directly adjacent to the cooling ducts about 1◦C cooler than the

cells at the center of the modules. Forced air, liquid cooling, and phase-change material (PCM)

cooling were also considered. PCM was found to be most effective, followed by liquid cooling then

forced air cooling. However, with increasing cooling effectiveness, an increase in ∆T in the battery

pack was observed. A temperature difference of 15◦C was found for PCM, 9◦C for liquid cooling,

and 2-5◦C for forced air. The center of the battery modules were not effectively cooled by any

cooling strategy. Their results suggest that in order to maintain a ∆T ≤ 5◦C with liquid cooling,

there should be cooling plates every 4 cells.

Pesaran [117] used NREL’s ADVISOR vehicle simulator [201] to simulate EV battery pack

thermal performance. A battery pack consisting of modules of 6 cylindrical cells each was modeled

with forced air cooling. Cooling channels were considered in the spaces between each of the cells. A

‘series’ cooling system was evaluated where the intake air passed over each set of cells sequentially,

as well as a ‘parallel’ cooling system where intake air was directed such that each cell received fresh

intake air. The series cooling arrangement predictably resulted in a larger temperature difference

within the pack of 18◦C whereas the parallel cooling system saw a temperature difference of 8◦C,

mostly from internal cell temperature differences. This result shows that cooling system design

can induce large temperature differences within a battery pack.

Yang et. al. [37] investigated how the arrangement of cells in a battery pack can affect the

temperature distribution and cooling system effectiveness. A thermal model was developed based

on a standard single particle diffusion model with an integrated thermal model considering reac-

tion heat, electrochemical + SEI resistance heat and Ohmic heat. This model was validated by

performing experiments on a single cell. Battery packs/modules consisting of 60 cells were con-

sidered, arranged in 6x10 arrays. The two layouts considered were a grid of cells where the center

of each cell was aligned with its neighboring cells in both the x and y directions and a staggered

array where every other row of cells was shifted by half the distance between cell centers. For
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the simulations, coolant air was forced into the pack along the long side of the pack. The grid

array of cells allowed for a straight path for cooling air to flow through the pack between the cells,

while the staggered array forced the air to flow around each cell. When discharging the pack at a

2C rate, it was found that the grid layout provided better thermal uniformity and lower cooling

power requirement, while suffering from slightly higher maximum temperatures. For the grid ar-

ray, the coolest cell (at the inlet) was 1◦C cooler than the rest of the cells, which had a uniform

temperature. For the staggered array, the second row of cells was the coolest, and the maximum

∆T was 2◦C. These temperature differences are small, but the design of the battery pack, with

spacing between cells of 12mm, or 2/3 of the diameter of each cell, is extremely space inefficient

and unrealistic in a real application. However, their results imply that at reasonable cell spacing,

the arrangement of cells has a large impact on the thermal distribution within in the pack, and

that no matter what layout is chosen, a temperature difference between cells will exist.

4.4.3 Effect of Non-Uniform Temperature on Battery Packs

In the works that inspired this, Klein et. al. [17, 31] investigated the effect of non-uniform

temperature on cylindrical cells connected in parallel. A temperature gradient was applied to 5

cells using the device described in Section 7.4.4, and the current through each cell was measured

using a shunt resistor. Current distributions were observed between the cells that became more

pronounced at higher ∆T and, lower C-rate, and lower average temperature. Significant differences

in cell behavior between pulse charge/discharge and prolonged charge/discharge were found. At

different times during prolonged discharge, different cells contributed more current, and the points

at which they switched were dictated by the graphite intercalation potentials. When applying a

current pulse, the current distribution followed the cell resistance’s dependency on temperature

such that the hottest cell contributed the most current while the coldest cell contributed the least.

The maximum current resulting from a ∆T of 20◦C was 1.4 times the nominal current. At the

end of discharge, the cells were found to have a non-uniform SoC of up to 13%. Despite this, a

reduction of only 3% in usable energy from the pack was found. The results from their work suggest

that in order to observe the largest effect, the average temperature should be low and ∆T should
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be high. While they observed that a lower C-rate resulted in more current variations due to the

more pronounced effect of graphite compared to the electrochemical resistance, for cells connected

in series that do not have the chance to equalize their voltage, a higher current is expected to

increase the difference. The non-uniformities observed can be expected to reduce the lifetime of

the battery pack, both due to accelerated aging at higher temperatures and larger than expected

current through each of the cells.

In the most relevant work, Chiu et. al. [33] developed a modified single particle model for

simulating series connected cells with non-uniform temperatures that took into account SEI layer

growth through reduced availability of Li, which was modeled by a time integral of an Arrhenius

equation. The model was developed using data from 2 cells cycled at different temperatures. The

model was run at 0.5C for 2000 cycles with ∆T of 0, 9, and 18◦ C and average temperatures of

34◦C and 60◦C. The pack performance at the 2000th cycle was evaluated. They found a 3% lower

capacity with a ∆T of 18◦C than with no temperature difference when the average temperature

was 34◦C, and 7% lower capacity with a ∆T of 18◦C compared to no ∆T when the average

temperature was 60◦C. However, given the presented method for modeling degradation, this is

the difference that could be expected if the cells had been stored at different temperatures, then

connected in series and cycled. Despite this, it shows the importance of fully understanding the

effects of non-uniform temperatures on series-connected battery packs. Their experimental results

consisted of cycling two cells, one at 25◦C and the other at 55◦C while connected in series. The

degradation rate of this pack was compared to manufacturer data from the cells datasheet for

cycling at 25◦C. An increased rate of degradation was measured compared to the case of 25◦C,

but was not compared to the case uniform cycling or storage at 55◦C. This makes it unclear if the

results indicate increased aging due to non-uniform temperature or simply the battery pack being

limited by the weakest cell which in this case was the hotter cell due to its higher degradation rate.

They did note that their experiment had to adjust for cell degradation, changing the voltage limits

of the charge/discharge cycle. Improvements to this testing methodology are presented in Section

7.4.4. Other limitations of this study that will be addressed in this work include the testing of only

2 cells connected in series, lack of evolution of individual cell performance data over time, lack of
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control cases, and attribution of degradation to different stressors and mechanisms.

5 Research Background and Relevance

5.1 Machine Learning

Much of the motivation for this work revolved around improving battery state estimation for

battery packs. One of the most important states of a cell to track is the SoC. To this end, a neural

network (NN) was developed to estimate the SoC of a cell under dynamic loading conditions

(HPPC and US06 drive cycles) [202]. In this work, it was demonstrated that input pre-processing,

specifically, classification of charge/discharge can improve neural network performance for battery

state estimation [195]. By further studying the effect of temperature gradients on battery packs,

the additional data could be used to improve the training methodology for the NN, improving

the ‘real-world’ performance of the determination of individual cell SoCs in the battery pack with

a temperature gradient applied to it. This improved training is highly important to make this

technology viable in various applications, as the NN was only trained on data from cells tested

at the same temperature. Meanwhile, it is rare for any battery to actually operate at a constant

temperature, and therefore including temperature data as an input to the NN is critical future

work that must be done to achieve practicality.

5.2 Second-Life Energy Storage

With the increasing market share of EVs, it is only a matter of time until a large number of

batteries from these vehicles reach their retirement. Either from totalled vehicles, battery replace-

ments, or after the vehicle is scrapped. Many of these batteries are still in usable condition when

they are removed from the EV, and could serve to offset the demand for new battery production,

which itself is not a ‘green’ process. Therefore, the California Energy Commission (CEC) provided

UC Davis a grant to develop a prototype stationary energy storage system using batteries that had

been retired from electric vehicles. This project involved the design, construction, and operation of

a 274 kWh second-life energy storage system from used Nissan Leaf battery modules. To achieve

this, over 1000 battery modules were tested for their SoH to determine which were usable, and

an algorithm was developed to determine which cells could be connected together into modules.
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During testing, it was found that the assumption made in most literature that cells are retired

from their first life when their SoH reaches 70-80% was optimistic, and 60-70% is a more realistic

expectation.

After the battery system was produced, it was installed at the Robert-Mondavi Winery at UC

Davis as part of the winery microgrid research project [106]. This system was an early demon-

stration of large scale deployment of second-life electric vehicle batteries for energy storage in a

commercial-type building and microgrid system [203–218]. At the time of publication, the system

had been in operation for 2 years, but only the first year of operational data was analyzed. The

system was shown to reduce peak time energy use by an average of 39% and achieved an average

reduction in maximum peak-time demand of 60%. The system demonstrated the viability of using

second-life EV batteries for microgrid, commercial, and industrial energy storage systems in terms

of their performance. However, the system had not been operating for a sufficient amount of time

to comment on battery degradation.

Most relevant to this work, due to the fact that this battery was second-life, and that it was

installed in a shipping container with the HVAC unit on one end, temperature differences formed

between the modules of the battery pack. These were measured by the 56 thermistors installed on

each of the two strings of the battery. While not granular to the cell level, this was sufficient to

measure temperature differences across the pack. At the low (C/5) charging and discharging rates

of this climate-controlled system, the temperature between modules varied by 3−5◦C. Future work

plans for this system involve dissembling it and re-testing the cells in the lab. This work will allow

the temperature data to be compared to the degradation. This will provide real-world verification

of the lab-scale research in this work. This research will also be valuable for future second-life

battery systems by linking the internal resistance inhomogeneity to thermal inhomogeneity within

the battery system and thus lifetime and degradation estimations can be made more accurate.

5.3 Parallel Cell Aging with Temperature Gradients

As an extension of [17], the available experimental setup was operated for an additional 500

cycles to observe the aging behavior induced by the non-uniform current distributions along with
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non-uniform temperature of the cells. It was found that the shape of the current distributions while

charging and discharging were both significantly altered over the set of cycles. The pack was cycled

at temperatures equivalent to TG Pack 2 with temperatures from 26◦C to 44◦C After 500 cycles,

the hottest cell still contributed more to the bulk of the discharge, while the coldest cell continuously

contributed the least current to the pack. The absolute spread in current became greater, as might

be expected due to uneven cell aging. After 500 cycles, the hottest cell initially contributed more

current, but quickly fell off to allow other cells to accommodate the load compared to the first

cycles where the hottest cell increased its share of the load until near the end of discharge.

5.4 Neutron Imaging of Electrically Abused Cells

For this work, a selection of NMC cells were neutron imaged before and after electrical abuse

testing. Other testing performed on the cells included electrochemical impedance spectroscopy

(EIS), cell disassembly, and X-ray computed tomography. A selection of cells was each chosen to

be discharged to 100%, 110%, and 150% of their rated capacity. After the over discharge testing,

cells were again subjected to the full array of testing that was done before over discharging. First,

EIS showed very little increase in Ohmic resistance of the cells regardless of their over discharge

status. However, the diffusion resistances of the cell discharged to 150% had increased by over

100x its original value. Neutron radiography showed that the absorption intensity of the over

discharged cell had reduced by 13% compared to the cell discharged to 100% of its capacity. While

the X-ray imaging showed no large deformation of the internal structure of the cell, it did reveal

damage to the structure of the cathode. After disassembling the cell it was found that metallic

copper had been removed from the current collector and deposited on the surface of the cathode.

It was also determined that the thickness of the electrodes had increased by 21-26%. This lowering

of the density of the internal cell structure may have been one of the causes of reduced neutron

absorption, along with loss of active lithium to side reactions. Note that by over discharging the

cells, lithium plating on the anode was avoided, as this would increase the neutron absorption even

with lowered cell capacity and active lithium [219].
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Part III

Research Methodology

The overall goal of the this work was to define how temperature gradients in battery packs affect

their life-expectancy and performance over time. Since battery packs consist of cells connected

in series and parallel, and the effect of temperature gradients on these two topologies of pack

are different, both need to be investigated and compared. It is widely believed that temperature

gradients will have a negative impact on the lifetime and performance of LIB packs, but few studies

have been done to quantify them [15, 29, 65, 150, 182, 186–197]. Those that have do not study the

evolution of the current dynamics and cell health over the lifetime of the pack [33,66,69,183,185,

190]. There are also multiple mechanisms by which applying a temperature gradient to a battery

pack can degrade it, and these are again a function of whether the cells are in series or parallel.

Some of these mechanisms have been individually studied, but some only as an aggregate, and

almost always with different types of cells, which makes comparison and determining the influence

of each aging mechanism difficult to isolate. Because more work has been done on cells connected

in parallel, this contribution will focus on cells in series.

6 Cells in Series

The primary questions under investigation are how a battery pack consisting of cells in series

that is exposed to a temperature gradient ages in capacity, performance, and how it is different

from single cells and constant temperature battery packs. To answer these, the possible aging

mechanisms must first be discussed in the context of series cells at various temperatures and the

question broken down into more specific terms. Different aging mechanisms and magnitude of aging

is expected to be induced across the battery pack. Aging results in lower overall pack capacity and

power capability since cut-off voltages are reached sooner due to the weakest cell in the pack [33].

Some additional questions are: is aging of series cells with a temperature gradient the same as

aging cells at different temperatures independently, and how different is the aging resulting from

temperature gradients compared to series cells that have naturally mis-matched internal resistance?
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To assess whether temperature gradients in a series battery pack are indeed distinguishable

from the effect of temperature on individual cells, we consider the behavior of cells when in a

series battery pack. When in series, the capacity of the battery pack is limited by the weakest

cell, since when the cutoff voltage of that cell is reached, all cells must stop discharging. This can

occur either because the cell has a high resistance, or because the capacity of the cell is lower than

other cells. When cycling cells independently at different temperatures, the full usable capacity

of each cell is used. For new cells in series, the performance of the battery pack will be limited

by the coldest cell as it will have the highest resistance and the fastest lithium plating. This

means that the warmer cells have a lower effective DoD because their usable capacity is higher,

which aids in preserving their lifetime. On the other hand, the warmer cells have a higher rate of

side-reactions that consume their active Li, which acts to shorten their life and increase internal

resistance. Therefore, cells connected in series should have different aging behavior as a result of

temperature gradients than simply cycling them independently at different temperatures.

Due to different aging mechanisms at the coldest and the warmest cells, both the magnitude

of the temperature gradient and the average temperature of the battery pack were expected to

change the aging behavior of the cells and the pack. At very low average temperatures, the coldest

cell is likely to age more quickly than any other cell due to lithium plating and being cycled

through its full DoD, while the other cells are warmer (but not hot), and not cycled as intensely.

At intermediate average temperatures, the aging of the hottest and coldest cells may be similar,

while the aging of the central cells could be reduced due to operation at optimal temperatures and

low DoD. Finally, higher average temperatures will likely result in the hottest cell aging fastest,

but providing the best short-term performance. The cycle at which the hottest cell begins to

perform worse than the average temperature cell marks the point at which the degradation due to

temperature has reduced the pack’s performance compared to a homogenous temperature pack.

When this will occur is unknown and likely differs between magnitudes of temperature gradient,

average temperature, and cell chemistry [33,126].
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To determine how detrimental temperature gradients are to the lifetime of a series-connected

battery pack, it should be compared to common cases of uniform temperature. The control pack is

a pack of series cells that have (nearly) identical resistance and capacity, which is the ideal case for

a series connected battery pack. Since temperature gradients modify the internal resistance of the

battery pack, they should be compared with a battery pack that naturally has different internal

resistances, as well as cells individually cycled at different temperatures.

The ideal control battery pack should have the longest life time and the best performance owing

to its well matched cells that are exposed to the same conditions. The case of homogenous temper-

atures but inhomogeneous internal resistance is likely to generate natural temperature gradients

which will result in an equalizing of internal resistance of the pack. However, these temperature

gradients will then modify the aging behavior of the pack compared to the control case in addi-

tion to having lower maximum power output due to higher resistance. The cells with the lowest

resistance in the battery pack are likely to age slower than the high resistance cells, since the high

resistance cells will reach the minimum and maximum voltages sooner, reducing the cycling DoD

range of the lower resistance cells.

SoC imbalance is an important factor in series connected cells as it causes the total battery

pack capacity to be limited by the weakest or lowest SoC cell. This is expected to be induced

by temperature gradients due to uneven aging of the cells in the pack. For second-life cells,

this exacerbated due to initially different capacities. To counteract this, the BMS must perform

additional balancing. However, traditional balancing methods do not enable the use of the full

capacity of the battery. To do that, active balancing techniques will be required, which adds cost

to the BMS. However, if it is known that a battery pack will be regularly subjected to temperature

gradients, the additional cost of the BMS to implement active balancing may be offset by the

extended useful life of the battery pack.
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Station Number of Channels Max Voltage (V) Max Current (I)

Station 1 12 10 30

Station 2 2 5 100

Station 3 2 5 50

Station 4 2 5 20

Station 5 3 20 5

Station 6 2 20 20

TABLE 4. List of battery test station capabilities used during the experiment. All test stations were from

Arbin Instruments.

7 Experimental Methods and Setup

7.1 Cell Specifications

The cells studied were LFP cells (AA Portable Power Corp model LFP-18650HT) [14], with a

rated capacity of 1500mAh at 0.5C. These were the same as the cells used by Klein [31]. These cells

were rated for 2.5-3.65V, with a nominal voltage of 3.2V. The rated maximum continuous charge

current was 1C, but the recommended charge was 0.5C with a charge cutoff current of 0.01C, and

the max rated continuous discharge current was 3C, with a pulse discharge rating of 10A (6.6C) for

10 seconds. The nominal internal resistance was 45mΩ and the cycle life was quoted at 2000 cycles

at 100% DoD. The operational temperature range of the cells was 0-55◦ C for charge, and -20-60◦

C for discharge. Table 2 shows the rated capacity change of the cells at different temperatures [14].

