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Abstract

Genetic pedigree inference of coho salmon: a powerful tool for guiding the

management of an ESA-listed species

by

Hilary A. Starks

Coho salmon (Oncorhynchus kisutch) is a species of Pacific salmon comprising an im-
portant component of the commercial and recreational fishing industry. However, over
much of its native range, coho salmon population numbers have declined drastically and,
as such, the species is facing extinction. For this reason, strides must be made to better
manage and conserve remaining populations in order to ensure that this species will be
present for future generations. This thesis provides an in depth evaluation of a popula-
tion of coho salmon using pedigree inference combined with novel molecular techniques,
in order to address several biological questions pertaining to the conservation of this
species. In Chapter one, I describe the discovery, characterization and development of
a large number of single nucleotide polymorphisms (SNPs) specific to coho salmon for
the purpose of future biological inference. In Chapter two, I use these SNPs to recon-
struct pedigrees, by way of intergenerational genetic tagging, in an ESA-listed hatchery
population of coho salmon located in the Klamath River. Intergenerational genetic tag-
ging involves genotyping parental individuals and using their genotypes as genetic tags
that are recovered when the offspring of the parental generation are genotyped with
the same markers. In this study, nine consecutive years of broodstock samples were

xi



genotyped with 96 SNPs, and tag retrieval was possible for three full cohorts in the
offspring generations, revealing large proportions of age-two males returning to spawn
at the hatchery, as well as the presence of large families distributed across relatively few
parent pairs. Additionally, I performed an in depth evaluation of relatedness (Rxy) in
this population by comparing SNP-generated pairwise Rxy values to those generated
by microsatellites, in order to test and validate SNP utility for estimates of relatedness.
The results of this analysis showed that mean relatedness values generated from both
marker types can be skewed by the presence of a large number of half siblings sired by
one two-year old male. However, when this individual’s offspring were accounted for,
SNPs performed as well or better than microsatellites at estimating relatedness among
individuals of known pedigree. The information provided by these tag recoveries will
help us to better understand the effects of hatchery practices on hatchery spawned fish
as well as the genetic effects of hatcheries on natural populations, which are important

matters in regard to an ESA-listed species.
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To my grandparents, who loved the sea.
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Introduction

Coho salmon (Oncorhynchus kisutch) are distributed along the Northern Pa-
cific Rim, ranging from Eastern Russia and around the Bering Sea, to Alaska and the
North American coast, extending as far south as central California (Sandercock 1991).
Recent importance has been placed on coho salmon populations within California and
Oregon due to dramatic declines in population abundance over the last thirty years
(Brown et al. 1994). Historically, the commercial and recreational coho salmon fishery
has represented an important industry both economically and culturally. Presently na-
tive populations of the species have declined dramatically due to over-fishing, habitat
degradation involving industrial and agricultural activities, hatchery domestication se-
lection, disease, and the introduction of anthropogenic barriers to migration (Hastein
and Lindstad 1991; Clemento et al. 2009; Hallett et al. 2012). Evolutionarily Significant
Units (ESU) have been established based on the degree of genetic population structure
and isolation differentiating salmonid populations (Waples 1991) and of the seven ESUs
established for coho salmon within California, Oregon and Washington, five have been
listed as either endangered (Central California Coast), threatened (Southern Oregon

Northern California Coast; Oregon Coast; Lower Columbia River) or a species of con-



cern (Pacific-Puget Sound/Strait of Georgia) under the Endangered Species Act (ESA;
Fed Reg 1995, 1997, 2005).

Molecular methods have been employed throughout the years in order to study
salmonid biology and ecology. Early genetic analyses utilized allozymes, or protein poly-
morphisms, to discriminate salmonid populations geographically (Milner et al. 1985;
Tessier et al. 1995). However, technological advancements in the field of population ge-
netics have given rise to many more molecular markers with which to study salmonids,
some of which include amplified fragment length polymorphisms (AFLPs), mitochon-
drial markers (mtDNA), minisatellites and microsatellites (Beacham et al. 1996; Smith
et al. 2001; Flannery et al. 2007). Microsatellites have been used extensively for the
analysis of the genetic diversity of natural populations in the last two decades due to
their high variability and power to resolve population structure. Most specifically they
have been recognized in being able to provide evaluations of fine-scale population struc-
ture in salmonids (Banks et al. 2000). Beacham et al. (2006) show that 90% accuracy
of assignment to populations was achieved in samples of 75 individuals using 13 mi-
crosatellite loci. However, microsatellites have drawbacks in that they have high rates
of mutation and a high incidence of homoplasy (Narum et al. 2008), as well as incon-
sistencies in allele calling across different laboratories due to differences in automation
(Vignal et al. 2002).

As such, many researchers are now turning to single nucleotide polymorphisms
(SNPs) for population genetic studies (Morin et al. 2004). SNPs are nucleotide variants

that can be found at particular locations throughout an organism’s genome. SNPs have



relatively low mutation rates, can occur within both genomic coding and noncoding
regions, and represent the most abundant sequence variation in eukaryotic genomes
(Wang et al. 1998; Brumfield et al. 2003; Smith et al. 2006). Additionally, SNPs are
amenable to high-throughput genotyping and portability of data between laboratories.
As such, SNPs have the potential for a wide array of applications in wildlife conservation
and management.

In Chapter one, I describe the ascertainment, characterization and develop-
ment of a large number of SNPs for coho salmon (O. kisutch), for the purpose of mon-
itoring coho salmon populations as well as studying ecological interactions within and
among populations. In Chapter two, I demonstrate the power of SNPs for intergener-
ational genetic tagging and pedigree reconstruction in a hatchery population of coho
salmon. This effort provides a powerful and informative means of estimating relative
reproductive success, effective population size, population structure and inbreeding in

an ESA listed species.



Chapter 1

Discovery and characterization of single
nucleotide polymorphisms in coho

salmon, Oncorhynchus kisutch

1.1 Introduction

One of the most important ways of monitoring depressed fish and wildlife pop-
ulations is through population genetics. Since the advent of the polymerase chain reac-
tion (PCR), the development of molecular markers for the detection of genetic diversity
both within and among populations has served to be extremely useful for the purpose
of fish and wildlife management, particularly for monitoring salmonid stocks. A broad
spectrum of molecular markers have been developed as a result, including restriction
fragment length polymorphisms, randomly amplified polymorphic DNA, mitochondrial
DNA, minisatellites, and microsatellites (Beacham et al. 1996, Smith et al. 2001). The
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popularity of each type of marker has varied over time, but, for more than a decade,
microsatellites have endured widespread use by fishery biologists (Narum et al. 2004;
Aguilar and Garza 2006; Pearse et al. 2007; Beacham et al. 2011). Microsatellite loci
are highly variable and as such offer significant statistical power for evaluations of fine-
scale population structure, pedigree analyses, and genetic stock identification (GSI) in
salmonids (Banks et al. 2000, Beacham et al. 2011). Microsatellites however are prone
to high rates of mutation and genotyping error, as well as a high incidence of homoplasy
(Narum et al. 2008). In addition, microsatellite data are often difficult to compare across
laboratories. Discrepancies in allele size calling occur when different instrumentation
is used to generate data due to differences in the chemistry and software capabilities
provided by each platform, even when the same microsatellite loci are employed (Vignal
et al. 2002, Seeb et al. 2007). This in turn makes the standardization of data between
laboratories a costly and time consuming process, and has lead researchers to investigate
other resources for genetic analysis.

As such, many labs are turning to SNPs for genetic analyses. SNPs are single
nucleotide variants found in sequences of DNA. Because SNPs are ususally biallelic,
larger numbers of loci are required in order to achieve analytical power similar to that
of microsatellite loci (Anderson and Garza 2006, Narum et al. 2008). SNPs are the most
abundant polymorphisms in vertebrate genomes (coding and non-coding regions), with
a SNP present every 100-500bp on average (Vignal et al. 2002). An additional benefit
to SNPs is that their genotypes are unambiguous so they do not require extensive

and costly standardization efforts between laboratories, as SNP genotyping is based



on evaluating the actual nucleotides (A, C, G or T) rather than fragment length (i.e.
microsatellites; Templin et al. 2005).

Coho salmon (Oncorhynchus kisutch) is one of the seven species of Pacific
salmon native to the North Pacific Rim. The natural distribution of coho salmon ex-
tends from northern Japan to coastal North America, reaching as far south as central
California (Sandercock 1991). Coho salmon are also stocked in the Great Lakes, where
natural spawning has been documented in some Great Lake tributaries, representing
one of the few successful self-sustaining introductions for this species (Behnke 2002).

Coho salmon have historically served as a prominent fishery constituent both
in the recreational and commercial industry. Over-fishing, freshwater habitat alter-
ation, changing ocean conditions (Bradford and Irvine 2000), disease (Bartholomew
and Foote 2010), and hatchery domestication selection (Ford et al. 2006) have all been
implicated however, in recent declines and even extinctions of certain populations within
the species’ range (Nehlsen et al. 1991, Small et al. 1998). As a result, many popula-
tions of coho salmon have been listed as endangered or threatened under the federal
Endangered Species Act (Weitkamp et al. 1995), with the most impacted populations
residing in California, the southern most reaches of the species’ distribution.

Although coho salmon face high risks of extinction, only a relatively small num-
ber of SNP assays have been developed for this species (Smith et al. 2005, Smith et al.
2006, Campbell and Narum 2011). The Gene Index Project (compbio.dfci.harvard.edu
/tgi/) is a database housing a large number of expressed sequence tags (ESTs) from

many species, including rainbow trout, 0. mykiss. These EST sequences have proven



to be very useful for evaluating variation in other Pacific salmonids (Smith et al. 2005,
Abadia-Cardoso et al. 2011, Clemento et al. 2011).

In this study, the discovery, development and characterization of 91 SNP assays
for coho salmon and one species diagnostic assay designed to genetically differentiate
coho and Chinook salmon are described. I took advantange of an existing EST database
from which 275 primer sets had been designed for functional genome regions and that
produced PCR products in Chinook salmon and steelhead. These primer sets were
then used to sequence an ascertainment sample of 24 geographically and phenotypically
diverse coho salmon. The resulting assays were then validated by genotyping 470 coho
individuals from 10 populations within the species’ native range, the details of which

are described below.

1.2 Methods

1.2.1 Ascertainment and PCR

An ascertainment panel was created using 24 coho salmon individuals sampled
from five geographically and phylogenetically diverse populations within the species’
North American range. The majority of these individuals represented prominent popu-
lations within northern California, with six fish from Scott Creek, six from the Russian
River, and four from the Klamath River. The remaining samples consisted of four indi-
viduals from the Nehalem River in Oregon and four from Gastineau Hatchery in Alaska.

For the California and Alaska populations, DNeasy 96 tissue kits (QIAGEN Inc.) were



used to extract DNA from fin tissue on a QIAGEN BioRobot 3000. Aliquots of DNA
from the Oregon samples were extracted and provided to us by collaborators. Except
for the Oregon individuals, all samples were previously genotyped with microsatellites
to confirm high DNA quality.

Originally, 480 O. mykiss ESTs were randomly targeted from the online Gene
Index database (http://compbio.dfci.harvard.edu/tgi/, accessed on December 8, 2006)
for rainbow trout. For each locus, oligonucleotide primers were designed using primer3
v. 0.4.0 (Rozen and Skaletsky 2000). In order to generate genomic DNA fragments
no larger than 1000 bp in length even if containing intronic regions, primers were con-
structed to target 400-500 bp EST segments. Based on prior amplification in steelhead
trout and Chinook salmon (Abadia-Cardoso et al. 2011, Clemento et al. 2011), 275 of
these primer sets were then selected for SNP ascertainment in coho salmon.

PCR was performed using a 15ulL reaction volume with the following condi-
tions: 1.5uL of 10X PCR buffer IT (Applied Biosystems, Inc.), 0.9uL of 25 mM MgCl,,
1pL of 2.5 mM dNTPs, 1uL of 5 mM primers (forward and reverse), 6.55uL of deion-
ized water, 0.05uL of AmpliTaq DNA polymerase, and 4uL. of genomic DNA. Thermal
cycling conditions were modified from a step-down protocol and began with an initial
denaturation of 95°C for 5 min, followed by 95°C for 3 min, 60°C for 2 min, 72°C for 1
min, repeated 13 times with a 1°C decrease in anneal temperature (60-48°C) each cycle,
then 11 cycles of 95°C for 30 s, 48°C for 30 s, 72°C for 1 min, and 9 cycles of 95°C for
30 s, 48°C for 30 s, 72°C for 1 min (+10 s/cycle), with a final 5 min extension at 72°C.

PCR products were visualized by gel electrophoresis in 2% agarose.



1.2.2 Sequencing and SNP Assay Development

PCR products were sequenced if a locus displayed a single band in agarose.
For loci that exhibited such positive amplification, PCR products were first purified
using an EXO-SAP protocol as follows: 5ul. of PCR product, 0.15uL of Exonuclease
I (20U/uL), 1ul of shrimp alkaline phosphatase (1 U/uL), 0.5uL of 10x buffer, and
3.35ulL of deionized water, incubated at 37°C for 60 min and then 80°C for 20 min
with a final cool down to 4°C. Clean PCR products were then sequenced on both the
forward and reverse strands using the BigDye Terminator v. 3.1 Cycle Sequencing kit
(Applied Biosystems Inc.) with standard conditions. The sequencing reaction products
then underwent a final purification step using 6% Sephadex columns and were visualized
by capillary electrophoresis on an ABI 3730 DNA Analyzer using standard conditions.

Sequences from each locus were assembled and aligned into contigs with Se-
quencher 4.6 (Gene Codes Corporation), and putative polymorphisms were then verified
by eye on the chromatograms. Polymorphisms were considered for SNP assay develop-
ment if both homozygote genotypes and the heterozygote genotype were observed at
least once in the panel. This standard was adhered to in order to avoid identifying se-
quencing artifacts as polymorphisms, and to increase the likelihood that resulting SNP
assays would have appropriate minor allele frequencies for future utilization. In cases
where all variable sites were heterozygous, duplication of the gene in question was as-
sumed owing to the partial diploidy of salmonids (salmonids diverged from a tetraploid

ancestor 25-100 million years ago; Allendorf and Thorgaard 1984; Brieuc et al. 2014),



and it was no longer considered for development. In order to reduce the probability
of SNP markers being in linkage disequilibrium, only one SNP per EST was selected
for design. In consensus sequences where more than one candidate SNP occurred, the
site with the greatest minor allele frequency in either the Scott Creek or Russian River
populations was targeted. Consensus sequence information for polymorphic sites that
met the above requirements, as well as TagMan assay design requirements (e.g. more
than 2 bp away from any other polymorphisms, more than 40 bp away from the end
of the sequence) were then sent to Applied Biosystems for 5 exonuclease (TaqMan)
assay design. Additionally, the species diagnostic assay was designed by aligning coho
and Chinook salmon consensus sequences generated from three loci for which no poly-
morphisms were found in either species, and then searching for fixed allele differences
within the alignment. The locus with the least number of fixed differences and that
met the above requirements for TagMan design was chosen for development. Finally,
a BLAST search was performed on each consensus sequence to determine whether the
EST matched, or was associated with, an identified gene, however this information was
not used as a criteria for selecting the target variation (see Table 1.5).

