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Simple Summary: We surveyed the fecal microbial communities (termed ‘microbiome’) of North
American pet domestic cats to further our understanding of the range of variation found in a
population of apparently healthy cats. We also investigated whether differences in fecal microbial
communities were significantly associated with the age, diet, and living environment of the individual.
Results showed that thirty different bacteria were found in the fecal microbiomes of most cats. The
composition of the fecal microbiome depended on the diet of the cat, their age, and whether the
cat lived in a private home or a shelter. This study helped establish the expected ranges for the
structure of these communities within a healthy population of cats and provides valuable insights for
veterinarians, pet owners, and pet-related industries.

Abstract: Here, we present a taxonomically defined fecal microbiome dataset for healthy domestic
cats (Felis catus) fed a range of commercial diets. We used this healthy reference dataset to explore
how age, diet, and living environment correlate with fecal microbiome composition. Thirty core
bacterial genera were identified. Prevotella, Bacteroides, Collinsella, Blautia, and Megasphaera were
the most abundant, and Bacteroides, Blautia, Lachnoclostridium, Sutterella, and Ruminococcus gnavus
were the most prevalent. While community composition remained relatively stable across different
age classes, the number of core taxa present decreased significantly with age. Fecal microbiome
composition varied with host diet type. Cats fed kibble had a slightly, but significantly greater
number of core taxa compared to cats not fed any kibble. The core microbiomes of cats fed some raw
food contained taxa not as highly prevalent or abundant as cats fed diets that included kibble. Living
environment also had a large effect on fecal microbiome composition. Cats living in homes differed
significantly from those in shelters and had a greater portion of their microbiomes represented by
core taxa. Collectively our work reinforces the findings that age, diet, and living environment are
important factors to consider when defining a core microbiome in a population.

Keywords: core microbiome; healthy reference; diet; age; FIV infection; gut microbiome; fecal
microbiome; domestic cats

1. Introduction

Despite the inherent complexities of the gut microbiome and its interactions with host
systems, microbiome data is advancing our collective understanding of health and disease.
For example, a number of chronic diseases afflicting human populations have significantly
altered gut microbiome compositions when compared to the microbiomes from healthy
cohorts. These conditions include obesity, diabetes, Irritable Bowel Syndrome (IBS), peri-
odontitis, and skin diseases, among other metabolic and immune-related conditions [1–6].
Likewise domestic cats have health conditions that are also associated with imbalances
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(dysbiosis) in the composition of gut bacteria, such as Inflammatory Bowel Disease (IBD),
lymphoma, diabetes, periodontal disease, and atopic dermatitis [7–11].

Because individuals have distinctly personal microbiome signatures, aggregating
microbiome data from many individuals within a natural population yields a dataset with
significant compositional heterogeneity. As a result, simply characterizing the composition
of a healthy microbiome is both a major challenge and a necessary first step towards identi-
fying disease state-associated imbalances [12–14]. This is important for not only elucidating
microbial signatures of disease states, but also understanding how the presence and/or
abundance of specific taxa might be manipulated to drive the microbiome composition
towards that of the disease-free state [12].

As evidenced by human studies, it is difficult to define a singular healthy host mi-
crobiome due to vast differences in the diets, lifestyles, geographic regions, and other
factors that influence the composition of microbial taxa in individuals [15–17]. To date,
studies that investigate associations between the microbiome and disease typically define
‘healthy’ as the absence of disease, but this does not necessarily mean that these individ-
uals are ‘healthy’ [18]. Therefore, it is essential to build a comprehensive dataset of the
microbiome composition of healthy individuals to establish the expected ranges for the
structure of these communities within a healthy population. Such a database can then
be rigorously interrogated to, for example, understand therapeutic targets. By reducing
variation through a carefully defined healthy reference set, we will have more power to
detect signals associated with disease states.

