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ABSTRAT OF THE DISSERTATION 
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Professor Roel A Ophoff, Co-Chair 

Professor Jae Hoon Sul, Co-Chair 

 

For recent advancements in sequencing technologies, genetic information can be obtained 

from a large population at a relatively low cost. This provides an unprecedented opportunity 

to understand the role of genetic variability in association with complex human traits. One 

common strategy is to conduct genome-wide association studies to identify loci significantly 

associated with phenotypes of interest. However, the findings are usually limited to common 

variants with small effect sizes. Collectively, these identified loci can not fully explain the 

observed heritability, which is a problem commonly referred to as “the missing heritability.” 

To uncover this problem, human genetic research has shifted more focus to other types of 

genetic variations, including rare variants, which is further capacitated and facilitated by the 

next-generation sequencing technique. These rare mutations are believed to harbor large 

effect sizes and, therefore to be one of the major contributors to complex traits. 
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Here, we describe our effort in analyzing the effect of rare variants in two complex human 

traits, Alzheimer’s Disease and Tourette Syndrome, followed by conducting a genome-wide 

association study on human blood lipids. Exploring large whole-genome sequencing datasets, 

we have first demonstrated that rare variants were strongly associated with Alzheimer’s 

Disease, neurofibrillary tangles, and age-related phenotypes within the endocytic pathway 

using a gene-set burden analysis framework. Subsequent gene-based analyses identified one 

AD-associated gene, ANKRD13D, and two e-Genes, HLA-A and SLC26A7. Leveraging bulk 

and scRNA-Seq data, we observed significant differential expression patterns in all three 

implicated genes. Secondly, we have explored a specific type of rare variants, de novo 

mutations, within Tourette Syndrome patients using a whole-exome sequencing trio dataset 

and identified a recurrent mutation in one gene, FBN2, previously implicated in TS. 

Comparing to the expected mutation rate, we demonstrated that the protein-truncating 

variants were enriched in probands. In addition, gene-set analysis displayed differential 

expression patterns across different tissue types and brain developmental stages. Lastly, we 

have performed a multi-population meta-analysis on blood lipid levels using electronic health 

records and genotyping information from the UCLA ATLAS database. We have observed 

genetic effects both specific to and shared across five different populations. Compared to 

previous large-scale GWASes, our results demonstrated consistent effect estimates while 

identifying one novel locus, rs72552763. 
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Chapter 1 - Introduction 

Genetic variation and association test 

Genetic variability, or variation, refers to the difference in DNA sequence among individuals. 

A vast majority of the base pairs forming human DNA sequences are identical. In other 

words, genetic variants only represent about 0.1% to 0.4% of the human genome.(1) 

However, this small amount of differences is one of the major contributors to phenotypic 

variation. Therefore, one important goal of human genetic research is to understand whether 

and how any of the observed genetic variants is associated with a trait of interest. In return, 

the accumulation of our understanding forms the genetic architecture of the phenotype to 

which genetic studies are performed. 

 

One of the most common types of genetic variants is single-nucleotide polymorphisms 

(SNPs) that are substitutions at a single nucleotide. On average, there are 10 to 11 million 

SNPs in the haploid human genome. One way to characterize SNPs is based on their 

population frequency which divides these variants into common and rare SNPs. Common 

SNPs are the variants that appear in a large proportion of a population and thus require a 

relatively small sample size to be identified. One proposed way to explore the effect of 

common variants was genome-wide association studies (GWASes). In this study design, the 

input genetic data are commonly obtained using microarray genotyping, a relatively low-cost 

technology. Common array designs are able to sequence 240K to 4M variants at once.(2) 

Subsequently, researchers then perform linear or logistic regression to estimate the 

association between each locus and the phenotype of interest. To date, over 5,700 GWASes 

have been conducted on over 3,300 traits and have yielded numerous significantly associated 

loci.(3) In addition to a deepened understanding of genetic architectures, insights into the 

genetic predisposition to common phenotypes, especially diseases, can substantially improve 
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the health and life span in the general population.(4-6) However, the genotyping method and 

the study design limit the ability of GWASes within the scope of common variants that often 

have small effect sizes. Furthermore, these identified phenotype-associated common loci 

combinedly only explain a small amount of phenotypic variation, or genetic heritability, often 

addressed as the “missing heritability” problem.(7-9) Specifically, researchers have often 

observed a higher genetic heritability estimated from family/twin studies than that 

explainable from GWAS hits. This gap, therefore, points to the contribution of other genetic 

variations, such as rare variants.  

 

Rare variants are low-frequency variants that appear only in a small fraction of the population 

and have been suggested to harbor large effect sizes. Hence, they are believed to be one of 

the major contributors to complex traits.(10-12) Previous genotyping methods, such as 

microarray genotyping, are difficult to efficiently and economically identify rare variants. But 

the recent advent in sequencing technologies, such as next-generation sequencing (NGS), 

enables us to explore almost the entire DNA sequence with a rapidly decreasing cost and 

sequencing time. Nowadays, many genetic studies have utilized sequencing data from NGS 

and have supported the notion that rare variants are one of the major risk factors. For 

instance, a recent study has demonstrated that rare variants in APP, PSEN1, PSEN2, and 

APOE genes were associated with the increased risk in late-onset AD.(13, 14) Two main 

NGS technologies, the whole-genome sequencing (WGS) and whole-exome sequencing 

(WES), have also led to the discovery of numerous rare variants accountable to complex 

traits.(15-19) However, the nature of rare variants, their low occurrence rate, continues to 

impede efficient identification of significant rare loci that are associated with phenotypes, 

especially disease traits. 
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Methods of rare-variant analysis —— rare-variant burden analysis 

A few methods have been proposed to tackle this problem. One way is to combine the small 

individual effects of rare variants into a large aggregated effect, called a burden, which is 

then used to test for association. As opposed to traditional GWASes that test individual 

common variants, this burden method avoids the low statistical power limited by minor allele 

frequency of the tested loci and benefits from the wide range of potential grouping choices. In 

other words, when we aggregate rare-variant effects, we can either choose an arbitrary set of 

variants or collect those participating in the same biological context, such as genes or 

pathways. The latter is important as it bridges the gap between genetic variation and 

phenotype and points to the potential biological pathways involved in this process. 

Specifically, the rare-variant effects identified through this method involve can be directly 

understood in biological functions and thus facilitate further genetic and translational clinical 

studies. Furthermore, when we choose a set of genes involved in biological pathways, 

especially those previously implicated in certain traits, this can additionally reduce the burden 

of multiple testing that is commonly observed in gene-based rare-variant burden analysis and 

therefore harbor a larger detecting power for the rare-variant contribution to traits or disease 

susceptibility. 

 

Application of rare-variant burden analysis to Alzhermer’s disease 

One complex disease on which genetic studies commonly focus is Alzheimer’s Disease 

(AD). AD is a destructive and irreversible neurodegenerative disorder, predominantly 

targeting the elderly.(20) It accounts for 60 - 70% of dementia cases, characteristic of 

progressive disintegration of cognitive functions, language ability, and memory loss (20, 21) 

and has been reported by the National Institute on Aging (NIA) as the 6th, potentially the 3rd, 

leading cause of death in the US. However, while few studies were able to adequately depict 
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the underlying biological pathways and conduct clinical trials with a satisfactory 

outcome,(22) studies have shown a substantial genetic component with an estimated 

heritability of 58 - 79%(23) and multiple modulating genes, including the strongest risk 

factor, APOE. Recent GWASes have identified over 50 risk loci accounting for over 33% of 

the overall estimated heritability(22-28). One recent study on AD has also suggested an 

oligogenic common variant architecture(29) where these risk loci fall in several known 

biological pathways, including the lipid metabolism, the immune system/response, the 

endocytic, the amyloid/tau processing, and the microglia-related pathways.(27, 28, 30, 31) 

This underlying genetic architecture poses a great subject to apply gene-set analysis. Given 

that little is know about the effect of rare variants within these biological contexts, we, 

therefore, have appropriated the benefit of gene-set analysis under a rare-variant burden 

framework. In particular, we selected the endocytic pathway that has been implicated in 

many clinical and genetic studies with multiple GWAS risk loci found, including BIN1, 

CD2AP, PICALM, PLD3, EPHA1, and SORL1(32-35), and meta-analyzed the rare-variant 

effects in this pathway across three large-scale WGS datasets. We showed that the effect of 

rare-variant could be identified within known pathways using gene-set rare-variant burden 

method with large WGS datasets. In particular, we found that the rare variants within the 

endocytic pathway were strongly associated with AD, neurofibrillary tangles (NFTs) (a 

histopathological indicator of AD progression)(36-38), and age-related phenotypes (age at 

onset and age of death). Furthermore, within the scope of one biological pathway, we also 

showed that single genes with large effect sizes could be filtered out when combining various 

related phenotypes, including gene expression data.  
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Methods of rare-variant analysis —— de novo mutations 

Another commonly used method focuses on a specific type of rare variants, de novo 

mutations (DNMs). This refers to a genetic alteration that appears in a child but not the 

parents due to mutations within germ cells or the fertilized egg. The identification and 

research in DNMs have been limited in traditional genetic studies that mostly focus on 

inherited variations. Due to the recent advancement of unbiased WGS and WES techniques, 

we are now able to study the effect of DNMs in relationship to complex traits, especially 

diseases. These mutations represent an extreme version of rare variants as they have not been 

put under evolutionary selection pressure.(39, 40) As a result, on average, they are more 

deleterious and may confer more information of the disease susceptibility, such as the gene 

function they disrupt. Studies have shown that the mean germline de novo SNVs per 

individual is around 74(41) and have revealed major risk contributions from these DNMs to 

complex diseases including Autism Spectrum Disorder, Schinzel–Giedion syndrome, Kabuki 

syndrome, Bohring–Opitz syndrome, Proteus syndrome, intellectual disability, and 

schizophrenia.(42-53) Compared to traditional rare-variant analysis, one difference in DNM 

analysis is that we need to collect sequencing data from a proband and the two parents, 

namely a trio family, in order to pinpoint non-inherited genetic variations. This is challenging 

because it requires sequencing more samples with higher accuracy to effectively identify 

extremely rare variations. Facilitated by current NGS approaches, especially WES, 

nowadays, more genetic studies have been able to work with DNMs. There are a few steps to 

analyze DNMs. The first step is to simply pinpoint the location of DNMs, such as within a 

gene or known regulatory regions. The second one is to compare the observed DNM rates to 

the theoretical rates(54) at the gene level, partitioned by the types of mutations. And the third 

step is to compare the observed rates within probands to those computed from healthy 
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samples. These comparison steps can reveal the underlying enrichment of the deleterious 

DNMs within the affected samples and thus point to their effect on disease susceptibility. 

 

Analysis of de novo mutations in Tourette Syndrome 

Recent studies on Tourette Syndrome (TS) have shown promising results using DNMs.(55, 

56) TS is an early onset neurodevelopmental disorder with an estimated average prevalence 

rate of 0.6%.(57-62) The characteristic symptoms are chronic motor and vocal tic and show a 

higher prevalence rate in males. It is highly comorbid with other psychiatric disorders, 

including obsessive-compulsive disorder, attention deficit, and hyperactivity disorder, autism 

spectrum disorder (ASD).(60, 63-66) Many studies on these comorbid disorders have also 

indicated the contribution of DNMs.(50, 67, 68) Previous studies in our group have 

demonstrated enrichment of de novo Loss-of-Function (LoF) and damaging missense coding 

variants in TS probands.(55, 56) In this work, collaborating with The Tourette Association of 

America International Consortium for Genetics (TAAICG) and the Tourette International 

Collaborative for Genetics (TICGen), we extend our previous work to over 1200 TS trio 

families and identify additional TS susceptibility DNMs thought WES. Using nearly 900 trios 

currently available, we showed that DNMs could be efficiently called and analyzed in TS 

probands. We identified recurrent mutations in genes previously implicated in TS and 

demonstrated that the protein-truncating DNMs in TS probands were enriched in three genes 

while missense and synonymous DNMs are not, compared to the theoretical mutation rates of 

protein-truncating variants. Exploring functional enrichment aspects, we pointed out a 

differential regulation pattern throughout brain development tissues and stages. In addition, 

we are expecting to receive more samples to gain greater detecting power, as well as WES 

data of healthy individuals, which will allow us to analyze the effect of DNMs with greater 

statistical power. 
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Heterogeneity of genetic effects across different populations 

Another problem of GWASes, on either common or rare variants, is sample heterogeneity. 

The statistical design of GWASes assumes that all samples analyzed have the same genetic 

background, namely the same population. If the assumption is violated, studies will often 

have a decreased power of detecting trait-associating loci or even spurious signals in extreme 

cases. A common strategy to increase detecting power in complex trait analysis is to use a 

large sample size, often through collaboration and a combination of smaller studies.(69) 

However, it becomes problematic as the increased sample size introduces sample 

heterogeneity and fails to achieve its original goal. A recent study has shown that simply 

increasing sample size causes the p-values of genetic effects in large-scale studies, such as 

those with over 100,000 samples, to increase rather than decrease.(70) Nowadays, researchers 

have increasingly focused on this issue of genetic heterogeneity and perform GWASes on 

specific populations.(71-76) However, as collecting large samples is already a difficult task in 

traditional GWASes, it is even more challenging to collect samples from various ancestral 

backgrounds with a sufficiently large number within each population. The emergence of 

large-scale biobank linked with electronic health records (EHR) databases has helped resolve 

this issue. The EHR-linked biobanks feature several advantages: 1. Most of them contain a 

large number of samples (over 50,000) with diverse ancestral backgrounds; 2. A wide range 

of phenotypes are readily available in the EHR database, enabling association analysis on 

multiple phenotypes at once; 3. They provide the potential to perform longitudinal analysis 

that is difficult with traditional GWAS design.(77, 78) Several examples of large-scale EHR-

linked biobanks are UK Biobank, Million Veteran Program, and DeCODE Genetics. Many 

efforts have been made to analyze phenotypes provided by these EHR-linked biobanks.(79-

86) 
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Multi-population meta-analysis of blood lipid phenotypes 

One of the newly established large-scale EHR-linked biobanks is the UCLA ATLAS 

Precision Health Biobank. At the time of our study, this biobank has gathered genotyping 

data of over 26,000 individuals with diverse ancestral backgrounds and matching EHR data, 

and the sample size has been continued to grow. This dataset serves as a great platform to 

study genetic homogeneity and heterogeneity across different populations. As a result, we 

have selected one of the popular phenotypes, blood lipid concentrations, and performed 

population-specific GWAS, followed by meta-analysis. These plasma lipid levels are linked 

to common diseases, such as type 2 diabetes, fatty liver disease, and especially atherosclerotic 

cardiovascular disease.(87-91) Various types of blood lipid levels (high-density lipoprotein 

cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol) all have 

been reported with relatively high heritability, ranging from 33% to 51%.(92, 93) A large-

scale GWAS by the Global Lipids Genetics Consortium (GLGC) has identified 444 

independent hits.(94) However, as the UCLA ATLAS dataset has provided only microarray 

genotyping data, we are not able to perform analysis on rare variants as described in other 

parts of our work. Nonetheless, through population-specific GWAS, we have shown that 

there were indeed large heterogeneous genetic effects for blood lipid phenotypes across 

different populations. By meta-analyzing results from single populations, we have 

additionally demonstrated shared genetic effects common to all populations and identified 

novel loci significantly associated with triglyceride levels. We showed that our findings were 

consistent with previous studies on European and minority populations even though our 

current sample size was limited. In the future, once WES and WGS data are available, we 

will explore the effect of rare variants on the blood lipid levels in a population-specific 

manner and attempt to identify colocalized risk between common and rare variants, therefore 
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providing a better understanding of the genetic architecture of human plasma lipid 

phenotypes. This will provide important insights into future genetic and clinical studies on 

blood-lipid-related diseases, especially atherosclerotic cardiovascular disease. 

 

Figures  

 

Figure 1-1. Feasibility of identifying genetic variants by risk allele frequency and strength of 
genetic effect (odds ratio).(8) 

 

Figure 1-2. Workflow of gene-set rare-variant burden analysis and its application in AD. 
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Figure 1-3. Workflow of DNM analysis and its application in TS. 

 

Figure 1-4. Identify heterogeneous and shared genetic effects in different populations using 
blood lipid phenotype 
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Abstract 

Late-onset Alzheimer’s disease (LOAD) is the most common type of dementia causing 

irreversible brain damage to the elderly and presents a major public health challenge. Clinical 

research and genome-wide association studies have suggested a potential contribution of the 

endocytic pathway to AD, with an emphasis on common loci. However, the contribution of 

rare variants in this pathway to AD has not been thoroughly investigated. In this study, we 

focused on the effect of rare variants on AD by first applying a rare-variant gene-set burden 

analysis using genes in the endocytic pathway on over 3,000 individuals with European 

ancestry from three large whole-genome sequencing (WGS) studies. We identified significant 

associations of rare-variant burden within the endocytic pathway with AD, which were 

successfully replicated in independent datasets. We further demonstrated that this endocytic 

rare-variant enrichment is associated with neurofibrillary tangles (NFTs) and age-related 

phenotypes, increasing the risk of obtaining severer brain damage, earlier age-at-onset, and 

earlier age-of-death. Next, by aggregating rare variants within each gene, we sought to 

identify single endocytic genes associated with AD and NFTs. Careful examination using 
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NFTs revealed one significantly associated gene, ANKRD13D. To identify functional 

associations, we integrated bulk RNA-Seq data from over 600 brain tissues and found two 

endocytic expression genes (eGenes), HLA-A and SLC26A7, that displayed significant 

influences on their gene expressions. Differential expressions between AD patients and 

controls of these three identified genes were further examined by incorporating scRNA-Seq 

data from 48 post-mortem brain samples and demonstrated distinct expression patterns across 

cell types. Taken together, our results demonstrated strong rare-variant effect in the endocytic 

pathway on AD risk and progression and functional effect of gene expression alteration in 

both bulk and single-cell resolution, which may bring more insight and serve as valuable 

resources for future AD genetic studies, clinical research, and therapeutic targeting.  

 

Author summary 

Late-onset Alzheimer’s disease (LOAD) is the most common type of dementia and a leading 

cause of death in the world. Clinical and genetic studies have suggested the potential 

contribution of the cellular transportation pathway to AD with an emphasis on common 

variants. In this study, we investigated the effect of rare variants within the cellular 

transportation pathway and examined three large datasets with over 3,000 individuals with 

European ancestry. We reported enrichment of rare deleterious variants in the cellular 

transportation pathway in AD patients from all three datasets. We also observed an elevation 

of rare deleterious variants in this pathway was associated with individuals with severer brain 

damages (AD progression), earlier age-at-onset, and earlier age-of-death. By aggregating rare 

variants in each gene from the cellular transportation pathway, we revealed one gene in 

which rare variants were significantly associated with the progression of AD. By integrating 

gene expression data from brain tissues, we identified two additional genes whose rare-

variant effect displayed significant influences on gene expression. Taken together, our results 
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demonstrated that rare-variant effect in the cellular transportation pathway is strongly 

associated with the risk and the progression of AD, which may serve as future clinical and 

therapeutic targets. 

 

Introduction 

Alzheimer's disease (AD) is a destructive and irreversible neurodegenerative disorder, 

predominantly targeting the elderly.[1] It accounts for 60 - 70% of dementia cases, 

characteristic of progressive disintegration of cognitive functions, language ability, and 

memory loss.[1,2] Late-onset Alzheimer’s Disease (LOAD) is a subcategory of AD that 

appears in persons aged 65 years or older, showing a greater incidence rate as age 

increases.[3] As the population of Americans age 65 and beyond is expected to reach 88 

million by 2050, the number of new AD cases is predicted to double and the prevalence rate 

to quadruple.[4,5]  

 

AD is known to have a substantial genetic component with multiple modulating genes. One 

of the strongest risk factors for LOAD is APOE. Recent GWASs have identified over 50 risk 

loci accounting for, together with all common SNPs, over 33% of the overall estimated 

heritability[6-12] that cohered into three major AD-related biological pathways: the 

cholesterol metabolism pathway, the immune response pathway, and the endocytic 

pathway.[13] While AD studies have mostly focused on the effect of common variants, such 

as in the lipid metabolism and immune system/response pathways implicated in recent 

GWASes, rare variants in genes related to these pathways have not yet been thoroughly 

investigated.[11,12,14-20] Among these implicated pathways, the endocytic pathway has 

been identified as one of the most prominent targets, where the earliest morphological 

changes can be observed as endosome enlargement in post-mortem brains from sporadic AD 
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patients, as well as in some familial cases.[21,22] This phenomenon can be viewed as nearly 

diagnostic precision and served as blood-cellular markers.[23,24] These findings have also 

been supported by a recent genetic study showing the enrichment in clathrin-mediated/early 

endocytosis[25] and clinical research on the facilitation of Aβ clearance by LC3-associated 

endocytosis.[26] Previous studies using common variants have also identified several risk 

loci in the endocytic pathway, including BIN1, PICALM, CD2AP, EPHA1, and SORL1.[27]  

 

However, despite being one of the histological hallmarks of AD, few studies have examined 

the effect of rare variants within this endocytic pathway on AD pathogenic progression.[13] It 

is thus of interest to study the rare-variant effect on AD in this pathway. One major challenge 

in the rare variant study is the lack of power due to their rarity. In this study, to overcome this 

issue, we analyzed large-scale whole-genome sequencing (WGS) datasets that were recently 

developed for the study of AD-related traits, including the Alzheimer’s Disease Sequencing 

Project (ADSP) and the Accelerating Medicines Partnership-Alzheimer’s Disease (AMP-

AD). Another efficient tool we leveraged to increase the power was a gene-set burden 

analysis, where we focused on the collective rare variant effect within a set of genes of a 

known biological pathway, rather than the effect of single variants or single genes, and thus 

avoided the multiple testing burden required otherwise. This method has helped identify risk 

genes in various complex traits, such as in central nervous system pathways of 

schizophrenia.[28-39] In some studies, this method has led to the discovery of novel 

biological pathways and therapeutic targets through the identification of gene networks 

participating in the same functional processes.[40-45] Similar gene-set analyses focusing on 

biological pathways, as well as gene-ontology-based pathway/module analyses, have also 

been effectively demonstrated in AD studies.[11,46,47] 
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Therefore, in the current study, we included three large-scale WGS datasets with a total of 

3,255 individuals of European ancestry, meta-analyzed under a gene-set rare-variant burden 

analysis framework. Phase 1 of this framework aimed to explore the effect of rare variants in 

the endocytic pathway as a whole and consisted of two stages followed by meta-analysis. 

Besides AD status, we additionally explored three AD-related phenotypes, neurofibrillary 

tangles (NFTs), age-at-onset (AAO), and age-of-death (AOD), along with the phase 1 

analysis. NFT status was measured as Braak stages, first proposed by Braak and Braak in 

1991, and served as a histopathological indicator of AD,[48-50] representing a finer 

progression of AD. Phase 2 of this framework was to identify single endocytic genes driving 

the rare-variant association we captured in phase 1. For each dataset, we examined each gene 

in the endocytic pathway using both AD and NFT status, followed by meta-analysis across all 

datasets. Finally, in phase 3, we sought to explore the functional consequences of the rare-

variant effect identified in previous phases by examining both the bulk and single-cell 

expression of endocytic genes in relationship with AD status. 

 

Methods 

Study sample 
To identify AD-associated rare-variant effects, we evaluated three publicly available large-

scale WGS datasets collected for LOAD patients, downloaded as multi-sample VCF files. 

The Alzheimer’s disease sequencing project (ADSP) Umbrella is a collection of sequencing 

data from the ADSP and other AD and Related Dementia studies. Under this Umbrella, the 

ADSP group sequenced a large number of well-characterized Alzheimer’s Disease (AD) 

patients at three National Human Genome Research Institute Genome Centers (NHGRI) 

(Baylor College of Medicine Human Genome Sequencing Center, the Broad Institute, and the 

McDonnell Genome Institute at Washington University). The ascertainment methods and 

inclusion criteria are described in detail on the National Institute on Aging Genetics of 
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Alzheimer’s Disease Data Storage Site (NIAGADS).[51,52] The sequencing results were 

mapped to the human reference genome (GRCh38) and processed using the VCPA 1.0 

pipeline, which follows GATK best-practices pipeline.[53] Details of the variant calling 

pipeline can also be found on the NIAGADS. The ADSP discovery extension phase 

sequenced whole genomes of 1,466 cases and 1,534 controls from five cohorts provided by 

the Alzheimer’s Disease Genetics Consortium (ADGC) and included samples with diverse 

ancestry backgrounds (Non-Hispanic White, Caribbean Hispanic, and African American). 

Another WGS project shared under the ADSP Umbrella is the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), which is a longitudinal multi-center (63 sites across North 

America) study designed for early detection and tracking of AD. The ADNI WGS data 

contains 808 participants with 238 AD cases, 322 mild cognitive control (MCI) subjects, and 

248 controls. A full list of the ascertainment methods and inclusion criteria can be found in 

detailed descriptions in the online ADNI protocol.[54] As of 2018, the ADNI was recalled 

under the same VCPA 1.0 pipeline as the ADSP discovery extension WGS data and mapped 

to the same human reference genome (GRCh38), which were then released together. This 

combined ADSP case-control dataset contained WGS data from a total of 3,896 individuals 

(accessed by us on Nov 20, 2018), which then underwent a sequence of quality control steps 

discussed later before including in our stage 1 analysis. Detailed demographic information of 

this dataset can be found in Table 1 and the distribution of age among AD cases and controls 

in S12 Fig. To note, we removed samples in the MCI category to ensure a strict bipartite 

definition of disease status from all our analyses. 