7.2 Battery Tester Specifications

Cells were tested using several variations of Arbin BT2000 battery test stations. The differences

between the test stations being their rated voltage range and maximum testing current. For the

experiments performed in this work, the current of the test stations was not a limiting factor. But

due to the increased voltage of series connected cells, care had to be taken to stay within the safety

limits of each test station and only one station was capable of testing the series packs. The critical

specifications of each tester are listed in Table 4.
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7.3 Characterization Testing

Characterization tests of the cells were performed in order to identify each cell’s internal resis-

tance, capacity, and voltage as a function of SoC and temperature. The purpose of these tests

was to gain a full understanding of the cells when new, to gather data about cell consistency, and

to allow for monitoring of changes in cell performance parameters throughout the course of the

study. It also provided the data needed to match cells together into groups that were as similar as

possible such that any differences in resistance or capacity during the following experiments could

be attributed to the conditions of the experiment. Not every test was run on every cell to reduce

experimental time. Instead, a representative sample of five cells was selected for each test based on

their capacity or total 10-second internal resistance. After the cycling and degradation tests, the

tested cells were compared to the fully characterized cell that was the closest match for its initial

state.

7.3.1 Custom Single-Cell Holder

In order to ensure consistency of measurements, a cell holder assembly was constructed for single

cell testing that applied a replicable pressure to the cell terminals. It has been shown that connec-

tion quality to the cells can greatly affect resistance measurements and hurt cell characterization

accuracy [32]. The holder, shown in Figure 17 utilized a spring to maintain a controlled contact

pressure. The compression distance of the spring was set by an M6 x 12mm screw and a set of

three washers. The fixture was designed to only allow the screw to be tightened to the correct

position, thus preventing over or under compression of the spring, even if the torque applied to

the screw was inconsistent. The spring used was McMaster-Carr part number 9657K325, which

had a length of 1”, a maximum compression length of 0.6”, and a spring constant of 36.78 kN/m

(210 lbs-force/in). The screw and washers were calibrated to compress the spring by 1.7 mm, with

F = 36.78N/mm× 1.7mm = 62.5N = 14.1lbs− force.

Connections to the battery test stations were made by inserting approximately 1.5 in long, 1/16

in thick, and 3/4 in wide busbars into the fixture at each end of the battery as shown in Figure 17.

Copper foil was then placed between the cell terminals and the busbars. The spring compression
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FIGURE 17. A rendering of the single cell holder using spring for terminal compression with callouts for

important features.

screw (right side in Figure 17) was then tightened to compress the spring to the desired force. The

screw on the left side of Figure 17 was finger tightened just enough to press the copper foil against

the cell terminal by passing through one of the holes in the busbar. The battery test station ring

terminal connectors were than attached to the exposed portion of the busbars.

The effectiveness of the cell holder was verified by repeating the same internal resistance mea-

surement 5 times on 10 cells, removing and replacing each cell between each test. A precision of

±0.2mΩ was obtained, compared to the measured resistance values of ≈ 57mΩ. In addition, these

measurements can be compared to those obtained by Klein [17] for the same cells, showing that

the cell holder reduced the measured resistance for the same cells by ≈ 40%.

7.3.2 Cell Capacity Test
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The cell capacity test was designed to be a simple check of a cell’s basic capacity and internal

resistance to serve as a comparison between each cell. This test was used for choosing which cells

to group together, and served as the benchmark test for cell degradation. The test assumed that

the cells start at 50% SoC, as all test schedules ended by charging or discharge the cells to 50%.

The test schedule consisted of the following sequence:

1. Rest for 1 minute.

2. A charging current pulse of 3A for 10 seconds with a data collection resolution of 0.05 seconds.

This measures the charging internal resistance of the cell.

3. Rest for 5 minutes.

4. Discharge at 3A for 10 seconds with a data collection resolution of 0.05 seconds. This measures

the discharge internal resistance.

5. Rest for 10 seconds

6. CCCV charge as specified by datasheet (see Section 7.1).

7. Rest for 1 hour.

8. Discharge at C/2 down to 2.5V. This is the rate at which the datasheet provided the most

information.

9. Rest for 30 minutes

10. Charge as recommended by datasheet (Section 7.1).

11. Rest for 1 minute

12. Discharge to 50% SoC.

A sample capacity test is shown in Figure 18. The initial charging and discharge pulses are used

to measure the resistance of the cell at around 50% SoC (steps 1-5). The initial charge (step 6) is

used to get the cell to a known 100% SoC to allow for accurate measurement of the cell’s capacity.

During the one hour rest (step 7), the voltage reduces even though the current is 0 A. This is

caused by the cell relaxing back to OCV after charging. Steps 8-10 are the full discharge-charge

cycle and are used to get the measurement of capacity to calculate the SoH of the cell. Finally, step

12 simply discharges the cell to approximately 50% SoC. From this test data, each cell’s Coulombic

efficiency (Equation 32), energy efficiency (Equation 31), charge capacity, discharge capacity, 50%

70



FIGURE 18. Example capacity test showing the current and voltage of the cell during the test. Each

section of the test is called out.

SoC charge and discharge internal resistance, 100% SoC discharge resistance, and 0% SoC charge

resistance was measured. This test was performed on all cycled cells after every 200 cycles to track

their capacity as they aged.

7.3.3 Cell Capacity Characterization Test

This test was used to measure the capacity of the cells across different C-rates. It performed cell

capacity measurements at C/60, C/10, C/5, C/2, 1C, 1.5C, and 2C. The capacity test performed

at C/60 was used to define the ’true’ OCV curve of the cells by taking the average of the charge

and discharge voltage at each SoC. The test consisted of the following:

1. Rest for 1 minute

2. Charge to 100% SoC as recommended by the datasheet (Section 7.1)

3. Rest for 1 hour
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4. Discharge at specified C-rate to 2.5V.

5. Rest for 1 hour

6. Charge at specified C-rate, with CV charge as specified by datahsheet.

7. Repeat steps 3 to 6 for each C-rate.

8. Discharge cell to 50% SoC.

This test allowed for a complete capacity map of the cell at different C-rates to be generated,

and the change in this map to be tracked as the cells degraded.

7.3.4 Cell Internal Resistance Characterization Test

This test was used to measure the internal resistance across SoC and temperature of the cells.

The charge and discharge resistance was measured every 10% SoC and repeated at 5◦C, 10◦C,

20◦C, 30◦C, and 50 ◦C. The test was performed as follows:

1. Rest for 1 minute

2. Charge to full according to datasheet specifications (Section 7.1).

3. Rest for 5 hours (as suggested by [40]).

4. Apply discharge pulse of C/5 for 10 seconds, with data recorded every 0.05 seconds. C/5 was

chosen to be consistent with Klein’s methodology [17].

5. Rest for 5 minutes

6. Apply charge pulse of C/5 for 10 seconds, with data recorded every 0.05 seconds.

7. Rest for 5 minutes.

8. Discharge 150mAh (10% SoC) at C/5. This step was corrected for the measured SoH of each

cell as the cells aged to maintain 10% SoC increments.

9. Rest for 10 minutes.

10. Repeat steps 3-9 until SoC = 0%.

11. Charge to 50% SoC.

This test was repeated at each temperature specified above. The result was a map similar to the

capacity characterization test, except the internal resistance was mapped against temperature and
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SoC and allowed for another degradation effect to be tracked in detail.

7.3.5 Cell dOCV-dT Test

This test followed the methodology of [16, 17, 40, 220] to measure temperature effects on the

OCV of the cells. In this test, the cell was brought to a specified SoC, allowed to rest until it

reached equilibrium, then the following temperature profile was applied: 45◦C, 25◦C, 5◦C, 25◦C,

45◦C, resting at each temperature for 2 hours. The SoC was then incremented by 5% and the

process repeated. The purpose of this test was to characterize the entropy of the cells and provide

corrections to the voltages for changes in the OCV measured during other tests and is not intended

to measure degradation, though some changes due to aging were expected [7]. The test followed

the protocol:

1. Rest for 5 minutes at 25◦C.

2. Charge cell to full using datasheet specified method at 25 ◦C.

3. Rest for 5 hours at 25◦C.

4. Rest for 2 hours at 45◦C.

5. Rest for 2 hours at 25◦C.

6. Rest for 2 hours at 5◦C.

7. Rest for 2 hours at 25◦C.

8. Rest for 2 hours at 45◦C.

9. Rest for 30 minutes at 25◦C.

10. Discharge 5% SoC at 25◦C by removing 75mAh. This step was adjusted based on the SoH of

the cell to maintain 5% SoC increments.

11. Repeat steps 3-10 until SoC == 0%.

12. Charge to 50% SoC at 25 ◦C.

7.3.6 Neutron Radiography Imaging

Neutron Radiography (NR) uses a beam of neutrons generated by a nuclear reactor to image

a sample. The sample is placed in the neutron beam in front of an imaging plate as shown in
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Figure 19. As different materials in the sample absorb different amounts of neutrons, the intensity

of the transmitted neutron beam on the imaging plate produces a 2D monochromatic image of the

sample. The intensity of the transmitted neutron beam is given by the Lambert-Beer attenuation

law

I = I0e
µt (39)

where I0 is the intensity of the beam incident on the sample in neutrons
s·cm2 , µ is the neutron absorption

cross-section of the material in cm2, and t is the thickness of the material in cm. [11].

FIGURE 19. Figure showing the reactor core and a diagram of a typical neutron imaging experimental

setup. Diagram based on figure from [11].

NR is especially well suited for imaging lithium ion batteries due to the high neutron capture

cross section of Lithium compared to other cell components such as aluminum and copper. The
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neutron beam attenuation coefficient for lithium is 6cm2/g while for copper and aluminum it is

0.03 and 1 cm2/g respectively [221]. This made it especially valuable to inspect cells that were

cycled at low temperature as they were expected to exhibit increased lithium plating and lithium

dendrite formation. Same et. al. clearly showed that the increased attenuation due to lithium

plating can be seen in in neutron images, especially after the cell was over charged [168]. Since NR

is non-destructive, it can be performed on a cell multiple times after various experiments have been

conducted on the cell to observe otherwise unobservable changes to the cell. These include, in order

of the magnitude of their effect on neutron beam attenuation, detecting Li dendrite growth [168],

quantification of remaining active lithium in the cell electrodes [222], detection of lithium consumed

by the SEI [219], finally electrolyte consumption, distribution, and gas formation [221,223]. It has

also been found that cell SoC produces visible changes in the imaged intensity in NR images [224].

For this work, NR was performed in Bay 3 of the UC Davis McClellan Nuclear Research Center

(MNRC) in Sacramento, CA [225]. This facility is equipped with the highest power Training,

Research, and Isotope Production General Atomics (TRIGA) reactor in the United States, at

2MW continuous operation. These reactors use uranium-zirconium hydride fuel rods [226], which

have a self-cooling property that prevents nuclear meltdown. The beam intensity in Bay 3 of

the MNRC is 107N/cm2s, and has a spacial imaging resolution of 100µm, which unfortunately

was insufficient to distinguish the layers inside the cell, which were on the order of 50 − 100µm

thick [227]. The images produced by the detector provided a total resolution of 3520x4280 pixels.

Cells were placed in an aluminum tray 3.175mm (1/8in) thick, with dividers also made of 3.175mm

thick aluminum plates. The direction of the beam was always through the tray which was oriented

to account for the 20◦ beam angle such that the beam was normal to the cells. The cells were

initially imaged both laying down in the tray as shown in Figure 20 and vertically along the cell

axis as shown in Figure 41. The cell terminals were tapped with paper masking tape to prevent

shorting through the aluminum tray. This tape is highly transparent to neutrons as can (or rather,

can’t) be seen in Figure 38, where it is only visible when neutrons pass through the length of

the tape. To avoid the effect of SoC on the NR images, all cells were CCCV charged to 3.29V

for 2 hours before imaging. NR imaging was performed before cycling testing, but after initial
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characterization testing, and after all cycling at the conclusion of the experimental phase.

FIGURE 20. Image showing a sample of the cells in an NR imaging tray. For through-axis images, cells

were taped to the divider to be held vertically in the tray.

7.4 Cycling, Aging, and Degradation Testing

7.4.1 Control Tests

To determine the effect on pack and cell lifetime caused by non-uniform temperatures, a selection

of cells was aged under various conditions. These included the packs subjected to non-uniform

temperatures, a control pack, individually cycled cells, and calendar aged cells. To account for the

amount of time taken up during the experiment, the effect of calendar aging on the cells had to be

accounted for. Calendar aging for storage at 65% SoC occurs at a rate of ≈ 0% per year at a storage
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temperature of 30◦C and 15% per year for storage at 45◦C for LFP cells. [121]. These degradation

rates suggested that, especially for the higher temperature cells, calendar aging would play a part

in the overall capacity loss during this experiment. Thus, the first control group consisted of 9

cells, 3 each stored at temperatures of 5◦C, 20◦C, and 45◦C. These cells will be periodically tested

using the cell capacity test to determine their aging behavior. Their storage SoC was 50%. These

cells were used to determine the base aging expected from the cells degraded in other ways.

Another set of cells were cycled individually to act as a control against which the series-connected

packs could be compared. This consisted of two groups of cells cycled independently at 20◦C and

45◦C. It was initially planned to also cycle 3 cells individually at 5◦C, however this was not possible

due to availability of lab equipment. A comparison of the collected data with literature was used

to extrapolate the results to 5◦C. The three cells for each temperature were chosen based on

their capacity and internal resistance, with one each of: high resistance with low capacity, average

resistance with average capacity, and low resistance with high capacity. This test’s goal was to

isolate the difference between the basic effect of temperature on cycling aging of LIBs compared

to the effect of being connected in series while exposed to a temperature gradient. While these

experiments were not novel, (e.g. [123]), each cell make and model behaves slightly differently.

However, they obey the same patterns, which allowed for the lack of 5◦C testing to be easily

compensated for.

The second control group was a series-connected pack of 5 cells, equivalent to the packs with

non-uniform temperatures. This pack, referred to as the ideal pack represented an ‘ideal’ battery

pack by having internal resistance and capacity within 1 standard deviation of the distribution

measured by the characterization tests. The ideal pack was cycled with no temperature gradient,

and an average temperature of 20◦C. It was cycled using the same cycle test (described below) as

the packs with non-uniform temperatures. A separate fixture was designed for this pack as there

was no need for the complex heat transfer and control system associated with the non-uniform

temperature packs. This fixture is shown in Figure 21. It consisted of 3D printed brackets that

held a copper busbar surrounded by copper foil. The copper foil, as with the single cell holder,

77



FIGURE 21. Picture of ideal pack fixture. A) Overview of fixture. B) Detail of fixture bracket.

was required to enhance contact between the busbar and the cell. The bracket was held in place

by a threaded rod, which was also used to compress the pack to maintain its structure and force

the cells into contact with the copper foil. Voltage measurement wires were then connected to each

busbar to allow for measuring of every cell’s voltage using the same system as that described below

for the temperature gradient packs. The two busbars at the positive and negative terminals of the

pack were also connected to the Arbin test station to cycle the pack. The goal of this pack was to

provide the baseline for how a typical series battery pack would be expected to age while cycling

in ideal conditions. By comparing to the packs with temperature gradients applied, the magnitude

of the effect of the temperature gradient, compensated for by calendar aging, was determined.

7.4.2 Packs with Temperature Gradient

The main experiment was performed on two packs of 5 series-connected cells, collectively re-

ferred to as TG packs. These packs were subjected to a 17◦C temperature gradient with average

temperatures of 12◦C and 35◦C. The first pack, referred to as TG1 was cycled with an average
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temperature of 12◦C, with the minimum and maximum temperatures being 3.5◦C and 20.5◦C

respectively. The second pack, TG2, was tested with an average temperature of 35◦C, minimum

of 26◦C, and maximum of 43.5◦C. These temperatures were chosen as they cover the majority

of conditions under which LIBs are cycled ‘in real life’. While not reaching the extremes (0◦C

and 65◦C) for safety reasons, these temperatures should provide useful reference for most realistic

conditions. The goal of these experiments was to measure the effect of temperature gradients on

series connected battery packs, and investigate the effect of different average temperatures on the

performance of the pack and the aging mechanisms of the warmest and coldest cells of each of

the packs as described in section 6. While a ∆T of 17◦C may appear large, experiments have

shown that even a modest C/2 rate can result in ∆T ’s of up to 10◦C, therefore it was considered

reasonable that a higher rate pack may experience larger temperature differences given that heat

generation is proportional to the current squared [228].

7.4.3 Cell Matching Methodology

The cells that were used in each of the TG packs were selected based on data from the charac-

terization tests (see Table 5). The objective was to match them together with cells that were as

similar as possible such that any differences in resistance or capacity during the experiments could

be attributed to the conditions of the experiment. This was done by first calculating the z-score

for both the capacity and resistance of all the cells.

Qnorm = (Qi − Q̄)/σQ (40)

where Qnorm is the z-score of capacity, Qi is the capacity of the i’th cell, and σQ is the standard

deviation of the capacity. The same calculation was performed on the internal resistance. Next,

every possible combination of 5 cells was found. For each group of cells, the mean (normalized)

value of capacity and internal 0.1 second resistance at 50% SoC was calculated. Then the mean

squared error of the group’s capacity and resistance z-scores from their mean values was taken.
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Specifically,

MSEcapacity =
1

5

5∑
n=1

(Q̄−Qn)2 (41)

where Q̄ is the mean capacity z-score of the group of 5 cells, and Qn is the capacity z-score of cell

n. The internal resistance MSE was calculated similarly. Then, the MSE of the internal resistance

and of the capacity were summed together. The normalization by z-score meant that each cell

in these groups had resistance and capacity as close as possible to the mean values of each, and

by minimizing the MSE of the cell group, the groups with the most similar cells were chosen.