In order to confirm marker quality and utility, each TagMan assay was then
validated by genotyping 470 coho salmon from five populations in California (Scott
Creek; Lagunitas/Olema creeks; Noyo River; Russian River, Warm Springs Hatchery;
and Klamath River, Iron Gate Hatchery), one population in Oregon (Nehalem River,
Nehalem Fish Hatchery), three populations in Washington (Columbia River, Bonneville

Hatchery; Quinault River, Quinault National Fish Hatchery; and Green River, Soos
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Creek Hatchery), and one population in British Columbia (Fraser River, Chilliwack
River Hatchery). SNP genotyping was performed using the Fluidigm EP1 Genotyping
System. This high throughput approach uses 96.96 Dynamic Genotyping Arrays that
employ nanofluidic circuitry to allow for the simultaneous analysis of 96 SNP assays
by 96 DNA samples. Fluidigm SNP Genotyping analysis software was used to assem-
ble genotype data, as well as to judge SNP plot quality. The program GENETIX 4.05
(Belkhir et al. 1996-2004) was used to estimate allele frequencies, expected (Hg) and ob-
served (Hp) heterozygosity (Nei 1978) and the fixation index Fgp (Weir and Cockerham
1984). The program GENEPOP 4.0 (Rousset 2008) was used to calculate deviations

from Hardy-Weinberg and linkage (gametic phase) equilibria.

1.3 Results

Of the 275 EST primer pairs chosen for SNP discovery, 248 produced PCR
products that amplified as a single band for most individuals when electrophoresed in
agarose. These ESTs were then sequenced, while those that did not amplify or that
produced multiple bands were no longer considered. Of the 248 loci that went on
to be sequenced, 234 produced sequence data at one or more individuals (Table 1.1).
When taking into account both forward and reverse strands, an average of 33.7 (out of a
maximum possible of 48) sequences per locus was attained. Most loci produced sequence
data in the targeted length range with overlapping forward and reverse strands, however

56 loci generated a consensus sequence larger than 600 bp and 32 produced forward and
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Table 1.1: Summary of EST sequencing effort to identify genetic variation in populations
of Chinook salmon (O. kisutch) from the west coast of North America. The weighted
estimates account for unobserved variation in consensus sequence derived from less than

24 individuals.

Total Mean per locus
[range]

EST loci successfully sequenced 234
Base-pairs sequenced (all fragments) 4,206,429 15813.64 [764-46246.5)
Length of consensus sequence (bp) 125,356 471.26 [72-1108]
Weighted consensus (bp) 118,199 444.36 [72-1108]
Number of observed substitutions 610 2.61 [0 - 12]
Number of SNPs (all three genotypes observed) 225 0.96 [0 - 6]
Loci with no variable sites 38
Insertions/deletions (indels) 68
Transitions (A-G or C-T) 279
Transversions (A-C or G-C or A-T or G-T) 332
Sites with 3 nucleotides observed 1
Possible duplicated genes 6
Total number of substitutions + indels 678
Density of substitutions in consensus sequence 0.0049

Density of substitutions in weighted consensus sequence 0.0052

reverse sequences that did not overlap (consensus fragments for seven of these loci were
also longer than targeted), indicating the presence of one or more intronic regions.
Approximately 4.2 MB of genomic sequence data was generated and aligned
(mean 15.8 kb/locus) with a total consensus sequence length of approximately 125 kb
(mean 471 bp/locus). Of the 234 EST loci that produced sequence data, 196 harbored
one or more variable sites, comprising a total of 610 nucleotide substitutions or likely
SNPs. The mean density of observed mutations in the ~125 kb of total consensus

sequence was calculated to be 0.0049, or about one substitution every 206 bp. In
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order to correct for missing sequence data and thus more accurately estimate potential
SNP density, the mean length of fragments making up the consensus sequence was
weighted by the total number of individuals for which sequence was generated. The
calculated weighted consensus sequence was approximately 118 KB (mean 444 bp/locus)
and produced a mean substitution density of 0.0052, or about one substitution every
194 bp. The density of putative SNPs, or substitutions where all three genotypes were
observed, in the consensus sequence was 0.0018, or about 1 SNP every 557 bp, while
weighted the density was 0.0019, or about 1 SNP every 525 bp.

Mutations were only considered to be putative SNPs if all three genotypes
were exhibited in the sequence data. Of the 225 putative SNPs uncovered in the se-
quencing effort, 117 met the TagMan assay design criteria and were submitted for assay
development. Of those, 111 were suitable for assay manufacture and were then used
to genotype the validation populations. Of these 111 assays, 20 were discarded owing
to their inability to reliably discriminate allelic variation. These assays produced plot
results that either had no signal, had more than three clusters present, had only one
apparent heterozygote cluster, had both homozygote clusters without a heterozygote
cluster, or generally produced poorly discernible genotype clusters. A total of 91 SNP
assays and the 1 species diagnostic assay then went on to be further validated and
characterized. Assay primer/probe and variable base information, as well as GenBank

dbGSS and NCBI dbSNP accession numbers, are listed in Table 1.2.
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All 92 assays were used to genotype 470 coho salmon individuals sampled from
ten populations throughout California, Oregon, Washington, and British Columbia, in
order to assess assay genetic variability and efficacy throughout different regions of the
species’ North American range. A summary of the population genetic variability of
the 91 validated SNP loci (the species diagnostic assay is not included in this table
because it is characteristically monomorphic for one allele in coho salmon and for the
alternative allele in Chinook salmon) can be found in Table 1.3 and Table 1.4. Of the
470 samples genotyped, 39 were removed from further analyses due to missing data at
20 or more loci, leaving a total 431 individuals to be analyzed. Minor allele frequency
for individual loci ranged from 0.011 to 0.500, while mean minor allele frequency var-
ied from 0.266 in Scott Creek to 0.398 in Quinault River, and averaged 0.349 over
all populations. The proportion of polymorphic loci was 91.3% in all populations and
ranged from 87.0% in the Nehalem River Hatchery population to 94.4% in the Laguni-
tas/Olema creeks population. Twenty-two of the markers were fixed in one or more of
the population test groups, however all markers displayed variability in at least one of
the ten populations. For each variable locus, expected heterozygosity (Hg) ranged from
0.021-0.507 (mean=0.319) and observed heterozygosity (Hp) ranged from 0.022-0.706
(mean=0.315). Mean Hg varied from 0.284 (Fraser River) to 0.344 (Noyo River), while
mean Hp ranged from 0.271 (Fraser River) to 0.354 (Scott Creek). Mean Fgp for all
loci in the California populations was 0.104, and ranged from 0.003 to 0.405 at indi-
vidual loci over the five populations. In the Oregon, Washington and British Columbia

populations, Mean Fgr for all loci was 0.073, and ranged from 0 to 0.438. Over all 10
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populations, mean Fgr for all loci was 0.131, and values varied from 0.006 to 0.445 (data
not shown). In total, five loci were not in Hardy-Weinberg equilibrium in all popula-
tions, three of which (Okil03577-70, Oki119108-320 and Okil31460-243) deviated from
equilibrium in one population and two of which (Okil09525-359 and Okil29870-552)
deviated from equilibrium in two populations (Table 1.3 and Table 1.4). Estimates of
linkage disequilibrium between locus pairs varied when the Russian River test sample
was included in the analysis versus when it was excluded. When included, 88 locus
pairs were in complete disequilibrium, 63 of which were in significant linkage disequi-
librium even though each locus was designed from a different gene. This is higher than
expected by chance alone with a significance value of < 0.001. When the Russian River
test sample was excluded, only three locus pairs were in significant linkage disequilib-
rium based on a significance value of 0.001 or less. This phenomenon is most likely the
result of a small effective population size consisting of closely related individuals due to
near extirpation from the Russian River watershed in the last few decades (Garza and

Gilbert-Horvath 2003, Bucklin et al. 2007).
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Preliminary BLAST (Basic Local Alignment Search Tool, NCBI) results and
annotation of the target SNP can be found in Table 1.5. Annotation has been included
for the loci described in this chapter (References 1), as well as an additional 17 loci
(References 2 and 3) that make up the genotyping panel in Chapter 2. Out of the 109
SNPs, 76 were found in exons, while 30 were found in introns based on alignment of
the consensus with the EST sequences. A total of 74 consensus sequences matched a
known gene from GeneBank with E-values ranging from 9E-146 to zero (smaller num-
bers indicating higher similarity). FEighteen SNPs were identified in either the 5’ or
3’ untranslated region (UTR), while for five loci, annotated translation (n.t.) was un-
available. The introns for 15 loci were found within the coding sequences (CDS) of a
gene, while others were found upstream or downstream of the annotated fragment. Of
the variation found in CDS exons, three were synonymous substitutions while five were

non-synonymous substitutions.
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1.4 Discussion

Presented is a collection of original markers designed for 91 single nucleotide
polymorphisms in coho salmon, an economically valuable Pacific salmonid species facing
extinction in much of its native range, as well as one diagnostic assay that distinguishes
coho and Chinook salmon. I show that by utilizing a public database of existing O.
mykiss ESTs, high volume SNP discovery in a related non-model organism is success-
ful. T performed an extensive sequencing effort that assessed 234 gene fragments with
a total consensus length of 125 kb in an average of 17 individual salmon. This effort
has also significantly increased the amount of SNP loci currently available for coho
salmon. The 91 SNP markers reported here are broadly polymorphic and should pro-
vide a valuable genetic resource for purposes such as genetic stock identification (GSI),
individual identification, pedigree reconstruction, phylogeography, and ecological ap-
plications. The species diagnostic assay will also be useful in identifying coho salmon
accidentally and/or illegally caught in the Chinook fishery, as well as putative Chinook
salmon samples collected in coho salmon sampling efforts.

The development and use of molecular markers for the purpose of estimating
stock origin of fish in salmon fisheries is becoming a more widespread option for fishery
management. For GSI, establishment of a reference baseline containing markers with
appropriate allelic frequency differences between populations is required in order to
estimate stock proportions from a mixed fishery sample (Garza and Anderson 2007, Seeb

et al. 2007). Because of the bi-allelic properties of SNPs, large numbers of informative
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SNP loci are needed for accurate assignment. It has also been suggested that the
inclusion of several SNP loci that have high Fgr values (under divergent selection),
may also increase the accuracy of GSI assignments (Hess et al. 2011). The mean Fgp
estimated for the 91 SNP loci presented here was 0.131 over the ten populations, and
individual pairwise F g7 estimates ranged from 0.006-0.445, suggesting that some loci are
under greater diversifying selective pressures and might be more informative than others
for GSI purposes (Nielsen 2005). Progress towards the establishment of an informative
baseline of SNP population markers has begun in recent years (Seeb and Seeb 2006) and
the 91 SNP assays described here should add significantly to available genetic resources
for coho salmon. Likewise, preliminary analyses suggest that assignment accuracy for
GSI in the validated populations is similar to that retrieved from the 18 microsatellite
loci currently in use for coho salmon at the NOAA Santa Cruz laboratory (Bjorkstedt
et al. 2005) when previously designed markers (Smith et al. 2006, Campbell and Narum
2011) were combined with the most informative assays from the present study (data
not shown).

Additionally, the SNP loci presented here will make intergenerational genetic
tagging possible through large-scale parentage inference because 80-100 SNP loci are
needed in order to minimize tag recovery error rates (Anderson and Garza 2006).
Parentage-based tagging (PBT) is largely centered on the idea that by genotyping
parental fish, either hatchery broodstock or wild spawners, genetic tags from their off-
spring can be recovered and used to provide information on their stock and cohort of

origin (age) of subsequent fish (Anderson and Garza 2006, Garza and Anderson 2007).
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The large number of polymorphic SNP loci specifically designed for coho salmon in this
study, as well as the few others currently available (Smith et al. 2005, Smith et al. 2006,
Campbell and Narum 2011) will help to provide a better understanding of coho life
history traits such as age at maturation and effective population size, reproductive suc-
cess, mortality rates, and migration rates, both in natural populations and in hatchery
settings.

Ultimately, SNP markers will help to inform decisions in species conservation
and hatchery management. Unlike microsatellites which are based on fragment size,
SNP markers are directly based on DNA sequences. This allows for resulting SNP
data from different labs around the world to be highly portable and easy to combine.
Such characteristics reduce the time and cost that is incurred in the generation and
standardization of microsatellite data. SNP loci also have the potential to provide
more reliable data due to a low rate of mutation, an occurrence that microsatellite
loci are frequently subjected to at high rates (Picoult-Newberg et al. 1999). As such,
the growing number of informative SNP loci becoming available to researchers will be
extremely valuable for future uses.

This SNP discovery effort used traditional Sanger sequencing methods to se-
quence PCR products from 275 ESTs from an O. mykiss database, and the results of
this effort were quite successful. The ascertainment panel included samples from several
populations of coho salmon representing a large portion of the species’ natural range,
and specifically included representatives of California populations that are currently

being studied in this lab. The resulting assays produced in this research effort will be
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employed in future studies and monitoring programs involving these populations. Only
assays for which all three genotypes were observed were designed, regardless of which
individuals or population representatives harbored variation. In doing so, markers were
chosen that had higher mean minor allele frequencies (0.266-0.398) as well as an in-
creased likelihood of being more generally useful in the species. This means however
that the minor allele frequency results are upwardly biased due to the under represen-
tation of rare alleles. The ascertainment and validation panel also included fish with
generally small effective population sizes in the Russian River, largely due to recent and
severe reductions in population size. The inclusion of these fish is presumably what
caused the high instance of apparent linkage disequilibrium, as the analysis showed that
almost all significant linkage disequilibrium occurred in locus pairs within the Russian
River (data not shown) even though all loci were designed from separate genes. The
under-representation of rare alleles may be even more pronounced in this population
due to the potential loss of genetic variation that generally occurs when populations
have been greatly reduced (Garza and Williamson 2001).