 

WGS Datasets Case-control Family 

Studies ADSP AMP-AD ADSP 

Total sample size 1,291 1,611 353 
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EUR Population (%) 41% 93% 50% 

AD Patients 664 642 209 

Controls 627 969 144 

Males (%) 53.4% 35.4% 65.7% 

APOE 𝜀4 carriers (%) 43.5% 38.5% 44.8% 

Reference genome GRCh38 GRCh37 GRCh38 

Table 2-1. Summary of clinical, demographic, and technical information of individuals from 
three large WGS datasets. 

The numbers were counted only among the samples included in this current study. The 

percentages of EUR population were based on the total number of samples within each 

dataset and only the samples with EUR ancestry were included in this study, which served as 

the total input sample size in the first row. Abbreviations: AD: Alzheimer’s disease; WGS: 

whole-genome sequencing; EUR: European; ADSP: the Alzheimer’s disease sequencing 

project; AMP-AD: the Accelerating Medicines Partnership-Alzheimer’s Disease. 

 

Our stage 2 replication included 1,894 WGS samples from the Accelerating Medicines 

Partnership-Alzheimer’s Disease (AMP-AD) Target Discovery and Preclinical Validation 

Project (accessed by us on Dec 13, 2018). The samples were separately sequenced at three 

centers: the Religious Orders Study and Memory and Aging Project (ROSMAP) (1,200 

samples), the Mount Sinai Brain Bank (MSBB) study (354 samples), and the Mayo Clinic 

Brain Bank (Mayo) (350 samples). Previously reports have the detailed data collection 

scheme and sample inclusion and exclusion criteria.[55-58] This sequence data were mapped 

to the human reference genome (GRCh37) and were processed using the GATK best-

practices workflow v3.4.0.[58] Another stage 2 replication was performed on the ADSP 

discovery extension phase family samples, which were released together with the ADSP 

case-control data. Therefore, this family WGS data were also mapped to the human reference 
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genome (GRCh38) and processed using the VCPA 1.0 pipeline. The ADSP WGS family 

dataset contains 888 samples from 161 multiplex families. The inclusion criteria prioritized 

families loaded with LOAD with minimal APOE ε4 alleles. A detailed description of the 

study design and sample ascertainment methods can be found in previous reports.[59,60] For 

AMP-AD case-control study, this resulted in 642 AD patients and 969 controls after 

removing low-quality samples. For the ADSP family study, we obtained 545 AD patients and 

285 cognitively normal older individuals (Table 1). 

 

RNA-Seq data used for functional analysis were also obtained from the ROSMAP study of 

the AMP-AD Consortium[58]. The bulk RNA-Seq data were generated for 636 samples (254 

AD cases, 368 controls, 12 other dementia, and two without annotation) from the dorsolateral 

prefrontal cortex (DLPFC) tissues by the Broad Institue’s Genomics Platform and processed 

in an automatic and parallelized pipeline.[55] The ROSMAP group also selected 48 post-

mortem samples (24 with severe AD pathology and 24 with low-to-no pathology) and 

conducted droplet-based single-nucleus RNA sequencing of the prefrontal cortex region.[61] 

Metadata of the RNA-Seq data were then used to map samples to cases and controls 

following the same rule as in stage 2 replication, as well as to merge with genotyping data.  

  

Data processing and quality control of WGS data 
Individual-level quality control of WGS data 
We conducted stringent quality control (QC) to ensure that we only include high-quality 

samples. As the X chromosome was not available in the ADSP datasets, we did not include X 

chromosome for all analyses. Before checking the sequencing quality of each individual, we 

first removed variants failing Variant Quality Score Recalibration (VQSR) in the GATK 

pipeline and set all variants with genotyping quality (GQ) below 21 to missing. We included 

only bi-allelic variants for all future analyses. Within the remaining variants, for each 
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individual, we evaluated the genotype missing rate, calculated theoretical relatedness to 

check for unexpected relationships by study design, and performed principal component 

analysis (PCA) to identify ancestral composition and population outliers. For the individual-

level missing rate QC, we set the cutoff at 5% and removed all individuals beyond this 

threshold. For the relatedness check, we used PLink 1.9[62] and conducted identity by 

descent (IBD) analysis, which allowed us to compute a relatedness degree for each sample. 

For case-control studies, we retained only one in each cluster of samples estimated to be first- 

or second-degree relatives or duplicates within the corresponding cluster. For the ADSP 

family study, we compared the empirical kinship relationship record to our computed 

theoretical relatedness. For PCA, we used 1000 Genomes (1KG) phase 3 as a reference 

panel.[63] We used EIGENSTRAT[64] for PCA and included only independent common 

SNVs that were shared between 1KG and our dataset. To note, as PCA assumes unrelated 

individuals, when performing PCA for the ADSP family cohort, we restricted to only one 

sample in each family to avoid confounding ancestral relationship by kinship relationship. 

After having determined the ancestry of the included sample based on PCA, we then assigned 

that ancestry to the entire family of the included sample. PCA plots (PC1 vs. PC2) of all three 

datasets could be found in S4 and S6 Figs. As the X-chromosome was available for the AMP-

AD study, we also performed sex-check for the AMD-AD and obsevered no sex-mismatched 

samples. In summary, after stringent sample-level quality control and the careful examination 

of ancestral backgrounds, we identified 1,291 (664 AD cases and 627 cognitively normal 

older controls), 1,611 (642 AD cases and 969 controls), and 353 (144 AD cases and 209 

controls) high-quality European samples in the ADSP case-control, the AMP-AD case-

control, and the ADSP family datasets, respectively, which then served as the primary objects 

of our study in both stages 1 and 2.  
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Variant-level QC of WGS data 
We conducted stringent variant-level quality control to ensure keeping only high-quality 

SNVs. We included only variants that served as inputs for the individual-level QC while 

including only samples passing the individual-level QC. For each variant, we assessed the 

genotype missing rate, computed minor allele frequency (MAF) using all European samples, 

and calculated the Hardy-Weinberg Equilibrium (HWE) p-values using only unaffected 

European samples. For the variant-level missing rate QC, we set the cutoff at 2% and 

removed all variants beyond this threshold. For HWE, we set the cutoff at 0.001 for rare 

variants and removed all rare variants falling the HWE check where rare variants are defined 

in the following section. The number of variants passing the HWE filter could be found in 

S14 Table. 

 

Identification and annotation of rare variants 
To identify rare variants, we used both external and internal sources of allele frequency to 

avoid potential inflation of the allele frequency introduced by the study design. For the 

external sources, we looked at the Europeans (EUR) in 1KG[63] and Non-Finnish Europeans 

(NFE) in the gnomAD v2 database[65], which matched the ancestral backgrounds of our 

datasets. We used two different MAF thresholds (0.1% and 1%) to define rare variants, as 

there is no one consensus definition of rarity and we will correct for testing multiple MAF 

thresholds in future analysis. In practice, when a variant was present in either of 1KG EUR or 

gnomAD v2 NFE samples and below the aforementioned threshold, we would keep it for 

further analysis. For the internal sources, we retained only samples with European ancestry 

based on the previous PCA, as different ancestral groups would have different allele 

frequency distributions. Then when a variant was absent in both external databases, we would 

look at the MAF estimated from the European samples within our dataset and selected rare 

variants based on 0.1% and 1% MAF thresholds separately. We then annotated rare variants 
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using Ensembl Variant Effect Predictor (VEP)[66]. We defined a variant to be ‘deleterious’ if 

it is within one of the following categories: stop-gain, stop-loss, frameshift, splice-donor, 

splice-acceptor, and missense variants. Particularly, for missense variants, we additionally 

consulted PolyPhen-2[67] and retained only confident missense variants predicted to be 

‘damaging.’ This definition of deleteriousness focused on coding regions, primarily due to 

the fact that the effect of non-coding variants was challenging to predict.[68,69] A 

distribution of variant types and singletons among the selected set of rare deleterious variants 

could be found in S9 Fig and S11 Table. In an additional validation of the deleteriousness, we 

further introduced the CADD score[70] as a third deleterious criterion in phase 1 analysis 

combined with VEP and PolyPhen-2. The distribution of CADD scores among the set of rare 

deleterious variants could be found in S8 Fig. As suggested by the CADD documentation, 

variants with scaled CADD > 15 were retained as pathogenic variants and the set of rare 

deleterious/pathogenic variants passing all three annotation tools were used in this validation 

test. 

 

Identification of genes in endocytic pathways 
We identified genes involved in endocytic pathways using AmiGO 2[71,72] gene ontology 

database to select all genes participating in this pathway. We identified three specific GO 

terms related to the endocytic system in the Homo Sapiens category, which corresponded to 

three specific compartments in the endocytic system (endosome, lysosome, and trans-Golgi 

network). The endosome compartment is a membrane-bound vacuole in eukaryotic, 

participating in the endocytic trafficking from the trans-Golgi network to the plasma 

membrane and vice versa.[73] The trans-Golgi network serves as an interconnected tubular 

network and the final cisternal structure involved in packaging and transporting of cargos to 

the lysosome, endosome, and cell surface.[74] The lysosome, a small membrane-bound lytic 

vacuole, is one of the end-point in the endocytic transporting pathway, which contains 
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hydrolytic enzymes to break down various biomolecules.[75] The combination of these three 

compartments formed the essential backbone of the endocytic system, which we named as 

“endo-system” and used this term throughout the paper. After removing duplicates, we 

obtained 1,435 genes in total in the endo-system, while the three compartmental gene-sets 

contained 899 (endosome), 678 (lysosome), and 236 (trans-Golgi network) genes, 

respectively. We confirmed their biological functions with a functional enrichment analysis 

using the Database for Annotation, Visualization, and Integrated Discovery (DAVID)[76], 

where the top enriched GO terms were indeed lysosome, endosome, and trans-Golgi network. 

(S13 Fig) A comparison of the endo-system gene-set to the findings in the recent AD 

GWASes[11,12] has been provided by checking the number of endocytic genes implicated in 

Jansen et al. and Kunkle et al. (S7 Fig). To note, some genes were related to multiple 

compartmental gene-sets and thus only one of the duplicated genes was included in the endo-

system gene-set (S11 Fig). 

 

Analysis of association between the burden of rare deleterious SNVs and AD status  
To identify whether rare variants in the endocytic pathway are associated with AD, we 

compared the burden of rare deleterious SNVs between AD patients and controls. The burden 

was defined as the fraction of the alternative minor alleles that each individual carried for all 

rare deleterious SNVs, using the --score function in PLINK[62]. We additionally performed 

this procedure on the three compartmental gene-sets and obtained a burden score for each 

individual within each gene-set. To correct for potential confounding factors, for each gene-

set, we first regressed the burden against the total number of rare SNVs and the top ten 

principal components (PCs). Due to randomness, the distribution of the number of rare SNVs 

might be naturally variable from sample to sample, in which case the distribution of rare 

deleterious SNVs would also be greatly affected. Similarly, the PCs helped to correct for 

potential population stratification within European ancestries. Both aspects could influence 
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the burden score in ways unrelated to AD and thus need to be controlled. Once we had 

removed the confounding covariates, we performed three logistic regression models as 

proposed by Zhang et al.[77] using the residuals and AD status for all case-control studies. 

The three models differed in the covariates they corrected for. The minimal adjustment 

Model 0 (M0) controlled for the ten PCs and sequencing centers. This model has been 

previously reported to improve power for detecting variants whose effects are confounded 

with age and sex.[60] This phenomenon could be introduced by study design where the mean 

age between cases and controls are substantially disproportionate, as in the case of ADSP 

studies. Model 1 (M1) was built upon M0 by additionally including age and sex. Model 2 

(M2) was further built upon M1 and included the count of APOE ε2 and ε4 alleles. For the 

ADSP family dataset, we generated kinship matrices and used a generalized linear mixed 

model (GLMM) to take kin relationships into consideration when calculating association p-

values. In particular, we used the glmmkin function in the R package, GMMAT.[78] We 

computed odds ratio (OR) and p-values of association between the burden of rare deleterious 

SNVs and AD status in each model for European samples in each dataset (ADSP case-control 

study, AMP-AD case-control study, and ADSP family study). Our stage 1 analysis involved 

only the ADSP case-control dataset as the discovery set, while the AMP-AD case-control and 

the ADSP family study served as replication sets in our stage 2 analysis. We chose this 

analysis scheme because the ADSP case-control study encompassed the largest sample size, 

including non-European samples, even though we identified fewer samples with European 

ancestry compared to the AMP-AD case-control study. To note, the AMP-AD case-control 

study provided only the age-of-death for each individual, while the ADSP case-control and 

family studies provided only the age-at-onset. As a result, we used different definitions of age 

in analyzing different datasets. To validate our gene-set AD association analysis, we tested 

two additional methods provided by MAGMA[79] using the same set of rare deleterious 
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variants. The first was the SNP-wise method applicable to both common and rare variants 

and the second was the burden method that MAGMA suggested to use for rare-variant-only 

analysis and was similar to the aforementioned gene-set AD association analysis using 

PLINK. We applied both methods to the set of rare deleterious variants previously defined 

and computed two types of p-values: a competitive p-value that tests whether the association 

within the gene-set is greater than in other genes and a self-contained p-value that tests 

whether there is an association within the gene-set of interest at all. The latter concept is the 

same as what our main analysis method aimed for.  Due to our study design with multiple 

gene-sets and MAF thresholds, a Bonferroni correction was applied in accordance with the 

number of tests we performed in each analysis to define the study-wide significance threshold 

in each stage and each dataset. Although our analysis started with the whole endocytic 

pathway and then moved onto individual compartments, we, nonetheless, utilized a stringent 

multiple-testing correction threshold. Specifically, as we tested for four gene-sets (endo-

system gene-set and three sub-compartmental gene-sets) and two MAF thresholds (1% and 

0.1%), we set our significant threshold at 𝛼=0.05/8=0.00625 for both stage 1 discovery phase 

and stage 2 replication phase analyses. Accordingly, we set our nominal significance 

threshold at 𝛼=0.05. 

 

To combine results from two stages (three studies) for each of the four gene-sets we tested 

previously, we performed meta-analyses on p-values using estimates from our best model, 

namely the model producing the smallest p-values among the three models tested. We used 

two meta-analysis methods to combine the results. The first was a fixed-effects inverse 

variance weighted method in METAL[80], which took ORs, standard deviations (SDs), and 

p-values for separate tests and combined them into one ‘Gene-set level’ p-value with an 

estimate of the unified effect. The second was Fisher’s method which only required p-values 
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and has been shown to be more robust to some situations where a small portion of p-values 

are very small.[81,82] In particular, we used the sumlog function from the R package, 

‘metap,’[83] which took into account the direction of effects in each study and the 

corresponding p-values. It then computed a ‘Gene-set level’ p-value similar to METAL 

indicating the significance of rare variants' effect shared across studies but without an 

estimated effect size. 

 

Analysis of association between the burden of rare deleterious SNVs and AD-related 
phenotypes 
To test for association between the burden of rare deleterious SNVs and NFTs, we leveraged 

the Braak stages and followed a similar workflow as in testing AD status. As the sample size 

of patients with Braak staging information was limited in the ADSP family study, we tested 

for replication only in AMP-AD case-control study after analyzing the ADSP case-control 

study in stage 1. We obtained 626 and 1,399 individuals with Braak staging information in 

ADSP and AMP-AD case-control datasets, respectively. To note, even though the ADSP 

case-control study had fewer samples with Braak staging information, we, nonetheless, 

followed the same analysis scheme as in the previous AD analysis. In practice, after 

removing confounding effects from the burden score, we applied three ordinal logistic 

regression (OLR) models (M0, M1, M2) to account for multiple ordered categories present in 

the Braak staging (stage 0 to VI). The regular logistic regression only allows binary 

dependent variables, which is not feasible for Braak stages. In particular, we used the polr 

function from the R package, MASS[84], which fits a logistic regression model to an ordered 

factor response. Similar to the previous burden analysis, our M0 accounted for sequencing 

centers and the top 10 PCs; our M1 additionally controlled for sex and age; finally, our M2 

further included the count of APOE ε2 and ε4 alleles. For analyses in all datasets, our 

significance threshold after the multiple-testing correction was still at 𝛼=0.00625 because we 
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tested for two MAF thresholds and four gene-sets. Finally, the nominal significance threshold 

was also at 𝛼=0.05. To increase statistical strength and precision in estimating effects[85], we 

again performed meta-analyses and combined these two independent tests similar to what we 

did for AD association analyses 

 

We additionally tested the age-specific risk of rare deleterious SNVs in the endocytic 

pathway. As aforementioned, the AAO and AOD information was provided by the ADSP 

studies and the AMP-AD study, respectively, which allowed us to test for two different age-

specific risks within each gene-set. Different from AD risk, age-specific risk leveraged the 

information of age and estimated the association between the age-to-event (survival time) of 

patients and the rare-variant burden score. Therefore, we adopted a genetic epidemiological 

framework proposed by Desiken et al.[86], in which a Cox Proportional Hazard Regression 

(CPHR) was performed to account for age-to-event information. Specifically, we first used 

the Surv function from the R package, “survival”[87], and computed a survival time for each 

sample in each dataset. Then, we conducted CPHR using the coxph function from the R 

package, ‘survminer’[88], to estimate the hazard ratio, or the ratio of risk-to-event (onset or 

death), depending on the input age we used. We performed three CPHR models (M0, M1, 

and M2) similar to the previous burden analysis on AD status and Braak staging, except that 

age was not a covariate in either of the three models. Therefore, since we tested for two 

different MAF thresholds and four gene-sets (though in a stepwise fashion), we set a stringent 

significant threshold at 𝛼=0.05/8=0.00625 and our nominally significant threshold at 𝛼=0.05 

for analyses in all three datasets. Finally, we combined the results of AAO in the same way as 

we did for AD and NFT association tests. The resulting p-value then indicated the shared 

rare-variant effect on AAO-specific risk across the ADSP case-control and family studies. 
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Single-gene analysis 
To identify specific genes within the endocytic pathway associated with AD, we extracted 

rare deleterious SNVs as defined previously for each gene in the endo-system gene-set that 

were present in European samples for the ADSP case-control, the AMP-AD case-control, and 

the ADSP family study. Association test was performed for AD status by first building a null 

model using the SKAT_Null_Model function in the R package, SKAT,[89] followed by 

running the SKATBinary function using the SKAT-O feature to obtain association p-values 

for binary traits. We used a full model that included age, sex, sequencing center, the number 

of APOE ε2 and ε4 alleles, and top 10 PCs. To note, we also applied SKAT_Null_Model to 

the ADSP family dataset without incorporating kinship structure. This procedure could only 

be valid in the case where the family structure was relatively simple and did not contribute to 

a large effect in our analysis. By re-running the previous AD burden analysis with and 

without kinship information, we indeed observed only small deviations between these two 

tests. Specifically, for the full model of the endo-system gene-set, we observed an OR of 1.34 

with kinship structure provided (p=0.035) while we observed a similar OR of 1.36 assuming 

an independent setup (p=0.02), which indicated that the family structure within the ADSP 

family study did not influence our analyses to a large extent. 

 

To test for association with Braak stages, we first extracted only European samples with 

Braak staging information available for each dataset, before extracting rare deleterious SNVs 

for each gene within the endo-system gene-set. We leveraged the fact that it is a semi-

quantitative trait and performed the association test with the SKAT function for continuous 

traits with the ‘optimal’ option after building null models as described for testing AD status. 

In the attempt to remove confounding factors and unbalanced sample distribution for Braak 

staging association test, we additionally included AD status in null models. Finally, we meta-

analyzed variants across datasets and computed ‘Gene-level’ p-values for AD status as well 
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as Braak staging. We combined genotyping matrices across three datasets for each gene using 

the R package, MetaSKAT.[90] Specifically, we first transformed our genotyping matrices 

into an SSD format for a single population and then analyzed all three populations at once 

using the function MetaSKAT_MSSD_ALL. This procedure increased the power to analyze 

the effects of rare variants that are shared across different studies. To correct for testing 

multiple genes within the endo-system gene-set, we obtained the number of genes we tested 

in each separate dataset and computed their corresponding Bonferroni corrected significance 

thresholds. Specifically, for the AD single-gene analysis, we tested 1,195, 1,228, and 683 

genes in ADSP case-control, AMP-AD case-control, and ADSP family datasets, respectively, 

which corresponded to Bonferroni corrected significance thresholds of 𝛼=4.18*10-5;	

4.07*10-5;	7.32*10-5,	respectively.	In	meta-analyses,	we	identified	642	genes	in	common	

and	computed	a	Bonferroni corrected significance threshold	of	𝛼=7.79*10-5.	For	the	

Braak	staging	single-gene	analysis,	we	retained	only	rare	deleterious	SNVs	present	in	

samples	with	Braak	staging	information	available	and	tested	for	1,035	and	1,176	genes	

for	the	ADSP	and	AMP-AD	case-control	studies,	respectively.	The	corresponding	

Bonferroni corrected significance	thresholds	were	then	computed	as	𝛼=4.83*10-5	for	the	

ADSP	case-control	dataset	and	4.25*10-5	for	the	AMP-AD	case-control	dataset.	When	

performing	meta-analyses,	we	examined	967	genes	in	common	between	these	two	

datasets,	which	led	to	a	Bonferroni corrected significance threshold	of	𝛼=5.17*10-5. 

 

Functional analysis on AD 
One approach to understanding how the effect of rare variants would influence the risk of AD 

status is to investigate how they regulate gene expression. A gene with a variation that is 

associated with its gene expression is called an eGene. Here, we obtained the bulk RNA-Seq 

data of DLPFC tissues of 636 individuals from the ROSMAP[55] study and performed an 

association test between the expression of a gene and rare variants in cis with the 
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corresponding gene. In particular, for each gene within the endo-system gene-set, we 

included all variants within gene boundary and additionally all rare variants within 20kb up- 

and down-stream of the transcription start sites (TSS), which might potentially regulate the 

expression of a gene through cis-regulation, such as the effect of enhancer region. To 

overcome the problem of low power to detect the effect of single rare variants, we aggregated 

the effects of all rare variants within as well as near the TSS of each gene. We analyzed this 

aggregated effect on gene expression using the SKAT function to compute ‘Gene level' p-

values, while taking into account confounding covariates, including age, sex, sequencing 

locations, APOE ε2 and ε4 alleles, and top 10 PCs. To correct for testing multiple genes, we 

calculated false discovery rate for all tested genes and used FDR of 0.05 as the q-value 

threshold, following the suggestions of previous studies.[91,92] Follow-up validation was 

performed using genes previous identified from the burden and functional analyses, by 

directly comparing their expression levels between AD cases and controls using student t-test 

and computing the Pearson correlation between their expression levels and Braak stages. The 

multiple-testing issue was then addressed using the Bonferroni correction method. 

 

The resolution of bulk RNA-Seq data may limit our capability of observing cell-type specific 

effects on AD.[55,61,93,94] To elucidate the underlying complexity of variation across cell 

types, we further obtained single-cell RNA-Seq (scRNA-Seq) of 48 samples (24 AD patients 

and 24 cognitively normal controls) from the ROSMAP study and investigated the pattern of 

expression for each of the six major cell types defined on a priori cell-type-specific gene-sets: 

excitatory neuron (Ex), inhibitory neuron (In), astrocyte (Ast), oligodendrocyte (Oli), 

oligodendrocyte-precursor-cell (Opc), and microglia (Mic)[61]. The six major cell types were 

further divided into sub-clustered cells based on the heterogeneity of gene expression within 

each cell type: 13 Exs, 12 Ins, 4 Asts, 5 Olis, 3 Opcs, and 4 Mics[61]. The whole dataset in 



 41 

10X format was first processed using the R package, Seurat.[95] We followed the 

preprocessing steps as proposed by the Seurat developer by first filtering out cells with reads 

quantified for less than 200 or more than 2,500 genes, followed by filtering out cells with the 

percentage of mitochondrial gene counts over 5 percent. We then employed a global-scaling 

normalization method provided by the LogNormalize function, which normalized the feature 

expression measurements for each cell by the total expression, followed by a log-

transformation. The major and sub-cell types were identified a priori for this scRNA-Seq 

data. Therefore, we extracted all significant genes identified in the previous single-gene and 

functional analyses for each specific cell type and conducted differential gene expression 

analysis using the student t-test method between cases and controls for each major cell type, 

as well as for each subcellular population within each major cell type. 

 

Result 

The burden of rare deleterious SNVs in endo-system gene-set for ADSP case-control 
study 
To investigate whether rare deleterious SNVs in the endocytic pathway were associated with 

AD, we leveraged a gene-set method of burden analysis that collapsed individual effects of 

multiple variants into one ‘gene-set level’ effect, hence increasing the power of detecting rare 

variants’ effect. We defined rare SNVs using both an external source of allele frequency and 

allele frequency observed in 1,291 European samples (664 AD cases and 627 controls) from 

the ADSP case-control study (see Methods). We focused on deleterious SNVs as defined in 

Methods, in which most were protein-altering variants. We identified rare deleterious SNVs 

in 1,133 of the 1,435 genes in our gene-set (see Methods). For each individual, we computed 

the burden of these rare deleterious SNVs. We then compared the genetic burden between 

AD cases and cognitively normal controls, while taking into account confounding covariates 

that can potentially influence the amount of burden. Such covariates include ancestral 



 42 

principal components, age, sex, the sequencing location, the number of APOE e2 and e4 

alleles, and the total number of rare SNVs of each individual. The last procedure is necessary 

to account for individual differences in the total amount of variation; an individual is likely to 

carry more rare deleterious SNVs if she/he carries more rare SNVs overall. To note, we 

found that the total number of rare SNVs on the genome-wide scale has no statistically 

significant difference between cases and controls (p=0.67, student t-test). As described in 

Methods, we applied three logistic regression models to find associations between AD status 

and the burden scores while the three models were built on top of each other and tested for 

two MAF thresholds (1% and 0.1%). Looking at our best model in terms of the strongest 

association, we observed that the risk of AD, as indicated by the odds ratio (OR), increased 

by 1.24 for every one unit increase in residual burden score (p=0.00018 using GLM), which 

was a significant association after stringent multiple testing correction (𝛼=0.00625) for all 

gene-sets (including sub-gene-sets we analyzed in next steps) (Fig 1).  
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Figure 2-1. Rare deleterious variants are enriched in AD patients across the endocytic and 
corresponding compartmental gene-sets in stages 1 and 2. 