Therefore, the cell groups with the lowest total MSE were taken to be the ideal pack, and TG

packs 1 and 2.

7.4.4 Testing Fixture (Temperature Gradient System)

The Temperature Gradient System (TGS) was built by Matt Klein [17], and consisted of ma-

chined aluminum blocks that were compressed around cylindrical 18650 type LIBs. The blocks

held a row of 5 cells. Each cell had a type-K thermocouple with ±1◦C measurement error attached,

with the cells on either end having two. The temperatures of the first and last cells were taken

as the average of the two thermocouples. Temperature differences across the pack were generated

in the aluminum blocks by 24V thermoelectric Peltier elements at each end of the blocks. Ther-

mocouples were also placed near the Peltier elements and connected to a TE-36-25 temperature

controller to maintain the set temperature. To maximize the thermal contact between the cells

and the aluminum, thermal interface material paste (Cooler Master IceFusion) was applied to the

cells and to the Peltier elements. The setup is shown in Figures 22 and 23. Insulation was then

placed on the end plates to reduce unwanted heat transfer. Using this setup, linear temperature

profiles could be generated of the form
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T (x) =

(
Tavg −

1

2
(T6 − T0)

)
+
x

L
(T6 − T0) (42)

Where L is the length of the aluminum blocks and the average temperature of the entire battery

pack was calculated as

Tavg =
1

Ncells

Ncells∑
j=1

Tcellj (43)

Finally, the total pack temperature difference was taken as the difference between the warmest and

coldest thermocouples. ∆Tpack = T6 − T0. The system was capable of generating ∆T = 17◦C at a

variety of Tavg covering the safe operational temperatures for LIBs. The entire fixture was placed

in a temperature controlled chamber which allowed for a wider range of average temperatures to be

applied to the cells. The maximum root mean squared error of applied temperature vs. measured

temperature profile for this setup has been determined to be 0.9◦C [17].

The original configuration of the TGS was designed for connecting the 5 cells in parallel. To

convert the TGS to a series-connected battery pack, voltage measurements for each cell had to be

added. This was done by welding nickle strips to the cell terminals to provide connection points

for both series connections and voltage measurement connection. The cells were then connected

in series by alligator clip wires. Voltage measurement connections were made at both terminals

of each cell; this configuration prevented voltage drops along the series connections from affecting

the cell voltage measurements. The voltages were measured by a National Instruments NI 9205

analog input module as shown in Figure 24. The 9205 can measure 16 differential voltage pairs,

at 10V per measurement with 16bit precision and a sample rate of 250kHz. The absolute voltage

measurement accuracy was 6.23mV, with standard deviation of signal noise of 0.240mV, and a

sensitivity of 0.096mV. LabView was used to record the cell voltage data at 15 Hz.
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FIGURE 22. Diagram showing the test rig, location of thermocouples, thermoelectric elements, and data

collection devices.

Another problem caused by conversion to a series battery pack was that the Arbin battery test

station could only measure the pack terminal voltages. However, charging or discharging had to

stop when any single cell reached its cutoff voltage otherwise safety issues could occur. Since it

was entirely possible for the pack voltage to be within the safe 12.5-18.25V while a single cell was

outside of its safe 2.5-3.65V range, a secondary safety mechanism was required. This took the form

of placing a relay in series with the battery pack that was controlled by a National Instruments

9472 digital output module as shown in Figures 25 and 26. This relay was triggered to disconnect

the pack from the test station when any cell’s voltage exceeded the minimum or maximum voltage

limit, as measured by the NI 9205. Typically, this would cause a battery test station to enter an

error state and stop the test. To get around this, the Arbin was set to enter a rest state rather than

an error when the voltage exceeded the normal limits, it would then wait until a normal voltage was
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FIGURE 23. Picture showing the test fixture located in the thermal chamber before testing.

measured again before continuing the test. After 5 seconds, the relay would close again, restoring

the connection between the battery pack and the test station. This method did not compromise

system safety because if a cell’s voltage remained outside of the safe range, the relay would not

close.
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FIGURE 24. Wiring diagram of the National Instruments 9205 analog input module configured to measure

differential voltages.

FIGURE 25. Wiring diagram of the National Instruments 9472 digital output module configured to control

battery shutoff relays.
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FIGURE 26. Wiring diagram of the relay board used to protect the batteries during cycling from over

charge or over discharge.

7.4.5 Degradation Test Profiles

Cell Cycling This test performed a simple repetitive charging and discharging of a single cell.

The goal of this test was to cycle the cell in a consistent way to degrade it. The results from this

test were compared to the similar test for pack cycling. The test started by charging the cell at

1C (1.5A) until the voltage reached 3.65V. Typically, cells would be charged with a CCCV charge

as in the capacity test described in section 7.3.2, but for this test, that was forgone in the interest

of increasing the total charge throughput of the cells. The CV charge portion of a CCCV charge

for these cells typically took 20-26 minutes, while only adding < 0.1Ah of capacity to the cell.

Meanwhile, by neglecting the CV charge, in the same time 0.5− 0.65Ah could be cycled through

the cell at 1C. Therefore, more total charge could be cycled through the cell by not performing

CCCV charging, thus shortening the experimental time. After completing the charge, the cell was
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allowed to rest for 30 seconds before being discharged at 1C until the voltage reached 2.5V .The

cell was then allowed to rest for 30 more seconds before being charged again. This was repeated

for 200 cycles. This test was performed on cells at 20◦C and at 45◦C. The test profile is defined

below.

1. Rest for 10 seconds.

2. Charge cell at 1C (1.5A) until the voltage reaches 3.65V.

3. Rest for 30 seconds.

4. Discharge cell at 1C (1.5A) until voltage reaches 2.5V.

5. Rest for 30 seconds.

6. Increment cycle counter.

7. Check cycle counter. If cycles < 200, go to step 1. If cycles >= 200, go to next step.

8. Charge cell to 50% SoC.

Pack Cycling This test performed the pack equivalent of the above cell cycling test. However,

special considerations had to be made for when the safety relay described in Section 7.4.4 was

opened, and for the increased resistance added by the relay board. The pack was charged at 1C

(1.5A), which is the same as for the cell because the cells were connected in series. The increased

resistance of the relay board and the associated connectors between the battery test station and the

battery pack increased the pack resistance from ≈ 300mΩ to ≈ 2.3Ω. This caused a considerable

voltage drop and resulted in the Arbin test station reaching the 20V limit before the battery

pack was fully charged, or reaching the 12.5V lower limit before the pack was discharged. To

avoid tripping safety limits, the charge was converted to a CCCV charge, but the constant voltage

portion of the charge was set to 20 V rather than the pack maximum voltage. Meanwhile, the

safety cutoff was set to 105% (21 V) of the voltage range, preventing it from triggering. This

allowed the Arbin to continue charging the pack at the highest rate it was able to without cutting

off the charge. For discharging, the lower voltage limit was based on observing the voltage drop

during test experiments, and set to 9.6 V for the same reason. As discussed above in Section 7.4.4,

the charge and discharge steps were ended by the relay which disconnected the battery pack from

the Arbin. This resulted in the voltage spiking to outside of the safety limits. This effect can be
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seen in Figure 27 when the pack voltage drops to −4V . The relay then closed and the voltage

recovered to around 16V , then the Arbin continued the test and began charging the pack. This

was achieved in the Arbin software by defining the following program:

1. Rest for 10 seconds

2. Increment cycle counter.

3. CCCV Charge at 1.5 A until voltage reaches 20, then stop when the current < 0.075A.

(a) If Voltage > 20V (relay opened), go to next step

(b) If Voltage < 12.5V , go to next step (safety).

4. Rest for 30 seconds and until voltage < 18.25V (wait for relay to close).

5. Discharge at 1.5 A until voltage < 9.6V or voltage > 18.25V (until relay opens)

6. Rest for 30 seconds and until voltage > 12.5V

7. If cycle counter < 200, go to step 2, else wait 5 seconds and end test.

FIGURE 27. Plot of pack voltage over a discharge cycle, showing the relay cutting off the discharge step.
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Part IV

Results and Discussion

8 Initial Cell Characterization Data

8.1 Summary Data

The initial state of all the cells is shown in Table 5. The table is sorted by where each cell was

used (as opposed to cell number). This was the data that was used to match cells together into

packs and testing groups. It shows for each cell, what cycling or degradation test it was used for,

and at what temperature the test was run. The bottom of the table shows cells that had no assigned

experiment, these cells were not used, but were initially characterized to increase the sample size of

cells to select from. They were also used to increase the sample size of room temperature calendar

aging cells. This data was based on the standard Cell Capacity Test (Section 7.3.2). The table also

shows some cells listed as their primary experiment being neutron radiography. This was because

the initial plan only called for these cells to be neutron imaged, but eventually all cells were imaged

(before and after testing), thus negating the need for that experiment. For cells connected in a

pack, the cell number (shown in the table as ( C#) started with cell 1 being the cell whose negative

terminal was the pack’s negative terminal, and cell 5 being the cell who’s positive terminal was

the pack’s positive terminal. For packs with non-uniform temperatures, cell 1 was also the coldest

cell, while cell 5 was the hottest cell.

TABLE 5: Initial cell characterization data.

Cell Experiment Temperature SoH Capacity Efficiency 0.1s DCIR

# (◦C) (Ah) (mΩ)

16 calendar avg SoH 20 94.1% 1.41 93.7% 59.97

25 calendar avg SoH 5 94.0% 1.41 93.7% 60.10

65 calendar avg SoH 45 94.2% 1.41 93.6% 59.90

8 calendar max SoH 20 95.2% 1.43 93.8% 58.33

11 calendar max SoH 5 95.6% 1.43 94.0% 58.82
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12 calendar max SoH 45 95.1% 1.43 93.6% 61.67

48 calendar min SoH 20 93.0% 1.39 93.5% 59.83

54 calendar min SoH 45 93.0% 1.39 93.4% 60.97

69 calendar min SoH 5 92.9% 1.39 93.4% 61.06

5 ideal pack C1 5 94.5% 1.42 93.3% 60.50

21 ideal pack C2 20 93.7% 1.41 93.2% 60.82

28 ideal pack C3 20 94.2% 1.41 93.5% 61.06

57 ideal pack C4 20 94.1% 1.41 93.5% 61.00

70 ideal pack C5 20 94.3% 1.41 93.4% 60.62

22 individual avg SoH 20 94.3% 1.41 93.5% 59.97

40 individual avg SoH 20 93.6% 1.40 93.2% 59.77

41 individual avg SoH 45 94.4% 1.42 93.3% 60.08

4 individual max SoH 20 94.9% 1.42 93.4% 57.40

52 individual max SoH 5 95.0% 1.42 93.0% 60.98

62 individual max SoH 45 94.9% 1.42 93.2% 60.19

9 individual min SoH 45 93.1% 1.40 93.5% 60.08

45 individual min SoH 20 93.0% 1.40 93.3% 62.93

64 individual min SoH 5 93.0% 1.40 93.1% 58.65

2 neutron radiography 20 93.9% 1.41 93.6% 58.13

10 neutron radiography 20 94.8% 1.42 93.5% 58.01

13 neutron radiography 20 93.1% 1.40 92.9% 62.84

61 neutron radiography 20 93.4% 1.40 93.4% 60.27

66 neutron radiography 20 93.4% 1.40 93.0% 66.16

73 neutron radiography 20 93.9% 1.41 92.7% 61.51

74 TG pack 1 C1 3.5 94.3% 1.41 93.6% 58.85

55 TG pack 1 C2 7.75 93.7% 1.41 93.6% 59.20

42 TG pack 1 C3 12 94.4% 1.42 93.6% 58.64
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20 TG pack 1 C4 16.25 94.3% 1.41 93.6% 58.84

17 TG pack 1 C5 20.5 94.0% 1.41 93.3% 58.93

56 TG pack 2 C1 26.5 94.8% 1.42 93.6% 59.45

49 TG pack 2 C1 26.5 93.5% 1.40 93.4% 59.58

44 TG pack 2 C2 30.75 94.3% 1.41 93.6% 59.38

43 TG pack 2 C3 35 94.4% 1.42 93.3% 59.06

15 TG pack 2 C4 39.25 94.0% 1.41 93.7% 59.08

14 TG pack 2 C5 43.5 94.3% 1.42 93.5% 58.98

1 20 93.2% 1.40 93.0% 63.18

3 20 94.4% 1.42 93.1% 60.78

6 20 93.7% 1.41 93.5% 58.19

7 20 93.7% 1.40 93.2% 61.80

18 20 93.8% 1.41 93.7% 58.32

19 20 93.6% 1.40 93.3% 60.71

23 20 93.6% 1.40 93.2% 58.98

24 20 93.8% 1.41 93.3% 62.75

26 20 94.2% 1.41 93.6% 58.83

27 20 94.1% 1.41 93.7% 60.28

29 20 94.7% 1.42 93.5% 61.90

30 20 94.6% 1.42 93.1% 62.57

46 20 93.4% 1.40 93.7% 59.75

47 20 93.3% 1.40 93.1% 62.10

50 20 93.3% 1.40 93.2% 60.93

51 20 93.5% 1.40 93.4% 60.48

53 20 93.7% 1.41 93.2% 61.22

58 20 94.7% 1.42 93.6% 59.77

59 20 94.1% 1.41 93.1% 60.16
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60 20 93.1% 1.40 93.4% 60.96

63 20 93.5% 1.40 93.3% 60.48

67 20 94.1% 1.41 93.3% 64.14

68 20 93.3% 1.40 93.5% 59.16

71 20 93.3% 1.40 93.0% 65.08

72 20 93.8% 1.41 93.4% 57.64

8.1.1 Capacity Test Results The distribution of cell SoH is shown in Figure 28. It is inter-

esting to note that no cell had a capacity greater than or equal to the rated capacity of the cells,

which was 1.5 Ah. The datasheet did provide a range of 1.45-1.55 Ah, but still no cell had even

the lower end of this capacity. However, the consistency of the capacity of the cells was quite good,

with the standard deviation being only 0.009 Ah, or 0.6% of the rated capacity. This was inline

with expectations about cell manufacturing consistency. Brand et. al. [32] found a variation of

κQ = 0.72% where κQ was defined as the standard deviation of the capacity divided by the mean

value of capacity, or κ =
σQ
Q̄

. Using this metric, κQ = 0.66% for the initial state of these cells.

Similarly, the 0.1-second internal resistance of the cells at 50% SoC, which was measured during

the capacity test as described in Section 7.3.2 had a standard deviation of 1.70mΩ, a mean of

60.34mΩ, and a κIR = 2.82%. This was as compared to Brand et. al’s result of κIR = 1.83%,

being consistent with their results in that the coefficient of variation of internal resistance was

larger than that of capacity. By using the data collected from the capacity tests with the matching

algorithm described in Section 7.4.3, the consistency of the cells chosen to be packed together for

the series connected packs was increased. For example, κQ,TG1 = 0.28% and κIR,TG1 = 0.31%.

8.2 Capacity Characterization Test Results

The results of this test exemplified the importance of using a standard capacity test that cycled

the cell according to the datasheet’s recommendations. This test was run on 10 cells (13, 14, 16,

17, 18, 19, 20, 21, 54, and 55), which provided a good spread of cell characteristics and meant that
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FIGURE 28. Histogram of the initial distribution of cell SoH before any other testing had been performed.

most degradation experiments had a representative cell characterized in this test. The discharge

capacity of the cells is plotted in Figure 29. The large reduction in measured capacity at C/5

was due to an error in the battery test station program where the cells were only charged to 3.36

V instead of 3.65 V. This occurred during the charge step of the C/10 cycle. Since the charge

step was done after the discharge step, this error did not affect the measured discharge capacity

of the C/10 cycle. In Figure 30, this error was ‘corrected’ by taking the average value of discharge

capacity from the C/10 cycle and the C/2 cycle for each cell as the discharge capacity at C/5.

While this methodology is not perfect, it still provided some interesting insights nonetheless.

After the correction to the C/5 rate was made, Figure 30 shows that there are two distinct curves

to the capacity as a function of C-rate. This is expected behavior, and the elbow of the curve is

what defines the maximum nominal working C-rate of the cell [227]. Since the rated C-rate of

these cells was C/2, and the elbow of the capacity vs. C-rate curve in Figure 30 is at C/2, the cells

performed as designed. The location of the elbow, and hence the power capability of the cell, is a
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FIGURE 29. Plot of 10 cells discharge capacity as a function of discharge C-rate. Note the outlier at C/5.

function of the electrode thickness, with higher energy density cells having thicker electrodes that

increase capacity, but reduce maximum working current [227]. Since the degradation cycling tests

were performed at 1C, Figure 30 shows the importance of using a separate capacity test to track

cell degradation rather than relying on data from the degradation cycles themselves.

8.3 Internal Resistance Characterization Results

This test was run on 5 cells, 4, 27, 61, 66, 71, and 72. These cells were selected based on their 1

second discharge resistance at 50% SoC as measured by the capacity test (Section 7.3.2). Cells 4

and 72 were selected as the two lowest resistance cells, 27 and 61 were chosen to represent average

resistance cells, and 66 and 71 were chosen as the two highest resistance cells.