The ascertainment panel was designed to locate variation in a diverse group
of coho salmon in order to reduce ascertainment bias. However it was not possible to
completely eliminate ascertainment bias due to the extent of phylogeographic diver-
sity within the species and the large amount of additional sequencing effort that this
would entail. The need for more informative SNP assays for all populations of coho
salmon is ever increasing. As a result, more recent efforts are turning to next genera-

tion sequencing (NGS) methods such as pyrosequencing for SNP discovery in salmonids.
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These methods have the potential to produce a large amount of genetic sequence data
that harbor a large number of polymorphic sites. Sanchez et al. (2009) produced close
to 130,000 contigs in O. mykiss that contained 20,000 putative SNPs. However their
resulting conversion rate upon validation was very low (48%) when compared to our
conversion rate (80%) because NGS is apparently unable to differentiate between true
SNP sites and sequencing artifacts. Certain protocols are available, however, that might
improve NGS results (Campbell and Narum 2011). Traditional Sanger sequencing of
targeted EST loci has its advantages, in that the functional roles for certain genes are
often already known, and it is easier to sequence the same genomic regions across a
diverse panel of individuals. In this study, only a small portion (275) of the ESTs from
the O. mykiss Gene Index, in which there are nearly 100 kb of EST sequence available
for exploration, were examined. Either through another targeted EST sequencing effort
or through the use of NGS technology, an additional sequencing and SNP discovery
effort will obviously need to take place in order to further reduce ascertainment bias

and discover more coho salmon variation.
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Chapter 2

The use of SNPs for intergenerational
genetic tagging allows pedigree-based
inference in a hatchery population of

coho salmon (Oncorhynchus kisutch)

2.1 Introduction

Mark and recapture methods have proven to be very useful for studying the
ecology, population biology and evolutionary history of organisms over time. Mark-
recapture, or physical tagging, experiments have been performed in many animal groups
including mammals (Herrera 1992; Rogers et al. 1996), birds (Morton 1992; Johnston
et al. 1997), amphibians (Berven and Grudzien 1990), insects (Weslien and Lindelow

1990; Sutcliffe et al. 1997) and fish (Miller and Simenstad 1997; Trajano 1997), and they
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have provided a powerful way by which to estimate population size and distributions,
migration patterns, responses to varying environmental parameters and effects of natural
selection. However, this method is not always a viable option for certain organisms
because tag attachment and recovery can be too invasive, tags are often expensive
and/or prone to loss, the animals themselves are too phenotypically similar to be easily
distinguished in the wild, and actual tag recovery rates can be low in organisms that
experience high mortality (Palsbgll et al. 1997; Woods et al. 1999; Hankin et al. 2005).

For these reasons, many researchers have turned to genetic tagging as an alter-
native to the traditional mark-recapture methods. Several studies have demonstrated
the utility of using genetics as a means of tagging whales (Palsbgll et al. 1997) and
bears (Woods et al. 1999), as well as bush rats (Peakall et al. 2006), fur seals (Hoff-
man et al. 2006), and salamanders (Unger et al. 2012). In these cases, an individual’s
DNA or genotype serves as the tag. The same individual is then ‘recaptured’ when
its matching genotype has been identified in a subsequent sampling effort. In addition
to mark-recapture methods, genetic tagging is also employed in order to infer famil-
ial relationships, like parent-offspring pairs and siblings. Through these methods, it is
possible to estimate certain life history traits and population parameters like effective
population size, reproductive success and reproductive strategy, dispersal, fitness and
hybridization in both wild and captive groups of individuals (Fowler et al. 1998; Blouin
2003; DeWoody 2005; Taylor et al. 2007; Wang et al. 2008). In one such study, parent-
age analyses were used to confirm that wildlife crossings prevented population isolation

in both grizzly bears and black bears by allowing for continued gene flow when said
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populations suffered from habitat fragmentation (Sawaya et al. 2014).

Of late, single nucleotide polymorphisms (SNPs) have become an increasingly
popular molecular tool for use in population biology. Anderson and Garza (2006)
demonstrated that a relatively small number of SNPs (< 100) are necessary in or-
der to provide powerful and accurate parentage inference in large data sets involving
highly fecund organisms. Additionally, other benefits associated with SNPs such as
their ease of portability, low error rates and suitability for high-throughput genotyping,
has led to the development of many new SNP markers (Abadia-Cardoso et al. 2011;
Clemento et al. 2011; Starks Chapter 1). This, in combination with new parentage al-
gorithms/software (Anderson and Garza, 2006; Anderson 2012) designed to quickly and
efficiently handle large amounts of SNP data, has made large-scale parentage analysis
and pedigree reconstruction in salmonids a reality (Abadia-Cardoso et al. 2013; Steele
et al. 2013).

Coho salmon (Oncorhynchus kisutch) is a species of Pacific salmonid, highly
prized in both the sport and commercial fishing industries. However, like other salmonids,
coho populations residing in the more southern reaches of the species’ native range (i.e.
California, Oregon and Washington) are rapidly declining or have already been driven to
extinction (Frissel 1993; Brown et al. 1994; Weitkamp et al. 1995). As a result, most coho
populations in the contiguous United States are now protected under the Endangered
Species Act (ESA). From California to the Pacific Northwest, coho have been divided
into seven Evolutionarily Significant Units (ESUs) based on population structure and,

of these seven ESUs, five are listed as either endangered, threatened, or a species of
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concern under the ESA (FedReg 1995, 1997, 2005). This rapid, dramatic decline has
primarily been attributed to freshwater habitat loss resulting from the construction of
dams, logging and agriculture, combined with over-fishing and fluctuating ocean con-
ditions (Hare et al. 1999; Ruckelshaus et al. 2002). As a result, many hatcheries have
been established in order to mitigate these losses through supplementation by artificial
propagation.

Although salmon hatcheries along the Pacific West Coast of the US produce
millions of coho annually, these fish, like other hatchery fish, generally carry the stigma
of having a potentially harmful influence on their wild, naturally spawning counterparts.
Reduced fitness owing to relaxed selective pressures associated with the hatchery envi-
ronment, combined with elevated levels of inbreeding, have been implicated as sources
for these fitness reductions (Christie et al. 2012; Christie et al. 2013). As these hatchery
fish are released into the wild as juveniles, they then carry the risk of imparting, through
introgression, their hatchery-selected genes into wild stocks, resulting in reduced fitness
and maladaptation of wild populations (Araki et al. 2007; Buhle et al. 2009; Quiniones
et al. 2014).

Ultimately, improvements in hatchery practices are needed in order to increase
the genetic variability and overall fitness of these populations, so that the process of
conservation and in some cases rehabilitation of wild stocks can begin. In order do this in
an effective and beneficial manner, it is first necessary to gain a full understanding of the
life history variation and reproductive strategies specific to the populations in question.

Although the basic lifecycle of coho salmon is relatively invariable in comparison to
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other salmonids like steelhead (O. mykiss), the species still displays minor variability
in regard to adult sexual maturity and run timing. As coho salmon are anadromous,
they can generally spend 1-2 years in fresh water after hatching, and another 1-2 years
in the ocean foraging before they migrate back to their natal streams to spawn. Coho
salmon are semelparous, meaning that they die after a single spawning event. Most
coho salmon along the Pacific west coast reenter freshwater in October when fall rains
increase river flow, spawning from November to December and sometimes into January
(Weitkamp et al. 1995). However, the mouths of many small coastal California streams
are obstructed by sandbars for most of the year until sufficient winter rains allow them
to be breached, so river reentry and actual spawn timing can be delayed upwards of
three months due to delayed rain fall and/or drought (Weitkamp et al. 1995; Lestelle
2007).

Fully grasping the combined biological/heritable and environmental mecha-
nisms responsible for shaping these different life history strategies is difficult to do in
a highly fecund species that undergoes extensive migrations. In order to attempt to
do so, the ability to accurately identify and track individuals, and ultimately families,
within and among populations and over generations is both desirable and necessary
for meaningful biological inference. Currently, coho salmon are identified as being of
hatchery origin by way of physical markings (adipose and maxillary fin clips) and/or
by the employment of coded wire tags (CWTs; Hankin et al. 2005). CWTs enable
hatchery managers to identify ocean caught fish down to the cohort and hatchery stock

origin levels, and they provide inference on ocean stock distributions and age specific
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mortality. However, only a fraction of individuals per cohort receive a CW'T, identi-
fication to family level is not possible, and tag retrieval is lethal. In a species that is
ESA-listed (even hatchery origin fish) over much of its native range within the contigu-
ous United States, these tags have minimal utility owing in part to the fact that these
fish cannot be legally harvested in the ocean, and because injuries resulting from the
tagging/marking procedure in itself may lead to increased straying, disease prevalence,
and overall mortality in later life stages (Morrison and Zajac 1987; Habicht et al. 1998;
Elliott and Pascho 2001; Crozier and Kennedy 2002).

The limited tagging capabilities described above leave much to be desired in
terms of providing the information needed to develop sound conservation and manage-
ment guidelines specific to these dwindling populations of coho salmon. As a result, the
stage has been set to test and validate the accuracy and effectiveness of large-scale SNP-
based parentage inference, or pedigree-based tagging (Anderson and Garza 2006). The
rationale behind this tagging method is that a hatchery cohort is tagged by collecting
the parental genotypes of the broodstock. Tag retrieval is then performed when the cor-
responding adult offspring return to the hatchery to spawn; through non-lethal genetic
sampling, followed by high confidence pedigree inference (Anderson 2012), individual
offspring are then assigned back to their true parent-pairs. Because each parent-pair is
likely to produce numerous juvenile offspring that will experience high mortality (i.e.
lost tags), being able to assign tags based on parental genotypes rather than physical
tag recovery is an efficient method. Additionally, stock origin and cohort specific in-

formation, as well as date of birth and reproductive success of certain individuals can
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also be determined. As such, this method harbors wide-ranging potential for the evalu-
ation and continued monitoring of salmonid populations, as well as other high fecundity
species with complex lifecycles.

This study describes a large-scale, intergenerational genetic tagging experiment
in a medium sized hatchery population of coho salmon from the Klamath River, CA,
USA. In this experiment, I use a panel of SNP markers developed specifically for coho
salmon (Smith et al. 2006; Campbell and Narum 2011; Starks Chapter 1) in order
to reconstruct with high confidence, individual pedigrees of adults having undergone
ocean migrations. Assignment accuracy was confirmed by comparing assignments to
hatchery recorded spawn pair records as well as to records of physical hatchery marks
assigned to individual fish. The reconstructed parent-offspring trios were then used
to evaluate variability in the age structure of offspring cohorts as well as of parental
return years, and the relative reproductive success of spawning broodstock. Phenotypic
data collected for most parents and their offspring allowed for heritability estimates of
length-at-maturity, as well as correlations between female length and the number of
their offspring returning to spawn.

Additionally, I performed an in depth comparison of the overall performance
of both SNP and microsatellite markers at calculating relatedness. Because prior ge-
netic analyses employing microsatellites and the relatedness statistic, Rxy (Queller and
Goodnight 1989), determined that inbreeding was a significant problem in this popula-
tion (HSRG 2012 per C. Garza draft analysis 2010), genetic spawning matrices are now

employed in order to guide mating protocols at the hatchery. These matrices determine
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preferred mates based on the degree of relatedness inferred between potential spawners
in an effort to reduce inbreeding. As genetically based spawn matrices are to be imple-
mented in all future brood years, and because the SNP panel used in this study was
developed with the intention of replacing the microsatellite panel currently in use at the
hatchery, it is important to determine whether SNP-generated relatedness values are
comparable to those inferred from microsatellites. As such, estimates of relatedness in
the spawning populations were compared between the two marker types, and estimates
of relatedness in pedigree-confirmed siblings were compared. The effect of parental re-
latedness on their reproductive success was also assessed using both marker types for
comparison. I demonstrate that pedigree-based tagging provides a powerful means for
identifying and understanding many biological and population level aspects of an ESA

listed species with significant conservation concerns.

2.2 Methods

2.2.1 Study Site

The headwaters of the Klamath River begin in Southern Oregon and flow
through Northern California to empty into the Pacific Ocean approximately 32 km
south of Crescent City, CA (Figure 2.1). The Klamath is the second largest river in
California, with an average discharge of 481 m?/s and it supports populations of coho
salmon, Chinook salmon and steelhead trout. The construction of Copco Dam 1 in 1918

and Iron Gate Dam in 1962 completely obstructed salmonid migration into the upper
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reaches of the Klamath Basin. In 1963, Iron Gate Hatchery (IGH) was built at the base
of Iron Gate Dam, and in 1966 artificial propagation of coho salmon began in order to
mitigate for the loss of spawning and rearing habitat imposed by these barriers.

Coho salmon run time in the Klamath is relatively short, with adults returning
to the river from late October to early January. Historically, hatchery staff randomly
selected and spawned adult fish returning to Iron Gate at a male to female ratio of 1:1
(generally) until desired egg production was achieved (IGH reports 2004-2010: Hampton
2005; Richey 2006; Chesney 2007; Chesney 2009; Chesney and Knechtle 2011). A size
cutoff has traditionally been employed in order to exclude precocious age-two males
or “jacks” from broodstock, with the cutoff ranging from 510-580 mm [males 510 mm
considered precocious in 2004 (Hampton 2005) and males 580 mm considered precocious
in 2008 and 2010 (Chesney 2009; Chesney and Knechtle 2011)]. Prior to 2010, all
hatchery marked fish that returned to the hatchery were sacrificed, however in 2010
only spawned individuals were sacrificed while those that were not spawned in the
hatchery were released back into the river. Eggs were incubated at the hatchery and
juveniles received a left maxillary (LM) bone clip for visual determination of IG hatchery
origin prior to release at age one. There are two other coho hatchery programs near the
Klamath River: Trinity River Fish Hatchery (TRH) at the base of Lewiston Dam on
the Trinity River, a southern tributary of the Klamath, and Cole M. Rivers Hatchery
(CRH) which is situated at the base of Lost Creek Dam on the Rogue River. Juvenile
coho released from TRH receive a right maxillary (RM) bone clip while those released

from CRH are marked by the removal of their adipose (AD) fin. Individuals from both
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Figure 2.1: Location of Iron Gate Hatchery (IGH) at the base of Iron Gate Dam, on

the Klamath River, as well as Trinity River Fish Hatchery (TRH) at the base of the

Lewiston Dam. Map originally published in HSRG 2012
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of these two hatcheries frequently return to Iron Gate and prior to 2010 have been

incorporated into broodstock (HSRG 2012; Table 2.1).

Table 2.1: Summary of sampling and genotyping effort at Iron Gate Hatchery, Horn-
brook, CA. Included are the year of spawning, origin of returning adults based on the
presence or absence of a hatchery clip (LM, RM, AD or NO i.e. no clip), the number
of individuals successfully genotyped (males and females), the number of individuals
excluded [1; missing genotypes at 10 or more loci (total = 201) 2; duplicated genotypes
due to multiple sampling of the same individuals (total = 148) 3; identified as Chinook
with the species ID locus (total = 7)], and the number of individuals spawned (age
three females, age three males and age two males) as reported by the hatchery. *In
2004, only a subset of spawners were sampled for genetic purposes. The total number
of females spawned was recorded (276) and it is assumed that approximately 276 males
were also spawned based on a female to male spawn ratio of 1:1. Because mated pairs
were not recorded, hatchery designation of all spawned individuals (LM, RM, AD or
NO) is unknown.