We compared the burden of rare deleterious variants between AD patients and controls across 

the endo-system (endo-sys) gene-set and three compartmental sub-gene-sets (endosome, 

lysosome, and trans-Golgi network) in stage 1 ADSP case-control dataset (leftmost), which 

were then tested for replication in stage 2 AMP-AD case-control (middle) and ADSP family 

(rightmost) datasets. Enrichment (ORs) and p-value were computed using a linear regression 

model controlling for covariates, including the total count of rare variants (see Methods). P-

values of enrichment in each gene-set are indicated above horizontal bars which represent 

95% confidence intervals.  

 

Additionally, we identified three major cellular compartments participating in the endocytic 

pathway and their corresponding genes, which constituted subsets of the endo-system gene-

set. The first two compartmental gene-sets were endosome (n=811) and lysosome (n=620) 

gene-sets, which served as the major sorting station in the endocytic pathway and the final 
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destination of proteolytic destinations[96], respectively. The third important compartment 

was the trans-Golgi network gene-set (n=208) which represented a pathway sorting station 

for retrograde trafficking. In summary, we identified 689 endosomal genes, 544 lysosomal 

genes, and 181 trans-Golgi network genes, respectively. We found the burden scores of rare 

deleterious SNVs were higher in cases than in controls for all three sub-gene-set. In our best 

model, the OR, representing the risk of AD, increased by 1.18 per unit for the endosome 

gene-set (p=0.0056 using GLM), 1.08 per unit for the lysosome gene-set (p=0.09 using GLM; 

Fig 1), and 1.14 per unit for the trans-Golgi network gene-set (p=0.019 using GLM). After 

the multiple-testing correction, we observed the endosome gene-set showed a gene-set-wide 

significant association with AD while the trans-Golgi network displayed a nominally 

significant association signal. In addition to exploring sub-gene-sets, we also checked the 

specificity of the association in the endocytic pathway by obtaining gene-sets unrelated to 

AD. Specifically, we explored two non-disease complex traits, BMI and height, and obtained 

related genes (212 and 78, respectively) from GeneRIF, a publically available database for 

functional annotations.[97] Indeed, we did not observe an enriched rare-variant burden in AD 

cases compared to controls in these gene-sets and the directions of effects were different 

across datasets, suggesting the observed rare-variant effect was specific to the endocytic 

pathway. (S13 Table) 

 

Stage 2 replication of the burden analysis in two independent WGS datasets 
The gene-set burden analysis in the ADSP case-control study demonstrated statistically 

significant enrichment of rare deleterious SNVs in cases in the endocytic pathway, indicating 

an increase of risk conferring AD. We further examined the endo-system gene-set in 1,611 

European samples (642 AD cases and 969 controls) from the AMP-AD study. We obtained 

1,198 endo-system-related genes and observed an elevated risk of AD in terms of OR of 1.19 

(p=0.0038 using GLM; Fig 1), replicating the observation of a significantly higher burden of 
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rare deleterious SNVs in the stage 1 analysis, using a multiple testing threshold of 

𝛼=0.00625. 

 

We performed additional gene-set burden analysis on the sub-gene-sets of the functional 

compartments in the AMP-AD study. We identified 735 endosomal genes, 576 lysosomal 

genes, and 187 trans-Golgi network genes, respectively. We again observed an increase in 

AD risk among cases for all three sub-gene-sets. A nearly significant signal was observed in 

the lysosome gene-set with an OR of 1.17 (p=0.0063 using GLM; Fig 1). For the other two 

gene-sets, we observed an OR of 1.08 (p=0.16 using GLM; endosome gene-set) and 1.10 

(p=0.083 using GLM; trans-Golgi network). None of these gene-sets showed gene-set-wide 

significant association after multiple testing correction at 𝛼=0.00625, although the lysosome 

gene-set nearly reached the gene-set-wide significance threshold. 

 

As described above, the AMP-AD study consisted of three sub-cohorts and the largest one, 

ROSMAP, contained around 71.5% of the total sample size. To avoid potential batch effect 

diluting the association signal, we re-performed the analysis on only the ROSMAP data. In 

fact, we observed slightly more significant results in nearly all gene-sets, where the endo-

system and the lysosome gene-sets both reached gene-set-wide significance threshold. (S2 

Table) Overall, the associations were similar between the AMP-AD and ROSMAP data, 

indicating a relatively low level of batch effect among the three sub-cohorts. 

 

Given the observed risk in stage 1 ADSP case-control study and the stage 2 AMP-AD 

replication, we further examined the genetic burden in the ADSP Family study. We filtered 

and annotated rare deleterious SNVs based on the same workflow using 353 European 

samples (144 AD cases and 209 controls) of the ADSP family study. Due to the smaller 
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sample size compared to the previous two case-control studies, we obtained 683 endo-

system-related genes. To examine the AD risk, we performed GLMM using the burden of 

each individual. Due to family structure, we utilized the generalized linear mixed model to 

account for the relatedness between samples. We observed an OR of 1.42 (p=0.013 using 

GLMM), conferring an elevated AD risk among cases compared to controls. (Fig 1) This 

observation was not gene-set-wide significant using the Bonferroni correction threshold at 

𝛼=0.00625. However, it displayed a nominally significant association with the same direction 

of effect as in the ADSP and AMP-AD case-control studies.  

 

Nonetheless, we looked into the sub-gene-sets of the three functional compartments in the 

ADSP family dataset. We identified 402 endosomal genes, 342 lysosomal genes, and 106 

trans-Golgi network genes, respectively. We observed a significant elevation of AD risk 

among cases for endosome gene-set with an OR of 1.48 (p=0.0045 using GLM). Similar 

increases were also observed in the lysosome and trans-Golgi network gene-sets, with OR of 

1.18 (p=0.22 using GLMM) and 1.04 (p=0.77 using GLMM), respectively (Fig 1). Only the 

endosome gene-set remained gene-set-wide significant after multiple-testing correction, 

which was in concordance with our observation in the stage 1 ADSP case-control study. 

 

A meta-analysis of stage 1 and 2 burden analysis 
The stage 1 burden analysis using the ADSP case-control study demonstrated a significant 

increase in AD risk in the endo-system gene-set, which was replicated in one independent 

dataset, the AMP-AD case-control dataset, and displayed a nominal significance in the ADSP 

family study. We meta-analyzed the results using two different methods (see Methods) and 

computed a ‘Gene-set level’ p-value of 2.17*10-7 (by METAL; Fisher’s method produced 

similar results; Table 2) for the endo-system gene-set, which was improved compared to 

stages 1 and 2. The same was also observed for sub-gene-sets where we computed a meta-
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analysis p-value of 9.78*10-5 for the endosome gene-set, 9.83*10-4 for the lysosome gene-set, 

and 1.19*10-2 for the trans-Golgi network gene-set. Except for the trans-Golgi network gene-

set that has the smallest number of genes, all other gene-sets remained gene-set-wide 

significant after multiple-testing correction (𝛼=0.00625), which strongly demonstrated a 

shared effect of rare deleterious variants within the endocytic pathway across multiple 

independent studies. To note, although we meta-analyzed the results from the best models, as 

proposed by Zhang et al. to improve the power of detection, the same pattern of rare-variant 

association could be observed using the same models for each gene-set across the three 

datasets. (S1 Table) For all models in the endo-system, endosome, and lysosome gene-sets 

except M2 of lysosome, we observed gene-set-wide significant p-values, regardless of the 

meta-analysis methods used, demonstrating a high consistency with the observations made 

using the best models.  

 

Phenotype AD NFT AAO 

 P P* P P* P P* 

Endo-system 2.17E-07 2.66E-07 1.16E-02 9.89E-03 2.47E-06 4.93E-07 

Endosome 9.68E-05 6.05E-05 1.30E-01 9.34E-02 3.33E-05 2.04E-05 

Lysosome 9.83E-04 1.15E-03 6.56E-03 6.11E-03 1.10E-02 3.11E-04 

TransGolgiNet 1.20E-02 7.46E-03 5.71E-01 3.53E-01 2.10E-02 4.96E-03 

Table 2. Meta-analysis of stages 1 and 2 gene-set burden analyses using AD, NFT, and AAO 

Abbreviations: AD: Alzheimer’s disease; NFT: neurofibrillary tangle; AAO: age-at-onset; 

NFTs were analyzed using Braak stages. Gene-set-wide significant results were highlighted 

in bold. Displayed results of gene-set burden analyses were each meta-analyzed using 
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METAL (P) and Fisher’s method (P*) (see Methods). Directions of effects were consistent 

across all tests. 

 

A similar pattern of meta-analysis results was also observed in the additional validation tests 

from two aspects. Firstly, we wanted to check our results using different annotation tools. 

Given the set of deleterious variants used in previous phase 1 analyses, we additionally 

filtered by CADD scores (see Methods) and re-ran the gene-set AD association analyses with 

the resulting set of pathogenic/deleterious variants. In the meta-analysis, we observed that the 

endocytic, endosome, and lysosome gene-sets reached gene-set-wide significance threshold 

(see S5 Table), consistent with the rare-variant effect we observed in the endocytic pathway 

using the original set of rare deleterious variants. 

 

The second aimed to validate our gene-set burden analysis using MAGMA with two different 

aggregation methods (see Methods). In the meta-analysis, both the SNP-wise and burden 

methods provided gene-set-wide significant self-contained p-values for nearly all gene-sets 

(S3 and S4 Tables; for endo-system, SNP-wise: 9.28*10-7; burden: 5.16*10-8), similar to the 

results shown above in Table 2. Compared to the MAGMA burden method, the SNP-wise 

method was not designed for rare-variant-only analysis and indeed showed weaker 

association signals. Especially for the competitive p-values, we observed gene-set-wide 

significant results for nearly all gene-sets using the MAGMA burden method, but not the 

SNP-wise method (for endo-system, SNP-wise: 2.41*10-2; burden: 1.90*10-3). We also 

attempted to compute a weighted burden score using pLI scores by PLINK and observed 

gene-set-wide significant associations in the endo-system gene-set in the meta-analysis. (S10 

Fig, S12 Table) Compared to our main method above, the MAGMA methods and the 

weighted method displayed some fluctuations in individual datasets and models but 
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consistent results in meta-analysis, indicating a robust rare-variant effect in the endocytic 

pathway under different statistical methods. Besides, as APOE was a major risk determinant 

in AD, in this validation, we also checked whether our observed rare-variant enrichment was 

mainly contributed from this gene, rather than the whole endo-system gene-set, by re-run the 

analysis with APOE excluded. Indeed, we observed nearly the same p-values in the meta-

analysis, indicating a rare-variant enrichment in AD cases even without APOE. 

 

The burden of rare deleterious SNVs on NFTs 
NFT, measured in Braak staging, was one of the most important histopathological indicators 

of AD[48-50]. It is designed as an ordinal scale from 0 to VI of NFT pathology where AD 

patients with high Braak stages (V or VI) are diagnosed with high confidence.[98] Therefore, 

Braak stages may serve as a finer spectrum or proxy of AD severity and provide higher 

power in assessing the effect of rare variants in AD progression. Based on our previous AD 

analysis, we hypothesized that the burden of rare deleterious variants in the endocytic 

pathway would be higher in patients with later Braak stages. To test our hypothesis, we 

applied an ordinal logistic regression (OLR) method to Braak stages (see Methods). This 

method has been previously shown to be effective in studies of Braak staging as well as of 

other ordered phenotypes, such as oral cancers.[99,100] We obtained 626 individuals (475 

AD cases and 151 cognitively normal controls) from the stage 1 ADSP case-control dataset 

and 1,399 individuals (533 AD patients and 866 controls) from AMP-AD case-control dataset 

with Braak staging information, which were used to fitted OLR models. In stage 1, We 

observed an OR of 1.16 (p=0.039 using OLR; S1 Fig) in the endocytic pathway, implicating 

a nominally significant association of rare-variant enrichment to later Braak stages. However, 

this result did not replicate in stage 2 with sufficient significance (OR=1.08, p=0.13 using 

OLR; S1 Fig). Comparing the stages 1 and 2 samples, we observed a distinct distribution of 

Braak stages. In particular, the stage 2 samples were concentrated in Braak stage III (23.1%), 
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IV (28.1%), and V (23.3%), whereas most stage 1 samples were clustered in stage V (26.4%) 

and VI (34.8). (S3 Fig)  We did not test for replication in the ADSP Family study due to 

limited samples with Braak staging information (n=38 individuals where only one sample 

had AD). 

 

Our analyses of two independent datasets suggested a trend of increased risk of bearing later 

Braak stages with elevated rare-variant burden in the endocytic pathway. To improve power, 

we meta-analyzed the results from the ADSP and AMP-AD case-control studies, producing a  

‘Gene-set level’ p-value between 0.0099 and 0.012, which did not pass our multiple-testing 

correction threshold of 𝛼=0.00625. (Table 2) Further Braak staging burden analysis using 

compartmental sub-gene-sets, however, revealed a gene-set-wide significant signal in the 

meta-analysis for lysosome gene-set (p=0.0066, Fisher’s method). A full list of results for 

NFT burden analysis can be found in S6 Table. 

 

Hazard analysis on population risk of AD age of onset and death 
Previous gene-set burden analyses have demonstrated a significant correlation between the 

burden of rare deleterious variants within the endocytic gene-set and AD risk. One important 

aspect of AD development is its age-specific phenotypes, such as AAO. Previous studies on 

AD have shown a large genetic component in the heritability of AAO[101,102], with 

multiple risk loci associated with it. [103-107] It is thus of interest to also examine the 

genetic risk identified within the endocytic gene-set in this context. One approach is to 

evaluate whether AD patients with earlier AAO are associated with greater rare-variant 

burden within the endocytic gene-set. Previous studies have proposed a genetic 

epidemiological framework, where age-specific phenotypes were analyzed using a Cox 

Proportional Hazard Regression (CPHR) that considered a time-to-event probability, as 

opposed to the simple event probability estimated in logistic regression.[86,108] Therefore, 
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we leveraged our previously computed burden score for each individual in the ADSP case-

control study and constructed a cox proportional hazard (CPHR) model to estimate the 

instantaneous risk of developing AD, in consideration of genotype and AAO. A positive 

estimate of hazard in this model would indicate a higher risk of developing AD in early ages. 

We built three models as in the burden analysis and observed in our best model that an AAO-

specific genetic risk increased by 1.14 per unit increase in the residual burden score 

(p=0.00083 using CPHR; Fig 2), which reached gene-set-wide significance after multiple 

testing correction (𝛼=0.00625). We further examined the AAO-specific genetic risk within 

the functional sub-gene-sets. In our best model, we observed a gene-set-wide significant 

hazard ratio of 1.14 (p=0.00097 using CPHR) for lysosome gene-set and a nominal 

significant hazard ratio of 1.10 (p=0.011 using CPHR) for trans-Golgi network gene-set. 

 

Figure 2-2. The enrichment of rare deleterious variants is associated with AD AAO across the 
endocytic and corresponding compartmental gene-sets in stages 1 and 2. 

We computed a hazard ratio of obtaining AD in earlier ages using the burden of rare 

deleterious variants across the endo-system gene-set and three compartmental sub-gene-sets 

(endosome, lysosome, and trans-Golgi network) in stage 1 ADSP case-control dataset (left), 
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which were then tested for replication in stage 2 ADSP family datasets (right). Enrichment 

(ORs) and p-value were computed using CPHR. P-values of enrichment in each gene-set are 

indicated above horizontal bars which represent 95% confidence intervals.  

 

To test for replication, we examined the ADSP family study under the same statistical 

framework. Applying the CPHR models, we observed a gene-set-wide significant hazard 

ratio of 1.31 (p=0.00091 using CPHR; Fig 2) in the endo-system gene-set. Carefully 

examining the sub-gene-sets also revealed gene-set-wide significant AAO-specific risk 

within the endosome gene-set (HR=1.35, p=3.83*10-5 using CPHR). We did not observe 

significant associations using the other two compartmental gene-sets (S7 Table). 

 

To increase power, we performed meta-analyses to identify rare-variant effects shared across 

multiple studies. We combined the best results from ADSP case-control and family studies 

and observed a gene-set-wide significant p-value of 2.47*10-6 (by METAL; Fisher’s method 

produced similar results; Table 2) for the endo-system gene-set, which was greatly improved 

compared to results in either stage. Similarly, the endosome gene-set also demonstrated an 

improved gene-set-wide significant p-value of 3.33*10-5. However, the lysosome and the 

trans-Golgi network gene-sets showed only nominally significant p-values in our meta-

analysis, potentially due to the absence of signal in the ADSP family study. These findings 

strongly demonstrated that this AAO-specific rare-variant effect in the endocytic pathway 

was shared in European samples across different studies. 

 

Another age-specific phenotype is the age of death (AOD), which has been shown to be 

affected by genetic groups implicated in AD AAO as well as in other dementia.[109,110] We 

thus followed the same analysis framework using the CPHR model and assessed whether 
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AD-affected patients with earlier AOD were associated with a higher rare-variant burden in 

the endocytic pathway. We looked at European samples in the AMP-AD case-control study, 

where the AOD information was available. We observed a hazard ratio of 1.10 (p=0.024 

using CPHR; S2 Fig), indicating an increase of risk of death in AD patients as well as a 

worse prognosis along with an elevation in genetic burden. Further analysis using the 

lysosome sub-gene-set displayed a hazard ratio of 1.09 (p=0.036 using CPHR). Both endo-

system and lysosome gene-sets demonstrated nominally significant associations with AOD 

but did not reach gene-set-wide significance after multiple-testing correction. Analysis using 

other sub-gene-sets did not provide significant hazard ratios. 

 

Single-gene analysis on AD risk using AD and NFT status 
From the previous analysis, the endo-system gene-set conferred a large rare-variant effect on 

AD and related phenotypes. Thus, we decided to examine the effect of rare variants in single 

endocytic genes, attempting to identify those associated with AD with large effect sizes. To 

increase power, we aggregated previously defined rare deleterious SNVs in each gene and 

tested for association with AD. We did not observe a single gene passing the Bonferroni 

corrected significance threshold in all three datasets, as well as in meta-analysis (See 

Methods; 𝛼=4.18*10-5;	4.07*10-5;	7.32*10-5;	7.79*19-5, for ADSP case-control, AMP-AD 

case-control, ADSP family studies, and meta-analysis respectively; S15 Table). 

 

As mentioned previously, NFT status may provide more detailed information of the 

pathological progression of AD and thus a greater power to detect signals of rare-variant 

effect. We, therefore, performed single-gene analysis using NFT status, as a proxy for AD 

status. For all datasets, we retained only rare deleterious SNVs that were present in samples 

with Braak staging information. We controlled for the same set of covariates as in previous 

analyses, except that we also included the AD phenotype (AD affected / unaffected) for each 
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individual as one additional covariate (see Methods). The latter is necessary because the 

Braak staging and the AD phenotype are correlated, and the numbers of individuals with and 

without AD were vastly disproportionate among the samples with Braak staging information. 

For the ADSP case-control study, we observed six genes that reached Bonferroni corrected 

significance threshold (𝛼=4.83*10-5). None of the genes passed the Bonferroni corrected 

significance threshold (𝛼=4.25*10-5) in the AMP-AD study. Results of the top ten most 

significant genes can be found in S8 Table. We conducted meta-analyses for these two 

independent studies using MetaSKAT as before. In the combined results, we observed one 

gene, ANKRD13D, reached Bonferroni corrected significance threshold (p=3.56e-05; 

𝛼=5.17*10-5). This gene has been previously implicated in AD through RNA expression 

analysis[111] and protein interactome mapping[112]. 

 

The identification of functional effects of rare variants within the endocytic pathway 
The hypothesis that the endo-system gene-set contains rare variants that are influential to AD 

development is endorsed by the previous gene-set burden analyses and single-gene analyses. 

One approach to investigating how the effect of rare variants takes place is to analyze how 

these rare variants are associated with gene expression. Such gene containing variations 

affecting its expression is often called an eGene.[91] To identify eGenes, we obtained bulk 

RNA-Seq data of DLPFC brain tissues of 636 individuals from the ROSMAP study as part of 

the AMP-AD study and tested for association of all variants in cis with a gene with its gene 

expression. Specifically, we grouped all variants within one gene, as well as those near the 

corresponding TSS, and assessed whether the aggregated rare-variant effect in an endocytic 

gene is associated with its expression level using SKAT (see Methods). Intersecting the bulk 

RNA-Seq and WGS data revealed 547 individuals with 224 AD patients and 323 controls. By 

taking an FDR of 5%, we discovered two genes, HLA-A and SLC26A7, whose rare variants 

were significantly associated with expressional changes. To note, previous studies have 
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demonstrated that proteins from the same families of these two genes are associated with AD 

status. Specifically, two proteins from the HLA families and one from the SLC families have 

been implicated in AD through meta-analyses of large GWAS and brain DNA-methylation 

association analysis.[9,113] We first examined their single-gene analysis results and observed 

that none of them was significant using the AMP-AD dataset (p=4.74e-01; 2.14e-01, for 

HLA-A and SLC26A7, respectively). To validate our results and determine the direction of 

effects, we compared the expression of these two genes between cases and controls. Indeed, 

their expression levels were both significantly decreased in cases compared to controls 

(p=0.00073 HLA-A; Fig 3a;  p=0.0054 SLC26A7; Fig 3b; student t-test; 𝛼=0.017;). We 

further examined the distribution of their expression levels across multiple Braak stages. 

Similarly, both expressions were strongly negatively correlated with greater Braak stages (r=-

0.129, p=0.0024 HLA-A; r=-0.127, p=0.0029 SLC26A7; Pearson correlation; 𝛼=0.017). 
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Figure 2-3. Comparison of the gene expression of HLA-A, SLC26A7, and ANKRD13D  
between AD cases and controls from the ROSMAP study. 

Violin plots were used to represent the distribution of gene expression within each AD status, 

where a symmetric deviation from the middle line on both sides indicated a higher abundance 

of samples at the corresponding gene expression level. Comparisons between AD cases and 

controls were assessed using boxplots. P-values were computed using the student t-test. All 

three genes, HLA-A, SLC26A7, and ANKRD13D, are down-regulated in AD cases compared 

to controls.  
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We also investigated ANKRD13D, which we previously identified to be associated with 

Braak stages, in the context of gene expression. Although not an eGene, ANKRD13D 

exhibited a significant expressional decrease in cases compared to controls (p=0.0026; 

student t-test; Fig 3c). The analysis on Braak staging also revealed a strong negative 

correlation (r=-0.122, p=0.0042; Pearson correlation) 

 

scRNA expression analysis 
Recent advancement in analyzing gene expression in single-cell resolution has provided 

opportunities to uncover complex alterations across cell types and identify cell-type specific 

effects on AD.[55,61,93,94] For example, previous studies have pointed the imbalance of 

excitatory and inhibitory neurons could lead to overexcitability and early dysregulation in the 

development of AD [114]. Many other studies also demonstrated abnormalities in innate 

immune cells, primarily microglia, in the pathogenesis of AD.[115] Therefore, to investigate 

the potential cell-type specific effects of rare variants within the endocytic pathway, we 

obtained the single-cell RNA-seq data of 48 samples (24 AD patients and 24 cognitively 

normal controls) from the ROSMAP study. We focused on three genes we identified through 

the previous analysis, which demonstrated significant associations to AD progression. The 

scRNA-Seq data were labeled with six major cell types using a priori marker genes (Ex, In, 

Ast, Oli, Mic, and Opc), and sub-clustering within each cell type revealed cellular 

subpopulation (see Methods). We examined the expression of the three target genes in all 

major cell types and observed that ANKRD13D was up-regulated in Ex (p=1.92*10-18; 

student t-test), Ast (p=0.011; student t-test), and In (p=0.028; student t-test) (S9 Table). 

However, it exhibited a down-regulation in Oli (p=0.0018; student t-test). SLC26A7 was 

observed to be up-regulated in Ex (p=0.0049; student t-test), while HLA-A displayed a pattern 

of down-regulation in both In and Mic (p=9.72*10-6and p=0.0031 respectively; student t-

test). Four AD pathology-associated cellular subpopulations (Ex4, In0, Ast1, and Oli0) have 
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been previous demonstrated for this scRNA-Seq data[61,91]. Our differential expression 

analysis within these four subpopulations showed a pattern of up-regulation of ANKRD13D 

in Ex4 and In0 (p=5.76*10-8 and p=0.036, respectively; student t-test; S10 Table). The other 

two genes, however, were not significantly differentially expressed in these four cell 

subpopulations.   

 

Discussion 

Using large publicly available WGS datasets, our study described here enabled us to assess 

the contribution of rare variants to AD. In our stage 1 discovery phase, we observed a 

significantly elevated burden of rare deleterious SNVs in affected individuals compared to 

cognitively normal older controls within the endocytic pathway. We chose this pathway 

because it represented one of the earliest morphological changes in AD development, and 

multiple AD risk factors, predominantly through common SNPs, have been implicated 

specifically in this pathway with genome-wide significance, including BIN1, CD2AP, 

PICALM, RIN3, and SORL1.[9,12,18,19,21,22,116] Our results demonstrated additional 

correlation between rare variants in the endocytic pathway and AD. Successful replication in 

the AMP-AD case-control study and improved meta-analysis association further strengthened 

this contribution of rare deleterious variants to AD risk. Our analysis using the ADSP family 

dataset showed a similar enrichment of rare deleterious SNVs in AD patients, although not 

reaching gene-set-wide significance. One possible explanation was that the sample size of 

this family study was relatively small (one third to one fifth) compared to the other two case-

control studies. We additionally identified gene-set-wide-significant signals within the 

endosome and lysosome gene-sets using meta-analysis, implicating potential compartment-

specific roles in AD pathology. One possibility that we did not observe significant results in 

separate stages for all three sub-gene-sets was because they contained a smaller number of 
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genes compared to the endo-system gene-set and, therefore, smaller aggregated effects of rare 

variants, which required meta-analysis to combine signals in individual samples. As the 

smallest gene-set (one-third to one-fourth of the other two), the trans-Golgi network remained 

nominally significant even after meta-analysis.  