The results of the internal resistance characterization test, as described in Section 7.3.4, are

shown in the following figures and show the 0.1 second internal resistance and the 10 second internal

resistance as a function of SoC and temperature. Firstly, in Figure 31, the resistance can be seen
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FIGURE 30. Plot of 10 cells discharge capacity as a function of discharge C-rate.

to decrease with increasing temperature. However, at 50◦C erratic behavior of the resistance can

be observed. The 50◦C resistance shows extremely high values across a wide range of SoCs, and

moreover, is not consistent between cell samples. For example, cell 4 saw a large increase in 50◦C

resistance at around 90% SoC, while cell 27 saw higher resistance between 10-60% SoC. It was

determined that this was not an unusual characteristic of these cells, but rather due to the testing

fixture. Since the cell holder described in Section 7.3.1 was 3D printed from PLA, the fixture

softened sufficiently at 50◦C to allow the pressure from the spring to deform the plastic which

resulted in poor cell contact. Therefore the 50◦C results were removed. The remaining resistance

was then averaged across all cells for each temperature and resistance and the resulting data is

shown in Figure 32. Note that Figure 32 includes data from more than the 6 cells plotted in Figure

31.

In Figure 32, the behavior of the 0.1 second DC resistance is clearly visible. It can be seen that

the cell resistance was higher at lower SoCs, especially when the SoC was less than 10%. Inspecting
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FIGURE 31. Plots showing the 0.1 second discharge resistance’s dependence on SoC and temperature.

Error bars are 1 standard deviation of the resistance for the cells measured at that temperature.

the plots closely shows that the near 0% SoC resistance data points become farther from 0% SoC

as the temperature was decreased. This was because the resistance was measured by a discharge

current pulse, but at lower temperatures, the increased cell resistance meant that the lower cutoff

voltage limit was reached earlier, preventing measurement at very low SoCs. Interestingly, the
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FIGURE 32. Plots showing the 0.1 second discharge resistance’s dependence on SoC and temperature with

the 50◦C results removed.

resistance was decreased when the cell was fully charged. The literature was strangely quiet on

this phenomenon, suggesting this resistance change may be an area requiring future study. One

possible explanation for the lower resistance at high SoC could be the volume change of the cell.

As mentioned above, the cell expands most when charged to around 95-100% SoC. Then, since the

cylindrical cell is contained within a metal can, this expansion results in increased pressure on the

cell layers. It is also known that cell compression can reduce the Ohmic resistance of cells [229] and

thus it seems reasonable to hypothesize that this was the mechanism behind the result presented

in Figure 32. Another interesting observation was that the standard deviation of the results at

lower temperatures was 3 times higher than the higher temperatures. Given that a similar number

of cells were tested at each temperature, and the same procedure and equipment was used for all

experiments, this may suggest that cell manufacturing differences can be more easily detected by

measuring the resistance at low temperature.
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As expected, the resistance decreased substantially as temperature increased to around 30◦C,

after which increasing the temperature provided only marginal improvements in the resistance of

cell. This was in agreement with the Arrhenius Equation 15, as can be seen in Figure 35. To

generate Figure 35, the 0.1 second DC discharge resistance was averaged across all cells for each

SoC and temperature. As with Figure 32, the 50◦C data was excluded. Then the resistance data

for 50% SoC was taken and the reference temperature was set to 30◦C (303◦K), and Rref was the

average resistance from all the cells at 30◦C. Then, the activation energy of the Arrhenius equation

was found using a non-linear least squares fit which produced the results shown in Figure 35.

For the 10 second resistance, it can be seen in Figure 33 that the magnitude of the resistance

was significantly higher than the Ohmic resistance. This was expected because the 10s resistance

included both the 0.1s Ohmic resistance and the electrochemical resistance. The shape of the curve

was also different for the 10s resistance. While the 0.1s resistance had a slight increase at 0% SoC

and a slight decrease at 100% SoC, the 10s resistance had a large increase at both 0% and 100%

SoC. Between 10% and 0%, the 10s resistance increased by ≈ 50%, and the resistance at 100% SoC

increased by ≈ 50% at low temperatures, and by over 100% at higher temperatures. This implies

that when nearly fully charged, the cell entered a region where factors other than temperature

began to have a measurable impact on cell performance. These could include local overcharging

of the anode, reduced intercalation site availability, increased SEI layer formation rate, and anode

potential changes at high SoC. Note that these effects were sufficient to completely cancel out the

slightly lower Ohmic resistance observed at 100% SoC.

Another interesting observation can be made that at high temperatures, the 10s resistance was

only marginally (20%) higher than the 0.1s resistance. But as the temperature was reduced, the 10s

resistance increased significantly faster than the Ohmic resistance, resulting in a difference of 50%.

This would suggest that the electrochemical resistance was more susceptible to temperature changes

than the Ohmic resistance, which should be expected as the electrochemical processes in LIBs are

highly temperature dependent. This was made even more clear by plotting only the electrochemical

resistance by subtracting the 0.1s resistance from the 10s resistance as shown in Figure 34. Here it
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FIGURE 33. Plots showing the 10 second discharge resistance’s dependence on SoC and temperature.

can be seen that the electrochemical resistance was lower than the Ohmic resistance for intermediate

values of SoC. But at high and low SoC, the large increases in electrochemical resistance dominated

the behavior of the overall 10s resistance of the cells. Also, the temperature sensitivity of the

electrochemical resistance was even higher than that of the 10s resistance. At 50% SoC, the

resistance increased by an average of 380% between 40◦C and 5◦C compared to just 160% for the

10s resistance and 110% for the 0.1s resistance. Again, it makes sense that the electrochemical

resistance was affected significantly more than the Ohmic resistance by changes in temperature.

To further illustrate the difference in the effect of temperature on the electrochemical vs. Ohmic

resistances, consider the plots in Figures 35 and 36, which show the fit of the Arrhenius relations

and the calculated activation energies for the Ohmic and electrochemical resistances, respectively.

Immediately the difference in activation energies is obvious, with the electrochemical resistance of

≈ 42kJ/mol being 2.2 times higher than the Ohmic resistance’s activation energy of ≈ 19kJ/mol.

The larger activation energy of the electrochemical resistance implies that it is much more tem-
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FIGURE 34. Plots showing the electrochemical discharge resistance of the cells, which is the difference

between the 10s resistance and the 0.1s resistance. Error bars are 1 standard deviation of the resistance at

50% SoC for all tested cells at that temperature.

perature dependent, and at low temperatures requires additional over potential (which manifests

as a terminal voltage drop) to discharge the cell [230].

The implications of this resistance data for battery packs with non-uniform temperatures are

clear. Considering pack TG1, the coldest cell was 3.5◦C, so would be expected to have a resistance

of ≈ 120mΩ. Meanwhile, the warmest cell was 20.5◦C and would have a resistance of ≈ 75mΩ,

which amounts to the colder cell having a 60% higher resistance. For cells connected in parallel

as demonstrated by Klein [17], this will lead to large current variations between the cells, and as

shown by Gogoana et. al. [231], this in turn leads to rapidly accelerated degradation. For series

connected packs, this difference means that the usable capacity of the entire pack is reduced due

to the colder cell hitting the discharge cutoff voltage.
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FIGURE 35. A fit of the Arrhenius Equation to the 0.1 second discharge data from the IR characterization

test at 50% SoC. Error bars are 1 standard deviation of the resistance at 50% SoC for all tested cells at

that temperature.

9 Degradation Results

9.1 Neutron Radiography Results

The first NR images are shown in Figure 37, which was taken on cells 2, 10, 13, 61, 66, and 73.

Before image processing began, manual interpretation of the images was done. The first notable

thing about the images was the high intensity (high neutron absorption) around the perimeter of

the batteries. The effect was more pronounced when the cells were imaged along the cylindrical axis

of the cell. These regions do not indicate that there was a high lithium concentration at the edge

of the cell, but were the result of neutron imaging edge effects. Specifically, refraction, diffraction,

and blur due to imperfect beam collimation are the main source of the edge enhancement effect.

Making the effect more pronounced was iron’s low (< 1) index of refraction for neutrons [232,233].

The outer casing of the cell was made from steel (≈ iron), and this resulted in the edge effects

shown in Figure 37. It is also common for thicker samples to have more pronounced edge effects,
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FIGURE 36. A fit of the Arrhenius Equation to the electrochemical resistance discharge data from the IR

characterization test at 50% SoC.

and this increase is linear [233]. This is due to the increased chance that a neutron traveling

through the sample will interact with the sample as the distance through the sample increases.

This explains the higher apparent absorption at the edge of the cells when they were imaged along

their cylindrical axis. Based on these images, it was determined that imaging the cells axially was

the best way to measure changes in lithium concentration throughout the entire cell as it would

provide a radial lithium distribution and the geometry made isolating cell areas from the image

simple. Therefore, further NR imaging samples were taken axially only.

9.1.1 Neutron Data Analysis

The images generated by the detector were .dcm (dicom) images, with a bit depth of 10. This

gives the images a dynamic range of between 0 and 1024, compared with a traditional .jpg which

has a bit depth of 8 and dynamic range of 0-255. The original images are inverted compared to
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FIGURE 37. NR images showing both the top (A) and side (B) view of the first set of cells that were

imaged. (Those listed under ‘neutron radiography’ in Table 5).

Figure 37, as a brighter pixel meant more neutrons were transmitted through the sample. The

images were inverted such that a brighter pixel indicates more neutron absorption. A colorized

version of images was then generated, as this allowed for easier inspection of the images. This was

done by mapping a color space to the pixel intensities. This mapping had the result of reducing

the bit depth of the colorized images to 8, so was used for qualitative analysis only. An example

of one of these colorized images is shown in Figure 38 which shows the NR image of all the cells

taken after the degradation experiments.

In Figure 38, some of the cells do not appear to be perfectly circular. This was caused by

imperfect alignment of the cells with the direction of the neutron beam causing the projected

profile of the cell to appear elongated. This misalignment was not due to the neutron beam angle,

otherwise all the cells would have appeared similarly. More likely, the tape holding the cells in

place was loosened while relocating the imaging tray and positing it with the remote-controlled

sample holder. In extreme cases, such as with cell 55 (bottom right corner), the misalignment

could be such that it blocks the entire center hole of the cell from showing on the image. This

‘hole’ in the center of the cell is empty space not occupied by the jelly roll due to the small bending
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radius, and to allow for volume changes of the cell during charge/discharge and as the cell ages.

For example, Waldmann et. al. [125] found that after degradation, the layers of the jelly roll

deformed and began to fill the space in the center of the cell, and this effect was worse for cells

aged by cycling at higher C-rates. Thus, it may in principle be possible to estimate the SoH and

gain insight into the degradation mechanism of the cell by measuring the diameter of the central

column on the jelly-roll. However, due to the imperfect alignment of the cells in imaging tray this

was not possible from the results obtained in this experiment.

The next step in quantifying the results from the NR images as to normalize the bright-

ness/exposure of each image. This was done by choosing a reference image, then selecting an

area of the image that only contained the aluminum tray. The average brightness of the tray was

then calculated by taking the average grey scale value of each pixel in the reference area. Then

for each additional NR image (input image), a sample area of the tray was taken and the bright-

ness averaged. The ratio of reference brightness to the input image’s reference area brightness

was taken. Next the grey scale values of the entire input image were multiplied by the brightness

ratio. This method ensured that the exposures between all the NR images were equalized so that

calibration differences could be eliminated as a potential source of appreciable error.

After image normalization, the pixel coordinates of the center of each cell were located manually

in the image using the open source image editing software GIMP 2.10.20. For future NR studies

with larger quantities of cells, implementing an image recognition system to extract the cell center

locations from each NR image would be highly recommended. As it was, the sample size of cells

made the manual approach feasible. A MATLAB script was then used to extract circular areas

of the input NR image corresponding to the cell area. These were then centered on a new 10

bit 170x170 pixel image, an example of which is shown in Figure 39 left. The background of the

extracted cell area was set to black to make analysis of the cell area simpler. Also as may be

seen when comparing Figures 39 and 37, the edge effects have been removed from the extracted

cell. This was done by simply reducing the diameter of the area around the cell’s center to be

extracted. These extracted images were also colorized and plotted using a 3D representation as
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FIGURE 38. A colorized neutron image, where blue indicates less neutron absorption by the sample and

yellow indicates more neutron absorption. Image taken with neutrons passing axially through the cylindrical

cells. The numbers adjacent to each cell correspond to the numbers in Table 5.

shown in Figure 40. These images were used for quick visual inspection to determine if there was

any problem with the image that may require correction, examples of which include noise pixels

pinned to the maximum value of intensity and edge effects that had not been sufficiently removed.
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To analyze each of the extracted cell images, the edge effects at the center of the cell needed

to be removed as well. This was done by selecting a rectangular 52x52 pixel area from the center

of the image and setting all pixel grey scale values in this region to 0. While this did remove

some of the image data in the region of the cell, the area was equally sized for all cells, analysis

was not done based on the total count of pixels, and the absorption intensity was mostly uniform

throughout the cell area. An example of a resulting cell image is shown in Figure 39 right. From

this image, the average intensity of the cell’s neutron absorption was calculated, and a histogram

of grey scale intensities was generated, an example of which is shown in Figure 41 C. A Gaussian

distribution was then fit to the histogram using the open source peak fitting package for MATLAB,

peakfit.m [234]. Using this function, the peak position, full width at half-maximum, and height

were calculated. An example peak fit can be seen in Figure 41 A, with the residual plot of the fit

shown in Figure 41 B.

FIGURE 39. Example of an extracted cell image from an original NR image. Left) Single cell image with

the center edge effects still in place. Note the jelly roll winding can be seen to not be perfectly wound at the

center of the cell. Left) The same image after removing the center area of the cell to remove the edge effects.

Note that both these images have been scaled down to 8-bit dynamic range for reproduction purposes.
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FIGURE 41. A) A Gaussian distribution fit to the NR image intensity histogram. B) Residual plot of the

distribution fit. C) The raw histogram of the extracted cell image from the original NR image.

FIGURE 40. Example extracted cell image that has been colorized and converted to a 3-dimensional plot

for visual examination.

The peak properties calculated by peakfit.m were used to quantify the image results from the

neutron images so that the images from before degradation experiments could be compared to
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images of the degraded cells. The results of the initial neutron imaging experiment are summarized

in Table 6, showing each cell’s quantified image data. In this table, cells that were not used for

a degradation test were excluded even though neutron imaging data was collected for them. The

peak position and average pixel intensity represent the amount of neutrons that were absorbed by

the cell and could indicate the state of charge of the cell, presence of plated lithium, and changes in

lithium concentration as discussed in Section 7.3.6. The peak width could be a measure of neutron

scattering and an indicator of the composition of the cell. The MNRC was not designed to measure

neutron scattering angles, so scattered neutrons would be detected as a slightly different intensity

from a directly transmitted neutron as they would have had to travel slightly farther through the

cell. Likewise, as the cells degrade and secondary reactions in the cell result in formation of new

compounds that have different neutron capture cross sections, the peak width of the cell would be

expected to increase [235].

9.1.2 Results Before Degradation

Each column of Table 6 was evaluated for correlation with cell SoH. This was done by calcu-

lating the correlation coefficient with the SoH data from Table 5. It was found that none of the

quantitative measures in Table 6 had a correlation coefficient with the SoH of the cells greater

than 0.1, which effectively meant no correlation. Unfortunately this was not determined until after

the start of degradation testing, which prevented performing additional NR studies to improve the

methodology for “before” images. Potential factors leading to this could include non-uniform cell

SoC and taking cell images on three separate imaging trays. Based on this, some improvements

were made to the imaging process for the “after” images, which will be discussed in the following

section. On the other hand, the main goal of the NR study was not to measure SoH, since this

was readily measurable in the lab, but to measure lithium dendrite growth and plating, neither

of which were expected to be visible on the new cells. This limited the value of the initial NR

imaging results, but provided lessons that enabled the final NR images to be useful.
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TABLE 6: Neutron imaging results for all cells before degradation

experiments. All units are in 10-bit grey scale pixel intensities. Int.

is short for intensity, Pos. is short for position

Cell Experiment Peak Peak Peak Avg. Int. Total Int.