Genotyped | Excluded Matings

Spawn Hatchery Hatchery | n n n n n n n
Year Clip Origin | [o] [¢] |[o] [o] | [?] [o] [jacK]

2004* LM IGH 90 99 16 12 - - 0

RM TRH 2 4 1 0 - - 0

AD CRH 0 0 0 0 - - 0

None NO 47 43 3 4 - - 0

No info Unk. 14 13 0 0 - - 0

Tot. 153 159 20 276 276 0

2005 LM IGH 158 146 25 100 98 0

RM TRH 1 0 0 0 0 0 0

AD CRH 0 1 0 1 0 0 0

None NO 67 83 8 19 4 6 0

No info Unk. 9 7 5 4 0 0 0

Mis-ID Chin. 3 1 3 1 0 0 0

Tot. 238 238 41 43 104 104 0

2006 LM IGH 72 58 0 0 77 56 0

RM TRH 1 0 0 0 1 0 0

AD CRH 4 9 0 0 2 9 0

NO NO 3 5 1 1 4 4 0

Unk. Unk. 10 3 9 3 1 0 0

Tot. 90 75 10 4 85 69 0

2007 LM IGH 93 142 16 11 125 127 0

RM TRH 2 0 1 0 2 0 0

AD CRH 0 2 0 0 0 1 0

Continued on next page
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Table 2.1 — continued from previous page

Genotyped | Excluded Matings
Spawn Hatchery Hatchery | n n n n n n n
Year Clip Origin | [o] [¢] |[e] [o] | [e] [g] [jack]

NO NO 47 36 1 2 5 5 0

Unk. Unk. 77 7 11 12 0 1 0

Mis-ID Chin. 1 0 1 0 0 0 0

Tot. 220 257 30 25 132 134 0

2008 LM IGH 147 147 6 5 145 142 0
RM TRH 0 0 0 0 0 0 0

AD CRH 0 0 0 0 0 0 0

NO NO 2 4 0 0 3 6 0

Unk. Unk. 2 7 0 0 0 0 0

Tot. 151 158 6 5 148 148 0

2009 LM IGH 12 16 1 1 13 7 7
RM TRH 4 2 1 0 4 2 0

AD CRH 0 0 0 0 0 0 0

NO NO 5 3 0 0 4 3 0

Unk. Unk. 0 0 0 0 0 0 0

Tot. 21 21 2 1 21 12 7

2010 LM IGH 219 204 31 22 75 56 8
RM TRH 0 1 0 0 0 0 0

AD CRH 0 0 0 0 0 0 0

NO NO 43 44 9 9 5 14 2

Unk. Unk. 1 0 0 0 0 0 0

Mis-ID Chin. 1 0 1 0 0 0 0
Tot. 264 249 41 31 80 70 10

2011 LM IGH 178 317 8 10 53 68 7
RM TRH 0 0 0 0 0 0 0

AD CRH 0 1 0 0 0 0 0

NO NO 3 17 0 0 4 10 1

Unk. Unk. 16 20 1 0 0 0 0

Mis-ID Chin. 1 0 1 0 0 0 0

Tot. 198 355 10 10 57 T8 8
2012 LM IGH 173 434 15 42 64 32 59
RM TRH 1 2 0 0 0 0 0

AD CRH 0 0 0 0 0 0 0

NO NO 5 10 0 1 2 6 1

Unk. Unk. 1 4 0 0 0 0 0

Tot. 180 450 15 43 66 38 60

Total ‘ 3476 353

Modifications to hatchery spawning procedures took place after 2009 when
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adult returns were so sparse (< 60 individuals) that hatchery staff was forced to spawn
several jacks and TRH strays for lack of available age-three IGH fish. The small return
year coupled with the fact that coho salmon in this basin (SONCC ESU) were already
listed as threatened under the Endangered Species Act (1997, updated 2005), prompted
the decision to modify the IGH coho salmon program from that of a mitigation program
to one focused on coho conservation (HGMP V.10 2013). Subsequently, beginning in
2010, hatchery broodstock were selected based on a genetic spawning matrix designed
to reduce inbreeding, jacks were purposely spawned in order to allow gene flow between
broodcycles as well as to reduce inbreeding, and hatchery strays from other programs
were excluded from matings to encourage local adaptation by ensuring that IGH brood-
stock represent the natural population with which the program is integrated (HSRG
2012, HGMP V.10 2013). Additionally, natural origin fish were to make up 20-50 % of
the broodstock (if/when possible), and males and females were to be spawned at a ratio
of 2:1 if fewer than 50 females were available for spawning, in order to increase effective
population size (HGMP V.10 2013). These modified hatchery procedures are to be im-
plemented for all future consecutive spawn years in order to protect and conserve the
remaining genetic resources in the Upper Klamath River (Chesney and Knechtle 2011,

HSRG 2012, HGMP V.10 2013).

2.2.2 Sample Collection and DNA Extraction

A total of 3,476 tissue samples (fin clips) were collected from adult coho salmon

returning to IGH from 2004 to 2012. Metadata was collected and recorded for each
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sample, and generally included spawn and/or collection date, mate assignment, gender
assignment (based on visual identification), fork length, and hatchery mark (Table 2.1).
Natural origin fish, or individuals that were not marked by a fin clip were identified in
the metadata as NO fish. There were also several fish for which there was no hatchery
mark designation or information noted in the metadata, and these were designated as
‘Unknown.’

In 2004 only a small fraction (312 of 1734, or 18.0%) of the total return year was
sampled for genetic analysis, and spawned individuals were not distinguished as such in
the metadata. Beginning in 2005 and lasting until 2009, tissue samples were collected
from all spawned individuals as well as a portion of the returning adults not used for
broodstock (total fraction of returning adults sampled: 2005, 476 of 1425 (33.4%); 2006,
165 of 332 (50.0%); 2007, 477 of 779 (61.2%); 2008, 309 of 1295 (23.8%); 2009, 42 of
70 (60.0%)). From 2010 through 2012, complete sampling of all broodstock as well as
all returning adults not spawned by hatchery staff occurred. Although sampling of the
entire hatchery population was not yet standard practice in 2009, due to the extremely
low number of returning adults, all LM-clipped fish that returned to the hatchery were
spawned and sampled.

DNA from the 3,476 fin samples was extracted using DNeasy 96 tissue kits
(QIAGEN Inc.) on a QIAGEN BioRobot 3000. The extractions were then diluted 1:2
in ddH5O in preparation for a pre-amplification PCR. designed to enrich DNA frag-
ments containing the targeted SNPs. The pre-amplification PCR contained the follow-

ing reagents: 2.5uL of 2X Master Mix (QIAGEN Inc.), 1.3uL of pooled 0.2X unlabeled
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primers (derivatives of 96 real-time assays, Applied Biosystems Inc.) and 1.6uL of DNA
template. The thermal cycling protocol began with an initial denaturation of 15 min at
95°C, 13 cycles of 15s at 95°C, and 4 min at 60°C for +1°C/cycle. The pre-amplification

PCR products were then diluted 1:3 in 2 mM Tris.

2.2.3 Marker Selection and Genotyping

The SNP loci utilized in this study were selected from the 91 SNP assays
developed in chapter 1 of this document, as well as from those developed by Smith et
al. (2006) and Campbell and Narum (2011). The resulting marker panel consists of 95
SNPs, plus 1 species diagnostic assay designed in order to discriminate between coho
and Chinook salmon (Table 2.2). Loci in this panel were chosen because their minor
allele frequencies (MAFSs) in California’s Scott Creek coho population were conducive
to parentage inference, i.e. MAFs of 0.2 in 80 or more markers (Anderson and Garza
2006). A smaller fraction of these loci were also selected because they demonstrated high
pairwise FST values across five coho populations in California, including the Klamath
River and IGH, making them useful for population level discrimination (Starks Chapter
1). In the Klamath River, 24 of these SNPs have a minor allele frequency <0.15, 23

between 0.15 and 0.3, and 48>0.3.
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All sampled individuals were genotyped with the above SNP panel using the
TagMan chemistry (Applied Biosystems) on a 96.96 Dynamic Genotyping Array with
the EP1 Genotyping System (Fluidigm Corporation). Each array included two negative
controls (no template), and genotypes were scored using SNP GENOTYPING ANALY-
SIS SOFTWARE V 3.1.1 (Fluidigm). Additionally, all individuals in this dataset were
genotyped with a panel of 16 microsatellite loci (Table 2.3). Microsatellite data was
included in this project in order to compare pairwise estimates of relatedness (Rxy)
between the two sets of markers. PCRs contained the following reagents in single or
multiplex volumes of 15uL with 4uL of 1:20 DNA template: PCR Buffer at 1x concen-
tration 1.5 mM MgCly, 0.1 mM each dNTP, 0.1 units Amplitaq polymerase (Applied
Biosystems), and either 0.17 mM each of forward and reverse primer (single locus PCR)
or 0.12 mM of each primer (multiplex PCR). The basic thermal cycling protocol began
with a denaturation step at 95°C for 2 min, followed by 10 cycles at 95°C for 15 s, 53°C
(the annealing temperature) for 15 s and 72°C for 45 s, then 25 cycles of 89°C for 15
s, 55°C for 15 s and 72°C for 45 s, with a final 5 min extension at 72°C. Modifications
to this protocol were made based on the primer pair(s), and involved increasing the
annealing temperature to 55°C (followed by 25 cycles at 57°C), decreasing the anneal-
ing temperature to 45°C (followed by 25 cycles at 48°C), or simply reducing the 25
cycle step to one with 20 cycles (using the same temperatures as in the basic protocol).
The annealing temperature was determined by the primer sequences and prior PCR
optimization experiments (Conrad et al. 2013). PCR products were amplified and flu-

orescently labeled for detection on an ABI 3730 DNA Analyzer (Applied Biosystems)
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using capillary electrophoresis and standard conditions. For 96 samples from 2005, PCR
products were amplified and fluorescently labeled for detection on an ABI 377 Auto-
mated DNA Sequencer (Applied Biosystems) using polyacrylamide gel electrophoresis
for size separation of the fragments. Allele calling was then carried out by two people
independently (in order to check for scoring discrepancies) using Genemapper v. 4.0
(or Genotyper 2.1 for the 96 samples run on the ABI 377; Applied Biosystems). Once
genotyping was complete for both marker types, the two datasets were run separately
in the Microsatellite Toolkit (Park 2001) in order to identify and remove duplicated

samples (i.e. individuals that were sampled more than once at the hatchery).
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Table 2.3: Microsatellite loci used to genotype the 3,467 coho samples from IGH in order
to compare relatedness values generated from both SNP and microsatellite genotype
data. The source references are included

Locus Reference

OcL 8 Condrey and Bentzen 1998

Oki 1 Smith et al. 1998

Oki 13 Smith et al. 1998

Omm 1058 Rexroad et al. 2002

Omm 1116 Rexroadet al. 2002

One pllb  Scribner et al. 1996; R primer redesigned
One 13 Scribner et al. 1996

Ots 103 Beacham and Wood 1999

Ots 1b Banks et al. 1999; R primer redesigned

Ots G3 Williamson et al. 2002

Ots G422b  Williamson et al. 2002; R primer redesigned
Ots G68 Williamson et al. 2002

Ots G83b  Williamson et al. 2002

P 53 de Fromentel et al. 1992

Ssa 14 McConnell et al. 1995, accession no. M75145
Ssa 85 O'Reilly et al. 1996

2.2.4 Population Genetics Analyses

Unbiased expected (Hz; Nei 1987) and observed heterozygosity (Ho), as well as

the inbreeding coefficient (F1g), were calculated for each return year with both SNP and

microsatellite genotypes using Microsatellite Toolkit (Park 2001) and Genetix (Belkhir

2004). Significance of Frg was assessed with 1000 permutations of the dataset.

2.2.5 Parentage Analysis Pedigree Reconstruction

In the Klamath River, following release from IGH, juvenile coho salmon mi-

grate to the ocean to mature and then return to spawn at ages two or three. As such,

individuals from brood years 2004-2010 were treated as potential parents of those fish

that returned to spawn in 2006-2012. The software package SNPPIT (Anderson 2012)
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was used to infer parentage assignments from the individuals in the dataset. This pro-
gram selects the most likely parent pair for each offspring, then tests for statistical
certainty of each parent offspring trio using a novel and efficient (Monte Carlo) simula-
tion method that calculates a p-value and a corresponding false discovery rate (FDR).
The genotyping error rate was assumed to be 0.005 per gene copy (1% per locus) for most
loci used, however based on Mendelian incompatibilities in reconstructed trios, genotyp-
ing error rates could be estimated directly for three loci. Error rates were adjusted for
Oki_HGFA-311 to 0.017, Okil06419-292 to 0.007 and Okil129870 to 0.014. Individuals
with 10 or more missing loci (85 loci or less) were excluded from the analysis.

For organizational ease, SNPPIT was performed for individual brood years
2006-2012, however each run included all prior years as possible parents. For example,
adults that returned in 2009 were treated as potential offspring of those fish that re-
turned in 2004, 2005, 2006, 2007 and 2008. Offspring were not expected to return to
the hatchery at age one (offspring from 2009 with putative parents from 2008) nor at
age five (offspring from 2009 with parents from 2004), however hypothetical parental
years were included in the analyses in order to test for false positive assignments.

Three rounds of SNPPIT analyses were performed. The first was constrained
by gender ID and spawn date so that only putative mates of opposite gender and iden-
tical spawn date were considered. A second round was then performed which excluded
gender ID and spawn date information so that offspring could be assigned to parents of
the same sex and /or to parents that spawned on different days. These two runs were then

compared in order to identify and resolve metadata errors as well as to confirm correct
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assignments. In instances where gender ID disagreements occurred between putative
parent-pairs (female-female or male-male), the gender for each individual in question
was resolved genetically using the male specific growth hormone pseudogene (GHpsi)
marker (Du et al. 1993) and PCR. The PCR products were then electrophoresed and
visualized on 2% agarose gels. Once the metadata was corrected, a third and final set of
constrained SNPPIT runs was then performed for assignment support. An FDR of 0.01
or less was selected as a significance threshold, meaning that no more than 1 of every
100 assignments was expected to be incorrect. Parentage assignments were compared

to the mated pairs recorded in the spawning metadata for years 2005-2010.

2.2.6 Age Structure, Reproductive Success and Length of Returning

Adults

The age of returning adults was determined for brood years 2007-2012. Indi-
viduals that were born in 2004 (the 2004 cohort) were identified when they returned to
the hatchery at age three in 2007. Age two fish were not identified in the 2004 cohort
because the fraction of broodstock sampled was too small to find the parent-pairs of
offspring that returned in 2006. Individuals from the 2005 cohort were identified when
they returned at age two or three in 2007 and 2008; individuals from the 2006 cohort
were identified when they returned at age two or three in 2008 and 2009; individuals
from the 2007 cohort were identified when they returned at age two or three in 2009
and 2010; individuals from the 2008 cohort were identified when they returned at age

two or three in 2010 and 2011; individuals from the 2009 cohort were identified when
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they returned at age two or three in 2011 and 2012; and individuals from the 2010 co-
hort were identified when they returned at age two in 2012. The proportion of age two
and age three fish from the 2007, 2008 and 2009 cohorts was compared using z-tests.
Cohorts 2004, 2005 and 2006 were excluded from this analysis because jacks that were
born in these years were purposely not spawned when they returned to the hatchery,
so the proportion of age two and age three offspring making up these cohorts would
not be a representative sample. Cohort 2010 was also excluded because the age three
individuals that returned in 2013 had not yet been analyzed. The parentage analysis
was also used to examine the age structure of adult fish that returned to the hatchery
in 2010, 2011 and 2012. The number of age two and age three returning adults were
counted per year, and z-tests were used to compare the relative proportions of the two
age classes.