 

In assessing the AD pathological progression, we examined the association of rare-variant 

effect to NFT pathology using Braak staging. We observed the gene-set-wide significant 

association within the lysosome gene-set, where individuals with higher Braak stages were 

enriched with rare deleterious SNVs. No significant association was found in other gene-sets, 

besides a nominally significant association in the whole endocytic pathway. Compared to the 

previous analysis using AD status, our analysis using Braak stages was largely limited in 

sample size. For example, only 626 out of 1,291 European samples in the ADSP case-control 

dataset had Braak staging information available. For the ADSP family study, only 38 out of 

353 samples had Braak information available, which made analyzing Braak stages in this 

dataset infeasible. Additionally, this was further complicated by the disproportionate 

distribution of samples across different Braak stages. The ADSP case-control dataset 

contained 218 samples in stage VI while only 15 samples in stage 0. Such highly skewed 

distribution reduced our power to detect a significant association between rare variants’ 

effects and Braak stages. The AMP-AD dataset was similarly skewed but also distributed 

largely differently from the stage 1 dataset. This distinction in distribution may explain why 

we observed different signals in our stage 1 and 2 analyses. 

 

Based on the idea that rare variants within the endocytic pathway were associated with AD 

progression, we further tested age-specific phenotypes and leveraged a CHPR model 

previously proposed to be effective in assessing the effect of variants on age-to-event 
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risk.[86] For AAO, we observed a gene-set-wide significant hazard ratio in the stage 1 

analysis, indicating an association of rare-variant burden in the endocytic pathway to earlier 

AAO of AD, which was replicated in stage 2. A similar observation was found in the 

compartmental gene-sets, where endosome gene-set demonstrated a gene-set-wide significant 

signal in meta-analysis. Nonetheless, we did not replicate our stage 1 findings of the 

lysosome gene-set in stage 2, potentially due to the small sample size of the family dataset 

and the small size of the gene-set. For AOD, we examined the AMP-AD dataset and only 

observed nominally significant signals in the endocytic pathway and the lysosomal 

compartment. Previous analyses on AAO have demonstrated a substantial correlation of 

AAO between parents and their children, with multiple risk loci, such as APOE, GRN, MPT, 

and C9orf72.[101,109] Genetic studies using AOD from LOAD datasets have revealed 

additional associations of SNVs in these genes with human aging.[110] Consistent in the 

observation of significant genetic components, our results discovered an additional 

contribution of rare variants within the endocytic pathway to age-related phenotypes.  

 

Our discovery of the increased burden of rare-variant effect in AD patients led us to explore 

the effect of individual genes within the endocytic pathway and attempt to identify specific 

ones with large effect sizes which might serve as potential clinical and therapeutic targets. 

We performed single-gene analysis using both AD status and Braak staging as the target 

phenotypes. When looking at the AD status, we did not observe a gene with a large enough 

effect to be detected in our analysis. Using Braak staging information, we were able to 

identify one gene, ANKRD13D, that showed robust signal across multiple studies after 

multiple-testing correction. This may be due to the fact that Braak stages provided a finer 

indication of AD progression. ANKRD13D encodes a member of the Ankyrin repeat domain 

13 family, characterized by three ankyrin repeats at the N-terminal facilitating protein-protein 
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interaction.[117] It has been experimentally shown to localize to endosomes and is known to 

regulate the rapid ubiquitin‐dependent internalization and sorting of membrane-bound 

proteins within the endocytic pathway.[118] One of its main targets is the endocytosis of the 

epidermal growth factor receptor (EGFR) through the functional ubiquitin-interacting motif 

(UIM) of the ANKRD13 family proteins, which is then degraded in lysosomes.[118,119] 

EGFR is a transmembrane protein serving as a receptor epidermal growth factor (EGF) 

protein ligands. Multiple previous studies have reported abnormal plasma levels of EGF in 

AD patients,[120-122] and two recent studies on EGF have demonstrated its protective 

effects on AD by preventing amyloid-beta (Aβ)-induced angiogenesis deficit to brain 

endothelial cells in vitro and in vivo.[123,124] Recent studies have also described that the 

EGFR internalization after EGF binding was strongly inhibited when ANKRD13 proteins 

were over-expressed.[118] This mechanism implicates a potential regulatory effect of the 

ANKRD13 family on AD pathology through the regulation of internalization of EGFR. 

Indeed, the link between ANKRD13D and AD is further bolstered by a recent RNA profiling 

where they identified an altered gene expression of ANKRD13D between the blood and brain 

tissue of AD patients.[111] In our analysis, we identified seven rare deleterious SNVs within 

ANKRD13D, where six were predicted to be missense damaging variants and one was 

predicted to be either missense damaging or splice region variant. These mutations could 

potentially alter its ubiquitin-binding ability, either through directly changing the sequence or 

indirectly through changing the 3D protein folding structure, and affect the normal protective 

function of EGF in AD development. Further functional studies of ANKRD13D, and in 

particular these seven variants, will be needed to specifically define its role in AD 

pathogenesis and evaluate the therapeutic and clinical importance of the EGFR pathway. 
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To investigate the functional effects of rare variants, we looked at the expression of genes in 

the endocytic pathway at both bulk tissue and single-cell resolutions. Leveraging bulk RNA-

Seq data, we identified two significant eGenes, HLA-A and SLC26A7, in the ROSMAP study. 

Careful examination of these two eGenes in the context of AD status revealed a pattern of 

down-regulation in AD patients compared to cognitively normal controls. A similar negative 

correlation was found using Braak stages. HLA-A encodes a member of the human leukocyte 

antigen A (HLA) class I, also called the major histocompatibility complex (MHC) class I. It 

has been shown to participate in the important “cross-presentation” mechanism of T cell-

mediated immune response, specifically efficient in dendritic cells.[125] This mechanism is 

part of the endocytic pathway that involves the internalization of HLA class I proteins from 

the cell surface through early endosomes and the loading of antigen peptides in 

lysosomes.[126] Previous studies have described an important role of HLA class I in 

maintaining the integrity of aging brains and have demonstrated significant dendritic atrophy 

with deficient HLA class I.[127] Moreover, recent GWA studies have identified specific 

alleles in HLA-A associated with AD in the Italian and Chinese population [128,129], as well 

as risk loci in other members of the HLA family.[9] The other identified eGene, SLC26A7, 

encodes a member of the solute carrier (SLC) family that localizes to subapical lysosomal 

membrane as well as endosomes, primarily serving as an exchanger and transporter of a 

broad spectrum of substrates in the endocytic pathway.[130,131] Disruption in the expression 

of SLC26 proteins has been shown to cause severe acid-base balance dysregulation, leading 

to disruption of anion homeostasis.[132] Multiple SLCs have been associated with AD, such 

as SLC2A2, which was linked to astrocyte activation leading to its elevation in AD 

patients,[130] and SLC1A3, whose expression has been associated with Aβ deposition[133]. 

Recent GWA studies have also identified risk loci in members of SLCs, such as SLC24A4.[9] 

Specific implication of SLC26A7 has also been shown through gene co-expression network 
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mining where STAT1, a transcription factor of SLC26A7, was differentially expressed 

between AD patients and cognitively normal controls.[47] In our analysis, we identified nine 

rare deleterious SNVs in HLA-A in which six were predicted to be damaging missense 

mutations, two were predicted to be splice acceptor variants, and one was predicted to be 

either damaging missense mutation or splice region variant. In SLC26A7, we also identified 

nine rare deleterious SNVs, which are all damaging missense mutations. As transporters, 

these two genes could potentially be altered in their affinities to ligands due to changes in 

primary or tertiary structures. Our results here supported these previous findings and 

provided additional evidence from the aspect of the rare-variant effect on gene expression. 

Further investigation will be required to elucidate specific variants conferring these effects as 

well as other participating proteins in the same signal relay mechanisms of HLA-A and 

SLC26A7. 

 

In a single-cell resolution, we further explored the cell-type-specific functional effects of the 

significant genes identified in our previous analyses. Previous single-cell transcriptomic 

analyses have shown a large number of cellular subpopulations with cell type-specific 

associations with AD.[61] Our analysis supported this finding in ANKRD13D, HLA-A, and 

SLC26A7. For example, we observed an up-regulation of ANKRD13D in bulk tissue, but it 

was found to be regulated differently in different cell types: up-regulated in Ex, Ast, and In, 

while down-regulated in Oli. On the other hand, in single-cell RNA-Seq data, SLC26A7 and 

HLA-A showed a pattern of down-regulation in AD patients, consistent with our findings 

using the bulk RNA-Seq data though with various effect sizes in different cell types. 

 

Several strengths and limitations of our study warrant discussion. One of the major strengths 

is our study design to begin the analysis with pathways implicated in AD a priori. Our usage 
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of the endocytic pathway provided us the power to identify rare-variant effects that would 

otherwise be missed in traditional association analysis of single variants. This design was 

further combined with the large sample sizes of the three independent datasets, which 

provided additional power. We separated these datasets into a discovery phase and a 

replication phase and were able to replicate our discovery phase results in two independent 

datasets of the replication phase, followed by meta-analyses of samples in all three studies. 

This procedure ensured us to identify and validate associations while retaining large power to 

identify small signals. Another strength of our study is the analysis of AD-related 

phenotypes, such as Braak stages, and provided additional power in identifying single genes 

with large aggregated rare-variant effect sizes. The analysis of AAO and AOD provided 

further information on the progression of AD, which is especially important in clinal AD 

prediction and intervention. One more strength in our analysis lies in our exploitation of bulk- 

and sc-RNA expression data in combination with AD genotyping data. Through this method, 

we were able to identify eGenes with large rare-variant effect, which would require a much 

higher sample size and greater power to be identified as eQTLs and suggested potential AD-

regulating mechanisms.  

 

One limitation of the study is that while we used WGS datasets, we only focused on 

analyzing rare SNVs within genic regions. Our analysis relied on knowing the 

deleteriousness of each variant contributing to the gene-set burden, and variant annotation is 

most reliably predicted for coding and splice site variants.[90,134] Including variants in 

intergenic regions or indels may result in the inclusion of variants with benign effects and 

decrease our power of detecting AD-associated genetic burden. Another limitation of our 

study is that even though we utilized WGS datasets of large sample size, they were not large 

enough to detect single genes where rare variants significantly influenced AD. Although our 
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analyses displayed sufficient power to detect rare-variant effects within sets of genes, we 

nonetheless failed to directly identify direct gene-level associations with AD. To achieve this 

latter goal, we may need WGS datasets of larger sample sizes. A similar limitation on sample 

sizes was seen in those with expression data and Braak staging information. Our bulk RNA-

Seq data is only available for 547 individuals from the ROSMAP study in which we have 

genotyping data for 1200 individuals. The scRNA-Seq data is further limited in that we have 

48 samples from the ROSMAP study. These limitations in sample size decreased our 

capability of detecting functional effects of rare variants within the endocytic pathway. One 

more limitation in this study is that we primarily focused on European samples because we 

had a limited sample size for non-European ancestries across all three WGS datasets. 

Nonetheless, it may be of interest to check whether we would observe similar rare-variant 

effect in the endocytic pathway in non-European samples as we observed in European 

samples. Another limitation rooted in the potential batch effects among the ADSP datasets 

used in this study, as also mentioned in Holstege et al.[135], due to the fact that the samples 

were sequenced and called in different locations. In this study, we have addressed the 

potential batch effect from three aspects. Firstly, the version of the ADSP datasets used in 

this study has been quality controlled, where all samples from different centers were re-

processed using the same VCPA 1.0 pipeline and corrected for many technical issues present 

in the previous version, including contaminations, mismatches, and duplicates.[136] 

Secondly, we conducted additional QC steps at variant-level and sample-level. These 

included many steps suggested by Holstege et al., such as sex-check, selecting European 

samples by PCA, removing unexpected related samples using IBD, checking for samples 

with aberrant Ti/Tv ratio or novel SNV/indel count, and filtering out variants failing VQSR, 

GQ, HWE, and missing rate thresholds. Thirdly, we included sequencing location as a 

covariate in all models (M0, M1, and M2) to account for potential batch effects. Therefore, in 
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this study, we recognized and have carefully approached this limitation, as much as we could, 

to mitigate the potential batch effects. 

 

In summary, our study demonstrated significant rare-variant effect within the endocytic 

pathway in European samples. Such effect was also associated with Braak stages and age-

related phenotypes, suggesting a potential target for clinical and therapeutic studies. Further 

investigation within this pathway revealed one gene significantly associated with Braak 

stages and two eGenes with a pattern of differential expression between AD patients and 

cognitively normal controls. More functional studies will be necessary to gain a better 

understanding of their molecular mechanisms of how they participate in the processing and 

modification of AD-related proteins. In vitro and in vivo experiments on these genes will also 

provide further insights into the connections of genetic variants to their gene expression and 

elucidate protein signaling models that affect the pathogenic progression of AD. 
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Supporting information 

 
S1 Fig. Rare deleterious variants are enriched in patients with severe NFTs across the 

endocytic and corresponding compartmental gene-sets in stages 1 and 2. 

We compared the burden of rare deleterious variants between patients with different severity 

of NFT across the endo-system gene-set and three compartmental sub-gene-sets (endosome, 

lysosome, and trans-Golgi network) in stage 1 ADSP case-control dataset (left), which were 

then tested for replication in stage 2 AMP-AD case-control dataset (right). Enrichment (ORs) 

and p-value were computed using OLR controlling for covariates, including the total count of 
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rare variants (see Methods). P-values of enrichment in each gene-set are indicated above 

horizontal bars which represent 95% confidence intervals.  

 

S2 Fig. The enrichment of rare deleterious variants is associated with AD AOD across the 

endocytic and corresponding compartmental gene-sets. 

We computed a hazard ratio of earlier AOD with AD using the burden of rare deleterious 

variants across the endo-system gene-set and three compartmental sub-gene-sets (endosome, 

lysosome, and trans-Golgi network) in the AMP-AD study. Enrichment (ORs) and p-value 

were computed using CPHR controlling for covariates, including the total count of rare 
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variants (see Methods). P-values of enrichment in each gene-set are indicated above 

horizontal bars which represent 95% confidence intervals. 

 

S3 Fig. Distribution of Braak stages in individuals from Stage 1 ADSP and Stage 2 AMP-AD 

datasets 
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S4 Fig. PCA plots (PC1 vs. PC2) of the ADSP case-control dataset showing the distribution 

of ancestry backgrounds. 
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S5 Fig. PCA plots (PC1 vs. PC2) of the AMP-AD case-control dataset showing the 

distribution of ancestry backgrounds. 
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S6 Fig. PCA plots (PC1 vs. PC2) of the ADSP Family dataset showing the distribution of 

ancestry backgrounds. 
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S7 Fig. Overlapping genes between gene-sets (the endocytic, the immune response, and the 

lipid metabolism pathways) and the findings in recent GWASes. 

Gene-sets were defined through AmiGO 2 gene-ontology database. Two lists of genes 

implicated in AD were obtained from the two recent GWASes, Jansen et al.[11] (left) and 

Kunkle et al.[12] (right), and compared against the three defined gene-sets. The count of 

overlapping genes between each gene-set and the findings from recent GWASes were shown 

above. To note, AD-implicated genes were identified through a variety of ways in the 

GWASes and the overlapping counts in each category were shown. 
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S8 Fig. Distribution of CADD scores among rare deleterious variants defined by VEP and 

PolyPhen-2. 
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S9 Fig. Distribution of rare deleterious variants in different mutation categories. 

 

S10 Fig. Distribution of pLI scores among endocytic genes. 

 

S11 Fig. Overlapping genes between the four gene-sets (endo-system, endosome, lysosome, 

and trans-Golgi network). 

   

S12 Fig. Comparison of age distribution between AD cases and controls in the three datasets 

(ADSP case-control, AMP-AD case-control, and ADSP Family datasets). 



 92 

 

S13 Fig. Functional annotation and confirmation of the biological functions of the endo-

system gene-set. 

Gene-set Model 
Stage 1 ADSP Stage 2 AMP-AD Stage 2 ADSP Family Meta-analysis 

OR P OR P OR P P P* 

Endosys 

M0 1.24 1.83E-04 1.17 5.75E-03 1.38 1.90E-02 3.24E-07 5.42E-07 

M1 1.23 3.44E-04 1.19 3.83E-03 1.42 1.30E-02 2.34E-07 4.72E-07 

M2 1.20 3.07E-03 1.17 1.30E-02 1.35 4.20E-02 1.58E-05 2.83E-05 

# Variants 5,745 7,946 1,382   

Endosome 

M0 1.17 5.56E-03 1.08 1.82E-01 1.41 1.00E-02 1.14E-04 1.35E-04 

M1 1.16 8.33E-03 1.08 1.60E-01 1.48 4.50E-03 7.07E-05 8.61E-05 

M2 1.13 5.07E-02 1.06 3.69E-01 1.48 7.50E-03 1.42E-03 1.26E-03 

# Variants 3,419 4,647 789   

GO:0005765

GO:0005764

GO:0005769

GO:0005768

GO:0010008

200 220 240 260 280
−log(p−value)

Count 200 220 240 260

Functional enrichment analysis of the endo−system gene−set
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Lysosome 

M0 1.10 8.99E-02 1.15 1.05E-02 1.19 2.00E-01 1.39E-03 1.61E-03 

M1 1.08 1.54E-01 1.17 6.33E-03 1.18 2.20E-01 1.88E-03 1.79E-03 

M2 1.08 2.28E-01 1.16 1.32E-02 1.13 3.80E-01 8.42E-03 6.99E-03 

# Variants 2,959 4,076 733   

TransGolgiNet 

M0 1.15 1.94E-02 1.09 1.06E-01 1.04 7.80E-01 1.46E-02 9.19E-03 

M1 1.14 2.10E-02 1.10 8.30E-02 1.04 7.70E-01 1.23E-02 7.95E-03 

M2 1.14 3.97E-02 1.09 1.41E-01 0.98 8.80E-01 3.36E-02 2.64E-02 

# Variants 894 1,215 204   

S1 Table. Rare-variant gene-set AD association analysis using PLINK. 

The OR and P represented the estimated odds ratio and the p-value from the corresponding 

logistic regression model (or the generalized linear mixed model for family study). P-values 

were highlighted in red (if <0.05; nominally significant) or green (if <0.00625; gene-set-wide 

significant). M0 took into account the sequencing location, first ten PCs, total count of rare 

variants. M1 was M0 plus age and sex. M2 was M1 plus the count of APOE 𝜀2 and 𝜀4 

alleles. The P and P* in the meta-analysis across two stages (three datasets) represented the p-

values calculated using the fixed-effects inverse variance weighted method by METAL and 

the Fisher’s method by ‘meta-p,’ respectively. # variants represented the number of rare 

deleterious variants identified in each dataset for each gene-set. The directions of effects were 

consistent across nearly all models. 

Gene-set Model 
Stage 2 AMP-AD Stage 2 AMP-AD* 

OR P OR P 

Endosys 

M0 1.17 5.75E-03 1.26 1.33E-03 

M1 1.19 3.83E-03 1.28 5.90E-04 

M2 1.17 1.30E-02 1.28 1.40E-03 

Endosome 

M0 1.08 1.82E-01 1.19 1.68E-02 

M1 1.08 1.60E-01 1.20 1.05E-02 

M2 1.06 3.69E-01 1.17 3.55E-02 

Lysosome 

M0 1.15 1.05E-02 1.24 2.02E-03 

M1 1.17 6.33E-03 1.27 6.84E-04 

M2 1.16 1.32E-02 1.26 1.89E-03 

TransGolgiNet M0 1.09 1.06E-01 1.08 2.40E-01 
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M1 1.10 8.30E-02 1.08 2.51E-01 

M2 1.09 1.41E-01 1.08 2.88E-01 

S2 Table. Comparison of stage 2 AMP-AD rare-variant gene-set AD association analysis. 

The OR and P represented the estimated odds ratio and the p-value from the corresponding 

logistic regression model (or the generalized linear mixed model for family study). P-values 

were highlighted in red (if <0.05; nominally significant) or green (if <0.00625; gene-set-wide 

significant). M0 took into account the sequencing location, first ten PCs, total count of rare 

variants. M1 was M0 plus age and sex. M2 was M1 plus the count of APOE 𝜀2 and 𝜀4 alleles. 

The stage 2 AMP-AD* cohort represented the largest AMP-AD sub-cohort, ROSMAP. 

Gene-set Model 
Stage 1 ADSP Stage 2 AMP-AD Stage 2 ADSP Family Meta-analysis 

Mu P-self Beta P-comp Mu P-self Beta P-comp Mu P-self Beta P-comp MU P-self Beta P-comp 

Endosys 

M0 9.06E-02 1.02E-03 6.53E-02 1.30E-02 7.68E-02 4.88E-03 4.08E-02 7.41E-02 1.15E-01 1.35E-03 4.49E-02 9.28E-02 1.55E-01 5.16E-08 7.98E-02 1.90E-03 

M1 9.31E-02 7.64E-04 5.58E-02 2.58E-02 7.05E-02 8.85E-03 3.45E-02 1.12E-01 1.14E-01 1.58E-03 4.62E-02 8.64E-02 1.51E-01 1.12E-07 7.07E-02 4.90E-03 

M2 7.40E-02 5.88E-03 5.82E-02 2.23E-02 6.18E-02 1.87E-02 3.91E-02 8.59E-02 7.55E-02 2.49E-02 4.07E-02 1.25E-01 1.14E-01 4.44E-05 6.56E-02 9.13E-03 

Endosome 

M0 6.59E-02 3.94E-02 2.92E-02 2.15E-01 1.22E-01 6.11E-04 8.31E-02 9.66E-03 1.71E-01 3.22E-04 1.10E-01 5.78E-03 1.91E-01 1.13E-07 1.09E-01 7.33E-04 

M1 8.09E-02 1.54E-02 3.10E-02 1.95E-01 1.25E-01 4.79E-04 8.44E-02 9.02E-03 1.67E-01 4.47E-04 1.10E-01 5.87E-03 1.97E-01 4.31E-08 1.10E-01 6.31E-04 

M2 7.52E-02 2.25E-02 4.72E-02 9.77E-02 1.02E-01 3.33E-03 8.06E-02 1.25E-02 1.04E-01 1.88E-02 7.96E-02 4.02E-02 1.54E-01 1.55E-05 1.00E-01 1.89E-03 

Lysosome 

M0 1.30E-01 1.10E-03 1.11E-01 3.75E-03 6.92E-02 5.38E-02 3.87E-02 1.68E-01 8.72E-02 5.34E-02 1.36E-02 3.86E-01 1.70E-01 2.75E-05 9.48E-02 7.84E-03 

M1 1.18E-01 2.73E-03 8.91E-02 1.40E-02 6.87E-02 5.51E-02 4.09E-02 1.55E-01 1.17E-01 1.53E-02 4.38E-02 1.75E-01 1.71E-01 2.36E-05 9.40E-02 7.88E-03 

M2 1.33E-01 9.04E-04 1.27E-01 9.88E-04 7.52E-02 4.03E-02 5.71E-02 8.00E-02 9.52E-02 3.90E-02 5.79E-02 1.18E-01 1.66E-01 3.96E-05 1.19E-01 1.35E-03 

TransGolgiNet 

M0 1.35E-01 3.20E-02 9.67E-02 8.64E-02 1.49E-01 2.33E-02 1.19E-01 4.07E-02 2.00E-01 1.97E-02 8.68E-02 1.51E-01 2.58E-01 1.94E-04 1.83E-01 3.17E-03 

M1 9.34E-02 1.00E-01 4.44E-02 2.61E-01 1.26E-01 4.67E-02 9.19E-02 9.09E-02 1.30E-01 8.96E-02 2.38E-02 3.88E-01 1.98E-01 3.19E-03 1.18E-01 3.86E-02 

M2 6.35E-02 1.92E-01 2.82E-02 3.43E-01 1.05E-01 8.05E-02 7.84E-02 1.29E-01 6.79E-02 2.42E-01 -9.06E-03 5.41E-01 1.28E-01 3.96E-02 7.46E-02 1.35E-01 

Endosys* 

M0 9.15E-02 9.25E-04 6.63E-02 1.20E-02 7.71E-02 4.77E-03 4.11E-02 7.29E-02 1.14E-01 1.57E-03 4.27E-02 1.04E-01 1.55E-01 5.13E-08 7.98E-02 1.90E-03 

M1 9.46E-02 6.38E-04 5.75E-02 2.25E-02 7.10E-02 8.50E-03 3.50E-02 1.09E-01 1.12E-01 1.82E-03 4.41E-02 9.67E-02 1.51E-01 1.01E-07 7.13E-02 4.62E-03 

M2 7.36E-02 6.13E-03 5.77E-02 2.32E-02 6.29E-02 1.73E-02 4.02E-02 8.02E-02 7.55E-02 2.50E-02 4.02E-02 1.28E-01 1.14E-01 4.25E-05 6.59E-02 8.87E-03 

Endosome* 

M0 6.73E-02 3.63E-02 3.07E-02 2.03E-01 1.23E-01 5.89E-04 8.36E-02 9.35E-03 1.68E-01 4.01E-04 1.07E-01 7.30E-03 1.91E-01 1.12E-07 1.10E-01 7.31E-04 

M1 8.35E-02 1.31E-02 3.36E-02 1.76E-01 1.26E-01 4.46E-04 8.52E-02 8.50E-03 1.64E-01 5.50E-04 1.07E-01 7.32E-03 1.98E-01 3.77E-08 1.11E-01 5.75E-04 

M2 7.45E-02 2.36E-02 4.64E-02 1.02E-01 1.04E-01 2.92E-03 8.24E-02 1.10E-02 1.05E-01 1.87E-02 7.89E-02 4.15E-02 1.54E-01 1.45E-05 1.01E-01 1.81E-03 

S3 Table. Rare-variant AD association analysis using the MAGMA burden method. 