Position Height Width

16 calendar avg SoH 542 240 87 534 8030152

25 calendar avg SoH 550 249 86 539 8159212

65 calendar avg SoH 546 248 86 533 8081487

8 calendar max SoH 558 251 87 555 8263176

11 calendar max SoH 563 246 90 558 8347334

12 calendar max SoH 552 240 90 546 8185580

48 calendar min SoH 540 237 90 532 7995258

54 calendar min SoH 570 254 88 565 8449506

69 calendar min SoH 563 243 91 560 8339339

5 ideal pack C1 569 244 92 564 8426021

21 ideal pack C2 560 244 90 556 8287711

28 ideal pack C3 568 244 91 564 8414102

57 ideal pack C4 563 263 85 558 8352994

70 ideal pack C5 544 243 88 539 8048149

22 individual avg SoH 553 242 90 549 8178671

40 individual avg SoH 552 242 90 546 8186121

41 individual avg SoH 563 247 89 554 8343122

4 individual max SoH 561 248 89 558 8311819

52 individual max SoH 567 249 90 563 8412189

62 individual max SoH 567 252 89 561 8395207

9 individual min SoH 540 243 86 534 7999869

45 individual min SoH 547 256 83 534 8110216
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64 individual min SoH 543 255 85 529 8046320

2 neutron radiography 589 251 93 572 8763375

10 neutron radiography 612 247 97 599 9093432

13 neutron radiography 610 253 97 598 9086280

61 neutron radiography 603 245 98 589 8954184

66 neutron radiography 596 252 96 582 8855820

73 neutron radiography 584 247 94 570 8673724

74 TG pack 1 C1 553 259 83 546 8209818

55 TG pack 1 C2 541 259 82 535 8044236

42 TG pack 1 C3 525 258 78 519 7792872

20 TG pack 1 C4 522 262 77 518 7761054

17 TG pack 1 C5 523 257 79 518 7762680

56 TG pack 2 C1 605 244 97 599 8973855

49 TG pack 2 C1 574 246 92 566 8520406

44 TG pack 2 C2 570 246 91 563 8453474

43 TG pack 2 C3 554 235 92 542 8213763

15 TG pack 2 C4 574 246 91 561 8509098

14 TG pack 2 C5 575 246 93 570 8532164

9.1.3 Results After Degradation

The first improvement to the NR experiment after cell degradation was to improve the consis-

tency of the cell SoC during imaging. This was done by combining the cell capacity test with the

constant voltage hold at 3.29 V. The reason this resulted in improved cell SoC consistency was that

for the initial test, cells had been used for various (and some none at all) characterization tests,

then left in storage for differing time periods. After this, they were then subjected to a CCCV

charge to 3.29 V. However, given the large hysteresis of LFP cells [40, 236], this likely resulted
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in non-uniform SoCs between the cells. To remedy this, the 3.29 CCCV charge was appended to

the end of the cell capacity test. This ensured that each cell started the CCCV charge from the

same voltage and recent cycling history. The next change was taking the neutron image of all cells

simultaneously, instead of ac cross three separate imaging events, this removed any image-to-image

discrepancy, and even meant that when not comparing to the “before” images, the image normal-

ization procedure was not required. Last (and least), the insulation tape method was standardized

such that the tape layer was flatter and did not wrap around the cell.

The full table of NR imaging data after the degradation experiments is provided in Table 7.

Similarly to Table 6, attempting to correlate the any column of Table 7 with cell SoH resulted

in a correlation coefficient of 0.1 or less. Despite the applied image normalization, no pattern

was observed when comparing the NR images from before degradation to after degradation. For

example, the correlation coefficient for the change in SoH of the cells with the change in average

NR absorption intensity was 0.00. Other metrics from Tables 6 and 7 were not any more useful.

However, as previously noted, the NR results correlate to more complex behaviour than simply

cell capacity and the cycling conditions of the cell must be taken into account when interpreting

the NR imaging results. Also, the improved methodology for cell preparation for NR imaging after

degradation may have reduced the comparability of the before and after NR images. Interesting

results can be seen by concentrating on cell groups by their degradation experiment.

TABLE 7: Neutron imaging results for all cells after degradation

experiments. All units are in 10-bit grey scale pixel intensities Int.

is short for intensity, Pos. is short for position

Cell Experiment Peak Peak Peak Avg. Int. Total Int.

Position Height Width

16 calendar avg SoH 593 236 98 578 8791485

25 calendar avg SoH 590 246 93 571 8756872

65 calendar avg SoH 576 235 94 558 8547143

8 calendar max SoH 583 226 100 579 8638759
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11 calendar max SoH 598 233 99 594 8867931

12 calendar max SoH 568 220 100 563 8417291

48 calendar min SoH 561 239 90 547 8329810

54 calendar min SoH 578 242 92 566 8577927

69 calendar min SoH 576 243 93 560 8546758

5 ideal pack C1 557 238 89 544 8261044

21 ideal pack C2 582 244 93 567 8619698

28 ideal pack C3 584 247 92 568 8656340

57 ideal pack C4 579 244 91 568 8589040

70 ideal pack C5 575 240 92 572 8524549

22 individual avg SoH 556 235 91 548 8245509

40 individual avg SoH 580 235 96 574 8597897

41 individual avg SoH 572 233 95 563 8481988

4 individual max SoH 578 232 97 577 8561717

52 individual max SoH 563 237 92 562 8335313

62 individual max SoH 584 243 94 583 8647908

9 individual min SoH 554 246 87 549 8205601

45 individual min SoH 568 248 88 562 8409065

64 individual min SoH 569 248 89 566 8435096

2 neutron radiography 548 232 91 538 8126867

10 neutron radiography 573 239 93 564 8485635

13 neutron radiography 583 239 95 572 8645157

61 neutron radiography 581 236 95 573 8604209

66 neutron radiography 582 242 93 575 8632060

73 neutron radiography 580 234 97 573 8595009

74 TG pack 1 C1 585 237 95 579 8666646

55 TG pack 1 C2 576 232 96 574 8517923
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42 TG pack 1 C3 559 237 91 551 8275240

20 TG pack 1 C4 530 228 90 525 7867145

17 TG pack 1 C5 560 243 90 551 8297212

56 TG pack 2 C1 581 245 92 580 8607203

49 cell failed - - - - -

44 TG pack 2 C2 585 238 95 581 8664802

43 TG pack 2 C3 589 244 95 583 8721116

15 TG pack 2 C4 581 243 93 577 8615123

14 TG pack 2 C5 552 239 89 547 8179954

Figure 42 shows the average intensity of neutron absorption for all the cells connected in the

TG packs. The pattern observed in this figure suggests that the coldest cell in TG1 experienced

the most lithium plating, while capacity test data also showed that it degraded the most. Then as

cells became warmer, their degradation was reduced (i.e. the amount of active lithium increased),

but the amount of lithium plating was reduced. At TG 1 C4 (17.5◦C), no more lithium plating

was measured, at the same time as some capacity degradation. Then, at the warmest cell which

degraded the least, the impact of remaining lithium in the cell became the more important, so

that the average absorption intensity increased again. For the TG Pack 2 cells, no lithium plating

was expected, and so their degradation should have been primarily caused by loss of lithium to

side reactions, and this should have increased as the cells became warmer. This is the pattern

that the neutron absorption follows for TG Pack 2 in Figure 42. In fact, for TG Pack 2, the

correlation coefficient between neutron absorption intensity and SoH was 0.9. This runs counter to

the statement made previously that there was no correlation between SoH and neutron absorption

intensity. The explanation for this may be that the entire population of cells contained cells

degraded in various ways that all affected the neutron imaging response differently. Whereas by

looking at sets of cells treated similarly, these methodological differences could be removed so that

the data were more comparable. On the other hand, the fact that the majority of the TG Pack 2
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cells showed similar absorption intensities to the coldest cell in TG Pack 1, despite the expectation

that TG Pack 1 cell 1 should have had the most lithium plating suggests that the sensitivity of

the NR results was insufficient to draw any firm conclusions.

Given the inconsistency of the NR results, this data was not used during the analysis of the TG

cell data as presented in previous sections to compare cells before and after degradation. There

was insufficient change in the neutron absorption between the before and after NR images, with

some cells observing an increase in absorption, while others showed a decrease, with no discernible

pattern over the whole cell population. This can be seen from Tables 6 and 7. This, combined with

the lack of a correlation between SoH, cycling temperature, or any other observed parameter meant

that any analysis was subject to high error. Potential reasons for the lack of positive results from

these experiments include factors from both the battery side and the reactor side. From the cell side,

the NR images were taken while the cells were charged to 50% SoC, but given the large hysteresis

associated with LFP cells [40,236] combined with the relatively flat voltage curve in the 50% SoC

range, it was possible the cells were not exactly at the same SoC for each imaging experiment.

This may have been avoidable by performing neutron imaging with the cells charged to 100% SoC,

as the charging method to reach 100% was well defined by the cell datasheet, and that voltage

curve in that region is not flat. Factors on the reactor side include an imaging resolution that

was too low to identify layers within the cells, non-constant beam intensity, and a lack of filtering

of neutron energy/wavelength distribution. The above analysis method attempted to compensate

for these reactor-related inconsistencies, but were clearly unsuccessful. Further research may be

required to define the optimal methodology to image LIBs at the MNRC to compensate for some

of the reactor’s shortcomings.

9.2 Calendar Aging Results

The results of the calendar aging study are shown in Figure 43 and include data from the

extra cells that were not used for other experiments and were stored at room temperature during

the entire duration of testing. The calendar aging of the cells at the specified temperatures was

completed over the same 16 month period that the TG packs took to complete 1000 cycles. This
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FIGURE 42. Average absorption intensities for the cells cycled in the TGS after degradation. The green

shaded area indicates TG Pack 1 and the orange shaded area indicates TG Pack 2.

allowed for the results of the calendar aging to be compared to the aging experienced by the cycled

cells in the TG packs and to the cells cycled individually.

From Figure 43, it can be seen that the cells aged at 5◦C and 20◦C gained a small amount of

capacity equivalent to a 1.5% SoH increase. Every single cell in the calendar aging experiment

that was stored at less than 45◦C gained capacity relative to its initial characterization test.

This behavior was indicative of incomplete cell formation before the initiation of the experiment.

Other works have found similar results for calendar aging of cells when the cells used were cycled

very few times (around 3) before beginning of the calendar aging experiment. One proposed

explanation for the mechanism behind this increases capacity is the increase in electrode surface

area caused by electrochemical milling, or cracking of the electrodes when the first set of stresses

(i.e. charge/discharge cycles) are applied to the cell [237]. Over time and increased cycle number,

this would lead to increased degradation due to the increased area for SEI layer formation, but

for the low number of cycles associated with calendar aging experiments, this could easily result

in a measured capacity increase [238, 239]. Another factor favoring this was that for the lower

storage temperatures, the side reactions that form the SEI layer progress more slowly, especially
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with the lack of lithium ion transfer. Therefore, the increased contact area of the electrode with

the electrolyte would by sustained over a longer period of time. This effect is especially common for

calendar aging experiments for cells stored at lower SoCs and lower temperatures, those being at or

below 50% SoC and below 30 degrees C. This is because the side reactions at those temperatures

are much slower [240].

FIGURE 43. Capacity fade of the cells subjected to calendar aging plotted against storage temperature.

Blue indicates cells which were specifically chosen for the calendar aging study while orange represents the

cells that were initially tested but not used for any experiment.

9.3 Individual Cycling Result

The results from the individual cycling test are shown in Figure 44. In general, the cells

cycled at 45◦C degraded more and faster than the cells cycled at 22◦C. However there were two

exceptions to this. First, the cell labeled Max 22 was cycled at 22◦C was observed to follow a

different degradation trajectory compared to the other cells. Every other cell for which cycle 200

data existed saw an increase in capacity at cycle 200 compared to cycle 0. Meanwhile, cell Max

22 started at cycle 0 with a capacity similar to the cycle 200 capacity of cells Max 45 and Avg

22, and immediately began its linear degradation trend. This behavior might be expected had cell
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Max 22 been cycled several times before the beginning of this experiment, however that was not

the case because the initial capacity check was the first test run on all the cells. Two potential

causes of this behavior could be random manufacturing variations of the cells, or perhaps the cell

was selected for a small number of quality control cycles at the factory.

The next cell that behaved unexpectedly was cell Max 45. This cell was cycled at 45◦C, but

degraded similarly to the cells cycled at 22◦C. Interestingly, between cycles 200 and 800, it can be

seen to have had a degradation rate higher than the 22◦C cells, but the rate then slowed at cycles

800 and 1000. This resulted in the cell losing a similar capacity in Ah compared to the other cells

cycled at 45◦C, but due to its higher initial SoH, ended the test with similar capacity to those cells

cycled at 22◦C.

The increased capacity seen in the degradation trajectories in Figure 44 was not unexpected

behavior. This is a commonly measured effect with new cells and with cells that have been in

storage for a long period of time. See Sections 9.2 and 9.4.1 for more detailed explanations on

these two factors.
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FIGURE 44. Capacity fade of the cells cycled individually at various temperatures plotted against cycle

number.

9.4 Temperature Gradient Pack Degradation Data

After 1000 cycles, the cells in all cycled battery packs had degraded noticeably, but each had

a different pattern of degradation. Cycling data was assessed based on the voltage measurements

obtained by the National Instruments NI 9205, which provided noisy data for some cells. To

facilitate analysis, this data had to be cleaned. This was done by using the moving average

method and a sliding window of 5 data points which amounted to 0.333 seconds per window and

provided satisfactory noise reduction in the data. However, for TG 1 cell 5 on cycle 1000, TG 2

cells 1, 2, and 4 on cycle 1, a sliding window of 15 data points (1 second) was required to smooth

the data. Note that the voltage data from cycling was primarily used for qualitative analysis. This

was because the cells were not fully cycled (there was no constant voltage charge) during the test,

and each cell was cycled to a different voltage. Quantitative measurements were made using the

checkup tests performed every 200 cycles on each cell individually.

9.4.1 Temperature Gradient Pack 1
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TG Pack 1 was the coldest pack with a temperature gradient applied and cells in the range of

3.5◦C to 20.5◦C. Cycle data for TG Pack 1 for cycles 2 and 999 are shown in Figure 45. Note

that for these comparisons, Cycles 2 and 999 were chosen to avoid inconsistent voltage response

data from cycles 1 and 1000. For example, cycle 1 started from 50% SoC due to being run after a

capacity test, and by using 999 instead of 1000, the entire plotted voltage profile of the cycle plus

the first few minutes of cycle 1000 better matched the plot of cycle 2. Also, recall that for the TG

packs, cells were numbered such that cell 1 corresponded with the negative cell of the pack, and

with the coldest cell in the pack while cell 5 corresponded with the most positive cell in the pack

and the warmest.

From Figure 45, the reduction in pack performance over 1000 cycles can be clearly seen. However,

it was also the case that the impact on pack performance, specifically on operating voltage, of the

large temperature difference was larger than the degradation of the pack. This can be seen from

the fact that the voltage curves of packs overlapped even at the end of discharge. This can be seen

by comparing the performance of cell 1 from cycle 2 with the performance of cell 5 from cycle 999

where even during cycle 2, the effect of the temperature gradient was large enough to reduce cell

1’s performance more than cell 5 degraded over 998 cycles.

When comparing the charge step to the discharge step, it can clearly be seen that cell 1 was the

limiting cell for both the charge and the discharge step. As it was the coldest, it had the highest

resistance, so the largest voltage drop. The meant that, when charging, it had the highest voltage

and reached the charge cutoff voltage much sooner than the rest of the cells, preventing them from

being fully charged. Then, during the discharge, cell 1 immediately became the lowest voltage cell,

and again reached the discharge cutoff sooner than any other cell. This was true for both cycle 2

and cycle 999. This suggests that despite cell 2 being cycled at lower temperatures, which would

typically help reduce most electrochemical aging mechanisms as discussed above, it did not degrade

slower (and in fact degraded faster) than the warmer cells. However, seemingly conflicting with

this, at the end of discharge there was clearly a smaller voltage difference between cell 1 and cell

5 in cycle 999 than in cycle 2 by 0.073 V. This would be expected had the warmer cells degraded
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FIGURE 45. Plot of cell voltages from TG pack 1 during cycle 2 compared to cycle 999. List of cell number

and cycling Temperatures (Cell #, T ◦C): C1, 3.5◦C; C2, 7.8◦C; C3, 12◦C; C4, 16.3◦C; C5, 20.5◦C

more quickly than cell 1. In this case, this was likely caused by the fact that the voltage drop is

much faster near the end of discharge of the cells, so even though cell 5 only degraded slightly, this

made a relatively large impact on its voltage near the end of discharge.

Figure 46 shows a detail of Figure 45 from 4-10m, which shows the end of discharge, the rest

while the relay reset, and the beginning of charge. Considering cell 1 cycle 2, the voltage recovered

from the discharge much faster than after cycle 999. This indicates lower diffusion resistance for

the un-aged cell. Interestingly, at the start of charge, cell 1 cycle 1 had a higher voltage than cell

1 cycle 999. Typically, it would be expected that the degraded cell with higher resistance would

have a higher voltage during charging. This can be explained by slow diffusion in the aged cell,

possibly due to increased SEI layer thickness, or damage to the structure of the electrodes. Then,

since charging occurs immediately after discharging, there would be more sites available for Li ions

to bind to the surface of the electrodes as ions from deeper in the electrode did not have a chance

to diffuse to the surface yet. This would be a short term effect, and eventually the more degraded
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FIGURE 46. Detail of cell voltages from TG pack 1 during cycle 2 compared to cycle 999 focusing on the

switch from discharging to charging. X-Axis is Time (1/10 s), Y-Axis is Voltage (V).

cell would have a higher voltage than the new cell. Looking again at Figure 45, this is exactly

what is seen. After about 10 minutes of charging, the degraded cell 1 became the highest voltage

cell as would be expected. This behavior suggests more than simple capacity fade occurred to the

cell, and that its overall performance was damaged. When comparing cell 1 to the other cells in

TG1 in Figure 46, it can be seen that they showed similar behavior, but to a less extreme degree

as befitting their lower degradation.

Based on the data collected during the capacity tests every 200 cycles and shown in Table

8, Figure 47 shows the trend of capacity fade for each of the cells in TG Pack 1. The feature

of this plot that immediately jumps out is that the capacity after 200 cycles was higher than

the initially measured capacity. This was likely the result of two well-known phenomenon. The

first was discussed in the Calendar Aging Results (Section 9.2), and the second is known as the

capacity recovery effect. It is an artifact of how the cells are made with larger anodes than cathodes

which allows lithium to migrate to an inactive area if the cell is rested for a long period of time
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(multiple weeks or months). This results in less lithium in the anode being readily accessible

during discharging. However, when discharging or cycling, the lithium concentration gradient in

the anode eventually brings the lithium ions back into the usable area of the anode, resulting in the

recovery of the lost capacity [241, 242]. In the case of the first 200 cycles, the resting that caused

the capacity increase was the delay between cell manufacturing, purchasing, and the beginning of

the experiment. After the beginning of the experiment, there were only minimal resting periods of

a few days between tests, minimizing the effect of the anode overhang.