The distribution of family size was ascertained from the resulting parent-
offspring trios for fish that spawned during the period 2004-2010. These calculations
included only successful parent pairs that had at least one offspring recovered in the
reconstructed pedigrees. Likewise, relative reproductive success was estimated as the
number of adult offspring per parent that returned to the hatchery over all years com-
bined. Because the number of offspring per parent pair was not normally distributed, a
Kruskal-Wallis test was used to detect differences between the 2007, 2008 and 2009 co-
horts as well as between male and female parents within years. Again, only these three
cohorts were compared since it is presumed that all putative offspring (two and three

year olds) returning to the hatchery were included in the SNPPIT runs corresponding to
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these cohorts. The relative reproductive success of males versus females versus parent
pairs across all years was also examined as IGH generally reports one-to-one matings
(only one male crossed with one female) for the parental years concerned (2004-2010).

Fork lengths were recorded for all sampled salmon returning to the hatchery.
This size distribution allowed for comparisons in size ranges based on gender (males
versus females) and based on age (age two males versus age three males and females).
The size distribution and the parent-offspring trios confirmed in the pedigrees allowed
the heritability of length-at-spawning in the dominant three-year old age class to be
explored since the parentage analysis identified families. Heritability (h2) was estimated
as the slope of the midparent-offspring regression line. The relationship between the
mean fork length of each parent pair and the mean length of all offspring (mean offspring
length was calculated for parents with more than one offspring) was compared, as well
as all offspring separated by sex. Additionally, the relationships between individual
parents and their offspring were examined by specifically looking at the correlations
between mothers and all offspring and fathers and all offspring, as well as mothers
and daughters and fathers and sons, mothers and sons and fathers and daughters. The
relationship between female fork length and relative offspring survival was also explored,
since it is generally assumed that larger females produce more eggs, thus potentially

more offspring.
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2.2.7 Explorations in Relatedness: SNPs versus Microsatellites

Using both SNP and microsatellite genotypes for comparison, Queller and
Goodnight’s (1989) relatedness coefficient estimator, Rxy, was calculated between all
pairs of individuals in each collection year (2004-2012) using the program KINGROUP
(Konovalav et al. 2004). The Rxy statistic is a prediction of kin relationship, in that
it is an estimate of the probability that the alleles shared between two individuals are
identical by descent. In theory, the larger the value of Rxy, the greater the extent of
relatedness between two individuals. Half siblings have an expected Rxy value of 0.25
and full siblings a value of 0.50. The maximum value of Rxy that can be achieved is
1.0, which indicates identical genotypes.

For each collection year, distributions of Rxy values were plotted, and the
mean, standard deviation and skew calculated. Additionally, normal distributions were
generated using the means and standard deviations observed in each year, and were
compared against the distributions of observed Rxy values. Distributions of Rxy val-
ues for all successful parent pairs (pairs with at least one returning offspring assigned)
per year were also plotted, and the mean, standard deviation and skew were calcu-
lated. Because the hatchery recorded mated pairs from 2005 to 2010, Rxy values for
unsuccessful parent pairs (pairs that did not have recovered offspring in the parentage
analyses) could be identified. However, distributions were not plotted based on several
factors: for cohorts 2005, 2006 and 2010, the total number of ‘unsuccessful’ parent pairs

are not accurate quantifications because the full cohorts were likely not recovered in the
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parentage assignments (fractional sampling of spawners in 2005 and 2006, and three-
year old offspring that returned in 2013 have not been analyzed); in 2007, although the
hatchery reported 266 individuals as being spawned, actual spawn pair information was
only available for 152 of these individuals, making it impossible to accurately distinguish
unsuccessful pairs from the rest of the un-spawned fish; and for cohorts 2008 and 2009
there were too few unsuccessful pairs to plot distributions of Rxy per year (ten in 2008
and one in 2009). As the Rxy values for successful parent pairs appeared to be normally
distributed, a two-sided t-test was used to examine whether the mean values per year
and over all years were significantly different between SNPs and microsatellites. The
correlation between full sibling family size and Rxy value between parent pairs was also
examined separately in both the SNP and microsatellite data.

The parentage analysis identified a prevalence of families consisting of two or
more offspring. This allowed for the comparison of pairwise Rxy values between full and
half siblings generated with SNP and microsatellite genotype data. Through parentage,
it was also observed that a large proportion of the half siblings were sired from one
father, an age two male, loosely termed the ‘super-jack,” with two females (28 offspring
from female one, 41 offspring from female two). As a result, distributions of Rxy were
plotted and compared for full and half siblings with and without this male’s contribu-
tion (all 69 offspring removed) and, as before, the mean, standard deviation and skew
were calculated from the observed values and compared against normal distributions
produced from the corresponding means and standard deviations. The proportion of

type I errors (siblings classified as unrelated) using the two marker types was quantified
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using cutoff values of Rxy equal to 0.25 and 0.125 for both full and half siblings. That
is, all pairwise values that fell below these two points were summed and divided by the
total number of pairwise values in each sibling group. Comparisons of error proportions
were then made between the two marker types both with and without the super-jacks’s
contribution. The frequency of type II errors was then plotted for the entire set of
full and half siblings both separately and combined, using both SNP and microsatellite
generated values with and without the super-jacks’s contribution.

As family size tended to be large overall, simulations of full and half siblings
were also performed with only two siblings per parent pair, in order to compare their
Rxy values to those generated from the real data. Ten groups of known full and half
siblings consisting of 500 individuals (2 siblings per family) were simulated from the allele
frequencies obtained from the pooled data set (2004-2012) with the program Nookie
(https://github.com/eriqgande/nookie). This program uses population allele frequencies
to generate male and female genotypes from which full and half sibling offspring can be
simulated through Mendelian segregation. The distribution of the Rxy values for the
combined group of simulated full and half siblings was plotted, and the mean, standard
deviation and skew were calculated.

Additionally, the correlation between Rxy values generated by the two marker
types was examined with a simple linear regression for all collection years combined.
A similar correlation between Rxy values generated from the two marker types was
explored for all siblings, all full siblings and all half siblings (with and without the

super-jacks’s contribution) with a linear regression. The difference in values of Rxy
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generated by the two marker types, or Delta Rxy, was also explored in the full and
half siblings. Delta Rxy was calculated by subtracting the SNP generated Rxy values
from the corresponding microsatellite values, and the resulting distributions of delta
Rxy were plotted for the two sibling groups, both with and without the super-jack’s

contribution, and the mean, standard deviation and skew were calculated.

2.3 Results

A total of 3,476 coho samples from IGH were extracted and genotyped with
the panel of 95 SNPs and one coho-Chinook species diagnostic assay. Of this total, 353
individuals were excluded prior to analysis due to one of three factors: an individual
was sampled more than once during the spawn year giving rise to duplicate genotypes
(n=145); an individual displayed the Chinook genotype in the species diagnostic assay
(n=7); an individual had genotypes that failed at 10 or more loci (n=201, Table 2.1).
Coho that strayed from their hatchery of origin to IGH are noted in Table 2.1. This left
a total of 3,124 individuals utilized in further analysis. Also, the genotypes produced
from Okil09651-152 and Okil10689-43 appeared to be out of Hardy-Weinberg Equilib-
rium when genotyped on the same panel, so these two loci were excluded from further
analyses. The same 352 samples were removed from the microsatellite genotypes, as
well as an additional 97 individuals that failed at eight or more loci, leaving a total of

3,027 microsatellite genotypes utilized in further analyses.
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2.3.1 Population Genetics Statistics

Using SNPs, estimates of unbiased heterozygosity, Hz, ranged from 0.298 in
the 2008 samples to 0.318 in the 2006 samples, and averaged 0.315, while observed
heterozygosity, Ho, ranged from 0.301 in the 2005 samples to 0.319 in the 2012 samples
and averaged 0.309 (Table 2.4). The inbreeding coefficient, F;g, ranged from -0.0236
in the 2008 sample to 0.0171 in the 2007 sample, and averaged 0.0017 over all years;
values were significantly different from zero for the 2004 samples (P < 0.05) and the 2007
samples (P < 0.01), as well as for all samples combined (P < 0.001). The overall degree
of relatedness (mean individual Rxy), was estimated by calculating the mean value of
Rxy between each individual and all other individuals, and then taking the mean of
these individual values in each collection year. The mean individual relatedness ranged
from 0.0110 in 2007 to 0.0810 in 2008, and averaged 0.0336 over all years.

For the microsatellite data, estimates of Hz ranged from 0.558 in 2009 to 0.583
in 2004, and averaged 0.569, while Ho ranged from 0.546 in 2011 to 0.576 in 2010, and
averaged 0.559 over all years. Fjg ranged from -0.0026 in 2010 to 0.0442 in 2011 and
averaged 0.0181 over all years; values were significantly different from zero in 2004 and
2006 (P < 0.01) and in 2005, 2007, 2008 and 2011, as well as over all years (P < 0.001).
Mean individual Rxy ranged from -0.0033 in 2004 to 0.0459 in 2009, and averaged 0.0262

over all years (Table 2.4).
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2.3.2 Pedigree Reconstruction

The initial round of SNPPIT runs was constrained by spawn date and gender
ID and generated pedigrees comprised of 1,470 putative father-mother-offspring trios.
An FDR of 1 in 100 (0.01) was chosen as a basis for excluding false positive trio assign-
ments. Ultimately, trios were removed if they possessed an FDR value greater than or
equal to 0.01 with a corresponding low maximum posterior probability.

An unconstrained set of runs was then performed with spawn date and gender
ID excluded. This second round produced a total of 1,512 putative father-mother-
offspring trios. Of the 42 additional trios resulting from the unconstrained runs (com-
prised of 15 unique parent pairs), 23 displayed discrepancies in the parent’s gender ID,
6 in the parent’s spawn date, and 13 in both the parent’s gender ID and spawn date.
All of these trios had FDR values ranging from 0 to 0.014 and maximum posterior
probabilities ranging from 0.753 to 0.999. As expected, in both the constrained and un-
constrained analyses, returning adults were never inferred as being less than two years
of age nor greater than three years of age.

Discrepancies in gender ID were resolved using the male specific growth hor-
mone pseudogene (GHpsi) marker (Du et al. 1993). PCR products were electrophoresed
and visualized on 2% agarose gels. Of the 36 additional trio assignments with discrep-
ancies in gender ID, only one trio appeared to be an incorrect assignment. The offspring
individual in this trio assigned to a male-male parent pair in the unconstrained analysis

and was excluded from the constrained analysis. When electrophoresed with the GH-
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psi marker, both parental individuals in the male-male trio displayed the male band.
According to the hatchery, both males in this trio were spawned with two different fe-
males, however a genetic sample was never obtained for one of the females. As such, it
is likely that one of the paternal males in this mis-assigned trio was a close relative of
the true mother due to the low FDR (0.0008) and p value (0.001), and the high max-
imum posterior probability (0.985) associated with this false assignment. Ultimately,
this male-male trio was removed from the pedigree results.

In the remaining trios with spawn date discrepancies, it was assumed that
note-taking errors in the meta-data occurred. These errors were corrected appropriately
when possible. All other trios generated from the unconstrained runs corresponded to
the gender and spawn date metadata associated with the parent pairs in the original
constrained analysis. One final round of pedigree analysis was then performed, and was
constrained by the newly resolved metadata.

The final number of parent-offspring trios identified in the pedigree analysis was
1,511. FDR scores ranged from 0 to 0.0078 (mean, 6.38x107%), with p-values ranging
from 0 to 0.05 (mean, 8.00x10x10~*) and posterior probabilities ranging from 0.5454
to 0.9999 (mean, 0.9896). In this analysis an FDR of 0.0078 means that no more than
12 of the 1,511 parentage assignments are expected to be incorrect, although there were
only 8 assignments with FDR scores greater than 0.002. Furthermore, there were no
instances in which offspring were falsely assigned to parents as juveniles (less than two
years of age) or as adults greater than four years of age (only two- and three-year-olds

recovered) in either the constrained or unconstrained pedigree reconstruction, providing
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further support for this high confidence. Additionally, because the hatchery recorded
mated pairs (for most of the spawned individuals), I was able to test for mismatches
in the hatchery provided spawning information with the actual spawners that were
recovered in the pedigrees. Of the 381 mated pairs (with spawn info) 29 ( 7.6%) were
recovered that were not recorded as being crossed in the hatchery data.

The 1,511 reconstructed parent-offspring trios correspond to 72.2% of the total
adult offspring from 2007 to 2012 assigned to a parent-pair from 2004 to 2010 (Table 2.5).
This is because only a small fraction of the 2004 broodstock was sampled and available
for analysis. When the 2007 return year is excluded from the total, the remaining 1,455
parent-offspring trios represent 83.0% of adult offspring assigned to a parent pair. The
remaining 299 offspring were likely not assigned parentage for one of several reasons:
they were either of natural origin (NO) or they were strays from the Trinity River (RM)
or Cole M Rivers hatcheries (AD); the true parents of these individuals were excluded
prior to analysis due to poor data quality (missing 10 > loci); or the parent’s genetic
sample was not received (2 individuals; Table 2.1). Because offspring were assigned to
parent pairs, and not to single parents, if one spawner was excluded from the analysis,
that spawner’s mate was excluded as well and the opportunity for accurate offspring
assignment was no longer possible for the pair. As the hatchery kept records of the
matings from 2005 to 2010, spawned individuals that were excluded from the analysis
could be determined and, from those, the number of offspring that would have been
assigned had these individuals been available could be estimated (Table 2.5). This

was achieved by first calculating and subtracting the number of excluded parent pairs
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(excluded males x excluded females) per spawn day, from the calculated number of
genotyped parent pairs (all females x all males), and then weighing the value by the
proportion of females spawned on that day. When these values were summed over the
spawn year, the percentage of parent pairs available for analysis was estimated, and then
used to scale observed offspring recoveries. The scaled estimates of offspring recoveries
from 2008 to 2012 indicate that had all parent pairs been included in the analysis,
an additional 165 offspring, or a total of 1,620 individuals, would have been assigned

parentage, which would be 92.4% of all 2008-2012 offspring in the dataset.
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The reconstructed trios made it possible to identify one four-generation family
with two offspring, two parents, two maternal grandparents and two paternal great-
grandparents. A total of 90 three-generation families were identified in which offspring
(mean = 4.04, range = 1-25 per family), parents and the four grandparents were known,
while a total of 54 families were identified in which the offspring (mean = 4.61, range
= 1-29 per family), parents and only two grandparents were known. Of the latter there
were 22 families in which the paternal grandparents were identified and 32 in which the
maternal grandparents were identified.