The starred (*) geneset are those excluding the APOE gene. The Mu and P-self represented 

the estimated mean association and the self-contained p-value testing whether an association 
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existed within the tested gene-set. The Beta and P-comp represented the estimated effect size 

and the competitive p-value testing whether the association within the gene-set was greater 

than in other genes. P-values were highlighted in red (if <0.05; nominally significant) or 

green (if <0.00625; gene-set-wide significant). M0 took into account the sequencing location, 

first ten PCs, total count of rare variants. M1 was M0 plus age and sex. M2 was M1 plus the 

count of APOE 𝜀2 and 𝜀4 alleles. The directions of effects were consistent across nearly all 

models. 

Gene-set Model 
Stage 1 ADSP Stage 2 AMP-AD Stage 2 ADSP Family Meta-analysis 

Mu P-self Beta P-comp Mu P-self Beta P-comp Mu P-self Beta P-comp Mu P-self Beta P-comp 

Endosys 

M0 8.51E-02 2.60E-03 6.05E-02 1.96E-02 6.59E-02 1.74E-02 1.07E-02 3.54E-01 1.06E-01 3.38E-03 3.55E-02 1.46E-01 1.40E-01 1.94E-06 5.49E-02 2.41E-02 

M1 8.97E-02 1.63E-03 6.57E-02 1.12E-02 6.99E-02 1.27E-02 1.86E-02 2.55E-01 1.04E-01 3.97E-03 2.50E-02 2.31E-01 1.44E-01 9.28E-07 4.76E-02 4.07E-02 

M2 7.13E-02 9.72E-03 6.00E-02 1.94E-02 4.50E-02 7.49E-02 9.22E-03 3.74E-01 6.63E-02 4.56E-02 2.34E-02 2.53E-01 9.81E-02 5.91E-04 3.75E-02 8.98E-02 

Endosome 

M0 6.32E-02 5.00E-02 3.47E-02 1.74E-01 8.65E-02 1.37E-02 3.45E-02 1.68E-01 1.43E-01 2.39E-03 8.16E-02 2.97E-02 1.56E-01 2.06E-05 7.25E-02 1.86E-02 

M1 8.19E-02 1.64E-02 4.13E-02 1.27E-01 7.96E-02 2.13E-02 2.90E-02 2.05E-01 1.41E-01 2.84E-03 7.40E-02 4.47E-02 1.62E-01 9.75E-06 5.74E-02 4.60E-02 

M2 7.48E-02 2.58E-02 4.60E-02 1.04E-01 3.57E-02 1.81E-01 -4.16E-03 5.46E-01 8.98E-02 3.84E-02 4.78E-02 1.45E-01 1.08E-01 2.14E-03 4.00E-02 1.26E-01 

Lysosome 

M0 1.21E-01 2.59E-03 8.94E-02 1.56E-02 8.70E-02 2.52E-02 1.86E-02 3.23E-01 9.62E-02 3.95E-02 3.41E-02 2.32E-01 1.80E-01 1.46E-05 9.38E-02 8.73E-03 

M1 1.09E-01 5.97E-03 1.04E-01 5.24E-03 8.68E-02 2.55E-02 3.97E-02 1.59E-01 1.22E-01 1.29E-02 2.51E-02 2.96E-01 1.82E-01 1.26E-05 9.37E-02 7.80E-03 

M2 1.31E-01 1.25E-03 1.22E-01 1.47E-03 5.88E-02 9.29E-02 3.10E-02 2.22E-01 9.39E-02 4.32E-02 5.40E-02 1.34E-01 1.56E-01 1.51E-04 1.08E-01 3.16E-03 

TransGolgiNet 

M0 1.52E-01 1.93E-02 1.33E-01 3.01E-02 -1.06E-02 5.55E-01 -3.67E-02 7.00E-01 1.66E-01 4.39E-02 4.14E-02 3.10E-01 1.62E-01 1.35E-02 7.79E-02 1.24E-01 

M1 1.11E-01 6.57E-02 8.66E-02 1.07E-01 -2.79E-04 5.01E-01 -4.52E-02 7.44E-01 9.70E-02 1.60E-01 -2.38E-02 6.12E-01 1.24E-01 4.56E-02 3.27E-02 3.11E-01 

M2 8.45E-02 1.25E-01 6.51E-02 1.77E-01 3.54E-02 3.22E-01 -2.86E-03 5.16E-01 3.84E-02 3.47E-01 -5.16E-02 7.23E-01 8.25E-02 1.30E-01 1.30E-02 4.24E-01 

Endosys* 

M0 8.59E-02 2.40E-03 6.19E-02 1.74E-02 6.56E-02 1.79E-02 1.07E-02 3.54E-01 1.05E-01 3.88E-03 3.34E-02 1.61E-01 1.39E-01 2.03E-06 5.49E-02 2.41E-02 

M1 9.12E-02 1.39E-03 6.84E-02 8.70E-03 6.98E-02 1.28E-02 1.86E-02 2.54E-01 1.03E-01 4.44E-03 2.31E-02 2.48E-01 1.45E-01 8.90E-07 4.83E-02 3.85E-02 

M2 7.11E-02 9.87E-03 6.02E-02 1.91E-02 4.59E-02 7.12E-02 1.07E-02 3.55E-01 6.63E-02 4.57E-02 2.29E-02 2.58E-01 9.84E-02 5.73E-04 3.78E-02 8.80E-02 

Endosome* 

M0 6.46E-02 4.65E-02 3.70E-02 1.59E-01 8.59E-02 1.42E-02 3.46E-02 1.68E-01 1.40E-01 2.88E-03 7.83E-02 3.54E-02 1.55E-01 2.17E-05 7.26E-02 1.85E-02 

M1 8.44E-02 1.40E-02 4.56E-02 1.04E-01 7.95E-02 2.15E-02 2.91E-02 2.05E-01 1.38E-01 3.34E-03 7.11E-02 5.16E-02 1.62E-01 9.32E-06 5.86E-02 4.31E-02 

M2 7.43E-02 2.67E-02 4.63E-02 1.03E-01 3.71E-02 1.73E-01 -1.92E-03 5.21E-01 9.02E-02 3.79E-02 4.69E-02 1.50E-01 1.09E-01 2.07E-03 4.05E-02 1.23E-01 

S4 Table. Rare-variant AD association analysis using the MAGMA SNP-wise method. 

The starred (*) geneset are those excluding the APOE gene. The Mu and P-self represented 

the estimated mean association and the self-contained p-value testing whether an association 

has existed within the tested gene-set. The Beta and P-comp represented the estimated effect 
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size and the competitive p-value testing whether the association within the gene-set was 

greater than in other genes. P-values were highlighted in red (if <0.05; nominally significant) 

or green (if <0.00625; gene-set-wide significant). M0 took into account the sequencing 

location, first ten PCs, total count of rare variants. M1 was M0 plus age and sex. M2 was M1 

plus the count of APOE 𝜀2 and 𝜀4 alleles. The directions of effects were consistent across 

nearly all models. 

Gene-set Model 
Stage 1 ADSP Stage 2 AMP-AD Stage 2 AMP-AD* Stage 2 ADSP Family Meta-analysis 

OR P OR P OR P OR P P P* 

Endosys 

M0 1.23 2.84E-04 1.14 1.84E-02 1.21 7.86E-03 1.38 1.40E-02 4.45E-07 8.12E-07 

M1 1.22 5.37E-04 1.16 1.26E-02 1.22 4.67E-03 1.41 8.90E-03 2.72E-07 5.99E-07 

M2 1.19 6.60E-03 1.16 1.41E-02 1.24 3.93E-03 1.35 1.90E-02 4.48E-06 9.56E-06 

Endosome 

M0 1.18 4.38E-03 1.07 2.13E-01 1.16 4.13E-02 1.46 2.90E-03 5.56E-06 1.01E-05 

M1 1.17 6.96E-03 1.08 1.79E-01 1.17 3.09E-02 1.54 8.70E-04 2.29E-06 4.05E-06 

M2 1.12 7.01E-02 1.08 2.16E-01 1.16 4.71E-02 1.55 1.10E-03 4.58E-05 5.56E-05 

Lysosome 

M0 1.09 1.33E-01 1.12 3.46E-02 1.19 1.09E-02 1.21 1.40E-01 1.43E-03 1.71E-03 

M1 1.07 2.17E-01 1.14 2.17E-02 1.22 4.19E-03 1.21 1.40E-01 1.29E-03 1.16E-03 

M2 1.06 3.42E-01 1.14 2.85E-02 1.22 6.57E-03 1.16 2.20E-01 4.72E-03 3.56E-03 

TransGolgiNet 

M0 1.16 1.00E-02 1.09 1.01E-01 1.08 2.27E-01 1.08 5.20E-01 1.06E-02 7.22E-03 

M1 1.16 1.17E-02 1.10 6.94E-02 1.08 2.18E-01 1.08 5.50E-01 1.21E-02 8.28E-03 

M2 1.15 2.69E-02 1.10 1.04E-01 1.09 2.17E-01 0.99 9.30E-01 4.12E-02 2.63E-02 

S5 Table. Rare-variant AD association analysis using PLINK where rare variants were 

annotated by a combination of VEP, PolyPhen-2, and CADD (>15). 

The OR and P represented the estimated odds ratio and the p-value from the corresponding 

logistic regression model (or the generalized linear mixed model for family study). P-values 

were highlighted in red (if <0.05; nominally significant) or green (if <0.00625; gene-set-wide 

significant). M0 took into account the sequencing location, first ten PCs, total count of rare 

variants. M1 was M0 plus age and sex. M2 was M1 plus the count of APOE 𝜀2 and 𝜀4 alleles. 

The stage 2 AMP-AD cohort was analyzed using all sub-cohorts and the largest ROSMAP 

sub-cohort (71.5% of the total sample size; marked in *). The P and P* in the meta-analysis 
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across two stages (three datasets; AMP-AD* was used here) represented the p-values 

calculated using the fixed-effects inverse variance weighted method by METAL and the 

Fisher’s method by ‘meta-p,’ respectively. Similar results could be obtained using the stage 2 

AMP-AD. The directions of effects were consistent across nearly all models. 

Gene-set Model 
Stage 1 ADSP Stage 2 AMP-AD Meta-analysis 

OR P OR P P P* 

Endosys 

M0 1.10 1.77E-01 1.03 6.21E-01 1.92E-01 1.26E-01 

M1 1.10 1.68E-01 1.03 5.48E-01 1.62E-01 1.10E-01 

M2 1.09 2.35E-01 1.04 4.46E-01 1.68E-01 1.22E-01 

Endosome 

M0 1.15 5.23E-02 1.09 7.61E-02 8.62E-03 7.87E-03 

M1 1.15 5.10E-02 1.10 7.10E-02 7.90E-03 7.26E-03 

M2 1.09 2.31E-01 1.10 5.83E-02 2.89E-02 2.26E-02 

Lysosome 

M0 1.00 9.68E-01 1.03 5.97E-01 6.88E-01 4.42E-01 

M1 1.01 9.42E-01 1.03 5.74E-01 6.53E-01 4.06E-01 

M2 0.93 3.51E-01 1.04 4.67E-01 2.40E-01 5.09E-01 

TransGolgiNet 

M0 1.16 4.37E-02 1.07 1.80E-01 1.76E-02 1.42E-02 

M1 1.16 3.92E-02 1.07 1.68E-01 1.50E-02 1.22E-02 

M2 1.13 9.34E-02 1.08 1.32E-01 2.43E-02 2.09E-02 

S6 Table. Rare-variant gene-set Braak association analysis using PLINK. 

The OR and P represented the estimated odds ratio and the p-value from the corresponding 

logistic regression model (or the generalized linear mixed model for family study). P-values 

were highlighted in red (if <0.05; nominally significant). M0 took into account the 

sequencing location, first ten PCs, total count of rare variants. M1 was M0 plus age and sex. 

M2 was M1 plus the count of APOE 𝜀2 and 𝜀4 alleles. The P and P* in the meta-analysis 

across two stages (two datasets) represented the p-values calculated using the fixed-effects 

inverse variance weighted method by METAL and the Fisher’s method by ‘meta-p,’ 

respectively. The directions of effects were consistent across nearly all models. 

Phenotype AAO AOD 

Gene-set Model 
Stage 1 ADSP Stage 2 ADSP Family Meta-analysis Stage 2 AMP-AD 

OR P OR P P P* OR P 
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Endosys 

M0 1.14 8.27E-04 1.31 9.06E-04 2.47E-06 3.09E-06 1.11 1.68E-02 

M1 1.13 1.92E-03 1.28 3.11E-03 1.83E-05 2.15E-05 1.10 2.40E-02 

M2 1.10 1.99E-02 1.19 3.50E-02 1.70E-03 1.68E-03 1.06 1.81E-01 

Endosome 

M0 1.07 8.00E-02 1.35 3.83E-05 3.33E-05 1.16E-05 1.04 3.79E-01 

M1 1.06 1.51E-01 1.33 1.44E-04 2.12E-04 7.10E-05 1.04 3.50E-01 

M2 1.03 4.56E-01 1.27 1.34E-03 5.19E-03 1.49E-03 1.01 8.07E-01 

Lysosome 

M0 1.14 9.71E-04 1.02 7.65E-01 1.10E-02 1.78E-03 1.09 3.60E-02 

M1 1.13 1.97E-03 1.01 9.22E-01 2.40E-02 3.94E-03 1.08 5.75E-02 

M2 1.15 4.68E-04 0.95 5.45E-01 3.71E-03 1.65E-03 1.05 2.00E-01 

TransGolgiNet 

M0 1.10 1.10E-02 1.06 4.70E-01 2.10E-02 9.91E-03 1.06 1.43E-01 

M1 1.09 1.82E-02 1.05 5.73E-01 3.86E-02 1.81E-02 1.05 2.01E-01 

M2 1.02 5.62E-01 1.02 7.95E-01 5.53E-01 3.57E-01 1.04 2.90E-01 

S7 Table. Rare-variant gene-set AAO and AOD association analysis using PLINK. 

The OR and P represented the estimated odds ratio and the p-value from the corresponding 

logistic regression model (or the generalized linear mixed model for family study). P-values 

were highlighted in red (if <0.05; nominally significant) or green (if <0.00625; gene-set-wide 

significant). M0 took into account the sequencing location, first ten PCs, total count of rare 

variants. M1 was M0 plus age and sex. M2 was M1 plus the count of APOE 𝜀2 and 𝜀4 alleles. 

The P and P* in the meta-analysis across two stages (two datasets) represented the p-values 

calculated using the fixed-effects inverse variance weighted method by METAL and the 

Fisher’s method by ‘meta-p,’ respectively. The directions of effects were consistent across 

nearly all models. 

Stage 1 ADSP Stage 2 AMP-AD Meta-analysis 

Gene P Gene P Gene P 

CD300LG 1.41E-06 HAVCR2 4.42E-04 ANKRD13D 3.56E-05 

ANKRD13D 1.46E-06 LNPEP 1.12E-03 IL1B 5.34E-05 

TJAP1 5.80E-06 ANKRD13A 1.56E-03 DYNC1H1 2.17E-03 

PLBD1 9.16E-06 PCSK7 1.86E-03 HPS4 3.68E-03 

IL1B 1.73E-05 CPNE1 2.28E-03 TLR3 4.15E-03 

LLGL1 1.79E-05 TLR9 2.40E-03 KREMEN2 5.00E-03 

HPS4 9.27E-05 AP2A2 2.58E-03 HAVCR2 5.30E-03 

STAMBP 1.19E-04 OMD 2.96E-03 ARFGEF2 5.78E-03 

LRRK2 3.58E-04 RAB17 3.87E-03 PLEKHA8 5.85E-03 
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DBNL 1.12E-03 ATP6V0A2 4.20E-03 EZR 6.76E-03 

S8 Table. Top ten most significant genes in rare-variant single-gene NFT association 

analysis. 

The genes were sorted in the descending order of p-values. The meta-analysis was performed 

using MetaSKAT. P-values below the Bonferroni threshold (𝛼=4.83*10-5; 4.25*10-5; 

5.17*10-5, for ADSP, AMP-AD, and meta-analysis, respectively) were highlighted in red. 

Gene name Cell type Effect P-value 

ANKRD13D 

Ast 2.57 1.07E-02 

Ex 8.79 1.92E-18 

In 2.19 2.84E-02 

Mic -1.75 8.26E-02 

Oli -3.14 1.78E-03 

Opc 0.82 4.14E-01 

HLA-A 

Ast -1.09 2.76E-01 

Ex -0.03 9.79E-01 

In -4.45 9.72E-06 

Mic -2.98 3.07E-03 

Oli -1.28 2.01E-01 

Opc -1.46 1.45E-01 

SLC26A7 

Ast -1.76 9.12E-02 

Ex 2.88 4.85E-03 

In 0.50 6.28E-01 

Mic 1.22 2.48E-01 

Oli -0.40 6.90E-01 

Opc 0.12 9.16E-01 



 100 

S9 Table. Differential expression analysis of three identified genes, HLA-A, SLC26A, and 

ANKRD13D, between AD cases and controls from the ROSMAP study using six major cell 

types. 

Abbreviations: Ex: excitatory neuron; In: inhibitory neuron; Ast: astrocyte; Oli: 

oligodendrocyte; Opc: oligodendrocyte-precursor-cell; Mic: microglia. Effect: t-statistics 

calculated using student t-test, representing the direction of effect. P-values are computed 

using the same method. 

Gene name Cell type Effect P value 

ANKRD13D 

Ex4 5.49 5.76E-08 

In0 2.11 3.59E-02 

Ast1 1.37 1.78E-01 

Oli0 -1.59 1.12E-01 

HLA-A 

Ex4 0.53 5.99E-01 

In0 -1.59 1.14E-01 

Ast1 0.86 3.91E-01 

Oli0 -1.36 1.76E-01 

SLC26A7 

Ex4 2.11 8.99E-02 

In0 0.93 4.37E-01 

Ast1 -2.24 2.06E-01 

Oli0 -0.26 7.97E-01 

S10 Table. Differential expression analysis of three identified genes, HLA-A, SLC26A, and 

ANKRD13D, between AD cases and control from the ROSMAP study using four cellular 

subpopulations implicated with AD pathology 

Abbreviations: Ex: excitatory neuron; In: inhibitory neuron; Ast: astrocyte; Oli: 

oligodendrocyte; Opc: oligodendrocyte-precursor-cell; Mic: microglia. Effect: t-statistics 
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calculated using student t-test, representing the direction of effect. P-values are computed 

using the same method. 

 Stage 1 ADSP Stage 2 AMP-AD Stage 2 ADSP Family 

Endocytic gene-set MAF 1% MAF 0.1% MAF 1% MAF 0.1% MAF 1% MAF 0.1% 

# of Singletons 5,113 5,011 5,878 5,803 618 305 

# of Total variants 6,645 5,745 7,946 6,965 1,382 568 

# of Private Doubletons 0 0 2 2 0 0 

Percentage of Singletons 76.9% 87.2% 74.0% 83.3% 44.7% 53.7% 

S11 Table. Count of singletons and private doubletons within the included rare deleterious 

variants. 

The number of total variants represented all rare deleterious variants included under the 

corresponding MAF threshold. 

Gene-set Model 
Stage 1 ADSP Stage 2 AMP-AD Stage 2 ADPS Family Meta-analysis 

OR OR OR P OR P P P* 

Endosys 

M0 1.17 5.82E-03 1.11 1.50E-01 1.12 3.80E-01 3.38E-03 2.57E-03 

M1 1.17 6.59E-03 1.11 1.31E-01 1.15 2.60E-01 1.99E-03 1.86E-03 

M2 1.16 2.47E-02 1.12 1.16E-01 1.13 3.60E-01 6.26E-03 6.44E-03 

Endosome 

M0 1.12 5.18E-02 1.08 2.69E-01 1.02 9.00E-01 6.67E-02 4.44E-02 

M1 1.11 6.41E-02 1.09 2.27E-01 1.04 7.20E-01 4.84E-02 3.88E-02 

M2 1.08 2.03E-01 1.09 2.46E-01 1.05 6.70E-01 9.86E-02 8.97E-02 

Lysosome 

M0 1.07 2.80E-01 1.16 3.07E-02 1.19 1.70E-01 7.73E-03 8.52E-03 

M1 1.06 3.55E-01 1.18 1.87E-02 1.22 1.20E-01 5.29E-03 5.25E-03 

M2 1.04 5.92E-01 1.19 1.95E-02 1.19 1.90E-01 1.57E-02 1.17E-02 

TransGolgiNet 

M0 1.04 4.78E-01 0.99 8.93E-01 1.08 5.40E-01 4.00E-01 3.53E-01 

M1 1.05 4.48E-01 0.99 8.63E-01 1.08 5.20E-01 3.63E-01 3.38E-01 

M2 1.09 1.77E-01 0.98 8.05E-01 1.07 6.00E-01 2.20E-01 2.18E-01 

S12 Table. Rare-variant AD association analysis weighted by pLI scores. 

The OR and P represented the estimated odds ratio and the p-value from the corresponding 

logistic regression model (or the generalized linear mixed model for family study). P-values 

were highlighted in red (if <0.05; nominally significant) or green (if <0.00625; gene-set-wide 
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significant). M0 took into account the sequencing location, first ten PCs, total count of rare 

variants. M1 was M0 plus age and sex. M2 was M1 plus the count of APOE 𝜀2 and 𝜀4 alleles. 

The P and P* in the meta-analysis across two stages (three datasets) represented the p-values 

calculated using the fixed-effects inverse variance weighted method by METAL and the 

Fisher’s method by ‘meta-p,’ respectively. 

Gene-set Model 
Stage 1 ADSP Stage 2 AMP-AD Stage 2 ADSP Family Meta-analysis 

OR P OR P OR P P P* 

BMI 

M0 1.06 3.63E-01 0.99 8.49E-01 1.14 2.90E-01 2.13E-01 2.12E-01 

M1 1.06 3.20E-01 0.99 8.20E-01 1.12 3.70E-01 2.21E-01 2.31E-01 

M2 1.02 7.21E-01 0.98 7.04E-01 1.09 5.20E-01 4.26E-01 4.69E-01 

Height 

M0 0.93 2.20E-01 1.00 9.98E-01 1.01 9.10E-01 4.38E-01 7.85E-01 

M1 0.93 2.90E-01 1.01 9.11E-01 1.01 9.40E-01 4.72E-01 7.58E-01 

M2 0.96 6.08E-01 0.96 4.72E-01 1.03 8.40E-01 4.07E-01 8.09E-01 

S13 Table. Rare-variant AD association analysis using gene-sets related to BMI and height. 

The OR and P represented the estimated odds ratio and the p-value from the corresponding 

logistic regression model (or the generalized linear mixed model for family study). M0 took 

into account the sequencing location, first ten PCs, total count of rare variants. M1 was M0 

plus age and sex. M2 was M1 plus the count of APOE 𝜀2 and 𝜀4 alleles. The P and P* in the 

meta-analysis across two stages (three datasets) represented the p-values calculated using the 

fixed-effects inverse variance weighted method by METAL and the Fisher’s method by 

‘meta-p,’ respectively. 

 Stage 1 ADSP Stage 2 AMP-AD Stage 2 ADSP Family 

HWE cutoff MAF 1% MAF 0.1% MAF 1% MAF 0.1% MAF 1% MAF 0.1% 

Cutoff at 0.001 24,775,258 17,718,944 31,871,709 23,352,094 6,308,504 48,660 

Cutoff at 5e-8 24,779,990 17,719,782 31,896,945 23,366,281 6,308,811 48,661 

Percentage gained 0.019% 0.0047% 0.079% 0.061% 0.0049% 0.0021% 

S14 Table. Number of rare variants passing different HWE cutoffs at different MAF 

thresholds. 
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Abbreviations: HWE: Hardy-Weinberg Equilibrium; MAF: minor allele frequency. 

Stage 1 ADSP Stage 2 AMP-AD Stage 2 ADSP Family Meta-analysis 

Gene P Gene P Gene P Gene P 

SLC17A3 2.38E-03 ZFYVE16 1.18E-03 SPNS1 3.36E-03 SORL1 2.02E-03 

DDIT3 4.20E-03 MFSD8 2.00E-03 MPO 5.12E-03 ATP6V0A2 3.27E-03 

SERPINB13 6.15E-03 PDIA3 2.82E-03 PRSS16 5.77E-03 PRSS16 5.47E-03 

DAGLB 6.60E-03 CLCN7 3.82E-03 FLT1 6.15E-03 ATP6V1A 7.39E-03 

SDC4 7.88E-03 EGFR 4.65E-03 TYRP1 1.33E-02 TMEM108 9.41E-03 

VASN 8.39E-03 ABCB9 4.77E-03 ZFYVE9 1.39E-02 GPR137B 9.69E-03 

VAC14 9.69E-03 ABCB9 4.77E-03 RAB27B 1.52E-02 CHST4 1.06E-02 

HRNR 1.08E-02 CHMP2B 5.66E-03 AP5M1 1.78E-02 SNX17 1.33E-02 

UNC93B1 1.18E-02 ATP6V1C2 7.51E-03 CDIP1 1.89E-02 AGRN 1.67E-02 

TMEM127 1.29E-02 ATP8A2 7.83E-03 WDR48 2.26E-02 ARRDC3 1.90E-02 

S15 Table. Top ten most significant genes in rare-variant single-gene AD association 

analysis. 