Figure 47 Left also shows the high degree of consistency of the cells chosen for pack TG1,

and shows how their capacity diverged as they aged. Note that the capacity values shown in

Figure 47 Left and Table 8 were measured at 20◦C and thus do not include any temperature

gradient effects. As initially expected of the colder TG pack, cell 1 (the coldest cell) degraded

the most and finished the experiment with the lowest capacity. This trend continued perfectly

from coldest cell to warmest cell, with colder cells experiencing greater degradation than the

warmer cells. The effect of the temperature gradient on cell aging was significantly lower for

cells 3 - 5, or from 12 − 20.5◦C compared to cells 4 and 5, or 7.8 − 3.5◦C. This suggested a

similar temperature dependence for aging at low temperatures as internal resistance, and this was

confirmed by fitting the Arrhenius equation to the capacity reduction observed after 1000 cycles.

This was done using the same methodology as for the resistance data, and with Tref = 12◦C and

Qref = 0.036Ah from cell 42 in Table 8. The result is shown in Figure 47 Right, and the fit

was better than for the internal resistance. This heavily implies that an electrochemical, rather

than mechanical, process was responsible for the reduced cell capacity. However, note that the

degradation is predicted to decrease as temperature continues to increase. This clearly is not the

case for LIBs which, as discussed above, degrade significantly faster when exposed to elevated

temperatures. Therefore, this result would seem to be contrary to most literature, aging models,

and other results presented herein, that predict (and have shown) increased aging at increased

temperatures. On the other hand, cycling cells at low temperatures has also been shown to

increase degradation rates [126, 166, 243], despite the still common assumption made among some

authors that degradation is slower at lower temperatures [6]. The implications of this increased
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low temperature degradation for packs with temperature gradients is discussed further below.

FIGURE 47. Left) Plot of cell capacities for each cell in TG pack 1 over the degradation experiment. Cell 1

capacity is not shown for 1000 cycles because it failed and was not able to be tested. Right) Fit of Arrhenius

equation to the observed degradation after 1000 cycles. Fit is based on the change (reduction) in capacity

observed, not absolute capacity of the cells.

9.4.2 Temperature Gradient Pack 2

TG Pack 2 was the warmest temperature gradient pack, with cell temperatures in the range of

26.5◦C to 43.5◦C. Cycle data for TG Pack 2 for cycles 2 and 99 are shown in Figure 48. Cycles 2

and 999 were chosen for the same reasons as for TG Pack 1. Similarly to TG Pack 1, cell 1 was

the coldest cell in the pack, and the lowest voltage cell in the pack while cell 5 was the warmest

and most positive cell in the pack.

From Figure 48, it is again clear that the pack experienced degradation due to cycling. For

this pack, the operating voltage curves at cycles 2 and 999 appear similar except that cycle 999

was compressed in the time axis. However, examining the discharge curve more closely from the

inset of Figure 48 shows that the voltage drop along the entire discharge portion of the curve was

lower than the lowest voltage cell from cycle 2. This lack of overlap of any cell voltages for any

portion of the discharge curve implies that cell degradation had a larger impact on the pack’s

operating voltage than the temperature gradient. This is in contrast to TG Pack 1 where the
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significant overlap in discharge curve voltages showed that the performance degradation caused

by the temperature gradient was more significant than the effect of degradation. There are two

possible causes of this. First, degradation was higher for TG pack 2, as seen in Table 8, with the

average capacity loss of the cells in TG pack 1 being 0.04 Ah, and for TG pack 2, the average

was 0.05 Ah (25% higher). This increased degradation would result in lower working voltages

of the pack. The second, compounding reason for the degradation to be more significant than

the temperature gradient for TG pack 2 is related to the temperature’s influence on resistance

as shown in Figures 35 and 36. Specifically, that at increased temperature, the magnitude of the

change in resistance for each ∆T is smaller. This means that TG Pack 2 had a smaller range of

cell resistances than TG Pack 1 due to the increased cell temperatures in TG Pack 2. This in turn

resulted in a narrower range of operating cell voltages, as can be seen by comparing Figures 45

and 48. The tighter grouping of cell voltages meant that the reduced operating voltages caused by

cell degradation were more apparent for TG Pack 2 than for TG Pack 1.

Now, considering the individual cell cycling profiles in TG Pack 2, it can be seen that similarly

to TG Pack 1, the ‘order’ of the cells was reversed for charge and discharge. For example, cells 4

and 5 had the lowest voltage during charging, and the highest voltage during discharging. This is

typical behavior and is a result of the lower resistance of the warmer cells and thus their reduced

overpotential. During cycle 2, cell 2 (the second-coldest cell) was the cell that triggered the end

of charge by reaching 3.65 V first, but during cycle 999, cell 1 triggered the end of charging.

This suggests that cell 1 degraded faster than cell 2, and this is what is seen in Table 8. At the

discharge end of cycle 2, cell 1 reached the cut-off voltage first, ending the discharge, as might be

expected of the coldest cell. The fact that cell 1 did not also trigger the end of charge in cycle 1

may be explained by the initial SoH of cell 1 being slightly higher than that of cell 2, which was

responsible for triggering the end of charge during cycle 2. Unlike in TG Pack 1 where the relative

performance of the cells to one-another remained generally the same, in TG Pack 2 degradation

caused the cell performance distribution to shift over time. However, this performance change was

only seen near the end of charge and end of discharge when the voltage curves of the cells became

steep. Additional cycles and degradation would be required to further emphasize these changes
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and shift them closer to the center of the charge/discharge curves.

More closely examining cell 5, during the bulk of the charging phase of both cycles 2 and 999, it

had the lowest voltage, implying the lowest resistance and best performance. But during cycle 999

near the end of the charge, cell 5 began to overtake cells 3 and 4, showing that it had exhausted its

capacity faster than the other cells. So, despite having better performance for most of the charge,

cell 5 actually had a lower SoH than the other cells which implies it degraded more than the other

cells. A similar pattern is observed in the discharge portion of the curve where cell 5 had the

highest voltage (again, best performance) during the bulk of the discharge in both cycles. In cycle

2, cell 5 had the highest voltage at the end of the charge as well, showing its higher performance

however, by cell 999, cell 5 was the lowest voltage cell and the one causing the end of discharge.

It can be seen that right as the voltage curve begins to increase in slope near the end of discharge

in cycle 999, cell 5’s voltage began to fall much faster than the rest of the cells. Why then, if cell

5 was weaker than the rest of the cells, did it not also cause the end of charge during cycle 999?

It can be seen that cell 5 was in the process of ‘overtaking’ the other cells, but that the charge

ended before it did. The reason this was seen in the discharge before the charge, was that the

voltage change at the end of discharge was much more dramatic than at the end of charge, with

the exponential region of the charge curve accounting for a voltage change of only about 0.15 V

while the end of discharge has a voltage change of 0.5 V. It is likely that degrading the cells for

additional cycles would eventually result in cell 5 causing both the end of charge and the end of

discharge.

Figure 49 shows the capacity fade trend of the cells for TG Pack 2 using the data from the

capacity tests performed after every 200 cycles and shown in Table 8. Note that the initial capacity

of the cells chosen for TG Pack 2 were in the same range as the initial capacities for TG Pack

1. Similarly to Figure 47, at cycle 200, the cells all had higher measured capacities than during

cycle 1. This was again attributed to the capacity recovery effect and electrochemical milling. By

400 cycles, the cell capacities had returned to near their initial values and the cells had already

organized their capacities by cycling temperature, with cell 1 (the coolest) having the highest
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FIGURE 48. Plot of cell voltages from TG pack 2 during cycle 2 compared to cycle 999. List of cell number

and cycling Temperatures (Cell #, T ◦C): C1, 26.5◦C; C2, 30.8◦C; C3, 35◦C; C4, 39.3◦C; C5, 43.5◦C. The

inset shows the discharge curve where both cycles have been aligned to the start of discharge, compared to

the main plot which is aligned to the start of charge.

capacity and cell 5 (the warmest) having the lowest capacity. This matched the expected result for

TG Pack 2, but was contrary to the results from TG Pack 1. This trend then continued through

cycle 800, but with cell 5 widening the gap by degrading faster than the rest of the cells.

From Figure 49 right, the fit of the Arrhenius equation to the degradation of TG Pack 2 can be

seen, which was generated in the same manner as for TG Pack 1 except the reference values were

taken at 30.8◦C. The figure shows that for increasing temperature, cell degradation was predicted

to increase. This matches the accepted degradation behavior of lithium-ion cells in the literature.

The sign of the activation energy was opposite of that found for TG Pack 1, and of very similar

magnitude (being only 4% smaller). The opposing sign matched with the finding that for TG Pack

2, the warmer cells degraded more where as in TG Pack 1 the cooler cells degraded more.
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FIGURE 49. Left) Plot of cell capacities for each cell in TG pack 2 over the degradation experiment.

Right) Fit of Arrhenius equation to the observed degradation after 1000 cycles. Fit is based on the change

(reduction) in capacity observed, not absolute capacity of the cells.

This reduced impact of resistance on cell voltage at increased temperature has implications for

battery pack performance, degradation, and monitoring. Since the resistance change is relatively

small, the cell voltages remain similar which makes detection of the temperature difference more

difficult. Additionally, even in the long term, if the same temperature profile is maintained in

the pack, the increased temperature on the hottest cell increases its short term performance suf-

ficiently to mask its additional degradation until near the end of discharge. This may result in a

BMS overestimating the SoH of the hotter cells in the battery pack. While not observed in this

experiment, it is expected that after a large enough number of cycles, the increased degradation

of the hottest cell would eventually catch up to it, and its performance will become the limiting

factor of the battery pack.

9.4.3 Control Pack

The control pack was the pack cycled at 22◦C to serve as a comparison to the TG packs.

Figure 50 shows the voltage curve for the cells in the control pack for cycles 2 and 1010 due to

an experimental error where the cells were improperly balanced before beginning the last set of

cycles. This resulted in an effective capacity reduction of the pack of 5%, or reducing the number of
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cycles done by 10. To both make up this (small) difference and recollect more representative data

for the pack’s performance, an additional 10 cycles were performed on the pack. As with the TG

packs, the pack’s performance degraded over the course of the experiment, but much less obviously.

Again, the cells were numbered such that the lowest numbered cell was the lowest voltage cell in

the pack, but with a lack of temperature difference, the cell numbers were expected to have no

relevancy to degradation rate.

From Figure 50, it is difficult to see the difference between cycle 2 and 1010, since the cell’s

operating voltages remained so similar and the pack’s degradation was minor compared to the TG

Packs. The degradation can be observed by looking at the end of charge and end of discharge,

where the steep voltage profile made the difference between the two cycles visible. It can be seen

that for both cases, cell 2 was the limiting cell for both the charge voltage cutoff and the discharge

voltage cutoff. Cell 2 was the lowest initial SoH cell in the pack, having started the experiment

with an SoH 0.8% (percentage points) lower than the highest SoH cell in the control pack. Since

no externally applied temperature effect was present to influence cell aging, it was unsurprising

then that this cell remained the lowest performing cell in the pack over the course of the testing.

Cycle 1010 then was notable for its similarity to cycle 2, showing that when the pack was cycled

under “ideal” conditions, degradation was both minimized and the consistency of capacity fade

was maintained.

Despite Cell 2 being consistently the lowest performing cell in the Control Pack, from cycle 2

in Figure 50 it can be seen that the voltages of all the cells were much more consistent than for

either TG Packs 1 or 2. This also shows the effect that non-uniform temperatures have on the

operating voltage of the total battery pack. In addition, since the cells reached the end of charge

at very close to the same voltage, each cell had a similar actual DoD which minimized aging rate

differences between the cells and leading to the similar and consistent voltage profiles of the control

pack between cycles 2 and 1010. Cycle 2 shows a near ideal case of what pack cycling “should”

look like, with all cells having similar capacities, resistances, and operating voltages while cycle

1010 shows the ‘desired’ degradation behavior of the battery pack.
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FIGURE 50. Plot of cell voltages from the control pack during cycle 2 compared to cycle 1010.

9.5 Degradation Comparison and Analysis

9.5.1 Series Packs vs. Controls

One of the primary areas of interest of this research was to evaluate the effect of temperature

variation on a battery pack compared to individual cells. This effect was determined by comparing

the results from the calendar aging and cycle aging tests to the results of the TG and control pack

cycling results.

Calendar Aging One of the more interesting results of the calendar aging study can be observed

by comparing Figure 43 to Figures 44 and 53. From these figures, it can be seen that the cells

stored at 45◦C degraded more than the cells individually cycled at 45◦C or the cell in TG Pack

2 that was at 43◦C. This implied that calendar aging was more detrimental to cell health than

cycling the cells, at least at elevated temperatures, which was counter-intuitive. It is possible that

for increased time and cycle number, eventually cycle aging would degrade the cells more, as this
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TABLE 8. Table of cell capacity at different stages of the experiment. Cells TG 1 refers to the pack with

an average temperature of 12◦C, TG 2 refers to the pack with an average temperature of 35◦C, and control

refers to the pack with no ∆T applied and tested at 22◦C. x ’s indicate that the cell died during testing.

Dashes - indicate that no valid capacity test data could be collected. *Cell 74 cycle 1000 capacity based on

linear extrapolation due to cell failure.

Cell # Temp (◦C) Ah New Ah200 Ah400 Ah600 Ah800 Ah 1000 dAh

TG 1 17 20.5 1.41 1.428 1.42 1.416 1.406 1.396 0.014

20 16.25 1.41 - 1.418 1.408 1.398 1.39 0.02

42 12 1.42 1.426 1.415 1.405 1.396 1.384 0.036

55 7.75 1.41 - 1.397 1.385 1.372 1.356 0.054

74 3.5 1.41 1.408 1.384 1.367 1.344 1.33* 0.080

TG 2 14 43.5 1.42 1.432 1.407 1.389 1.374 1.336 0.084

15 39.25 1.41 1.432 1.412 1.398 1.388 1.354 0.056

43 35 1.42 1.436 1.419 1.406 1.395 1.378 0.042

44 30.75 1.41 1.441 1.424 1.408 1.397 1.37 0.04

49 26.5 1.4 1.43 x x x x -

56 26.5 1.42 1.438 1.426 1.41 1.4 1.372 0.031

Control 5 22 1.42 1.428 1.414 1.407 1.385 1.39 0.03

21 22 1.41 1.428 - 1.401 1.372 1.37 0.04

28 22 1.41 1.425 1.416 1.41 1.387 1.382 0.028

57 22 1.41 1.422 1.42 1.417 1.397 1.38 0.03

70 22 1.41 1.427 1.426 1.42 1.407 1.39 0.02

would be inline with what is found in the literature [244, 245]. However, comparing results for

the same number of cycles and storage time as performed in this work, some studies did observe

similar results. [122, 244–246]. Therefore, the results found here may be a temporary condition of

the cells due to the difference in the degradation trajectories of calendar aging compared to cycle

aging. Despite this, the difference still calls for explanation as a direct discussion of it could not

be found in the literature.

As of this writing, there were 2 main proposed mechanisms that could result in calendar aging at

higher temperature being worse than cycling aging at the same temperature. The first, and likely
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FIGURE 51. Comparison of the degradation experienced by the cells tested at different temperatures and

by different degradation conditions. Error bars for individually cycled cells and calendar aged cells were

calculated as the standard deviation of all cells individually cycled or stored at that temperature. The error

bars for the TG Pack cells were calculated based on the standard deviation of the degradation from the

control pack.

least significant, was the capacity recovery effect which was introduced in Section 9.4.1. Since the

cells that were simply stored were not cycled (except for occasional capacity checks), there was

ample time available for lithium ions to migrate away from the active area of the anode into the

overhang. This migration would be made faster by increased temperature due to increased diffusion

coefficients. But during the capacity checkup cycles, the cells were cooled to room temperature,

such that the diffusion of the lithium ions out of the anode overhang was slower than diffusion into

it. This effect could provide the cycled cells with an SoH advantage of up to 1.7% [242].

The second reason which was likely of larger magnitude, especially for new cells was electro-

chemical milling, first introduced in Section 9.2. It has been shown that for the first 50 to 200

cycles (depending on the cell’s manufacturing process), the capacity of the cell may increase. This

is caused by the electrode’s structure cracking due to the initial stresses of charging/discharging.

These cracks increase the effective surface area of the electrodes, and thus reduce the internal
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resistance of the cell, increasing the available capacity. This effect has been found for cells cycled

at rates above C/5. The cracking of the electrodes then allows the electrolyte to penetrate further

into the electrodes, further increasing the conductivity of the cell [237–239, 247–249]. Since this

effect is triggered by cell cycling, the cells that were individually cycled and the hot cell in TG

Pack 2 were able to benefit from this effect while the calendar aged cells were not (as much). This

increase can be seen in the plotted degradation trajectories for all the cycled cells up to cycle

200. In turn this would result in the cycled cells having reduced Ah capacity loss compared to

the calendar aged cells at high temperature. While the capacity checkup cycles meant that the

calendar aged cells were cycled, there may have been insufficient cycles to trigger this effect. It

maybe possible that cycling the calendar aged cells for 100-200 cycles [248] could increase their

capacity to a value lower than the cycled cells, but this cannot be stated definitively based on the

data collected here.