Direct assessment of certain hatchery practices was also possible with the
parentage analysis. The reconstructed pedigrees confirmed one instance of inbreed-
ing, in which one full sibling parent-offspring trio was recovered. Although spawning
hatchery strays has recently been terminated (HGMP V.10 2013), the analysis identified
a total of 7 RM clipped fish and 1 AD clipped fish spawned prior to 2010. In all except
one instance (in 2009, 1 RM by RM cross), hatchery strays were crossed with LM clipped
fish. Incorporating jacks into the broodstock has also been avoided at IGH prior to 2010
(HSRG 2012, HGMP V.10 2013), however in 2009 due to the small return year, 5 of the
16 (31.3%) successful fathers recovered in the pedigree were precocious two-year-olds.
In 2010, 9 of the 60 (15.0%) successful fathers recovered were jacks. A total of 43 NO
spawners (18 of which were spawned in 2010 alone) were also identified in the pedigrees.
In all except one mating (2009, RM by NO cross), NO fish were crossed with LM fish.
Lastly, the analysis identified hatchery mark ambiguities. In three instances, samples

did not receive a hatchery clip (NO) and were recovered in the pedigrees as IGH origin
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fish. In two instances, fish were recorded as receiving both an RM and an LM clip and
were recovered in the pedigrees as IGH origin fish. Additionally, there were 39 samples
for which there was no hatchery clip information provided in the metadata (1 sample

labeled “K”) which were recovered in the pedigrees as IGH origin fish.

2.3.3 Age Structure

The age composition of adults returning to spawn was evaluated for individuals
conceived in 2007, 2008 and 2009. Of the 253 fish assigned to parents spawned in 2007
(cohort 2007), a total of 5 (1.98%) returned as jacks and 248 (98.02%) returned as
three-year-olds (43.1% males and 55.3% females). Of the 382 fish that assigned to
parents spawned in 2008 (cohort 2008), a total of 41 (10.7%) returned as jacks and 341
(89.3%) returned as three-year-olds (48.2% males and 41.1% females). Of the 254 fish
that assigned to parents spawned in 2009 (cohort 2009), 84 (33.1%) returned as jacks
and 170 (66.9%) returned three-year-olds (21.3% males and 45.6% females; Figure 2.2).
For all three cohorts, there were significant differences in the proportion of male fish
that returned at age two (z2007:2008 = -4.17, P < 0.001; z200s:2009 = -6.94, P < 0.001;
720072009 = -9.20, P < 0.001). Although age three adults composed the majority of all
three cohorts, significantly more males from the 2009 cohort returned to spawn at age
two than at age three (z = 3.80, P < 0.001). There were also significant differences in
the proportion of age three males in cohorts 2007 and 2009 (z = 5.39, P < 0.001) and
cohorts 2008 and 2009 (z = 7.01, P < 0.01), as well as a significant difference in the

proportion of females that returned at age three for cohorts 2007 and 2008 (z = 3.69,
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P < 0.001). Additionally, there were significantly more age three females than both
age two and age three males combined in the 2007 cohort (z = 2.22, P < 0.05) while
in the 2008 cohort there was a significantly greater proportion of males than females (z
=-4.92, P < 0.001). There were more males than females in the 2009 cohort, however
this difference was not significant. Two-year old females were not recovered in either of
the three cohorts, nor in the rest of the analysis.

The age composition of adults returning to the hatchery to spawn in 2010,
2011 and 2012 was also examined. Each return year consisted of age two and age three
adults that were conceived in two separate years: 2007 or 2008 (2010), 2008 or 2009
(2011) and 2009 or 2010 (2012). Of the 290 fish that returned to the hatchery in 2010,
41 (14.1%) were jacks and 249 (85.9%) were three-year-olds (43.8% males and 56.2%
females). Of the 425 fish that returned to the hatchery in 2011, 84 (19.8%) were jacks
and 342 (80.5%) were three-year-olds (54.1% males and 45.9% females). Of the 471
fish that returned in 2012, 301 (63.9%) were jacks and 170 (36.1%) were three-year-
olds (31.8% males and 68.2% females; Figure 2.3). Significantly more jacks returned
in 2012 than 2010 (z = 13.4, P < 0.001) and in 2011 (z = 13.3, P < 0.001). The
proportion of jacks that returned in 2011 was greater than in 2010 but the difference
was not significant (z = -1.95, P > 0.05). The proportion of females decreased with
each return year, and differed significantly between all three years (z2010:2011 = 3.02,
P < 0.01; z2010:2012 = 6.71, P < 0.001; z2011:2012 = 4.00, P < 0.001). Although the
proportions of males and females were close to equal in the 2010 return year, there were

significantly more age three females than age three males (z = 2.78, P < 0.01) while in
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the 2011 return year there were significantly more age three males than females (z =
2.14, P < 0.05). In the 2012 return year there were significantly more age three females
than age three males (z = 6.72, P < 0.001), however jacks significantly dominated the

2012 return year (z = 8.54, P < 0.001).

2.3.4 Family Size and Relative Reproductive Success

The 1,511 parent-offspring trios consisted of 405 parent-pairs distributed in 358
pedigrees and included 379 male parents and 380 female parents. Although spawning
was generally performed at a male to female ratio of 1:1 (Hampton 2005; Richey 2006;
Chesney 2007; Chesney 2009; Chesney and Knechtle 2011), 23 males were found to
have been mated with more than one female (all 1 x 2 crosses except for one 1 x 3
cross) and 24 females were found to have spawned with more than one male (all 1 x 2
crosses). The mean number of offspring for all successful parent pairs was 3.71 (range
1-41), while the mean number of offspring for successful parent pairs in cohorts 2007,
2008 and 2009 was 4.21 (range, 1-41; Figure 2.4). The mean number of offspring for all
successful males was 4.00 (range 1-69), while the mean for all successful males in cohorts
2007 to 2009 was 4.54 (range 1-69). The mean number of offspring for all successful
females was 3.99 (range 1-41), and the mean for successful females from the 2007 to
2009 cohorts was 4.38 (range 1-41). In all years combined, only 32.5% of all parent
pairs had a single offspring return to the hatchery (females: 28.1%, males: 27.7%) and
when only considering parents from 2007 to 2009 this proportion decreased to 26.4%

(females: 22.7%, males: 22.7%). The male parent with the highest reproductive success
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1
H Male, Age-two

OMale, Age-three

B Female, Age-three

0.5

Frequency

Cohort 2007 (253) Cohort 2008 (382) Cohort 2009 (254)

Figure 2.2: Age distribution of returning adults (male and female) for three cohorts
(2007, 2008 and 2009) from IGH. Numbers in parentheses indicate the total number of

fish. Grey bars represent age-two males, white bars represent age-three males and black

bars represent age-three females.
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EMale, Age-two
CIMale, Age-three
BFemale, Age-three

0.5 -

Frequency

Return year 2012 (471)

Return year 2010 (290) Return year 2011 (425)

Figure 2.3: Age distribution of adults (male and female) that returned to IGH in 2010,
2011 and 2012. Numbers in parentheses indicate the total number of fish. Grey bars

represent age-two males, white bars represent age-three males and black bars represent

age-three females.
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(69 offspring) was a precocious two-year old (the ‘super-jack’) with a fork length of 380
mm from the 2009 return year. This individual was mated with two females, one of
which had the largest reproductive success for a female (41 offspring) and produced the
largest full sibling family recovered in the entire analysis.

In 2004, there were too few spawners sampled to achieve good representation of
family size for that year (Table 2.1) and in 2006 only 20.2% of spawned individuals had
offspring recovered (probably an underestimation due to fractional sampling in 2008, i.e.
likely did not recover all two-year olds). In both of these years, the proportion of parent
pairs with only one offspring was much greater than when all years were combined.
Additionally, in 2009, due to the small number of spawned individuals, there were more
parent pairs with eight returning offspring than with a single offspring. Aside from
these three years, the distribution of family sizes across years was comparable to the
distribution of reproductive success (Figure 2.5). There was no significant difference
between male and female mean reproductive success, and although males had a greater
coefficient of variation likely driven by the ‘super-jack’ and his offspring (CVapo7:2009 :
malescy = 1.38, femalescy = 1.15, Fy 1405 = 1.45, P = 0.956; CV g1parents : malescy
= 1.27, femalescy = 1.11, Fy 1758 = 1.31, P = 0.996), this difference was not significant.
Lastly, the correlation between female length and the number of her offspring that

returned did not produce a significant relationship.
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Relative Reproductive Success for Parents with One or More Offspring

0.4 4
B Pairs (406)
OFathers (379)
OMothers (380)
0.3 1

Frequency
o
N

0.1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19+

Number of Offspring

Figure 2.4: The number of offspring that returned to the hatchery for mated pairs (dark
grey bars), fathers (light grey bars) and mothers (white bars) over all sample years. The

numbers in parentheses indicate the total number of mated pairs, fathers and mothers.
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Relative reproductive success of parents with one or more offspring, across years
0.9 1
m2004 (20)
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Figure 2.5: The number of full-sibling offspring that returned to the hatchery for parents
spawned in each year, 2004-2010. Note that three-year old offspring of the 2010 spawners

have not been analyzed, so the offspring assigned to this year are underrepresented.
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2.3.5 Distribution of Fork-Length and Heritability of Length-at-spawning

Using the reconstructed pedigrees and the lengths of sampled individuals, the
distribution of size by age and gender for all adults was assessed. The mean length for
the total 471 age-two males that returned to the hatchery was 438.51 mm (range 340-
690mm), the mean length of the total 749 age-three males that returned to the hatchery
was 695.21 mm (range 440-810 mm), and the mean length of the total 822 age-three
females that returned to the hatchery was 681.85 mm (range 510-790 mm). Despite two
outliers (1 age-three male measuring 440 mm and 1 age-two male measuring 690 mm)
that likely represent errors in the recorded metadata, there is a clear distinction in size
distribution between age-three adults and age-two males (Figure 2.6).

Using the families inferred from the parentage analysis, parent-offspring regres-
sions of length were examined for three-year old offspring in the following comparisons:
parental mean - all age-three offspring, parental mean - female offspring, parental mean
- age-three male offspring, mother - all offspring, father - all offspring, mother - daugh-
ter, father - son, mother - son and father - daughter (Figure 2.7 and Figure 2.8). All
comparisons suggested small positive correlations between parental and offspring length,
however only three of the nine comparisons were significant (P < 0.001), although R?
was always small. Mean parental length explained approximately 5.4% of the observed
variation for all age-three male offspring (Fp 230 = 14.29, R2 = 0.054, P < 0.001), how-
ever the signal of this pattern decreased when all age three offspring were considered

(F1320 = 3.582, R? = 0.008, P = 0.059), and it disappeared when considering only female
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offspring (F1 239 = 0.454, R? = -0.002, P = 0.50). When examining parents separately,
maternal length explained approximately 8.9% of the observed variation in all offspring
(F1300 = 31.22, R2 = 0.089, P < 0.001) and approximately 5.8% of the variation in
male offspring length (Fy 31 = 15.26, R? = 0.058, P < 0.001). Heritability (h 2) was
calculated as the slope of the parent-offspring regression line. Although heritability of
mean parent length in relation to all offspring (h ? = 0.103), and heritability of paternal
length in relation to male offspring (h 2 = 0.104), was relatively large, it was highest for
mean parent length and all male offspring (h 2 = 0.298), followed by maternal length
and all offspring (h 2 = 0.248) and maternal length and all male offspring (h ? = 0.237;

Table 2.6).
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Figure 2.7: Linear regression of parental length on 3-year old offspring length. Indepen-
dent comparisons were made for: mean parent length and all offspring, female offspring

and male offspring, as well as, mothers and all offspring and fathers and all offspring.
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2.3.6 Explorations in Relatedness

The Rxy statistic was used to calculate relatedness between all pairs of in-
dividuals within each collection year using both SNP and microsatellite genotypes for
comparison. For SNPs, over all samples, Rxy ranged from -0.62 to 0.89 (mean = 0.031),
while the mean of all pairwise Rxy values within each broodstock collection (2004-2012)
ranged from 0.0099 in 2007 to 0.0797 in 2008. Distributions of Rxy over all years and for
each collection were normally distributed, although skews were positive, ranging from
0.054 in 2007 to 0.280 in 2008 (mean = 0.223), except in 2012 where the distribution
was not normal and was very positively skewed (0.701; Figure 2.9). A positive skew
indicates an asymmetry towards Rxy values greater than zero, which can be seen in the
longer tail of more positive relatedness estimates. For microsatellites, over all samples,
Rxy ranged from -0.60 to 0.90 (mean = 0.020), while the mean of all pairwise Rxy values
within each broodstock collection (2004-2012) ranged from -0.0032 in 2004 to 0.0479 in
2006. Distributions of Rxy over all years and for each collection, were not normally
distributed and the skew was large, ranging from 0.218 in 2009 to 0.624 in 2012 (mean

= 0.396; Figure 2.10).
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The distribution of relatedness values between all parents assigned offspring
generated with SNP genotypes was compared to values of relatedness generated with
microsatellites for the same individuals. For all successful parent pairs across years,
SNP-generated Rxy values ranged from -0.36 to 0.46 (mean = 0.0585) with a skew of
-0.052, and from -0.51 to 0.49 (mean = -0.0042) with a skew of 0.250 for microsatellite
values. Mean Rxy for all years (2004 - 2010) was greater for SNP (range = -0.0283 -
0.0911) than for microsatellite data (range = -0.0750 - 0.0258), and these differences
were significant in 2005, 2009 and 2010 (P < 0.001; t-test), and over all years (P <
0.001; t-test). With the exception of 2006 and 2009, skew was generally less positive in
the SNP-generated values (range = -0.228 - 0.229; Figure 2.11) than in those generated
by microsatellites (range = -0.305 - 0.503; Figure 2.12). A weak negative correlation was
detected between the degree of relatedness of parent pairs (all years) and the number
of offspring they produced that returned to the hatchery for both SNP- (r = -0.1635, P
< 0.001) and microsatellite-generated values of Rxy (r = -0.1382, P < 0.01), suggest-
ing that less related parents may have greater reproductive success (Figure 2.13 and

Figure 2.14).
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The parentage analysis detected a total of 1,381 full siblings and 333 half
siblings (paternal: 188, maternal: 145) in the entire data set, allowing for the comparison
of SNP- and microsatellite-generated Rxy values between the two known relationship
types. Data for both marker types was approximately normally distributed and, for
full siblings, although the mean value of Rxy for microsatellites (0.5138; range = -
0.131 - 0.899) was greater than the mean for SNPs (0.5092; range = 0.075 - 0.868),
these values were similar and close to what would be expected for full-siblings. For
half siblings, however, the mean for the microsatellite-generated Rxy values (0.3351;
range = -0.160 - 0.732), was greater than the mean from the SNP genotypes (0.1992;
range = -0.206 - 0.639), and both differed from the expected value for half siblings.
Since a large proportion of the half-sibs consisted of the super-jack’s contribution (69
offspring with two females), this meant that the majority (1,148 of 1,447 or 79.3%)
of all half-sib pairwise comparisons were generated from this one male. Because of
this, distributions of Rxy for the two relationship types were examined again with this
individual’s contribution to both the full and half siblings removed. (This meant that
1,097 of 5,765, or 19% of all pairwise comparisons for the full siblings were removed.)
Again, the mean values of Rxy generated by either marker type for the full-siblings were
similar. However, this time the mean of SNP generated Rxy values (0.5166; range =
0.075 - 0.868) was larger than the mean of the microsatellite generated values (0.4934;
range = -0.159 - 0.893). For the half siblings, removing the super-jack’s contribution
brought the mean values for both locus types closer to 0.25, the expected value for

this relationship type, although in this case the mean value for SNPs (0.2629; range =
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-0.142 - 0.639) was larger than that for microsatellites (0.2588; range = -0.167 - 0.612).
For all distributions, microsatellite data yielded a broader range of Rxy values and a
greater degree of standard deviation (range = 0.138 - 0.162) than did the SNP data
(range = 0.119 - 0.137). Also, skew was negative in all distributions except for the SNP
values from all half siblings (0.101). However, these values were more negative in the
microsatellite distributions (range = -0.371 - -0.157) than in those of the SNPs (range

= -0.284 - -0.105; Figure 2.15 and Figure 2.16).
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The presence of a large group of individuals of known ancestry (full- and half-
sibs) also allowed for the opportunity to quantify and compare the proportion of putative
type II errors (related individuals being classified as unrelated) generated from either
of the two marker types. For all full and half siblings, the proportion of pairs that
achieved Rxy values less than 0.25 and less than 0.125 were calculated with both the
SNP and microsatellite data, with and without the super-jack’s contribution. An Rxy
value of 0.125 is indicative of a first cousin relationship and is used as the cutoff value
when determining potential mates in the hatchery.