The genes were sorted in the descending order of p-values. The meta-analysis was performed 

using MetaSKAT. The Bonferroni thresholds were 𝛼=4.18*10-5;	4.07*10-5;	7.32*10-5;	

7.79*10-5, for ADSP, AMP-AD, ADSP Family, and meta-analysis, respectively. 
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Chapter 3 - Analysis of de novo sequence variants in Tourette syndrome 
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Introduction 

Tourette Syndrome (TS) is an early onset neurodevelopmental disorder with an estimated 

average prevalence rate of 0.6%, ranging between 0.3 – 1%.(1-6) TS is characterized by 

chronic motor and vocal tics and is highly comorbid with other psychiatric disorders, 

including obsessive-compulsive disorder (OCD), attention deficit and hyperactivity disorder 

(ADHD), autism spectrum disorder (ASD).(5, 7-10) Studies have also reported sex 

differences for TS where males are more likely to be affected and bear comorbidities than 

females.(11, 12) However, given the current limited understanding of the pathophysiology, 

interventions, and treatments for tics and TS have demonstrated limited efficacy with long-

term side effects.(13) 

 

TS has been shown to have a substantial genetic component with a heritability of 70 – 

80%(14), in which single nucleotide variants (SNVs) contributed 50 – 60% of the total 

estimated heritability.(15) Multiple genetic risk loci have been identified in TS, including loci 

found in genome-wide association studies (GWASes),(16) rare copy number variants,(17) as 

well as de novo mutations.(18) In fact, the recent findings by our group have revealed four 

potential risk genes associated with TS through de novo damaging SNVs and 

insertion/deletion variants (INDELs) and provided a powerful tool to discover TS-associated 

genes using recurrent de novo variants. 

 

In this study, we conducted whole-exome sequencing of 2,720 samples and performed 

stringent quality control steps to ensure high quality in both sample and variant levels. We 

obtained a total of 858 complete high-quality trios and identified 987 high-quality de novo 

mutations (DNMs). We then performed functional annotations to the identified DNMs and 

observed an enrichment of protein-truncating variants (PTV) and missense mutations. We 
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then compared the observed mutation rate per gene in TS samples with those in an expected 

baseline as described in Samocha et al.(19). Lastly, we conducted functional analyses across 

different tissue types and developmental stages to identify the potential biological 

connections. 

 

Methods 

Whole exome sequencing and variant calling 
We performed whole-exome capture and sequenced the DNA of 2,720 samples. Fragmented 

DNA samples were supplied in equal amounts for hybridization, followed by PCR 

amplification. Then, all samples were normalized into 10 nM concentrations to 10 nM and 

sent for sequencing using Illumina HiSeq 4000 platform with 100 bp paired-end sequencing 

reads. GATK best practices(20) have been used for pre-processing and variant calling. 

Specifically, we ran the HaplotypeCaller in GVCF mode for each sample and conducted joint 

genotype calling to include only the common regions covered by all samples. This procedure 

resulted in a multi-sample VCF dataset for later quality control steps and analyses. 

 

Quality control of WES data 
Variant-level quality control of WES data 
We conducted stringent quality control (QC) to ensure that only high-quality variants were 

included for analyses in this study. Before any QC was conducted, we first obtained WES 

target information and removed variants that fell into the non-targeted regions by design. This 

step ensured that all the remaining variants were captured by the design of the WES kit, 

which usually had higher quality and confidence than the flanking regions captured by 

chance. We additionally performed basic variant filtering to select variants meeting the 

following three basic criteria: 1. marked with PASS flags by the Variant Quality Score 

Recalibration (VQSR) in the GATK pipeline; 2. with genotyping quality (GQ) >= 21, and 3. 

bi-allelic variants. Then, we evaluated the sequencing metrics using the remaining variants 
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from the first two filtering steps. We used the Single Nucleotide Polymorphism database 

(dbSNP) version 146 as the reference and measured the total numbers of SNVs/INDELs 

found, the amount of SNVs/INDELs found in dbSNP 146, and the novel SNVs/INDELs, 

followed by computing the Ti/Tv ratio within each category. We also counted the number of 

singletons within SNVs and INDELs. To note, the high-quality Ti/Tv ratio for WES was 

expected to be around 3.0(21) and thus served as the first check of the sequencing quality 

across the exome in our QC procedures. Subsequently, after confirming all sequencing 

metrics were within expectation, we then assessed the genotyping missing rate and set the 

threshold at 5%. 

 

Individual-level quality control of WES data 
We conducted stringent quality control (QC) to ensure that only high quality-samples were 

selected for analyses in this study. We included only variants that served as inputs for the 

variant-level QC, namely those that passed the first two sets of basic filterings. For each 

individual, we checked the sample-level missing rate, relatedness, population composition, 

expected sex, and concordance rate to microarray data. Specifically, we first computed the 

genotyping missing rate per individual for SNVs and INDELs separately and set the passing 

threshold at 5% and 10%, respectively. Secondly, we performed identity by descent (IBD) 

analysis by estimating the theoretical kinship relationship between all input samples using 

Plink 1.9(22), followed by comparing against known pedigree structures. We primarily 

focused on identifying duplications and unexpectedly related samples within each trio family. 

Thirdly, we performed principal component analysis (PCA) to examine population 

stratification within our samples. As PCA assumes independence across samples, we 

included only parents within our datasets while removing duplicated samples identified in the 

previous step. To identify specific ancestry groups, we used 1000 Genomes (1KG) phase 

3(22) as the reference panel and performed the analysis using EIGENSTRAT(22) with only 
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common SNVs shared across the 1KG reference panel and our dataset. To note, we only 

included the parents (samples labeled as parents or without parental information) into this 

analysis as PCA assumed independence among samples. The kinship relationship would be 

confounded with the ancestral relationship. The computed principal components (PCs) for 

1KG then served as a guide to determine the ancestries among the TS dataset. PCA plots 

(PC1 v.s. PC2) were included in the supporting figures. (Fig S1.) Subsequently, we 

conducted sex-check using the –check-sex option from PLink 1.9 by estimating the 

theoretical sex from X-chromosomes and comparing it against the recorded empirical sex. In 

the final step, we obtained the microarray data for 3,215 individuals, of which 2,720 were 

within our WES dataset. We performed liftover for the microarray data from Human 

reference genome version 19 (Hg19) to Human reference genome version 38 (Hg38) to 

ensure consistency with the WES data. We then identified the shared variants and set the 

concordance rate cutoff at 98%. 

 

De novo mutation calling and distribution checking 
We filtered out low-quality variants and samples based on the aforementioned QC 

procedures. The remaining data then served as the input for calling de novo mutations 

(DNMs). We selected complete trios as both parent and child information was required for 

accurately detecting de novo variants. Additionally, for families with more than one 

probands, we split them into multiple families by duplicating the parents and suffixing their 

sample IDs with numbers. As a result, each family contained exactly one proband with two 

parents. As DNMs are rare events, we assumed all candidates were singletons with minor 

allele count (MAC) at 1. We used a Bayesian framework for DNM calling in trios 

(TrioDeNovo), developed by Wei et al..(23) To ensure a high quality of DNM calling, we set 

the minDQ and minDP parameters at 8 and 20, respectively, followed by additional filterings 
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based on allele balance (AB). Specifically, we set the cutoff of homozygous AB at 0.99 and 

that of heterozygous AB between 0.3 and 0.7. 

 

To examine the distribution of called DNMs among our samples, we first looked at the mean, 

median, and standard deviation of the number of DNMs per individual. According to 

previous studies, the distribution of DNMs per individual should follow a Poisson 

distribution.(18, 24) We used the poisson.test function in R(25) to test this hypothesis. 

Furthermore, we investigated the distribution of DNMs per gene as well as per chromosome.  

 

Functional annotation of DNMs 
To investigate the potential impact of the identified DNMs, we performed functional 

annotations using the ENSEMBL Variant Effect Predictor (VEP)(26) in combination with the 

Polymorphism Phenotyping v2 (PolyPhen-2)(27). To identify potential deleterious and 

pathogenic variants, we focused on the variants flagged with HIGH or MODERATE impact 

by VEP. In particular, the HIGH impact variants included transcript deletion or amplification, 

stop or start lost, stop gain, splice site, and frameshift mutations, while the MODERATE 

impact variants consisted of inframe insertion or deletion, missense, inframe protein-altering, 

and regulatory region deletion mutations. Additionally, we looked at the predicted score by 

PolyPhen-2 and set a cutoff at 0.446, which included the predicted possibly and probably 

damaging variants. 

 

DNM enrichment analysis 
Our hypothesis of the role of DNMs in TS samples was that DNMs were enriched in TS 

probands. Therefore, we tested the observed rate of mutations within our dataset and 

compared them against the estimated mutation rate of various types of mutations from 

external sources.(19) In particular, we used the high-quality DNMs called in the previous step 
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and additionally removed individuals with over 10 DNMs, as they were considered outliers 

due to an excessive amount of DNMs. We summarized the DNMs into three categories, 

protein-truncating (PTV), missense, and synonymous variants. The PTV variants consisted of 

frameshift, stop gained, splice acceptor, and splice donor mutations. Then, we counted the 

number of DNMs from each category per gene and compared to the expectation under the 

null hypothesis using a Poisson distribution, previously estimated by Samocha et al.(19). To 

account for testing multiple genes, we considered two multiple-testing thresholds using 

Bonferroni correction, one corrected for the number of genes with at least one DNMs in a 

given category and one corrected for 18,226 genes with available, expected mutation rate. 

The resulting significance thresholds based on the first method were thus at a=1.28*10-3; 

8.20*10-5; 2.22*10-4 for PTV, missense, and synonymous variants, respectively. The second 

method gave the same threshold of a=2.74*10-6 for tests. 

 

Furthermore, we conducted a gene-set analysis using the group of 42 genes containing de 

novo loss of function (LoF) intolerant (pLI > 0.9) PTVs or de novo missense intolerant (Z-

mis > 4) likely gene damaging (LGD) missense variants. The LoF and missense intolerances 

were estimated from gnomAD database.(28) We performed gene-set expression enrichment 

analysis using FUMA(29) across different human tissues available from GTEx version 9 

gene-expression dataset(30). We also tested for differential expression of this gene-set 

spanning 11 human brain development stages provided by the BrainSpan project(31). 

 

Results 

Sample and variant QC outcome 
We have successfully performed stringent QC on 2,720 samples, which resulted in 894 high-

quality complete trio families. As described in Methods, we removed variants in non-target 

regions by the design of WES kit, which resulted in 638,345 variants. Subsequently, we 
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applied basic filters and kept 580,720 SNVs and 22,036 INDELs. We then computed the 

sequencing metrics using these variants as inputs. Comparing to dbSNP version 146, we have 

found 16.61% and 27.49% novel SNVs and INDELs, respectively. The Ti/Tv ratio for the 

SNVs present in dbSNP 146 database was 3.16, which was close to the expected ratio of 3 for 

WES data(21) and indicated a good overall sequencing quality in this dataset. The novel 

SNVs, on the other hand, had a lower Ti/Tv ratio at 1.7515. (Fig S2.) 

 

After checking the sequencing metrics and confirming an overall high quality in the database, 

we performed the QC steps at the variant and the sample level separately. In general, both 

SNVs and INDELs had low missing rates, where only 5.88% of the common variants and 

2.91% of the rare variants fell above the missing rate threshold of 1%. Similar but slightly 

higher missing rates were observed in INDELs.  

 

For sample-level QC, we first examined sample-level missing rates using SNVs and INDELs, 

separately. The maximum sample missing rates using SNVs and INDELs were at 3.1% and 

6.45% and the mean at 0.95% and 2.46%, respectively. Secondly, to examine the kinship 

relatedness, we performed IBD analysis and identified 37 pairs of duplicates, 2,083 pairs of 

first-degree relatives, and ten pairs of second-degree relatives. All duplicates and second-

degree relatedness were unexpected, which were thus examined first. For duplicated samples, 

we removed one in each pair. For second-degree relatives, we identified one trio family in 

which the parents were second-degree relatives. All other second-degree related samples 

were between different families. We thus did not remove any sample based on these criteria. 

Finally, we checked the first-degree related pairs. By study design, all parent-child pairs in 

trio families were expected and were thus removed from the identified first-degree related 

pairs. This resulted in 16 problematic first-degree related pairs where one in each pair was 
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therefore removed from further analysis. Thirdly, to understand the population composition, 

we performed PCA using 1KG as the reference panel. We focused on identifying samples 

with European ancestry and used only parents to avoid confounding effects due to 

relatedness, which resulted in 1,595 theoretically determined European samples out of 1,694 

parents. The fourth QC procedure was to check how well the empirical sex information was 

consistent with the theoretical sex estimation. We found 19 sex-mismatched samples, seven 

with ambiguous estimation and 45 with no empirical records. The confirmed 19 sex-

mismatched samples were therefore removed from DNM calling. Lastly, we conducted 

genotyping concordance analysis using microarray data available to 3,215 individuals in 

total. In combination, 2,714 samples had both WES and microarray data with 37,720 joint bi-

allelic SNVs. After examining these variants, we computed a mean concordance rate at 

99.89% with only three individuals below 98%. Thus, we set the cutoff at 98% and removed 

all failed samples. 

 

De novo mutation calling and functional annotation 
After removing variants and samples that failed our stringent QC procedures, we additionally 

removed incomplete families and reformed other non-trio families. (See Methods) We kept 

only singletons as we assumed all de novo mutation events were rare in our dataset. This 

resulted in 141,555 singletons from 873 complete trio families. We used TrioDeNovo 

software to call DNMs. We tested for a range of possible minimum De Novo Quality 

parameters (minDQ = 5-15). (Table 1.) We observed a rapid decrease in the number of called 

DNMs when minDQ was over 11. Between minDQ = 6 and 9, there was nearly no change in 

the number of called DNMs, suggesting an optimal point to set this parameter. We, therefore, 

set minDQ at eight and minimum depth (minDP) at 20, where the latter was based on the 

recommended value by the TrioDeNovo documentation. This calling setup resulted in 3,519 

DNMs. To further ensure the calling quality, we applied an additional check on allele balance 
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for homozygous and heterozygous sites (AB Hom and AB Het), which gave us 2,929 high-

quality DNMs identified in 588 families. A distribution of DNMs across probands, genes, and 

chromosomes could be found in Fig S3-S5. To note, we observed 15 samples with over ten 

DNMs and an additional four samples with over five DNMs. Excluding these outliers, the 

distribution of the DNMs per sample indeed followed a Poisson distribution with a mean of 

1.12 and a standard deviation (SD) of 1.05. (Fig 1.) Out of 2,494 genes with at least one 

DNM, only 2.37% of genes contained three or more DNMs. To note, one gene contained a 

maximum of 12 DNMs. 

MinDQ Mean SD Mean 
(<=10) 

SD 
(<=10) 

#Outlier 
(>10) 

#Outlier2 
(>5) 

#Normal 
(>0) 

5 3.36 23.64 1.15 1.13 15 4 573 

6 3.36 23.64 1.14 1.13 15 4 570 

7 3.36 23.64 1.14 1.13 15 4 569 

8 3.36 23.64 1.14 1.13 15 4 569 

9 3.34 23.63 1.13 1.12 15 4 567 

10 3.32 23.55 1.12 1.12 15 4 563 

11 3.27 23.37 1.10 1.11 15 4 559 

12 2.62 18.82 0.89 1.03 15 3 487 

13 0.47 3.96 0.16 0.53 8 4 115 

14 0.30 2.69 0.12 0.55 7 3 74 

15 0.15 1.42 0.10 0.65 1 5 40 

Table 3-1. DNM calling results under different minDQ setting 
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Figure 3-1. Distribution of DNMs per proband. 

 

We annotated the 2,929 DNMs with VEP and PolyPhen-2 and identified a total of 920 

deleterious variants defined in the Methods. Previous studies have identified six TS-

associated genes with damaging variants. Among these implicated genes, we found one 

deleterious variant in FBN2. (Table 2) 

Gene #Damaging Var #Deleterious Var Predicted In Our 
Data 

 Willsey et al. Wang et al. High Effect  Moderate 
Damaging 
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WWC1 2 2 0 0 

CELSR3 2 3 0 0 

OPA1 NA 2 0 0 

NIPBL 2 2 0 0 

FN1 2 2 0 0 

FBN2 NA 2 0 1 

Table 3-2. Number of deleterious DNMs identified in genes previously implicated in TS. 

 

DNM enrichment analysis 
To examine the enrichment of DNMs, we compared the observed number of DNMs against 

the expected mutation rate across all genes. A previous study by Samocha et al. estimated the 

expected mutation rate for all genes based on their characteristics for different types of 

mutations, including synonymous, missense, nonsense, essential splice site, and frameshift. 

We thus obtained the count of different types of DNMs per gene based on our previous 

functional annotation. In total, after excluding outlier samples with over ten DNMs, we had 

987 DNMs from 858 complete trios, including families with zero DNMs. We grouped 

variants into three categories: protein-truncating (PTV), missense, and synonymous variants. 

Including frameshift, stop gained, splice acceptor, and splice donor mutations, 44 PTVs were 

found in 44 genes, among which 39 genes were provided with expected mutation rates. 

Running Poisson test, we observed three genes with significant enrichment using the lenient 

Bonferroni-corrected threshold, while none passed the stringent multiple-testing threshold. 

For missense and synonymous mutations, we discovered 683 variants from 654 genes and 

246 variants from 241 genes, respectively. However, none of these genes passed our 

Bonferroni-corrected thresholds. Additionally, we checked whether any of the genes 
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containing PTVs had other types of mutations. One gene, SIRT7, emerged with one 

additional missense mutation. 

 

Furthermore, we selected 42 genes intolerant to loss-of-function or missense mutations and 

also bearing at least one PTV or missense variant. We conducted differential expression (DE) 

analysis in 54 adult human tissues from 8 gene-expression datasets using this gene-set. We 

tested for differential up-regulation, down-regulation, and both separately. Comparing each 

tissue type to others, we identified significant enrichment of this gene-set with up-regulation 

in ten tissue types, down-regulation in four tissue types, and both sides in 17 tissue types. 

Further analysis using 11 different human brain developmental stages revealed that these 42 

genes were significantly up-regulated in early-mid prenatal brain development, late 

childhood, and significantly down-regulated in mid-adulthood. (Fig 2.)  

 

Discussion 
In our previous work, we established the notion that de novo damaging sequence variants 

significantly contributed to TS through observation of enrichment. Using a method based on 

recurrent DNMs, we identified one high-confident gene, WWC1, and three probable-

confident genes. Based on these observations, we constructed a model that predicted a greater 

detecting power with a larger sample size of TS trio data.(18) Therefore, in this regard, we 

extended the total sample size in this work by sampling almost 900 TS trio families, 

compared to 674 high-quality trios in the previous study. Using WES data of these samples, 

we observed an enrichment of protein-truncating DNMs in probands compared to the 

expected mutation rates in three genes using a lenient Bonferroni-corrected threshold. This is 

consistent with the observations made in previous studies where de novo Mis3 and damaging 

variants were enriched in general in TS probands.(18) However, under a stringent 

significance threshold, we were unable to observe any gene with significant enrichment. 
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Nonetheless, compared to missense and synonymous variants, PTV displayed greater 

enrichment, suggesting the deleteriousness of the DNMs was correlated to TS. To note, a 

different DNM calling pipeline was used between the previous study by Willsey et al. and our 

study. We employed a stringent calling strategy that included only singletons as candidate 

DNMs. Although DNMs are very rare events, this strategy was known to be conservative and 

might lead to a shrinkage of the observed DNM rates compared to theoretical mutation rates. 

In the next phase of this study, we plan to extend this stringent pipeline and use a minor-

allele-frequency-based pipeline that could potentially discover more DNMs in principal. 

 

In terms of the sample size, we have analyzed around 900 TS trio families available at this 

phase. However, nearly one-third of the total expected samples, namely an additional 300 

samples, were expected to arrive by the end of 2021. The sequencing of these samples was in 

part hindered by the 2020 COVID pandemic. Given the current observation of enriched DNM 

counts in TS probands, we expected to have a greater detecting power once the final one-third 

of trio data has arrived. In combination with a more lenient DNM calling pipeline, we would 

expect to detect more TS-associated genes in the next phase of the analysis. 

 

Our current enrichment analysis was based on the theoretical mutation rates estimated by 

Samocha et al..(19) They provided detailed expected rates for different types of variants in 

the general population. However, it would be best to compare the observed number of DNMs 

in TS dataset to a control dataset. We have recently gained access to a trio WES dataset 

collected for ASD, the Simon Simplex Collection (SSC).(32) In addition to ASD probands, 

this dataset contained many families with healthy siblings of the probands, which provided a 

great opportunity to compare against our TS dataset. Furthermore, as aforementioned, TS is 

highly comorbid with other psychiatric diseases, including ASD. Analyzing TS probands 
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together with ASD probands would provide additional insights into the shared genetic effects 

between these two diseases. To note, the SSC WES trio dataset was selected such that the 

deleterious mutations were depleted compared to the general population. This criterion 

provided added power to identify TS-associated genes with DNMs that would be missed 

otherwise. 

 

In one gene, FBN2, we observed one missense DNM predicted to be deleterious by VEP and 

PolyPhen-2. This gene has been previously implicated by Wang et al.(24) with two damaging 

DNMs. This gene encodes a large protein, fibrillin-2, which is responsible for forming 

microfibrils and elastic fibers, especially during embryonic development.(33-36) It has been 

implicated in multiple diseases, including muscular degeneration, congenital contractural 

arachnodactyly, and TS in our previous work.(24, 34, 37) Given that recurrent mutations 

have suggested important TS-associated genes, this finding indicated a potential replication 

and further validation of the previous work. By expanding our sample size and relaxing the 

stringent workflow, we expect to observe more replicated genes, as well as novel genes, due 

to greater detecting power. 

 

The functional enrichment analysis we performed indicated a pattern differential expression 

across different tissue types and brain developmental stages using a gene-set selected as 

genes with LoF-intolerant PTV and mis-intolerant missense mutations. Notably, enriched 

upregulation was observed in ten brain-derived tissues, which have been previously 

implicated in GWAS meta-analysis.(16) This colocalization of expressional regulation could 

suggest shared TS risk of common and rare variants in these tissues or genes participating in 

these pathways. Significant upregulation was also found in early-to-mid prenatal brain 

development, while this gene-set was down-regulated in the mid-to-adult stage, suggesting a 
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parallel change with brain development. Furthermore, the gene, FBN2, identified with 

recurrent DNMs, was linked to embryo development and thus provided a potential 

connection to the observed expressional regulation in brain development. 

 

Taken together, our study analyzed nearly 900 TS trio families, from which 2,929 high-

quality DNMs were called. Functional annotation and enrichment analyses indicated 

recurrent mutations present in one gene FBN2 and differential expression patterns across 

multiple tissue types and brain developmental stages. As more samples are expected, and an 

improved workflow will be employed, we anticipate a greater detecting power to discover 

further TS-associated genes. These findings provided important insights into the genetic 

architecture of TS and facilitated future genetic and clinical studies on TS and potentially 

other comorbid psychiatric disorders. 
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Supporting information 

 

 
Fig S1. PCA plot (PC1 v.s. PC2) using all parents in TS trio dataset 
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Fig S2. Ti/Tv ratio of all SNPs present in dbSNP database (left) and novel SNPs (right). 
 

 
Fig S3. Distribution of DNMs per proband. 
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Fig S4. Distribution of DNMs per gene. Genes with no DNM called were excluded. 
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Fig S5. Distribution of DNMs per chromosome. 
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Chapter 4 – Multi-population meta-analysis of blood lipid levels identify 

one novel locus, rs72552763, in UCLA ATLAS Precision Health Biobank 
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Introduction 

Blood lipids levels are a major contributor to various long-term health conditions, including 

type 2 diabetes, fatty liver disease, and especially atherosclerotic cardiovascular disease, an 

increasingly prevalent disease and the leading cause of death globally. (1-5) Research have 

suggested that blood lipid levels are highly heritable polygenic traits, with an estimation of 

heritability of 40%, 51%, 33%, and 51% for high-density lipoprotein cholesterol (HDL-C), 

low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and total cholesterol (TC), 

respectively. (6, 7) To date, genome-wide association studies (GWAS) have revealed over 

444 risk loci (8-17) associated with changes in blood concentrations of these lipid 

phenotypes, which further pointed to risk factors such as ANGPTL4, LPL, and SVEP1 serving 

as potential therapeutic targets. (18) However, current findings through GWAS only explain 

about one-quarter to one-third of the heritability of these lipid phenotypes (12.8% HDL-C, 

19.5% LDL-C, 9.3% TG, and 18.8% TC) (19-21), and a majority of these studies focused on 

European ancestry while underrepresenting other ancestries, such as African, Admdixed 

American, South Asian, and East Asian populations. 

 

To address these issues would require very large sample sizes together with a diversity of 

ancestry backgrounds, which is both economically intense and practically time-consuming. 

However, health data documented in electronic health records (EHR) provide a resourceful 

and efficient means to overcome these limitations while presenting diverse and extensive 

health-related phenotypes for a large number of individuals potentially with a variety of 

ancestry backgrounds. (22) Recent advancements in building large-scale biobanks, such as 

UK Biobank and UCLA ATLAS Precision Health Biobank, and linking to EHR further 

facilitate genetic studies with unprecedented power and convenient rich resources of 

phenotypic data. (23) Previous studies have demonstrated the successful usage of the 
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combination of biobank and EHR data in analyzing the genetic associations of multiple 

phenotypes, including obesity, breast cancer, and blood lipids (9, 24-26), and have provided 

important knowledge from real-world patients towards the genetic architecture and the 

etiology of common complex diseases. 