As a result of the behavior of the calendar aged cells, comparison of the magnitude of calendar

aging to that of cycle aging and of TG Pack aging was made difficult. Since it should be expected

that the cycled cells include a calendar aging component, the total degradation of calendar aging

should not be greater than the total degradation of cycling. Likewise for the cooler cells, it did

not make sense to add a negative calendar aging component to the cycled cells, since the proposed

mechanism behind the observed capacity increase for the calendar aged cells at low temperature

was due to the capacity checkup cycles. Therefore, it was decided to consider the individually

cycled cells to be the reference “calendar + cycling” aging to compare against the TG Pack cells.

Perhaps for future studies, a sample of cells should be cycled until they reach their maximum

capacity to find the cycle count where cell capacity reduction begins. Then, the entire population

should be cycled to that number of cycles and the cells should be considered “new” at that point.

Individually Cycled Cells The degradation data for the individually cycled cells is summarized

in Figure 51 along with the calendar and TG Pack data. The individually cycled cells at 22◦C can

be seen to have degraded similarly to the control pack cells that were also cycled at 22◦C. This

was expected, and is what a pack designed would ‘hope’ for, as it implies that the battery pack
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with no temperature gradient possessed the same lifetime as the individual cells. Therefore, for

a series battery pack cycled without a temperature difference, the degradation mechanisms and

rates can be said to be identical to those of the individual cells at the same temperature.

More interestingly was the comparison between the individually cycled cells at 45◦C and the

hottest cell (cell 5) in TG Pack 2. This cell was cycled at 43.5◦C, but this temperature difference

was considered negligible. It can be seen that cell 5 degraded appreciably more than the individually

cycled cells (50% more), despite the fact that they were cycled at a slightly higher temperature and

therefore might have been expected to have degraded marginally more. This result was counter-

intuitive mainly because the depth of discharge of the individually cycled cells was expected to

be higher compared to hottest cell in TG Pack 2. This was because the coldest cell in the pack

had higher resistance so would at least initially be the cells that triggered the end of charge and

end of discharge, as can be seen in cycle 2 of Figure 45. This would prevent cell 5 from reaching

its full charge or full discharge state while the individually cycled cells were always fully cycled.

Eventually cell 5 degraded more than the colder cells and became the limiting cell, but it ‘should’

still have had an advantage over the individually cycled cells.

This result was thought to be explained by internal temperature gradients within the hot cell in

the TG pack. Due to the construction of the TGS, the cell had an externally applied temperature

difference of 2.4◦C in the radial direction. As demonstrated in the literature, this causes uneven

internal current distributions which accelerates cell aging by inducing locally higher currents and

non-uniform SoC distributions within the cell which may lead to local over charging or over dis-

charging [15, 29, 32, 182, 250]. To investigate this further, neutron images of TG2 cell 5 and of

the individually cycled cells at 45◦C were compared. Note that while the NR image data was

insufficiently reliable to determine changes between separate images, it was still able to provide

information within a single image.

Figure 52 shows a sample comparison between TG2 Cell 5 and Cell 62, which was individually

cycled at 45◦C. It can immediately be seen that the right side of TG2 Cell 5 showed lower neutron

absorption than the left side, while for cell 62 the two sides were symmetric. This was evaluated
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FIGURE 52. Intensity cross-sections of sample cells showing averaged pixel intensity in the radial direction

through the cells.

quantitatively by averaging the absorption intensities of each side of each cell (not including the

edge effects that remained in TG2 Cell 5. The right side of TG2 Cell 5 was found to be 5% less

bright than the left side, while cell 62 showed a difference of only 1.6% in absorption intensity

between the left and the right side. Note that the two images compared in Figure 52 were taken

from the same NR image so no cross-normalization was required. This suggested that TG2 Cell 5

was subjected to non-uniform internal degradation, while cell 62 degraded mostly uniformly. Also

of note, the average intensity of TG2 Cell 5 was 6% lower than the intensity of cell 62, corroborating

that it had indeed degraded more.

9.5.2 Effect of Average Temperature and Temperature Difference

Figure 53 shows the measured degradation of each cell connected in a series battery pack vs the

temperature at which the cell was cycled. A clear parabolic trend can be seen, with the minimum

degradation occurring between 20− 25◦C. However, the trend was not perfectly symmetric, with

the warmer cells from the colder pack degrading less than the cooler cells from the warmer pack.

Similarly, the warmer cells of TG Pack 1 also degraded less than the cells from the control pack.
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The proposed explanation for this is that due to the low temperatures of the coldest cells in TG

Pack 1, the charge and discharge voltage cutoffs were reached sooner than in the warmer pack.

This resulted in a smaller depth of discharge for TG Pack 1 than TG Pack 2. Then, since the

test station counted cycles rather than total cycle capacity, the Ah throughput of TG Pack 1 was

smaller than that of TG Pack 2. Considering the data from the test station, TG1 cycled only 73%

of the capacity in Ah as did TG Pack 2. However, this did not completely explain the result, as

can be seen by comparing Figures 47 and 49. From these figures, it can be seen that cell 1 in TG

Pack 1 was degrading faster than cell 5 in TG Pack 2, despite lower Ah throughput. By around

cycle 700, TG Pack cell 1 had already degraded below 1.36 Ah of discharge capacity as measured

by the standard capacity tests. Meanwhile, cell 5 of TG Pack 2 would not reach 1.38 Ah until

cycle 900. Likewise, considering TG Pack 1 cell 5, by cycle 1000, which was equivalent to about

cycle 700 of TG Pack 2 in terms of cycled capacity, its capacity was less than 1.4 Ah while TG

Pack 2 cell 1 still had a capacity over 1.4 Ah. Therefore, on a per Ah basis, TG pack 1 degraded

faster than TG Pack 2.

FIGURE 53. Plot of the change in cell capacity vs cycling temperature and the battery pack in which the

cell was connected. Error bars for TG Pack 1 and TG Pack 2 were calculated as +/- one standard deviation

of the degradation observed by the cells in the control pack.
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Few other works have reported similar aging behavior all in one study. Many works assume

degradation only increases with increasing temperature, while most others focus exclusively on a

low temperature region. However, some studies that have considered a wide range of temperatures

have reported similar findings to those presented above. Waldmann et. al. [126] independently cy-

cled NMC/LMO cells between −20◦C and 70◦C, and demonstrated two unique aging mechanisms

for low temperature cell degradation compared to high temperature cell degradation. They found

that at 25◦C, the degradation rate of NMC/LMO cells is minimized. Increasing the cell temper-

ature resulted in cathode degradation and SEI layer growth, while lower temperatures resulted

in lithium plating on the anode. These degradation mechanisms were equal in magnitude at 0◦C

for the cold cells and 70◦C for the hot cells, with cells cycled at −20◦C degrading significantly

faster than those at any other temperature. These temperature ranges suggest, in agreement with

the above result, that the colder cells degraded faster than the warmer cells for the considered

temperature range. In another study, Ruiz et. al. [251] examined LFP cells in the range from

−20◦C to 30◦C and found the optimal temperature to minimize degradation was 5◦C. However,

they also noted that charging at lower temperatures had a larger effect on capacity fade than

altering the discharge temperature. This was expected as charging at lower temperatures is known

to cause lithium plating [166]. The large difference in optimal temperature suggests that these

results may be highly specific to the particular cell chemistry. The results presented here for LFP

cells agreed more closely with the findings of Waldmann et. al. despite their use of a completely

different chemistry while disagreeing with the results obtained by Ruiz et. al. for cells of the

same chemistry. These results may also have implications for the design of battery pack thermal

management systems, as the allowable temperature ∆T can now be said to be a function of the

average temperature of the pack.

To evaluate this, a second-order polynomial curve was fit to the degradation data in Figure 53,

with R2 = 0.95 and was given by

dAh = 0.0001T 2 − 0.0068T + 0.1016 (44)
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where dAh is the observed reduction in cell capacity, and T is the cell cycling temperature. This

expression is only valid for the number of cycles performed as shown in Figure 53, however, by

considering the number of cycles performed by the cells and determining the degradation rate it

was adapted to account for cell age.

dSoH

dCyc
=
Ahnew −Ahold

Cyc
× 1

Qnom
(45)

Where dSoH/dCyc is the change in SoH of the cell per cycle, Ahnew is the capacity of the cell when

it was new, Ahold is the capacity of the degraded cell, and Qnom is the nominal capacity of the

cell. Note that Equation 45 assumed a linear relationship between cycle number and degradation

for a given temperature. As can be seen from Figures 47 and 49, this assumption is only valid for

a portion of the cell’s life. However, it is common to find linear degradation rates for cells cycled

at constant conditions during the majority of their life until they reach the ‘aging knee’ and begin

to die [252]. This effect can be seen in Figure 49 where for cells 5, 4, and 3, their degradation rate

increased after being linear between cycles 200 and 800. The degradation rates for all the TG cells

was calculated and plotted in the same manner as Figure 53. (This figure was not shown because

it looked similar but with a different y-axis.) From this plot, another second-order polynomial fit

was obtained

dSoH

dCyc
= 1.38× 10−7T 2 − 6.815× 10−6T + 0.00010157 (46)

Using this expression, a simple model was developed to evaluate the expected degradation of a

battery pack subjected to a wide range of temperature conditions. These ranged from a tempera-

ture difference between cells within the pack of 0− 20◦C, and with average pack temperatures of

between 5−45◦C. Packs were modeled as having 100 cells with a linear temperature gradient, and

the pack was assumed to have completed 1000 cycles. The results are presented in Figure 54 which
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shows the effect of operating temperature on the degradation of the pack. Specifically, it considers

the degradation of the worst (i.e. the cell that degraded the most due to its cycling temperature),

and the difference between the worst cell and the cell that degraded the least. Due to the shape of

the plots, the most degraded cell in a pack was always either the hottest or the coldest cell, while

the least degraded could be anywhere in the pack, depending on the operating conditions of the

pack.

Figure 54A shows a surface plot of the expected maximum degradation of a single cell in the

battery pack as a function of the pack’s average temperature (x-axis) and of the temperature dif-

ference within the pack (y-axis). As expected, the minimum degradation was observed at 25◦C

and with no temperature difference. Interestingly, the plot predicted that the increase in maxi-

mum degradation was affected by average temperature exactly twice as much as by temperature

difference. This was due to the fact that by changing the pack’s average temperature by 1◦C, the

hottest or coldest cell’s temperature would increase of decrease by 1◦C, respectively. Meanwhile,

changing the pack’s ∆T by 1◦C resulted in the hottest or coldest cell’s temperatures changing by

only 0.5◦C each in order to maintain the same pack average temperature.

Figure 54B shows the difference in SoH between the most degraded and least degraded cells

in a pack as a function of pack average (x-axis) temperature and pack temperature difference (y-

axis). This is a measurement of the homogeneity of pack degradation, and an ideal pack would

degrade such that all cells lose the same capacity. As expected, for the same temperature ranges as

Figure 54A, the maximum SoH difference between the cells in the pack was less than the maximum

degradation of the pack by 3%. There was also a wider range of pack average temperatures that

resulted in even pack degradation. This was because for low pack ∆T , the cells would then be

exposed to the same temperature conditions. While they may degrade faster, they would degrade

faster together. It is noteworthy that with a pack average temperature of 25◦C, a temperature

difference of up to 16◦C would still result in cells degrading within 1% SoH of each other. This

was due to shallow initial slope of the curve in Figure 53 and the fact that the minimum and

maximum temperatures would only be 17◦C and 33◦C respectively, which are both within the low
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degradation range for these (and most) cells.

Figures 54 C and D both show the same data as A and B respectively, but in the form of

contour plots. They make more obvious the difference in the characteristics between the maximum

degradation and the SoH difference plots. The contours of the Figure 54C are much straighter and

parallel than those of Figure 54D. This shows that to maintain consistent cell SoH at higher or

lower than ideal average pack temperature, a much tighter range of pack ∆T is allowable. These

plots clearly show the operating windows that the packs could be subjected to while keeping their

degradation within a specified value. For example, as mentioned earlier, many automakers target

a 5◦C temperature range for their battery packs [17]. For an average pack temperature of 25◦C,

this specification may be overkill, but for colder (say, below freezing) temperatures, it can be seen

that the pack would be expected to begin to degrade non-uniformly by about 2.5% SoH, but cause

total degradation of pack capacity of over 8% SoH. Recall that for a series connected pack, the

capacity of the entire pack is limited by the lowest capacity cell in the pack. So despite the fact that

the temperature difference could result in cells having SoHs between 92% to 94.5%, the effective

pack capacity would be limited to 92%. However, based on these figures then, a 5◦C range of

cell temperatures within the pack would keep cell degradation uniform expect at extreme pack

average temperatures since it should not be expected that most packs would operate at or near

freezing temperatures for the majority of their life. This makes the trade-off of allowing increased

degradation during those times to save costs on the thermal management system reasonable.

However, as discussed above, the effect of temperature on the precise aging rate of the cells is

highly dependent on the specific cell being considered. Therefore Equation 45 and Figure 54 could

not be used directly to model an EV battery pack composed of different cell types. It is possible

that particular cell chemistries could be less sensitive to non-uniform temperatures, which would

result in over-engineering of the TMS to meet the 5◦C temperature difference target. However, as

a qualitative guide to other cell types, the data presented here could be used as a basis to design

the experiment in terms of examined temperature ranges and ∆T s considered.
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FIGURE 54. A) Surface plot showing the degradation of the most degraded cell in the pack. B) Surface

plot showing the difference in SoH between the most and least degraded cells. C) Contour plot showing

regions of constant maximum degradation. D) Contour plot showing regions of constant SoH difference

within the pack. Units on the contour lines are SoH percentage points.

While the presented degradation model does not account for cycling the same pack at multiple

temperature conditions, it is a valuable direction of research to continue. This model could be

improved to consider dynamic temperature that changes on a per cycle basis if a temperature

profile were known. For example, it could take the temperature history of a region and apply that

assuming one cycle per day. Then by considering the per-cycle degradation rate, the total effect of

a more realistic operating environment and temperature differences on the battery pack’s lifetime

and performance could be evaluated. Further development of this model in this direction is left to

future work.
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Part V

Summary and Conclusion

10 Answers to Key Research Questions

10.1 Attribution of Degradation to Cycling Conditions

Calendar Aging To answer the first question, What portion of the total degradation of the bat-

tery packs was caused by calendar aging, cycling, and non-uniform temperature, consider Figure 51.

From this figure, it can be seen that for a battery pack with a nearly continuous duty cycle (as was

the case for the above experiments), calendar aging was negligible for temperatures below around

30◦C. However, above this temperature, calendar aging became the most significant contributor

to degradation. In fact, it was found that cells stored at 45◦C degraded approximately twice as

fast (in terms of calendar time) as cells cycled individually at the same temperature. This was

attributed primarily to the low cycle count of the calendar aged cells resulting in incomplete initial

cell formation. Compared to the degradation of the hottest cell (which was also the most degraded

cell) of TG Pack 2, calendar aging was 1.5 times worse.

Cycle Aging Unfortunately, it was not feasible during this research to individually cycle cells

at 5◦C due to lab equipment constraints. Starting at 22◦C, it can be seen from Figure 51 that the

series connected pack degraded at the same rate as individually cycled cells. Therefore, without

the presence of non-uniform temperatures in the battery pack, a series connected pack will degrade

at the same rate as individual cells at the same temperature. This implied that standard cycling

degradation mechanisms were responsible for the same degradation in the series connected pack.

Considering TG Pack 2 which contained cells between 26.5 − 43.5◦C, it can be seen that the

warmest cell degraded faster than the individually cycled cells at the same temperature. The

cycling degradation accounted for around 2/3 of the total degradation observed for the hottest cell

of TG Pack 2. This in turn implies that the temperature gradient increased the cell’s degradation

by 50% compared to the individually cycled cells. This was attributed to internal temperature

gradients within the cell which caused non-uniform and accelerated aging to the cell. This showed

140



that even in a series connected pack, a non-uniform temperature can induce the effects observed

in parallel connected packs, but on the cell level. This degradation mode was verified by neutron

imaging, which showed that the cell with applied temperature gradient aged unevenly internally,

while the cell cycled at constant elevated temperature degraded uniformly. Further experiments

could work to strengthen this finding. This could be done by developing an updated TGS that

could apply a temperature gradient to a battery pack while maintaining a constant temperature

for each cell in the pack. This could be achieved by the use of independently controlled TECs and

heat sinks for each cell. Alternatively, one cell could be cycled at 45◦C as cell 62 was done here,

and another single cell could be cycled at 45◦C with an applied ∆T = 2.4◦C.

10.2 Comparison to Parallel Cells

The second question, How does non-uniform temperature affect series-connected packs compared

to parallel-connected packs can be addressed by comparing the results presented here with other

works in the literature. Starting with [185], where it was found that lower average temperature

increased the effect of temperature gradients on the pack performance for parallel connected cells.

In that case, this was due to the rapidly increased cell resistance at lower temperature as can be

seen from Figure 36, which caused highly non-uniform current through each cell. This work found

similar results in Figure 53, where on a per Ah throughput of the pack basis, the colder pack with a

temperature gradient degraded faster than the warmer pack. However, the long-term degradation

of the parallel pack, while not studied, should be expected to be worse than for the series pack.