Error frequencies generated within the two marker types for the combined
group of full siblings and half siblings were plotted at given values of Rxy (-0.2 to 0.5),
both with and without the super-jack’s contribution to the half siblings (Figure 2.17,
Figure 2.18 and Figure 2.19). Points on the plots indicate the proportion of Rxy values
that fall below given Rxy cutoff points. The plotted error frequencies visually illustrate
the differences between the two sets of markers. When all siblings were considered,
SNP-generated Rxy estimates had greater frequencies of error than those generated
from microsatellites. However, when the super-jack’s half-sib offspring were removed
from the analysis, SNP-generated Rxy estimates resulted in the lowest error frequencies
between the two marker types.

The SNP-generated values of Rxy had smaller error rates than for microsatel-
lites when estimating relatedness for the known full siblings, as 1.68% (97 of 5,765 pairs)
of values fell below 0.25 and 0.09% (5 of 5,765 pairs) of values fell below 0.125, and with

the microsatellites 5.43% (287 of 5,282 pairs) fell below 0.25 and 1.04% (55 of 5,282
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pairs) fell below 0.125. However, when estimating values for the half siblings, the SNP
genotypes generated larger error rates than did the microsatellite genotypes. For the
SNP Rxy values, 66.3% (960 of 1,447 pairs) fell below 0.25 and 28.6% (414 of 1,447
pairs) fell below 0.125, while for the microsatellites, 25.6% (337 of 1,315 pairs) of the
values fell below 0.25 and 7.83% (103 of 1,315 pairs) fell below 0.125. Removing the
super-jack’s contribution had little effect of the proportion of error in the full siblings for
both the SNP- and microsatellite-generated data. Proportions were still smaller for the
SNP-generated values of Rxy where 1.61% (75 of 4,668 pairs) fell below 0.25 and 0.11%
(5 of 4,668 pairs) below 0.125, than for the microsatellite values where 7.48% (346 of
4,626 pairs) fell below 0.25 and 1.56% (72 of 4,626 pairs) fell below 0.125. For the half-
sibs however, the proportion of SNP-generated errors decreased while the proportion of
microsatellite-generated errors increased. With the SNPs, 47.9% (148 of 309) of Rxy
values were less than 0.25 and 15.9% (49 of 309 pairs) were less than 0.125, while with
the microsatellites 45.7% (133 of 291 pairs) were less than 0.25 and 20.3% (59 of 291
pairs) were less than 0.125. For full- and half-sibs combined, 5.81% (419 of 7,212 pairs)
of all SNP generated values of Rxy fell below 0.125, while 2.40% (158 of 6,597 pairs) of
all microsatellite-generated values fell below 0.125. When the super-jack’s contribution
was removed, 1.08% (54 of 4,977 pairs) of the Rxy values were less than 0.125 with
SNP genotypes and 2.66% (113 of 4,917 pairs) of the values were fell below 0.125 with

microsatellite genotypes (Table 2.7).
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Figure 2.17: Frequency of type II errors in the full siblings (related individuals classified
as unrelated) for SNP- and microsatellite-generated values of relatedness (Rxy), both

with and without the super-jack’s contribution.
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Figure 2.18: Frequency of type II errors in the half siblings (related individuals classified
as unrelated) for SNP- and microsatellite-generated values of relatedness (Rxy), both

with and without the super-jack’s contribution.
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Figure 2.19: Frequency of type II errors in all siblings (related individuals classified as
unrelated) for SNP- and microsatellite-generated values of relatedness (Rxy), both with

and without the super-jack’s contribution.
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Since family size ranged from 2 to 41 offspring for full siblings, and 2 to 69
offspring for half siblings, SNP genotypes for both sibling groups were simulated in order
to examine the distributions of Rxy from sibling pairs with no more than 2 offspring per
family. Values of Rxy were calculated in ten groups of simulated full and half siblings,
each consisting of 500 individuals. For the full siblings, Rxy was approximately normally
distributed. The mean Rxy for all individuals combined was 0.4936 (range = 0.034 -
0.862), while across groups the mean ranged from 0.4859 to 0.5017. Skew was negative
in all groups except one (skew = 0.122) and ranged from -0.612 to -0.078, while over all
simulated pairs it was -0.297. For the half siblings, values were approximately normally
distributed and the mean Rxy for all individuals combined was 0.2490 (range = -0.105
- 0.608). Across groups, the mean ranged from 0.2394 to 0.2600. Skew was negative
in all but one group (skew = 0.025), and ranged from -0.282 to -0.017, while over all
individuals combined skew was -0.141 (Figure 2.20).

A linear correlation between microsatellite- and SNP-generated Rxy values was
examined for each brood year and plotted for all collection years combined (Figure 2.21).
Significant positive correlations (P < 0.001) were observed in all years and over all years
combined, but variability was high. Values of R? ranged from 0.004 in 2007 (Fy 77419
= 319) to 0.093 in 2006 (F; 10876 = 1,110) and equaled 0.030 (F 530540 = 16,540) over
all years, while the slope of the correlation lines (b) ranged from 0.062 in 2007 to 0.299
in 2006 and was 0.167 over all years combined (Table 2.8). Because the slopes for
these correlations are likely driven by the presence of a large proportion of siblings, the

same comparisons were performed, but for all pedigree confirmed siblings both with and
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Rxy for simulated siblings using SNPs

All Simulated Full-sibs [n = 5,000] All Simulated Half-sibs [n = 5,000]
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Figure 2.20: Distributions of relatedness (Rxy) for 10 groups of simulated full and half
siblings combined. Each group consists of 500 individuals with two full siblings and two
half siblings per parent pair, making a total of 5,000 individuals combined per sibling
group. As the data were approximately normally distributed, the mean, Std. Dev.

(standard deviation), range and skew are reported.
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without the super-jack’s contribution. In this case, a significant negative correlation was
found for all comparisons except those that included both full- and half-sibs combined.
Of all comparisons, b was the largest (0.270) with the strongest correlation (Fi 5992
= 427.1, R? = 0.066, P < 0.001) for all siblings combined (Figure 2.22). When the
super-jack’s contribution was removed, variability increased (Fias99 = 46.25, R2 =
0.010, P < 0.001) and the slope decreased to 0.078. As before, the presence of the
super-jack’s offspring had less effect on the full siblings than on the half siblings when
compared separately. The slope was negative but close to zero when all full siblings were
compared (-0.027) and variability was high (Fj 4687 = 6.015, R? = 0.001, P < 0.05) as
well as when the super-jack’s contribution was removed (b = -0.031, F1,4344 = 7.612,
R2 = 0.002, P < 0.01). When all half siblings were compared, the slope was negative
(-0.069) and variability was high (Fj 1303 = 7.387, R? = 0.005, P < 0.01). When the
super-jack’s contribution was removed, the slope became more negative (-0.150) and

variability decreased (Fi 953 = 7.588, R = 0.025, P < 0.01; Table 2.9).

109



All years [n = 3,027]

Pairwise Rxy Values Generated from SNPs

Pairwise Rxy Values Generated from Microsatellites

Figure 2.21: Linear correlation of all possible pairwise values of Rxy generated from
microsatellites on the same pairs of Rxy generated from SNPs over all years (2004 -

2012) combined.
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Table 2.9: The slope of the correlation line (b ) between microsatellite versus SNP
generated values of Rxy in all siblings combined, full siblings and half siblings, with and
without (rmv) the super-jack’s contribution (Figure 2.22). The goodness of fit (R?) and
standard error (SE) are also reported. ***Significant at p < 0.001, **Significant at p
< 0.01, *Significant at p < 0.05.

All Full Half
Siblings All (rmv) Full (rmv) Half (rmv)
b | 0.270%** 0.078%** -0.027* -0.031** -0.069** -0.150**

R? 0.066 0.010 0.001 0.002 0.005 0.025

SE 0.171 0.133 0.120 0.120 0.126 0.132

Delta Rxy, or the difference in values of Rxy between microsatellites and SNPs,
was calculated by subtracting SNP-generated values of Rxy from the corresponding
microsatellite values. The distributions of delta Rxy were plotted for the two sibling
groups, both with and without the super-jack’s contribution. For all four distributions,
the data were approximately normally distributed. For all full siblings, mean delta
Rxy was -0.0118 (range = -0.775 - 0.632) and for full siblings with the super-jack’s
contribution removed, the mean was -0.0248 (range = -0.769 - 0.632). For all half
siblings, the mean was 0.1400 (range = -0.517 - 0.814), and when the super-jack’s
contribution was removed, the mean was -0.0125 (range = -0.539 - 0.558). Skew was
small and negative in all comparisons (range = -0.319 - -0.103) except that of the half
siblings with the super-jack’s contribution removed, where it was small but positive

(0.052; Figure 2.23).
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Pairwise Rxy Values Generated from Microsatellites Pairwise Rxy Values Generated from Microsatellites

Pairwise Rxy Values Generated from Microsatellites

All Siblings [n = 1,700]

Pairwise Rxy Values Generated from SNPs

Full Siblings [n = 1,380]

Pairwise Rxy Values Generated from SNPs

Half Siblings [n = 320]

0.0 0.2 0.4

Pairwise Rxy Values Generated from SNPs

Pairwise Rxy Values Generated from Microsatellites Pairwise Rxy Values Generated from Microsatellites

Pairwise Rxy Values Generated from Microsatellites

All Siblings, 'Super-jack’ Removed [n = 1,631]

Pairwise Rxy Values Generated from SNPs

Full Siblings, 'Super-jack' Removed [n = 1,311]

Pairwise Rxy Values Generated from SNPs

Half Siblings, 'Super-jack' Removed [n = 251]

0.6

0.4

0.2

0.0

0.0 0.1 0.2 0.3 0.4 0.5

Pairwise Rxy Values Generated from SNPs

Figure 2.22: Linear correlation of pairwise values of Rxy in siblings generated from

microsatellites and SNPs. Independent comparisons were made for all siblings combined,

all full siblings and all half siblings both with and without the super-jack’s contribution.
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2.4 Discussion

This study confirms the power and utility of pedigree-based intergenerational
genetic tagging using a multi-locus panel of SNPs for parentage inference in a medium
sized hatchery population of coho salmon, a species facing extinction in much of its
native range. By genotyping nearly all broodstock over a period of 9 years, with a
panel of 96 SNP markers and utilizing novel and efficient algorithms for parentage
reconstruction, I was able to recover offspring as they returned to the hatchery to spawn
at two and three years of age. Offspring were assigned to parents with high accuracy,
which could be confirmed for most of the assignments by the hatchery recorded mate
pairs. I was then able to use the reconstructed pedigrees to investigate variance in
reproductive success, age structure of cohorts as well as adult offspring returning to
spawn, and the potential for heritability of length at maturity. Additionally I was able
to perform an in depth comparison of relatedness values, generated from SNPs and

microsatellites, for the entire sample set as well as for pedigree-confirmed siblings.

2.4.1 Pedigree Reconstruction

The resulting pedigrees were reconstructed with high confidence, as denoted by
the low FDR scores and high posterior probabilities. The accuracy of these pedigrees was
also confirmed by hatchery documentation of mated pairs. The proportion of offspring
that assigned to parent pairs was approximately 83% when only accounting for offspring

years in which complete sampling of the parental generations took place (2008 - 2012).
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The majority of unassigned offspring is most likely explained by those parents that were
excluded from the analysis due to excessive missing data or because samples for certain
individuals were not received. The scaled assignment estimates for offspring from 2008
to 2012, indicate that the expected proportion of assigned offspring would have increased
to approximately 92% had parents (from 2005 to 2010) not been excluded from the data
set due to excessive missing data or lack of sampling. Additionally, these proportions
were calculated by dividing the total number of assignments by the total number of LM
clipped and ‘unknown’ fish (individuals lacking hatchery mark information) combined.
It is possible that some fraction of these ‘unknown’ fish are not actually fish produced
at Iron Gate Hatchery (LM clipped) but instead are of natural origin or are strays from
the Trinity or Rogue River. The inclusion of non Iron Gate fish in the total returns
would drive this calculation down because the parents of these fish would most likely
not have been spawned in Iron Gate hatchery. It is also possible that a small portion
of fish spawned outside of Iron Gate and their offspring were collected at the hatchery,

which would also skew calculations as the parents would not be in the database.

2.4.2 Age Structure of Returning Adults

Only two- and three-year olds were recovered in this analysis. Four-year old
adult coho salmon are a common occurrence in the more northern reaches of the species’
range, and in fact make up the predominant age class in southeast and central Alaska,
where they spend two years in freshwater (as opposed to one) before smolting and

migrating to sea (Weitkamp et al. 1995). Although this extended life history is generally
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not associated with populations in California (Shapovalov and Taft 1954; Weitkamp et
al. 1995), Bell and Duffy (2007) observed the presence of two-year old out-migrants in
Prairie Creek, a coastal stream in northwest California situated within both Redwood
State and National parks. Although their study was conducted on juveniles migrating
to the ocean (not on adults returning to spawn), it is possible that a portion (if not all)
of these two-year old smolts returned to their natal stream as four-year olds based on
this older age at out-migration. Although the mouth of the Klamath River is located
approximately 16 km north of that of Prairie Creek, and both river systems are located
within the SONCC ESU, four-year old adults returning to IGH were not recovered in
this analysis.