 

In this study, we leveraged the combination of the genotyping data of 26,414 individuals 

from UCLA ATLAS Precision Health Biobank and four blood lipid phenotypes (HDL-C, 

LDL-C, TG, and TC) from UCLA EHR and developed a pipeline to perform GWAS on the 

selected phenotypes. In our pipeline, we first identified all individuals with available 

phenotypic measurements in EHR for each blood lipid category, followed by intersecting 

with the genotyping data available to us. In total, we identified 117,535, 120,186, and 

139,454 individuals with available measurements of HDL-L, TG, and TC, respectively. For 

LDL-C, we observed two different measuring methods, one by calculation using HDL-L, TG, 

and TC (LDL-C Calc) and one by quantitation through direct measurements (LDL-C Quant). 

We considered them separately and recorded 104,260 and 19,201 individuals with LDL-C 

Calc and LDL-C Quant, respectively. Among these patients, we identified 17,226,  16,948, 

4,599, 17,429, and 17,377 individuals with complete phenotypic (HDL-C, LDL-C Calc, 

LDL-C Quant, TG, and TC, respectively) and genetic information. To elucidate population 

stratification, we performed principal component analysis (PCA), which revealed five 

primary ancestries (European, Admixed American, African, East Asian, South Asian) among 

our samples. We then performed genome-wide association (GWA) analyses on common 

variants for each blood lipid phenotypes within each ancestry group, followed by meta-

analyzing across all five populations. Our GWA analyses revealed 236 genome-wide 

significant hits across all populations where a majority of the signals came from the European 

population. To validate our findings, we extracted all variants with a p-value below 10-3 and 
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compared and contrasted them to the GWAS results estimated using UK Biobank data, one of 

the largest biobank data worldwide. For all selected variants, our results displayed a relatively 

high correlation with UK Biobank results in terms of the p-values of the same variant in both 

datasets. Particularly for the genome-wide significant hits, we observed a nearly 100% 

replication between these two biobanks where we identified two novel hits for triglyceride 

among European and South Asian samples. In the meta-analysis, we demonstrated 26, 10, 2, 

3, and 9 genome-wide significant signals for HDL-L, LDL-L Calc, LDL-L Quant, TG, and 

TC, respectively, where all hits were confirmed using UK Biobank data. In brief, our study 

represented one of the first GWA analyses using UCLA ATLAS Precision Health Biobank 

and UCLA EHR data and demonstrated the potentiality of EHR in providing ancestrally 

diverse and phenotypically abundant data for genetic studies. Our analyses on lipid 

phenotypes provided an easy pipeline to work with both UCLA data sources and revealed 

236 population-specific genome-wide significant loci associated with blood lipid levels, 

where 50 of them remained significant after meta-analysis. Our results indicated a strong 

component of population-specific genetic effects in determining the levels of various blood 

lipid molecules and provided further understanding of their genetic architectures and 

potential targets for pharmaceutical and clinical research.  

 
Results 

Demographics of UCLA ATLAS population 
A total of 26,414 patients were genotyped in high quality available in UCLA ATLAS 

Precision Health Biobank. Details of sample-level and variant-level quality control 

procedures can be found in Methods. Leveraging genetic information, we characterized these 

patients into five mutually exclusive ancestral groups, including European, African, Admixed 

American, South Asian, and East Asian, where over 67% were of European ancestry. (Table 

1) We then obtained blood lipids phenotypes from the UCLA EHR database and identified 
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117,535, 104,260, 19,201, 120,186, and 139,454 individuals with HDL-C, LDL-C Calc, 

LDL-C Quant, TG, and TC lipid measurements, respectively. After merging with genotyping 

data, we retained 17,226,  16,948, 4,599, 17,429, and 17,377 individuals with a complete set 

of phenotypic information, including blood lipid measurements (HDL-C, LDL-C Calc, LDL-

C Quant, TG, and TC, respectively), sex, age, and BMI. Across the identified five ancestral 

groups, we observed the lowest HDL-C level of 50.3 and the highest TG level of 141.7 in 

Admixed American, the highest calculated LDL-C level of 105.9 and TC level of 187.4 in 

Europeans, and the highest quantitated LDL-C level of 120.2 in South Asians. A detailed 

description of the demographic information can be found in Table 2. 

 
Phenotype EUR AMR AFR EAS SAS Total EUR (%) 

HDL 11,652 2,637 959 1,700 278 17,226 67.64% 

LDL Calculated 11,456 2,602 950 1,666 274 16,948 67.59% 

LDL Quantitated 3,090 576 307 552 74 4,599 67.19% 

Total Cholesterol 11,734 2,681 961 1,718 283 17,377 67.53% 

Triglyceride 11,762 2,692 968 1,722 285 17,429 67.49% 

Table 4-1. Number of samples with genotyping information identtified in the five popuations 

 

 

Phenotype HDL LDL Calculated LDL Quantitated Total Cholesterol Triglyceride 

EUR 57.12 105.90 112.16 123.99 187.44 

AFR 55.36 104.46 114.50 104.70 180.38 

AMR 50.33 98.91 113.36 141.66 176.83 

SAS 51.45 101.28 120.24 136.30 180.38 

EAS 57.43 100.59 111.35 130.91 183.52 

Age 51.77 52.07 55.70 51.78 51.67 
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Male (%) 46.25% 46.34% 42.29% 46.39% 46.27% 

BMI 28.05 28.09 27.78 28.03 32.16 

Table 4-2. Demographic information for five blood lipid levels 

Row one to five are the mean concentration for each blood lipid measurement in each 

populaiton. Row six and eight are the mean age and BMI of all samples for a given blood 

lipid phenotype. Row seven is the percernage of males for a given blood lipid phenotype. 

 

 

GWAS of the five blood lipid phenotypes 
In order to identify population-specific effects, we performed genome-wide association tests 

for each of the five blood lipid phenotypes and for each ancestral group separately, adjusted 

for covariates including sex, age, and BMI. Results of the genome-wide association analyses 

for HDL-C in European ancestry were summarized in Fig 1 and 2. Manhattan plots and Q-Q 

plots for other populations were shown in Figures S1-S48, and the inflation factors for all 

combinations of blood lipid phenotypes and ancestry groups were shown in Table S1.  Across 

all populations and phenotypes, we identified a total of 236 loci that surpassed the genome-

wide significance threshold (p-value < 5*10-8). (Table 3) A majority of the GWAS hits were 

observed for European ancestry as it represented the largest ancestral group in our study. 

Nonetheless, we identified a number of significant signals in other populations, including the 

smallest South Asian population. Specifically, for HDL-C, we identified nine significant loci 

in Admixed Americans and six in East Asians. For LDL Calc, one and two significant loci 

were present in Africans and East Asians, respectively. Lastly, for TG, we found one 

significant locus in Admixed Americans, two in East Asians, and 1 in South Asians. The 

LDL Quant lipid measurements were available for the least number of patients and therefore 

did not deliver any significant loci for non-European populations. 
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Figure 4-1. Manhattan plot of HDL-C in EUR population 
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Figure 4-2. Q-Q plot of HDL-C in EUR population 

 

Significant Hits UKBB EUR AMR AFR EAS SAS Meta 
HDL 52,619 95 9 0 6 0 95 

LDL Calculated 33,488 30 0 1 2 0 34 
LDL Quantitated 33,488 3 0 0 0 0 7 
Total Cholesterol 41,960 13 0 0 0 0 18 

Triglyceride 47,230 73 1 0 2 1 110 
Table 4-3. Number of GWAS hits identified for each blood lipid phenotype and ancestry 
group in UCLA ATLAS dataset and in UK Biobank(27) 

 
To incorporate the maximum possible number of samples and identify genetic effects 

common to all populations, we performed meta-analyses for 73,579 individuals across all five 

populations for each blood lipid phenotypes using an inverse-variance-weighted fixed-effects 
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method. (See Methods) In total, we identified 264 genome-wide significant loci across all 

lipid traits meta-analyses. In particular, we identified five additional signals for HDL-C, four 

for LDL Calc, four for LDL Quant, 37 for TG, and six for TC. (Table 3) Manhattan plots of 

and Q-Q plots of meta-analysis results were shown in Fig 3-4 and Fig S49-S56. Overall, the 

meta-analysis was also able to reveal a greater number of genome-wide significant signals 

previously missing in population-specific GWA analyses. Notably, although LDL Quant 

contained the smallest number of measured patients in population-specific analyses, the meta-

analysis identified two times more significant loci than those discovered previously in all five 

ancestry groups combined. The highest number of genome-wide significant loci were 

observed in TG, where a total of 110 signals were seen across the five ancestry groups. Given 

only 184 unique GWA loci were observed in the previous population-specific analyses, our 

meta-analysis was able to recover 9.23% more signals when the samples were combined into 

a meta-analysis with larger total sample size. In addition, some of the GWAS hits identified 

in specific populations were not observed in the meta-analysis, such as one genome-wide 

significant locus, which was only observed in the South Asian population but not in the meta-

analysis. This observation suggested that these signals were potentially not shared across 

different ancestry groups but represented population-specific effects. 
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Figure 4-3. Manhattan plot of HDL-C in meta-analysis 
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Figure 4-4. Q-Q plot of HDL-C in meta-analysis 

 
Evaluation of previously established loci in UCLA ATLAS population 
We first evaluated the overall trends of the effect estimates for all 444 known independent 

GWAS hits previously reported by the Global Lipids Genetics Consortium (GLGC)(11) 

within each lipid phenotype and ancestry group. Specifically, we obtained effect sizes 

estimated in the UCLA ATLAS population as well as from the GLGC study for these 444 

previously identified loci and compared the strength of their estimates. To note, as the UCLA 

ATLAS genotyping data contained a fewer number of variants, we retained only variants 

present in both datasets for this evaluation. For LDL Calc, LDL Quant, and TC, we observed 

the strongest correlation within the effect sizes estimated from the European ancestry. (Table 
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4, Fig 5, and Fig S57-S80) In HDL-C and TG, the European samples demonstrated the 

second strongest correlated effect sizes to the GLGC estimates. This behavior was expected 

because the GLGC study consisted of primarily European samples (84%)(10). However, 

interestingly, the strongest correlations for HDL-C and TG were observed within the East 

Asian samples, which also showed the second strongest correlation in the other three lipid 

traits. Comparing across phenotypes, the LDL Calc demonstrated consistently strong 

correlations to the GLGC estimates, while the TG had the weakest correlations for all 

ancestry groups. 

 
Figure 4-5. Correlation of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for HDL-C in EUR population. 

 



 139 

 

Phenotype EUR AFR AMR SAS EAS 
HDL 0.41 0.19 0.32 0.24 0.45 

LDL Calculated 0.72 0.36 0.29 0.28 0.47 
LDL Quantitated 0.52 0.28 0.26 0.33 0.39 

Triglyceride 0.14 0.04 0.04 0.03 0.21 
Total Cholesterol 0.48 0.27 0.22 0.13 0.28 

Table 4-4. Correlation coefficients of effect sizes of 444 known GWAS hits reported by 
GLGC(11) and estiamted in UCLA ATLAS dataset 

 
 

 

Next, as our dataset was EHR-based, we explored an external large-scale EHR dataset, the 

UK Biobank dataset(27), to validate our observations across the same type of data. In 

particular, the UK Biobank dataset contained summary statistics estimated from 315,133, 

343,621, 343,992, and 344,278 samples for HDL-C, LDL, TG, and TC, respectively. To note, 

there was only one type of LDL trait available in the UK Biobank dataset, the estimates from 

which were thus used to compare with both LDL Calc and LDL Quant results in our study. A 

summary of the number of SNVs and significant loci were shown in Tables 3 and 5. As the 

UK Biobank dataset was imputed, there were around 40 times more total SNVs than the 

UCLA ATLAS dataset to start with. Also, due to the larger sample size of the UK Biobank 

dataset, we observed much more significant loci across all lipid phenotypes compared to the 

UCLA ATLAS dataset. In our meta-analysis for HDL-C, we observed 95 genome-wide 

significant loci, while the UK Biobank revealed 52,619 significant hits. Thus, to compare 

results from these two datasets, we first selected SNVs under different p-value thresholds in 

the UCLA ATLAS dataset and compared their effect sizes in the two datasets. For European 

samples, the correlations of effect sizes were positive for all lipid phenotypes and increased 

with the p-value thresholds decreased. (Fig 6.) In other words, we observed more consistent 

effect sizes estimated using the UCLA ATLAS dataset with those from the UK Biobank 
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dataset. For other ancestry groups, the trends were also similar with a few exceptions when 

the sample size and the number of SNVs under certain thresholds were both small, such as 

those estimated within the South Asian population for LDL Quant. (Fig S81-84.) 

 
Figure 4-6. Correlation coefficients of the effect sizes of top SNPs identified in UCLA 
ATLAS and estimated in UK Biobank for HDL-C. 

Top SNPs were selected from six p-value thresholds: 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, and 5e-8. 
The number of top SNPs within each threshold that were also identified in UK Biobank was 
should represented by circle size. Significant correlation at each threshold was shown with 
triangle. Effect sizes estimated for all ancestry groups and in meta-analysis were shown. A 
missing point represented that none of the SNPs passed a given threshold in UCLA ATLAS 
dataset or less than three passing SNPs was found in UK Biobank. 
 

 

SNPs UKBB Meta-Analysis EUR AMR AFR EAS SAS 

HDL 13,789,520 343,866 292,275 313,138 327,608 291,351 323,169 
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LDL Calculated 13,789,683 343,539 292,257 313,014 327,628 291,186 321,999 

LDL Quantitated 13,789,683 344,332 293,609 314,678 327,381 290,914 320,160 

Total Cholesterol 13,789,686 343,488 292,285 313,018 327,385 291,237 321,858 

Triglyceride 13,789,685 343,604 292,243 312,965 327,523 291,082 322,345 

Table 4-5. Number of SNPs analyzed for each blood lipid phenotype and ancestry group in 
UCLA ATLAS dataset and in UK Biobank(27) 

 

Additionally, we performed a consistency evaluation to check how many of the observed 

signals in our dataset could also be found in the UK Biobank dataset using summary 

statistics(27). Specifically, we checked the percentage of overlapping SNVs under given p-

value thresholds (1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 5e-8) for both datasets. Similar to previous 

evaluation, in general, as the thresholds increased, a higher percentage of signals in the 

UCLA ATLAS dataset could be found in the UK Biobank dataset across all ancestry groups 

and lipid phenotypes. (Fig 7 and Fig S85-S88) For the meta-analysis, over 90% of the 

variants under the p-value threshold of 1e-5 were estimated with similar significance in the 

UK Biobank dataset as in the UCLA ATLAS dataset. Interestingly, for TG meta-analysis, we 

identified two genome-wide significant loci, rs72552763 and rs6589566, that were not 

present in UK Biobank. Further checking with the 444 GLGC GWAS hits and the GWAS 

Catalog revealed that the variant rs72552763 was indeed novel while the other loci have been 

reported for TG in previous studies. 
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Figure 4-7. Percentage of overlapping SNPs between UCLA ATLAS dataset and UK 
Biobank(27) under given p-value thresholds for HDL-C. 

SNPs were selected under six p-value thresholds: 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, and 5e-8. The 
percentage of SNPs was computed based on the total number of SNPs passing a given 
threshold in UCLA ATLAS dataset and the number of SNPs among them that also passed the 
same p-value threshold in UK Biobank. A missing point represented that none of the SNPs 
passed a given threshold in UCLA ATLAS dataset. 
 

 

The next evaluation was performed to check the amount of heterogeneity within the effect 

sizes estimated in the meta-analysis. We looked at the I2 statistic and divided the variants into 

four categories based on this measurement (0 - 25%, 25% - 50%, 50% - 75% , and 75% - 

100%). The  I2 statistic indicated the percentage of the variability in the effect estimates that 

could be explained by heterogeneity instead of sampling error, and thus, the categories 

ranged from low to moderate, high, and very high heterogeneity. The number of loci under 
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different heterogeneous categories for each blood lipid phenotype was summarized in Table 6 

and Table S2-S5. Focusing on only the genome-wide significant loci in the meta-analysis, we 

observed the lowest level of heterogeneity for TC where only 21.05% variants were in the 

high or very high category. (Table S4) The TG, however, represented the most heterogeneous 

phenotypes across populations where 68.76% of the variants were considered to be high or 

very high heterogeneous. (Table S5) 

 

Threshold Low Medium High Very Total Low (%) Medium (%) High (%) Very (%) 

1.E-03 418 117 107 71 713 58.63% 16.41% 15.01% 9.96% 

1.E-04 101 43 40 26 210 48.10% 20.48% 19.05% 12.38% 

1.E-05 46 35 29 21 131 35.11% 26.72% 22.14% 16.03% 

1.E-06 35 33 22 16 106 33.02% 31.13% 20.75% 15.09% 

1.E-07 32 32 22 14 100 32.00% 32.00% 22.00% 14.00% 

5.E-08 31 32 22 14 99 31.31% 32.32% 22.22% 14.14% 

Table 4-6. Number and percentage of SNPs under different p-value thresholds and I2 
categories for HDL-C in the meta-analysis. 

 

 

Finally, we conducted functional annotations for the 201 unique genome-wide significant loci 

identified in both population-specific analyses and meta-analyses. We first annotated the 

potential impact of variants on gene transcript and identified five missense, one inframe 

deletion, and one missense/splice region variant. (Table 7) Looking at the loss-of-function 

(LoF) score(28), we found 24 LoF-intolerant variants with a score > 0.9. We further checked 

the clinical significance using the ClinVar submitted records and identified one variant with 

at least one pathogenic record reported. To predict deleteriousness, we looked at SIFT(29), 

scaled CADD scores(30), and PolyPhen(29), which resulted in two deleterious variants (SIFT 

< 0.05), 79 deleterious variants (CADD > 15), and one probably deleterious variant 

(PolyPhen = 1). Investigating regulatory regions also revealed five variants located in 
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transcription factor binding sites. When we focused on the novel GWAS loci, rs72552763, 

the variant displayed a relatively high level of deleteriousness, as it was predicted to be an 

inframe deletion in SLC22A1 with an LoF score of 92 and a scaled CADD score of 11.48. 

Within the 444 GLGC-reported lipids-associated loci, five loci have been implicated in 

SLC22A1. 

 

3_prime_UTR_variant 11 
5_prime_UTR_variant 1 

downstream_gene_variant 17 
inframe_deletion 1 
intergenic_variant 35 

intron_variant 81 
intron_variant,non_coding_transcript_variant 4 

missense_variant 5 
missense_variant,splice_region_variant 1 

non_coding_transcript_exon_variant 1 
regulatory_region_variant 8 

splice_region_variant,intron_variant 2 
splice_region_variant,non_coding_transcript_exon_variant 1 

synonymous_variant 1 
TF_binding_site_variant 5 
upstream_gene_variant 27 

Table 4-7. Functional annotation of significant loci identified in both population-specific 
GWASes and meta-analysis for all blood lipid phenotypes. 

 

 

Discussion 

In this study, we combined clinical and genetic information from UCLA ATLAS EHR and 

genotyping data to investigate the genetic architecture of five lipid phenotypes in over 26,000 

patients. As the patients were from diverse ancestry backgrounds, we employed a two-stage 

meta-analysis, where we first conducted population-specific GWAS analysis for five 

different ancestry groups, followed by meta-analyzing them in one combined set. This 

strategy enabled us to identify 195 GWAS loci through the meta-analysis with one novel 
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locus. Our population-specific analysis revealed six more GWAS hits that displayed potential 

population-specific effects. Our systematic evaluation of the 444 previously reported lipid-

associated loci by GLGC in the UCLA ATLAS dataset demonstrated a shared genetic 

background across ancestry groups while also observing heterogeneity of effect sizes. We 

also compared our results to large external EHR-based GWAS results using the UK Biobank 

dataset, where a majority of our signals were replicated. We demonstrated that the effect sizes 

estimated from these two datasets were highly correlated as more significant variants were 

selected. To check the amount of heterogeneity across different lipid phenotypes, we 

explored the I2 statistic in the meta-analysis and observed a wide range of heterogeneity, with 

TG being the most heterogeneous trait. Our functional annotation of the novel variant 

rs72552763 in SLC22A1 revealed relatively high deleteriousness and loss-of-function 

intolerance, while other variants have been implicated in the same gene.  

 

Our findings have provided three insights. Firstly, we have demonstrated the efficacy and 

usefulness of large-scale EHR in combination with genetic information to investigate the 

genetic basis of human complex traits. In this current study, we leveraged the UCLA ATLAS 

EHR and extracted all available laboratory measurements of lipid phenotypes. We retained 

the earliest measurements for each individual with multiple records, which resulted in a 

collection of over `00,000 patients ranging over ten years. Our subsequent GWAS of over 

26,000 patients with genotyping data revealed many known GWAS loci to nearly 200, 

demonstrating the potential of combining EHR and genetic data in identifying genetic 

variants associated with complex traits. Furthermore, our findings suggested a novel locus, 

rs72552763, predicted to be an inframe deletion mutation in SLC22A1. Five independent 

GWAS loci have been reported in this gene by GLGC. This gene encodes an organic cationic 

transporter OCT1(31-33) and is primarily expressed in the liver as well as lung, kidney, and 
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adrenal gland to a lesser degree. It functions to mediate the uptake of various organic cations 

and transport many commonly used drugs. For example, various polymorphisms of SLC22A1 

have been extensively studied in the clinical pharmacology of metformin exposure and 

responses for the treatment of type 2 diabetes. Previous in vivo and in vitro studies have also 

indicated the deletion of OCT1 would result in a disruption of the hepatic glucose-fatty acid 

cycle and, therefore, elevated total body adiposity with increased systemic glucose and lipids 

levels.(34) Many of the previously identified GWAS loci in this gene displayed reduced 

function in thiamine uptake (e.g., rs12208357) or lower expression (e.g., rs683369). In our 

analysis, the variant rs72552763 was predicted to be an inframe deletion with high CADD 

and LoF scores, suggesting that it could potentially alter the substrate-uptake ability of the 

encoded protein OCT1 and thus disrupt the lipids metabolism and peripheral energy 

homeostasis. Further functional studies and in vitro/in vivo experiments of SLC22A1, and in 

particular this variant, will be needed to elucidate its specific function and mechanism in 

lipids metabolism and assess the therapeutic and clinical importance to target this region or 

even provide personalized treatment for carriers of this variant. 

 

Secondly, our study was built upon the UCLA ATLAS dataset with diverse ancestry 

backgrounds. This was enabled by the fact that the UCLA Hospital is located in one of the 

most ancestrally diverse regions and is able to obtain EHR data from patients with a wide 

range of backgrounds. As a result, we were able to estimate population-specific allelic 

effects, which helped to refine and provide accurate estimations for previously identified loci. 

Comparing between the effect sizes estimated in our study and the GLGC study., we 

observed a greater correlation in general among European samples and attenuated 

correlations among other ancestry groups, as the GLGC samples were composed of primarily 

Europeans, indicating both shared genetic effects between Europeans and other populations 
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and various degrees of population-specific effects. Interestingly, the East Asian samples in 

our study also displayed a relatively high correlation with the GLGC estimates, suggesting a 

potentially higher degree of shared genetic basis among these two groups. Moreover, our 

population-specific GWAS revealed many loci that were not observed in the meta-analysis. 

For example, for HDL, we observed five loci specific to European samples that were absent 

in the meta-analysis; for TG and TC, we discovered one locus specific to European ancestry 

and one to South Asian ancestry, respectively. These findings suggested that the genetic 

effects of the same variant could vary greatly across different ancestry groups and, given a 

sufficiently large sample size, population-specific GWAS would reveal many significant loci 

that would otherwise obscure in a mixed population. To further refine the genetic estimates 

for specific ancestry groups and better explain the variation of blood lipid levels between 

different populations, we will still need larger sample sizes for single-ancestry cohorts as well 

as additional ancestries that are currently under-represented in our dataset. 

 

Thirdly, we further checked and compared our results to the GWAS results from the UK 

Biobank dataset. Representing one of the larest EHR-based biobank, the UK Biobank dataset 

was a direct comparison and assessment to the UCLA ATLAS dataset. We evaluated the 

effect sizes of the top variants from both datasets and observed a relatively high correlation, 

especially for European ancestry, as the UK Biobank dataset consisted of patients with 

primarily European backgrounds. For other populations, such as East Asian and South Asian, 

the correlations decreased rapidly when variants with larger p-values were introduced. 

However, for the meta-analysis, we observed relatively high correlations for all lipid traits 

and ancestries, potentially as most of these estimates represented shared genetic effects across 

populations. 
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In addition to these insights gained, several limitations deserved to be mentioned. First, our 

lipid phenotypes were based entirely on the UCLA ATLAS EHR data where multiple entries 

were usually available for each individual. We decided to define the lipid levels using the 

earliest measurements, but the possibility of the introduction of noises in lipid levels due to 

circumstances such as time of entry during a day, diet, admission reason, or therapeutic status 

remains for participants entering the UCLA healthcare system. Second, the total sample size 

as well as the sample sizes for each ancestry group were limited, which might obstruct the 

power to detect novel loci in general. However, this was primarily due to the limited number 

of genotyped samples, while the total number of samples with lipid records in the EHR 

database exceeded 100,000, which was about one-third of the largest lipids GWAS reported 

to date (~300,000 samples) and was constantly increasing, suggesting a great potential of 

improvements as more patients being genotyped. Third, although over 9,000 females and 

around 8,000 males were included in our analysis, we did not attempt to detect sex-specific 

genetic associations due to suspected limited power. Nonetheless, it may be of interest to 

check the heterogeneity of genetic effects between sexes, as previous studies have 

demonstrated such differences among samples with European ancestry. Fourth, further 

functional studies will be required to gain a deeper understanding of the effect and underlying 

biological mechanism of the novel loci identified in this study. 