The longer term degradation for the parallel cell case was studied by Yang et. al. [184]. They

found by simulation that increasing the temperature difference linearly increased the degradation

rate of the pack. This result is different from the series cell case shown in Figure 54A, which

shows pack degradation increase with increased temperature difference was not linear. However,

the pack SoH difference in Figure 54B showed a nearly linear increase with increased ∆T . They

also concluded that the temperature difference for the parallel pack did not significantly reduce the

pack’s usable capacity, because the current load was dynamically distributed between all the cells.

This was not the case for series connected cells, since the most degraded cell in the pack resulted

141



in limiting the charge and discharge cutoffs of the entire pack. In the long term, the parallel

pack may experience worse degradation in the sense that each cell experiences high current as

the current distribution between the cells changes [69, 195]. This results in increased degradation

stresses. Meanwhile, for the series-connected pack, only the coldest (or hottest) cells experience

increased degradation, and their decreased performance results in a lower DoD for the remainder

of the cells in the pack which reduces their degradation. Therefore, a series pack may only require

a few cells to be replaced, while a parallel pack may require the entire pack to be replaced as a

result of non-uniform temperatures.

10.3 Non-Uniform Temperature’s Effect on Degradation Rate

The third question, How does the temperature gradient affect the aging rate of the battery pack?

can be addressed by considering Figure 53. Due to the fact that a series connected pack is limited

by it’s lowest capacity cell, the hottest or coldest cell in the pack will dictate the degradation of the

entire pack. In the case of TG Pack 1, cell 1 which was the coldest cell degraded the fastest, while in

TG Pack 2, cell 5 (the hottest cell) degraded the fastest. These two cells then became the limiting

cells for each pack, reducing the pack’s capacity to match their own. For TG Pack 1 cell 1, the cold

cell’s maintained lower temperature caused increased lithium plating during the charging process.

This limited capacity meant the remainder of the cells in TG Pack 1 saw reduced cycle DoD due

to both the higher resistance and lower capacity of cell 1. Figure 54A shows the degradation of

the most degraded cell in the pack. Keeping in mind the limitation of series connected cells which

limits the pack’s capacity to the lowest capacity cell, this plot shows the effect of non-uniform

temperature on the usable capacity of the pack despite the fact that most of the cells in the pack

had significantly higher capacity.

A similar explanation is valid for a series connected pack with a non-uniform temperature differ-

ence such that some of the cells are much hotter than the rest (TG Pack 2). However, in this case

the hotter cells have lower resistance, and thus do not immediately result in reduced pack capacity.

But over time, the increased temperature increases the degradation rate of the cell, and the hotter

cells then have a lower capacity than the cooler cells. Again, due to the series-connection, the
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reduced capacity of the hot cell limits the total capacity of the entire pack as shown in Figure 54.

10.4 Non-Uniform Temperature’s Effect on Pack Performance

The fourth question, How does the temperature gradient affect the performance of a series-

connected pack is similar to the question of degradation, but on the per-cycle level as opposed to

long-term. The performance impact of applying a non-uniform temperature to a series connected

battery pack can be seen by comparing Figure 50 with Figures 45 and 48. In Figure 50, the

control pack shows the performance that would be expected of a battery pack if no non-uniform

temperature existed. Compared to the other two figures, the voltage spread of the cells was much

smaller, which indicates efficient use of the full capacity of the pack. On the other hand, for both

of the TG packs, it can be seen that the spread of the cell voltages was much larger, especially

after 1000 cycles. This indicates that the operating voltage of the pack is being reduced by higher

resistance cells, which reduces the maximum power output of the battery pack. For example,

considering TG Pack 1, the coldest cell had a resistance of 164.0 ± 13.8mΩ while the warmest

cell’s resistance was only 84.5±3.3mΩ at 50% SoC. These resistance values come from the internal

resistance vs. temperature data in Figure 33.

To calculate the effect this ∆IR has on the pack’s performance, Ohm’s Law can be applied.

Considering the cell’s OCV near 50% SoC during discharge of 3.28V as obtained from the results

of the Capacity Characterization Test, and the minimum cell voltage of 2.5V, the maximum possible

current to extract from the cell is the current which causes a voltage drop such that the cell operates

at 2.5V. In this case, ∆V = 0.78V . Then using Ohm’s Law with R = 70mΩ and R = 170mΩ

shows that the maximum current capacity of the cell was reduced from 8.2A to 4.6A. If even only

a single cell is at a low temperature, the entire pack’s maximum output current will be limited in

this manner.

For a temperature difference with some of the cells at higher temperatures, the overall resistance

of the battery pack is reduced, resulting in an increased pack operating voltage. However, if even

a single cell is left at ambient temperature, the maximum current the pack can provide will not

be changed. Considering that the internal resistance change from 25− 45◦C was only 20mΩ, the
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maximum current gain of the pack would at most be to increase from 8.7-11.1A if all cells were to

be heated to 45◦C. This increased temperature would then increase the degradation rate of the

cells, as discussed above.

10.5 Effect of Average Pack Temperature

The fifth question, How does the pack average temperature change the effect of the non-uniform

temperature?, was addressed in section 9.5. For pack capacity fade, it was found that moving the

pack average temperature away from 25◦C in either direction induces additional pack degradation,

as can be seen in Figure 54. In terms of pack degradation, if the pack average temperature was

above 25◦C, the hottest cell in the pack was measured and predicted to degrade faster than other

cells in the pack. If the pack average temperature was below 25◦C, the coldest cell in the pack was

measured and predicted to degrade faster than the other cells in the pack. The larger the deviation

from 25◦C, and the larger the ∆T , the higher the degradation of pack capacity. The degradation

can be calculated from Equation 46.

It was also determined that the degradation mechanisms for packs with non-uniform tempera-

tures above and below 25◦C were different. For packs below 25◦C, lithium plating during charging

was determined to be the primary degradation mechanism. Since lithium-plating is promoted

more at lower temperatures, this explained the increased degradation for the lower temperature

cells as seen in Figure 53 where TG pack 1 cell 1 lost 5 times the capacity of TG pack 1 cell 5.

At temperatures above 25◦C, the primary degradation mechanism was loss of active lithium due

to the increased rate of parasitic side reactions which form the SEI layer. Since these reactions

have more favorable reaction kinetics at increased temperature, the hottest cell in the packs above

25◦C degraded just under 3 times faster than the coldest cell in the pack. This was contrary to

the observations of the colder pack. The presence of two distinct aging mechanisms for warmer

vs. colder cells was confirmed by comparison of the activation energies of the Arrhenius fits to

the degradation for each battery pack, as seen in Figures 47 and 49 which where found to be 63

kJ/mol and -60 kJ/mol respectively.
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In terms of pack performance (operating voltage/maximum current), lower pack average tem-

peratures were found to more adversely affect pack internal resistance, as can be seen from Figure

33. Increased pack and cell resistance lowered the maximum power capability of the pack, as dis-

cussed above. This reduction was more significant for TG Pack 1 than for TG Pack 2. In fact, for

TG Pack 2, the performance of the battery pack was not reduced until sufficient cycles had been

completed for the hot cell to begin to lose capacity more rapidly than the rest of the cells in the

pack and even then, not until the pack SoC was below 5%. Above this SoC, the increased temper-

ature of the hottest cell was still sufficient to counterbalance its increased degradation. Therefore,

in agreement with the literature on parallel connected cells with non-uniform temperature, lower

average temperatures were found to have greater adverse effects on the battery pack than increased

average pack temperatures [69,185].

10.6 Power Capability Compared to Single Cells

Question six, How does the temperature gradient affect power capability of the pack compared

to an individual cell? was partially addressed in the answer to question 4 above. The answer

depends on the temperature of the single coldest cell because each cell’s resistance is affected the

same by temperature, except that at low temperatures, these cells were found to have a large

variation in internal resistance of 7-10%, compared to their variation at higher temperatures of

only 3-4%. Since the cell’s resistance directly affects it’s voltage drop, and no current greater than

the current that would cause the cell’s voltage to reach the cutoff voltage is allowable, this reduces

the maximum power of the pack by an additional 7-10% on top of the change due to temperature.

To avoid this increase, cells could be selected based on their low-temperature resistance rather

than their 20− 25◦C resistance. For single cells, this issue is reduced because each single cell will

be able to provide it’s full power, but in a series connected pack, even the lowest resistance cell

is limited by the highest resistance cell. Since the up to 10% difference in resistance was a ±, it

is conceivable that in a many-cell pack at low temperature, 20% of the performance of the lowest

resistance cell could be unusable.
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In principle a single cell at 45◦C would have the same resistance as a cell in a temperature

gradient pack that was also at 45◦C. For example, if the single cell’s temperature was the average

temperature of the pack with a temperature gradient, then the maximum current of the battery

pack would be lower according to Ohm’s Law, Equation 15 and Figure 33 than the single cell’s

maximum current because some cells in the pack would be colder and have higher resistance than

the TG pack. However, for the high temperature pack, this effect would be small compared to

a cold pack. Comparing TG packs 1 and 2 for example, consider the Tavg−TG1 = 12◦C and

Tavg−TG2 = 35◦C. Individual cells at these temperatures would have 10s resistances of 115mΩ and

68mΩ, respectively. From 50% SoC as above, this would give maximum current draws of 6.8 A

and 11.5 A, respectively. However, at the same SoC, the coldest cell in TG pack 1 would have a

resistance of 180mΩ and a maximum current of only 4.3A. The coldest cell in TG pack 2 would

have a resistance of 70mΩ and a maximum current of 11.1 A. Therefore, it can be seen that in TG

pack 1, the coldest cell limited the average cell’s maximum current by 2.5A (37%!) In TG pack 2,

the coldest cell limited the average cell by only 0.4A (3%).

10.7 Aging Mechanisms for Non-Uniform Temperature Packs

Given the result shown in Figure 51, question seven Which aging mechanisms are made worse by

non-uniform battery pack temperature becomes especially relevant. Specifically, the fact that the

hot cell in TG Pack 2 degraded 50%±31% more than the individually cycled cells at 45◦C showed

that some degradation mechanism was aggravated by cycling of the cell within a battery pack with

applied temperature gradient. While a large measurement error was observed here, the result was

still clear, but more experiments for refinement are required. This degradation was shown to be

caused by internal temperature gradients induced in the cell as a result of the pack’s temperature

gradient. This internal temperature gradient resulted in non-uniform current densities within the

cell, which lead to uneven aging as shown by the neutron absorption intensity change across the

cell of 5%. This was in addition to the difference in degradation expected due to the difference in

temperatures in the various regions within the cell.
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11 Summary of Other Key Results

In an effort to make the results of this research as practical to battery pack designers as pos-

sible, a summary of important implications of thermal gradients on battery pack degradation is

presented here. These conclusions were drawn from an analysis of Figure 54. Firstly, the effect of

increasing the difference between 25◦C and the pack average temperature resulted in twice as much

degradation as increasing the temperature difference by the same amount. The implication of this

finding is that it is advantageous to run the battery pack’s TMS and induce a temperature gradient

if it keeps the pack’s average temperature closer to 25◦C. This is a fortunate result, because if it

were the reverse, the TMS could potentially be the cause of more degradation than it prevented.

However, if the TMS generates too large a ∆T within the pack, and the pack regularly operates

under such extreme conditions, the pack should be expected to degrade faster. This would be a

situation where a more effective TMS design may be required.

The existence of non-uniform temperature in a battery pack always resulted in uneven and

increased degradation rate of the cells within the pack. There was no average temperature for which

the effect was 0. However, with Tavg = 25◦C, the effect was minimized. In fact, considering the

difference in aging between the most and least degraded cells due to this effect, keeping Tavg = 25◦C

would result in such a small difference in degradation between the cells that cell manufacturing

variations would likely have a larger effect even with substantial ∆T s.

The effect of ∆T on the degradation of the hottest or coldest cell in the pack is second-order.

There is therefore a critical point at around ∆T = 8◦C and Tavg = 12 or 37◦C where increasing

∆T significantly increases the degradation of the hottest or coldest cell in the pack and increases

the unevenness of the degradation of the cells within the pack.

The increased degradation caused by ∆T was observed to be approximately equal at high and low

pack Tavg. This was contrary to many degradation models in the literature that model increased

degradation only with increased temperature. However, it was not unprecedented in experimental

works, but was still not a common feature of degradation and thermal management discussions.

Pack designers would do well to be fully aware of the optimal temperature for the specific cell
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with which they are working, as it has also been shown that the temperature of minimum aging is

highly chemistry dependent.

Pack degradation consistency, i.e. homogeneous pack degradation was found to be easier to

achieve than pack degradation minimization. This can be seen by comparing Figure 54C with D.

With no ∆T , the pack can degrade rapidly at high or low temperature, but all cells are expected to

degrade similarly. For some applications with relatively short life, it may be important to ensure

maximum energy density is extratable from the pack more than maximizing pack lifetime. This

could be achieved by keeping degradation similar between all the cells as no single cell would

limit the charge or discharge. In this case, Figure 54C shows that a much wider range of average

temperatures and temperature difference is available. This allows for a cheaper, simpler, and

lighter TMS design which are all highly valuable traits in applications such as drone batteries.

As a real-world example of the implications of temperature gradients, the operating window of

a Nissan Leaf battery pack was reverse-engineered. The battery pack was removed from a 2013

Nissan Leaf. This battery pack contained 48 modules, each of which contained 4 cells in a 2S2P

configuration. These modules are shown in Figure 6d. Henceforth with regard to the Leaf modules,

“1 cell” refers to the two cells in parallel in the module. The nominal capacity of thees cells was

66Ah, and the SoH was measured by cycling between 2.5 and 4.15 V at C/2 with a CV charge

current cut off of C/20 using the 12 channel Arbin tester from Table 4. The testing revealed

that the cells had an average SoH of 59.9%, a minimum SoH of 49.9%, and a maximum SoH of

65.1%. Interestingly, the minimum capacity cell was the lowest capacity cell by far, with the next

lowest cell’s SoH being 56.4%. The ∆SoH of this pack was 14.2%. Considering figure 54, this

implies that the pack was operated under highly extreme conditions, as no ∆SoH that large is

present on the plot. If we consider the lowest SoH cell to be a fluke, then the ∆SoH = 7%.

This more reasonable cell degradation difference implies that the pack was operated either in the

range of Tavg = 5− 12◦C or at Tavg = 37− 45◦C with ∆T = 13− 20◦C. Note that as previously

stated, the values obtained here do not directly apply to cells of different chemistries making this

analysis quantitatively invalid, but qualitatively informative. In addition, other factors may have
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contributed to the degradation of these cells, because their history was unknown.

12 Conclusion

In this work, the effect of non-uniform temperature of the degradation and performance of

series-connected battery packs was experimentally investigated. This effort was especially relevant

to electric vehicle battery packs and second-life energy storage systems because they are made from

cells with different characteristics that lead to varying heat generation. Additionally, these packs

are typically large in a physical sense, meaning they have a large volume to surface area ratio,

ensuring that non-uniform temperatures will arise in the pack. Meanwhile, EV battery packs are

operated under adverse conditions, and may be subjected to frequent fast charging. By quantifying

the aging effect of temperature gradients applied at different average temperatures compared to

cells cycled under other conditions, the effect on the pack’s degradation and performance was

determined.

Three battery packs consisting of 5 series-connected cells each were cycled under different tem-

perature conditions. One battery pack was cycled at 22◦C as a control. The other two packs were

both subjected to linear temperature gradients of 17◦C, one with an average temperature of 12◦C

and the other with an average temperature of 35◦C. These packs were all cycled 1000 times at 1C

to evaluate their degradation. In addition, a sample of cells were aged by calendar aging and by

being individually cycled at various temperatures. The measured degradation of all cells was then

compared at the end of the cycling period.

The calendar aged cells were observed to have a slight gain in capacity when aged at 5◦C and

22◦C for 16 months. This increased capacity was attributed to initial electrochemical milling that

occurred during the limited capacity checkups. However, the calendar aged cells stored at 45◦C

were found to have degraded more than any other tested cell. This was also attributed to cell

formation, but at higher storage temperature, the increased surface area simply provided increased

reaction area for additional SEI formation. Additionally, the calendar aged cells were compared to

cycled cells, but the cycled cells were observed to initially increase their capacity over the first 200
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cycles. Therefore the act of cycling the cells gave them a capacity advantage over the cells that

were placed in storage.

The individually cycled cells were compared to the series connected packs. The individual cells

cycled at 22◦C were found to degrade in agreement with the control series pack that was cycled at

22◦C. However, when comparing the cells cycled at 45◦C to the temperature gradient pack that

was cycled with an average temperature of 35◦C and a maximum cell temperature of 43.5◦C, it

was discovered that the hottest cell in the series pack had degraded 50% more than the individually

cycled cells. This increased degradation was attributed to internal temperature inhomogeneities,

which both caused non-uniform current distributions within the cell, but also resulted in different

side reaction rates across the cell.

The results from the series connected cells with an applied temperature gradient showed that

cell degradation increased with both increasing temperature and with decreasing temperature and

that degradation was approximately equal with lower temperatures as with higher temperatures.

The results of the experiment were used to generate a simple model that revealed that non-uniform

temperatures affect pack degradation half as much as changes in pack average temperature. The

model also provided a method for battery pack designers to optimize their thermal management

system by selection of acceptable operating temperature parameters for their pack. An example

application of the model to a Nissan Leaf battery pack revealed that the lack of thermal manage-

ment in the Leaf’s battery pack contributed to large temperature and SoH variations within the

battery pack.
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