In all three cohorts (and throughout the total analysis) only males returned
as precocious two-year olds, which is consistent with coho salmon life history traits
in the more southern reaches of the species’ native range (Shapovalov and Taft 1954;
Weitkamp et al. 1995; Lestelle 2007). The proportion of age two and age three adults
that returned to the hatchery differed significantly between the 2007, 2008 and 2009
cohorts. The proportion of jacks was the smallest in the 2007 cohort making up almost
2% of all individuals, while proportions increased to approximately 33% in the 2009
cohort. Although three-year olds were the predominant age class in all three cohorts, in
the 2009 cohort, jacks outnumbered age-three males by approximately 61%. Addition-
ally, while age-three fish were the dominant age class in the 2010 and 2011 return years,
jacks made up approximately 64% of all individuals, and nearly 85% of all males, in

the 2012 return year. It is important to note that the 2009 and 2010 spawn years mark
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the first instances in which jacks were purposely spawned at the hatchery. In 2009, 5
of the 16 fathers that recovered offspring were jacks, while in 2010, 9 of the 60 fathers
were jacks. As precocity has been found to have a heritable component in coho and
Chinook salmon (Iwamoto et al. 1984; Hankin et al. 1993; Appleby et al. 2003), it is
possible that the large proportion of jacks in the 2009 cohort and the 2012 return year
is a reflection of those that were mated in the 2009 and 2010 spawn years.

However, despite the underlying heritable component believed to influence age
at maturity, in the southern portion of the species’ range the propensity for male coho
salmon to mature at age two, a characteristic that tends to decrease with increasing
latitude (Drucker 1972), is an outcome thought to be driven primarily by the quality
and productivity of the freshwater habitat (Hager and Noble 1976; Young 1999; Lestelle
2007). Young (1999) found that increased freshwater growth rates and large smolt size,
resulted in a greater occurrence of male coho returning at age two. Coho salmon are
reared at Iron Gate Hatchery until they are released as smolts. Since several studies have
shown that hatchery reared fish tend to grow faster and larger in a shorter period of time
than those reared in the wild, presumably owing to a consistent food supply (pellets
as opposed to naturally sourced food) and relaxed selective pressures (i.e. relaxed
competition for food as well as a decreased need for predator avoidance; Chittenden et
al. 2010; Christie et al. 2011), the large proportions of jacks in the data set is perhaps not
such a surprising result. In fact, Iron Gate Hatchery records dating back to 1993 report
large proportions of jacks (based on visual identification) in prior cohorts, the largest

proportion occurring in the 1996 cohort, where jacks made up approximately 51% of
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all individuals and approximately 64% of all males (HSRG 2012). As males of lengths
580 mm or smaller have been excluded from spawning in the past at the hatchery, the
likelihood that precocious individuals were spawned accidentally is minimal based on
the clearly separated size distributions between age-two males and age-three males and
females shown in this analysis (Figure 2.6). However, when considering the numbers
of jacks returning per year to the hatchery, 2012 marks the year in which the greatest
proportion of precocious males was recorded since recording began in 1993. From 1993
to 2009, the highest proportions of jacks that returned occurred in 2000, where they
made up 47% of all individuals and 68% of all males (HGMP 2012). In this case
however, three-year-old adult fish were still the dominant age class unlike in 2012 when
precocious males dominated.

The small proportion of three-year olds that returned to the hatchery in 2012
is likely a reflection of the poor return year in 2009, where only 40 individuals were
spawned. Even though these spawners produced large families, the total number of
age three offspring was minimal in comparison to prior years, likely due to limited
egg production (lowest since 1993; HSRG 2012), as only 20 females were available to
spawn. As both environmental and genetic factors play a role in age-at-maturity for
coho salmon (Appleby et al. 2003), the extent to which each factor is contributing
is not totally clear. Ultimately, through continued monitoring of this system using
pedigree analysis, separating the genetic component of jacking from the environmental

component may soon be possible.
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2.4.3 Family Size and Relative Reproductive Success

Although from 2004 to 2009, management guidelines at Iron Gate hatchery
specified one-to-one matings between males and females, based on the numerous half
siblings recovered in the analysis, these guidelines were not always adhered to. In the
2005 through 2009 brood years, the parentage analysis recovered 14 males (out of 301)
that were spawned with two females (in one case three females) and 13 females (out of
303) that were spawned with two males (two multiply spawned males, and two multiply
spawned females were recovered in 2004, however not all broodstock were collected
for genetic analysis so the total number of multiply spawned individuals from this year
cannot be estimated). This means that 4.7% of males were spawned at a male-to-female
ratio of one-to-two and that 4.3% of females were spawned at a female-to-male ratio of
one-to-two. Despite this small diversion from the desired mating scheme in these years,
reproductive success was near equal (due to the similar promiscuous mating scheme
used for both sexes), with males having a slightly larger coefficient of variance most
likely resulting from the super-jack’s 69 offspring with two females.

In 2010, hatchery guidelines were modified to include two-to-one matings be-
tween males and females when female returns were low (HGMP V.10 2013). This means
that female spawners are to be crossed with one or two males, while males are to be
crossed with only one female. Although 9 of the 59 female spawners (15.3%) were
spawned with more than one male, 7 of the 60 (11.7%) male spawners recovered in the

analysis had more than one female mate, meaning that hatchery practices veered away

120



from the desired mating scheme in this year to a small extent. Despite this, the relative
reproductive success between sexes was still near equal.

The purpose of a promiscuous mating scheme, where multiple males mate
with one female, preferably only once, is to increase family numbers as well as genetic
diversity, and to decrease the chance of inbreeding relative to single pair or factorial
mating (Pearse and Anderson 2009). As the results of this analysis indicate that overall
family size is large in this population, it is necessary to increase family number in order
to reduce family size. A population consisting of a few large families increases the
likelihood of inbreeding among individuals, as large families have an increased chance
of interbreeding (Christie et al. 2011). Because hatchery fish tend to have negative
impacts on nearby natural populations of the same species, it is important to focus on
improving the genetic integrity of hatchery populations or stocks. In the Klamath, IGH
fish have been known to stray and spawn in the Shasta River, a nearby population unit
in the Klamath basin (HGMP V.10 2013). This natural population (as well as all others
in the Klamath basin) is also ESA listed, and is experiencing greatly reduced numbers.
IGH fish threaten the genetic integrity of the Shasta population through the risk of
introgressing their more genetically depauperate genes into these natural stocks. For
this reason it is especially important to improve hatchery practices in order to produce
more genetically fit fish, so that they will have a lesser negative impact on their wild
counterparts. The results of this analysis show that monitoring through pedigrees will
allow for routine evaluation of spawned individuals, distributions of family size, and the

potential for inbreeding at the hatchery, in an accurate and informative way.
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2.4.4 Heritability of Length-at-Maturity

Morphological traits such as body size and length-at-maturity have been found
to have strong heritable components in coho salmon, as well as in other salmonids (Ricker
1981; Funk et al. 2005), however, the length-at-maturity results in this analysis were
somewhat inconclusive. Significant relationships occurred when regressions of midpar-
ent length on all male offspring, mother length on all offspring (both sexes), and mother
length on all male offspring were made. These results seem to indicate a maternal effect
on offspring size, particularly for male offspring size. However, variability was also great
in all correlations, based on the small R? values, suggesting that the environmental com-
ponent influencing an individual’s size had a greater influence than parental size. This
is perhaps not entirely surprising as this is a hatchery population where it is assumed
that selective pressures have been relaxed. It has been shown that larger juvenile coho
salmon experience higher rates of freshwater survival as well as increased marine sur-
vival (Bilton et al. 1982; Quinn and Peterson 1996). However in the hatchery, owing
to consistent food supply and domestication selection, it is likely that most juveniles
achieve large size before migrating to sea, so heritability estimates could be confounded

by the hatchery environment as well as small sample size.

2.4.5 Explorations in Relatedness

Inbreeding has been shown to have deleterious effects on salmon fitness and
survival, especially in the context of hatcheries and captive breeding programs (Wang et

al. 2002; Conrad et al. 2013). In the wild, salmon presumably detect or smell chemical
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cues that identify other siblings or other unrelated individuals (Quinn and Busack 1985;
Olsen 1999) in order to avoid matings between close kin. There is also evidence that
females select mates non-randomly based on mate compatibility at the major histocom-
patibility complex (Bernatchez and Landry 2003; Neff et al. 2008; Evans et al. 2012).
However, in a hatchery setting the elements of sexual selection and kin avoidance are
removed because mates are selected by hatchery staff, although certain preferred traits
such as growth rate are often simultaneously selected for (Becker et al. 2013). In such
situations, the broodstock is generally of unknown pedigree, which increases the risk
of spawning related individuals, especially when run years have been severely reduced
(Wang et al. 2002). Genetic parameters that estimate relatedness between putative
breeding pairs have become an important means for reducing the occurrence of inbreed-
ing in many hatchery populations ( Warm Springs Hatchery , Conrad et al. 2013; Scott
Creek Hatchery , Sturm et al. 2009; Iron Gate Hatchery , HSRG 2012).

The most striking result from the relatedness analysis is the effect that the
super-jack’s offspring had on the distributions of Rxy values in the half sibling group
for both marker types. When the super-jack’s offspring were included, SNPs underes-
timated values of Rxy (mean, 0.199), while microsatellites overestimated values of Rxy
(mean, 0.336). Of the total 333 half siblings recovered through the pedigree analysis, 69
(20.7%) were derived from this one male, meaning that his offspring accounted for 79%
(1,148 of 1,447) of all pairwise values generated with the SNP markers ( 78% or 1,024
of 1,315 for the microsatellite markers). When the super-jack’s offspring were removed

from the half sibling analysis, the mean Rxy values for both marker types were near
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equal to 0.25 (0.263 with SNPs and 0.259 with microsatellites), the expected relatedness
value for half siblings.

It is not completely clear why the inclusion of such a large group of half siblings
shifts the distributed Rxy means in the negative direction for the SNP values and in
the positive direction for the microsatellite values. It is however apparent that the
overrepresentation of one individual’s alleles greatly affects the way in which Rxy is
calculated when using either marker type. The obvious difference between the two
marker types is the number of alleles present at each locus; at the 16 microsatellite loci
used in this analysis, 366 alleles have been identified in California coho (Conrad et al.
2013), while only 186 alleles have been identified at the 93 SNP loci, as these SNPs
are biallelic. It could be that when a dataset is swamped by one individual’s alleles,
the greater allelic richness in the microsatellites infers a greater than expected mean
pairwise Rxy value for the half-sibship sired from this one individual. Conversely, it
could also be that the reduced allelic richness in the SNPs infers a smaller than normal
mean Rxy value within the same group of individuals, because there aren’t enough
different alleles to more precisely discriminate the half sibling relationship.

Another explanation could be that the super-jack had an elevated internal het-
erozygosity in his SNP genotypes resulting from contaminated DNA, which then made
it appear that he sired more offspring than is really the case. In our lab, we use an
internal heterozygosity cutoff of 0.56 or more in order to detect DNA contamination
when genotyping with SNPs. The super-jack’s internal heterozygosity was 0.333, how-

ever, which is within the range of values expected for SNPs (between 0.16 and 0.56).
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An alternative explanation could also be that the two females that spawned with the
super-jack represent two of the least related individuals in the dataset, however their
pairwise Rxy value was 0.0924, which is not representative of the smallest Rxy values in
the dataset. It is however interesting to note that the Rxy values between the super-jack
and each spawned female were very small (-0.1301 for female 1 and -0.2912 for female
2). Small Rxy values would generally be expected between a jack and a three-year old
in this situation because they represent different cohorts and would likely not share a
large degree of relatedness, however when examining relatedness between the super-jack
and female 1 (female 2 was discarded from the microsatellite analysis due to excessive
missing data), their Rxy value was larger (0.0422). Whether or not this difference be-
tween parental values of Rxy between the two marker types is large enough to affect the
output of pairwise Rxy values in the half-sibs to the degree exemplified in this analysis
is unclear, but it could be a possible explanation.

In terms of inbreeding avoidance, overestimating the degree of relatedness
among potential spawners is preferable to underestimating relatedness, so as not to
mistakenly categorize individuals as unrelated and ultimately spawn them when in fact
they are true half siblings. Based on these results it would seem that SNPs are at a
disadvantage over microsatellites. That being said, 19 of the super-jack’s offspring were
precocious males that returned in 2011. As these individuals are all of the same sex and
return in a different year from their three-year old female siblings, the risk of inbreeding
between these individuals is absent. The remaining 50 age-three offspring that made up

the super-jack’s contribution returned in 2012 and consisted of 9 males and 18 females
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in one family and 9 males and 14 females in the other. In the context of a spawning
matrix, the pairwise values one is concerned with are those that are generated between
putative male and female half sibling crosses (9m x 18f and 9m x14f), which for this
family make up a total of 188 possible pairs. Based on the proportion of half siblings
that fell below the 0.125 cutoff point for all possible pairwise values generated from
SNPs (29%), approximately 55 of the 188 pairs would fall below the 0.125 cutoff value.
Although this is a relatively large number (compared to approximately 15 pairs in the
microsatellite generated values using the 8% error rate for the super-jack’s offspring),
it is important to remember that the 170 three-year olds that returned in the 2012
spawn year were only distributed across 18 parent pairs. So few families comprised of
numerous offspring would make it next to impossible to not mate related individuals,
even if the mean pairwise SNP generated Rxy value for the super-jack’s half-sibs were
0.25.

Overall, the results of this analysis indicate that SNPs perform comparably
well to, if not better than, microsatellites at estimating relatedness between individuals
under “normal” conditions. When the super-jack’s offspring were removed from the half
sibling group, the means of the distributions of known full- and half-sibs were nearly
equal to (slightly larger) the expected means of the randomly generated distributions
of full and half siblings. Additionally, with both marker types, reproductive success
was significantly correlated to smaller values of Rxy in parent pairs, which has been
shown to greatly increase the chance of survival in other hatchery populations of coho

salmon (Conrad et al. 2013). Although the relatedness statistic, Rxy, is a useful proxy for
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estimating kinship among individuals of unknown pedigree, this analysis also illuminates
the level of variability that arises within the statistic when comparing two marker types
in the same individuals, and ultimately supports the use of genetic tagging and pedigree

inference to determine putative mates in populations that are facing extinction.
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Conclusions and Future Directions

This study describes a large-scale genetic tagging effort by way of pedigree
reconstruction in a hatchery population of coho salmon. I demonstrate that multi-locus
SNP markers are powerful tools for generating accurate parentage-offspring assignments
in a species that undergoes extensive migrations in both marine and freshwater environ-
ments. This knowledge will help us to understand the effects of hatchery practices on
life history traits and fitness of hatchery salmon, as well as the potential negative effect
these individuals might have on their wild counterparts. Ultimately this information
will serve to improve hatchery practices and the overall fitness of hatchery populations,

and in doing so, should help to conserve and protect natural populations of coho salmon.
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