 

In summary, in this study, we explored the population-specific and shared genetic effects on 

five lipid phenotypes among around 17,000 patients with existing EHR and genotyping data 

and identified one novel locus through meta-analysis. This result demonstrated the enormous 

potential of combining EHR and genetic data in the discovery of novel genetic associations 

for complex human traits. Comparing to previously reported results by GLGC and UK 

Biobank, we observed various degrees of differences in the effect sizes of the associated 
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variants across ancestral groups, further suggesting the importance of refining our 

understanding of genetic effects for specific ancestral groups. The EHR database thus 

provided a rich resource for such ancestry-specific analysis and offered the platform for the 

development of novel therapeutic and clinical targets as well as personalized therapy. 

 

Methods 

Study sample and EHR-based lipid phenotypes 
The UCLA ATLAS Precision Health Biobank and GenomicsDB is a central repository of de-

identified records of patient Electronic Health Record (EHR) and genomic/genetic data from 

consented patients.(35) The database contained health records for a wide range of complex 

traits, laboratory measurements, and related information for patients from diverse ancestry 

backgrounds. We collected laboratory measurements for four phenotypes, HDL-C, LDL-C, 

TG, and TC. The LDL-C measurements were made from two different methods, an indirect 

calculation based on other three lipid traits (which is the more common method) (LDL Calc) 

and direct quantification (LDL Quant). Therefore, we extracted both records which resulted 

in a total of five different lipid traits. As multiple entries were available for each trait and 

each individual, we retained the first non-missing measurement available, which was the 

earliest record based on the timestamp associated with the laboratory measurement without a 

missing code. The range of the records was between 2005 and 2020. A detailed summary of 

the demographic information of the samples included in this study can be found in Table 2. 

 

Data processing and quality control 
Individual-level quality control 
We conducted stringent quality control (QC) on the 26,414 genotyped samples to ensure we 

included only high-quality samples. We first removed known contaminated samples and 

performed sex-check using PLINK. Among the remaining samples, we then computed 

sample-level missing rate, estimated the theoretical relatedness using KING(36), and 
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performed principal component analysis (PCA) using fastPCA. For sample-level missing 

rate, we set the cutoff at 0.05 and removed all individuals with higher missing rates. To avoid 

unexpected relatedness, we conducted identify-by-descent (IBD) analysis and removed one in 

each pair of predicted-to-be duplicated or first/second-degree related samples. For PCA, we 

used 1000 Genomes (1KG) phase 3(37) as a reference panel to determine the ancestry 

backgrounds within our dataset. Specifically, we included only common independent variants 

MAF > 15% that were shared between our dataset and 1KG and used the distribution of 1KG 

samples to assign the ancestry of our samples. PCA plots of all samples could be found in Fig 

7. We also performed sex-check and observed no discrepancies between the predicted sexes 

and those reported in EHR. Lastly, we merged the genotyped data with EHR and retained 

only samples with at least one measurement for each lipid trait of interest. In summary, this 

resulted in 17,226,  16,948, 4,599, 17,429, and 17,377 high-quality samples for HDL-C, LDL 

Calc, LDL Quant, TG, and TC, respectively. A detailed count decomposition into different 

ancestry groups could be found along with the demographic information listed in Table 2. 
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Figure 4-8. PCA plot (PC1 v.s. PC2) of the UCLA ATLAS genotyped samples. 

 

Variant-level quality control 
We conducted stringent variant-level quality control to ensure only high-quality SNVs were 

included in this study. We included only samples that passed the aforementioned sample-

level QC steps before separating them into ancestry-matched groups. We first removed 

unmapped SNVs assigned to chromosome zero in our dataset, followed by removing 

monomorphic variants to retain only bi-allelic SNVs for all analyses in this study. 

Furthermore, low-quality SNVs meeting the criteria, including genotyping missing rates > 

5%, Hardy-Weinberg Equilibrium (HWE) p-values < 1e-12, and ambiguous flip were also 
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excluded. For each individual population, we then computed the ancestry-specific minor 

allele frequency (MAF) and kept only common variants with MAF > 5% for GWA analyses. 

No imputation has been performed on this dataset. In summary, this resulted in 343,866, 343, 

539, 344,332, 343,488, and 343,604 high-quality SNVs for HDL-C, LDL Calc, LDL Quant, 

TG, and TC in the meta-analysis, respectively. The specific number of SNVs for different 

ancestry groups and lipid traits could be found in Table 5. 

 

Genome-wide association analysis 
The association analysis was composed of two stages where we first performed the 

population-specific analysis, then followed by meta-analyzing overall available ancestry 

groups. The stage 1 association test was performed using the --linear function in PLINK(38) 

for each lipid phenotypes and ancestries, with adjustment for age, sex, body mass index 

(BMI), and the first ten principal components (PCs), which accounted for potential 

confounders such as population stratification and sex differences. The estimated results were 

then combined in the stage 2 meta-analysis using METASOFT(39), which employed an 

inverse-variance-weighted fixed-effects method. To account for population structures, we 

additionally estimated genetic effects using Han and Eskin’s random-effects model(39) which 

was optimized to detect associations under heterogeneity. Specifically, we followed the 

suggestions given by the documentation of METASOFT by first running the meta-analysis 

with default options and then re-running the analysis while specifying the inflation factors for 

the mean effect and heterogeneity effect of the random effect statistics computed in the first 

round. To note, we observed slightly more significant loci when we used Han and Eskin’s 

random effect model in consideration of population heterogeneity. However, as the computed 

inflation factors were less than one, no correction was necessary, and the results using Han 

and Eskin’s random-effects model were not reported here. 
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Evaluation of the results using previously reported meta-analysis and EHR-based 
GWAS results 
Our evaluation consisted of two parts using GWAS results reported by GLGC and UK 

Biobank, respectively. For part 1, we obtained the 444 GWAS loci reported by GLGC that 

were independently and significantly associated with lipid traits.(11) We then identified these 

variants in the UCLA ATLAS dataset and compared their effect sizes estimated in our study 

and reported by GLGC. Over 200 reported loci were found in the UCLA ATLAS dataset with 

a maximum of 255 loci identified for HDL-C in the European samples. (Table 3) For the 

shared loci, we then computed the correlation of the effect sizes using a two-sided test of 

Pearson correlation and compared the strength of correlation across different ancestry groups 

for each lipid phenotype. For part 2, we sought to examine the UK Biobank GWAS results, 

which represented one of the largest EHR-based GWASes. To compare these two EHR-based 

results, we selected the top variants from our study with p-value cutoffs at 1e-3, 1e-4, 1e-5, 

1e-6, 1e-7, and 5e-8. For all variants under each cutoff, we compared their effect estimates 

between the UCLA ATALS and UK Biobank datasets by computing two-sided Pearson 

correlation p-values, similar to part 1. Additionally, in order to check whether the same 

variants could reach a similar significance level in both EHR-based datasets, we extract 

variants from each dataset under p-value cutoffs at 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, and 5e-8. At 

each cutoff, this resulted in two sets of variants and we counted the number of shared variants 

present in both sets. In our hypothesis, both the correlation and the percentage of shared 

variants should increase as the p-value threshold became more significant. Finally, for the 

genome-wide significant loci identified in our study but absent in the UK Biobank summary 

statistics, we manually examined them in the GWAS Catalog(40) to pinpoint potential novel 

loci. 
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Functional annotation of the genome-wide significant loci 
We annotated the GWAS loci using the Ensembl Variant Effect Predictor (VEP) web 

interface(41), which predicted the potential consequences of a variant to the corresponding 

gene transcript. Additionally, we also checked the pathogenicity and deleterious using 

PolyPhen-2(42), SIFT(42), CADD(29, 30), and ClinVar(43). In summary, we identified five, 

six, 200, and 16 variants with available PolyPhen-2, SIFT, scaled CADD score, and ClinVar 

reports. We further searched whether the genes associated with the variants had loss-of-

function (LoF) scores(28) and identified 129 variants with available LoF scores. Lastly, we 

checked if any variant fell into known regulatory regions by investigating potential overlap 

with transcription factor binding sites. 
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Supporting information 

 
Fig S1. Manhattan plot of HDL-C in AMR population 
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Fig S2. Manhattan plot of HDL-C in AFR population 
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Fig S3. Manhattan plot of HDL-C in EAS population 
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Fig S4. Manhattan plot of HDL-C in SAS population 
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Fig S5. Manhattan plot of LDL Calc in EUR population 



 160 



 161 

Fig S6. Manhattan plot of LDL Calc in AMR population 
 

 
Fig S7. Manhattan plot of LDL Calc in AFR population 
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Fig S8. Manhattan plot of LDL Calc in EAS population 
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Fig S9. Manhattan plot of LDL Calc in SAS population 
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Fig S10. Manhattan plot of LDL Quant in EUR population 
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Fig S11. Manhattan plot of LDL Quant in AMR population 
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Fig S12. Manhattan plot of LDL Quant in AFR population 
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Fig S13. Manhattan plot of LDL Quant in EAS population 
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Fig S14. Manhattan plot of LDL Quant in SAS population 
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Fig S15. Manhattan plot of TC in EUR population 
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Fig S16. Manhattan plot of TC in AMR population 
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Fig S17. Manhattan plot of TC in AFR population 
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Fig S18. Manhattan plot of TC in EAS population 
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Fig S19. Manhattan plot of TC in SAS population 
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Fig S20. Manhattan plot of TG in EUR population 
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Fig S21. Manhattan plot of TG in AMR population 
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Fig S22. Manhattan plot of TG in AFR population 
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Fig S23. Manhattan plot of TG in EAS population 
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Fig S24. Manhattan plot of TG in SAS population 
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Fig S25. Q-Q plot of HDL-C in AMR populaiton 
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Fig S26. Q-Q plot of HDL-C in AFR populaiton 
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Fig S27. Q-Q plot of HDL-C in EAS populaiton 
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Fig S28. Q-Q plot of HDL-C in SAS populaiton 
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Fig S29. Q-Q plot of LDL Calc in EUR populaiton 
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Fig S30. Q-Q plot of LDL Calc in AMR populaiton 
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Fig S31. Q-Q plot of LDL Calc in AFR populaiton 



 186 

 
Fig S32. Q-Q plot of LDL Calc in EAS populaiton 
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Fig S33. Q-Q plot of LDL Calc in SAS populaiton 
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Fig S34. Q-Q plot of LDL Quant in EUR populaiton 
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Fig S35. Q-Q plot of LDL Quant in AMR populaiton 
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Fig S36. Q-Q plot of LDL Quant in AFR populaiton 
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Fig S37. Q-Q plot of LDL Quant in EAS populaiton 
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Fig S38. Q-Q plot of LDL Quant in SAS populaiton 
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Fig S39. Q-Q plot of TC in EUR populaiton 
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Fig S40. Q-Q plot of TC in AMR populaiton 
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Fig S41. Q-Q plot of TC in AFR populaiton 
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Fig S42. Q-Q plot of TC in EAS populaiton 
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Fig S43. Q-Q plot of TC in SAS populaiton 
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Fig S44. Q-Q plot of TG in EUR populaiton 
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Fig S45. Q-Q plot of TG in AMR populaiton 
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Fig S46. Q-Q plot of TG in AFR populaiton 
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Fig S47. Q-Q plot of TG in EAS populaiton 
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Fig S48. Q-Q plot of TG in SAS populaiton 
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Fig S49. Manhattan plot of LDL Calc in meta-analysis 
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Fig S50. Manhattan plot of LDL Quant in meta-analysis 
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Fig S51. Manhattan plot of TC in meta-analysis 
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Fig S52. Manhattan plot of TG in meta-analysis 
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Fig S53. Q-Q plot of LDL Calc in meta-analysis 
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Fig S54. Q-Q plot of LDL Quant in meta-analysis 
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Fig S55. Q-Q plot of TC in meta-analysis 
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Fig S56. Q-Q plot of TG in meta-analysis 
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Fig S57. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for HDL-C in AMR population 
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Fig S58. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for HDL-C in AFR population 
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Fig S59. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for HDL-C in EAS population 
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Fig S60. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for HDL-C in SAS population 
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Fig S61. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for LDL Calc in EUR population 
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Fig S62. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for LDL Calc in AMR population 
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Fig S63. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for LDL Calc in AFR population 
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Fig S64. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for LDL Calc in EAS population 



 219 

 
Fig S65. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for LDL Calc in SAS population 



 220 

 
Fig S66. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for LDL Quant in EUR population 
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Fig S67. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for LDL Quant in AMR population 
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Fig S68. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for LDL Quant in AFR population 
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Fig S69. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for LDL Quant in EAS population 
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Fig S70. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for LDL Quant in SAS population 
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Fig S71. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for TC in EUR population 
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Fig S72. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for TC in AMR population 
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Fig S73. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for TC in AFR population 
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Fig S74. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for TC in EAS population 
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Fig S75. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for TC in SAS population 
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Fig S76. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for TG in EUR population 
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Fig S77. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for TG in AMR population 
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Fig S78. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for TG in AFR population 
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Fig S79. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for TG in EAS population 
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Fig S80. Distribution of effect sizes of known GWAS hits reported by GLGC(11) and 
estiamted in UCLA ATLAS dataset for TG in SAS population 
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Fig S81. Correlation coefficients of the effect sizes of top SNPs identified in UCLA ATLAS 
and estimated in UK Biobank for LDL Calc. 
Top SNPs were selected from six p-value thresholds: 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, and 5e-8. 
The number of top SNPs within each threshold that were also identified in UK Biobank was 
should represented by circle size. Significant correlation at each threshold was shown with 
triangle. Effect sizes estimated for all ancestry groups and in meta-analysis were shown. A 
missing point represented that none of the SNPs passed a given threshold in UCLA ATLAS 
dataset or less than three passing SNPs was found in UK Biobank. 
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Fig S82. Correlation coefficients of the effect sizes of top SNPs identified in UCLA ATLAS 
and estimated in UK Biobank for LDL Quant. 
Top SNPs were selected from six p-value thresholds: 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, and 5e-8. 
The number of top SNPs within each threshold that were also identified in UK Biobank was 
should represented by circle size. Significant correlation at each threshold was shown with 
triangle. Effect sizes estimated for all ancestry groups and in meta-analysis were shown. A 
missing point represented that none of the SNPs passed a given threshold in UCLA ATLAS 
dataset or less than three passing SNPs was found in UK Biobank. 
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Fig S83. Correlation coefficients of the effect sizes of top SNPs identified in UCLA ATLAS 
and estimated in UK Biobank for TC. 
Top SNPs were selected from six p-value thresholds: 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, and 5e-8. 
The number of top SNPs within each threshold that were also identified in UK Biobank was 
should represented by circle size. Significant correlation at each threshold was shown with 
triangle. Effect sizes estimated for all ancestry groups and in meta-analysis were shown. A 
missing point represented that none of the SNPs passed a given threshold in UCLA ATLAS 
dataset or less than three passing SNPs was found in UK Biobank. 
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Fig S84. Correlation coefficients of the effect sizes of top SNPs identified in UCLA ATLAS 
and estimated in UK Biobank for TG. 
Top SNPs were selected from six p-value thresholds: 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, and 5e-8. 
The number of top SNPs within each threshold that were also identified in UK Biobank was 
should represented by circle size. Significant correlation at each threshold was shown with 
triangle. Effect sizes estimated for all ancestry groups and in meta-analysis were shown. A 
missing point represented that none of the SNPs passed a given threshold in UCLA ATLAS 
dataset or less than three passing SNPs was found in UK Biobank. 
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Fig S85. Percentage of overlapping SNPs between UCLA ATLAS dataset and UK 
Biobank(27) under given p-value thresholds for LDL Calc. 
SNPs were selected under six p-value thresholds: 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, and 5e-8. The 
percentage of SNPs was computed based on the total number of SNPs passing a given 
threshold in UCLA ATLAS dataset and the number of SNPs among them that also passed the 
same p-value threshold in UK Biobank. A missing point represented that none of the SNPs 
passed a given threshold in UCLA ATLAS dataset 
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Fig S86. Percentage of overlapping SNPs between UCLA ATLAS dataset and UK 
Biobank(27) under given p-value thresholds for LDL Quant. 
SNPs were selected under six p-value thresholds: 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, and 5e-8. The 
percentage of SNPs was computed based on the total number of SNPs passing a given 
threshold in UCLA ATLAS dataset and the number of SNPs among them that also passed the 
same p-value threshold in UK Biobank. A missing point represented that none of the SNPs 
passed a given threshold in UCLA ATLAS dataset 
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Fig S87. Percentage of overlapping SNPs between UCLA ATLAS dataset and UK 
Biobank(27) under given p-value thresholds for TC. 
SNPs were selected under six p-value thresholds: 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, and 5e-8. The 
percentage of SNPs was computed based on the total number of SNPs passing a given 
threshold in UCLA ATLAS dataset and the number of SNPs among them that also passed the 
same p-value threshold in UK Biobank. A missing point represented that none of the SNPs 
passed a given threshold in UCLA ATLAS dataset 



 242 

 
Fig S88. Percentage of overlapping SNPs between UCLA ATLAS dataset and UK 
Biobank(27) under given p-value thresholds for TG. 
SNPs were selected under six p-value thresholds: 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, and 5e-8. The 
percentage of SNPs was computed based on the total number of SNPs passing a given 
threshold in UCLA ATLAS dataset and the number of SNPs among them that also passed the 
same p-value threshold in UK Biobank. A missing point represented that none of the SNPs 
passed a given threshold in UCLA ATLAS dataset. 
 

Phenotype HDL LDL Calculated LDL Quantitated Total Cholesterol Triglyceride 
EUR 1.04 1.01 1.00 1.03 1.02 
AMR 1.02 1.02 1.01 1.02 1.01 
AFR 0.99 1.01 1.01 1.01 1.00 
EAS 1.01 1.00 1.00 0.99 1.02 
SAS 1.01 0.99 1.01 1.01 1.01 

Meta-analysis 1.04 1.01 1.00 1.03 1.01 
Table S1. Inflation factor computed for each blood lipid phenotype and ancestry group 
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(%) 

Medium 
(%) 

High 
(%) 

Very 
(%) 

1.E-03 370 87 81 63 601 61.56% 14.48% 13.48% 10.48% 
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1.E-04 112 27 25 7 171 65.50% 15.79% 14.62% 4.09% 
1.E-05 57 12 12 4 85 67.06% 14.12% 14.12% 4.71% 
1.E-06 33 8 12 3 56 58.93% 14.29% 21.43% 5.36% 
1.E-07 17 8 11 3 39 43.59% 20.51% 28.21% 7.69% 
5.E-08 14 8 11 3 36 38.89% 22.22% 30.56% 8.33% 

Table S2. Number and percentage of SNPs under different p-value thresholds and I2 categories for 

LDL Calc in the meta-analysis. 

 

Threshol
d 

Lo
w 

Mediu
m 

Hig
h 

Ver
y 

Tota
l 

Low 
(%) 

Medium 
(%) 

High 
(%) 

Very 
(%) 

1.E-03 239 53 63 45 400 59.75% 13.25% 15.75% 11.25% 
1.E-04 12 10 11 4 37 32.43% 27.03% 29.73% 10.81% 
1.E-05 3 5 6 3 17 17.65% 29.41% 35.29% 17.65% 
1.E-06 2 3 4 0 9 22.22% 33.33% 44.44% 0.00% 
1.E-07 2 1 4 0 7 28.57% 14.29% 57.14% 0.00% 
5.E-08 2 1 4 0 7 28.57% 14.29% 57.14% 0.00% 

Table S3. Number and percentage of SNPs under different p-value thresholds and I2 categories for 

LDL Quant in the meta-analysis. 

 

Threshol
d 
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w 

Mediu
m 
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h 
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y 
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l 

Low 
(%) 

Medium 
(%) 

High 
(%) 

Very 
(%) 

1.E-03 427 95 108 75 705 60.57% 13.48% 15.32% 10.64% 
1.E-04 119 24 19 11 173 68.79% 13.87% 10.98% 6.36% 
1.E-05 50 8 11 5 74 67.57% 10.81% 14.86% 6.76% 
1.E-06 16 6 5 1 28 57.14% 21.43% 17.86% 3.57% 
1.E-07 10 6 4 0 20 50.00% 30.00% 20.00% 0.00% 
5.E-08 9 6 4 0 19 47.37% 31.58% 21.05% 0.00% 

Table S4. Number and percentage of SNPs under different p-value thresholds and I2 categories for TC 

in the meta-analysis. 

 

Threshol
d 
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w 
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m 
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h 
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y 

Tota
l 

Low 
(%) 

Medium 
(%) 

High 
(%) 

Very 
(%) 

1.E-03 335 100 123 138 696 48.13% 14.37% 17.67% 19.83% 
1.E-04 76 30 80 64 250 30.40% 12.00% 32.00% 25.60% 
1.E-05 36 24 66 43 169 21.30% 14.20% 39.05% 25.44% 
1.E-06 25 19 54 37 135 18.52% 14.07% 40.00% 27.41% 
1.E-07 24 17 52 36 129 18.60% 13.18% 40.31% 27.91% 
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5.E-08 23 17 52 36 128 17.97% 13.28% 40.63% 28.13% 
Table S5. Number and percentage of SNPs under different p-value thresholds and I2 categories for TG 

in the meta-analysis. 
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Chapter 5 - Conclusion 

Understanding the genetic architecture of complex traits has provided an enormous amount of 

insights into their biology and has suggested numerous potential targets for clinical and 

therapeutic studies. As more efficient and economical sequencing approaches are available, 

researchers can analyze a larger number of samples with better resolution.  Although many 

common risk loci with small to medium effect sizes have been discovered through GWASes, 

genetic studies are hoping to discover variants with medium to large effect sizes which could 

potentially serve as clinical or therapeutic targets. One category that fits this endeavor is the 

rare variant. The traditional difficulty of analyzing rare variants is two-fold. One is that rare 
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variants are hardly available through microarray genotyping, which has been largely 

improved by the recent advent of WGS and WES technologies. The second is that their low 

occurrence rate limited the power of detecting significant loci. To facilitate this exploration, 

many study designs and statistical tools have thus been proposed to improve the accuracy and 

detecting power. 

 

Therefore, in our work, we employed two rare-variant analysis approaches and applied to two 

complex traits whose genetic architecture has yet been fully understood. In our first 

application, we utilized a gene-set burden analysis framework to analyze the rare-variant 

effect in AD. Before our work, many GWASes have been performed and pinpointed over 50 

risk loci participating in multiple biological pathways. However, little has been known for the 

effect of rare variants within these pathways. Hence, our analysis was one of the first works 

to identify the rare-variant contribution to AD with the endocytic pathway. Furthermore, we 

showed this contribution was not limited to AD status but also to related pathological 

phenotypes, such as NFT progression and age at onset. By leveraging on prior knowledge, we 

were able to avoid the unnecessary multiple-testing burden and focused on analyzing single 

genes with large effects. There are several other pathways implicated in AD, such as immune 

response and lipid metabolism pathways. We believe our analytic framework can be extended 

to these candidate pathways and identify potential contributions of rare variants to AD. 

 

Our second application focused on a specific type of rare variants, DNMs, in TS. These 

mutations are believed to have large effect sizes as they were not negatively selected by 

evolutionary pressure and thus represent a probable source of risk leading to TS development. 

Cheaper and efficient sequencing techniques also largely facilitate studies on DNMs because 

at least a trio set, one proband and two parents, is needed to determine DNMs within the 
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affected child. In our study, we analyzed nearly 900 trio families with an additional 300 in 

preparation. We showed that high-quality DNMs could be efficiently called within these TS 

probands. By partitioning DNMs into different levels of deleterious categories, we noted that 

the PTV category was significantly enriched compared to other categories, including 

missense and synonymous mutations. Recurrent mutations in FBN2 was an important 

observation as it validated and provided additional evidence for our previous work on TS. 

Nonetheless, there are several points that could be improved in our next phase of analysis. 

First, we are currently expecting a third batch of TS trio data which would further increase 

our detecting power. Second, we plan to adjust our DNM calling pipeline to increase our 

calling rate. Third, we have recently been approved for the usage of an external trio dataset 

that could serve as the control for our study, which will provide added power to detect TS-

associated enrich genes. Taken together, we believe more improvements are still needed in 

the genetic study of DNMs. 

 

Lastly, one important aspect of genetic research is to understand the genetic heterogeneity 

across different populations. Because the association test assumes a homogeneous genetic 

background, researchers need to take extra care in collecting and analyzing large cohorts. If 

the assumption is violated, larger cohorts will not result in greater detecting power. In our 

work, we tried to tackle this problem by identifying underlying ancestry groups in our dataset 

and then perform an association test for each population individually. This method helps 

identify population-specific genetic effects. To find the shared effects, we followed with 

meta-analysis across all identified populations. Our dataset has a rich composition of 

ancestral backgrounds as we used UCLA EHR-linked biobank. This type of data is beneficial 

as they are not collected for a specific phenotype while containing larger cohorts with diverse 

genetic backgrounds. We showed that the common measurements, blood lipid concentrations, 
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demonstrated both population-specific and shared effects in five identified populations. 

Although the sample size for each population is relatively small, we observed a high 

consistency compared to other large-scale GWASes and provided additional insights into 

novel risk loci. Unfortunately, as only genotyping data were available, we did not have 

enough power to detect the effect of rare variants. But as the sample size continues to grow 

and WES / WGS data will be available in the future, we will be able to analyze the effect of 

rare variants on blood lipid phenotypes. To note, thousands of phenotypes are available in 

UCLA EHR-linked biobank, and we recognize that there are still many opportunities in 

analyzing this dataset. 

 

In brief, our work has focused on analyzing rare-variant effects in complex traits, including 

AD and TS. Our findings indicated additional risk loci to the understanding of the genetic 

architecture of these complex traits and facilitated related clinical and therapeutic studies in 

identifying candidate targets. We also explored EHR-linked biobank for heterogeneous 

genetic effects using common variants, which suggested its potentiality for rare-variant study. 

When sequencing data are available, a rare-variant analysis will be possible for thousands of 

different phenotypes and various ancestral groups, deepening our understanding of the 

connection between human genetics and phenotypes/disease predispositions. As an ultimate 

goal of genetic research, the life span and health expectation will be greatly improved. 

 