In this study, we aim to taxonomically define a healthy fecal microbiome dataset
of North American pet domestic cats (Felis catus) fed a range of commercial diets. We
implemented strict criteria for which samples were included in the analysis of this healthy
reference dataset, with only 8.9% of samples (161 out of 1859) qualifying. To our knowledge,
this is the most comprehensive and largest fecal microbiome reference set for an animal host
to date [19,20]. Modeled off the American Gut Project [15], our study collected feline fecal
samples through a citizen science initiative called ‘The Kittybiome Project’ [21]. We used
our feline healthy reference dataset to extract and define the core microbiome of healthy
domestic cats as a foundation for investigating host health and the factors that influence it.

Here, we report the core taxa and their ranges of healthy domestic cats and how age,
diet, and living environment correlate with feline microbiome composition within the
context of the healthy reference dataset. We also explore how a clearly diagnosed health
condition, feline immunodeficiency virus (FIV) in shelter animals, compares to the taxa
and ranges of the healthy reference dataset and to shelter animals without FIV. This study
provides valuable insight into the ongoing discussion about the best ways to study the core
microbiome and highlights the many potential applications for its use.

2. Materials and Methods
2.1. Participatory Research

In 2015, we launched a collaborative research project called “Kittybiome: kitty micro-
biomes for cat health and biology” to sequence fecal microbiome samples from pet domestic
cats (Felis catus) across the country. Modeled on a similar participatory research project
for humans where participants submit fecal samples for bacterial characterization [15–17],
we sought to characterize the gut microbiome of domestic cats with a range of health
conditions, ages, environments (house environment versus shelter environment), and di-
ets [21]. Prior to launch, we received approval from the Institutional Review Board (IRB) at
University of California, Davis to collect survey data for the project, and we also obtained
scientific permits. Because the fecal samples are considered waste material and were going
to be obtained in a non-invasive manner, the UC Davis Institutional Animal Care and Use
Committee (IACUC) determined that no animal care protocol was required. This research
project was later expanded to include samples collected by customers of AnimalBiome (an
animal health company founded in 2016) who agreed to participate in research on the cat
fecal microbiome and animal health.
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In order to understand the effect that the animal shelter environment may have on the
cat fecal microbiome, we also collected samples from cats residing in the following four
shelters and sanctuaries: the Berkeley Animal Care Services (Berkeley, CA, USA), Contra
Costa County Animal Services Department (Martinez, CA, USA), Nine Lives Foundation
(Redwood City, CA, USA), and the Regional Animal Protection Society Cat Sanctuary
(Richmond, BC, Canada). We obtained 61 samples from shelter cats, and among these were
28 cats diagnosed with feline immunodeficiency virus (FIV). Samples from shelter cats
where FIV status was not specifically provided were assumed to be FIV− because this is a
near-universal screening test conducted at animal shelters. Samples from ten house cats
with a mild health condition and five house cats diagnosed with FIV were used to test
classifier models (see 3.4 Effect of FIV Status and Living Environment on the Microbiome).

2.2. Sample and Metadata Collection

Study participants were sent supplies needed to collect a small fecal sample that
was returned by mail. Sample vials (2 mL screw cap tubes) contained 100% molecular
grade ethanol and silica beads. The same materials were used to collect fecal samples
from cats living in shelters, except these were collected in person. Participants were asked
to complete an online survey with information about their pet cat. Fields collected in
the survey included name, address, date of birth, body weight, spay or neuter status,
breed, diet, clinical signs (e.g., diarrhea, vomiting, constipation), prior antibiotic exposure,
diagnoses (if applicable), and any known health condition. Because a lot of information
about diet and health was included in open data fields, the metadata for all samples were
manually edited to include this information.

2.3. Sample Processing and Sequencing

All samples were processed using standardized protocols based on the Earth Mi-
crobiome Project [22]. Upon receipt, fecal material was isolated from the preservation
buffer by pelleting (centrifugation at 10,000× g for 5 min, pouring off supernatant), and
genomic DNA was extracted using the 100-prep Qiagen DNeasy PowerSoil DNA Isolation
Kit (Germantown, MD, USA). Briefly, samples were placed in bead tubes containing C1
solution and incubated at 65 ◦C for 10 min, and this was followed by 2 min of bead beating.
After, the manufacturer’s protocol was followed as written.

Amplicon libraries of the V4 region of the 16S rRNA gene (primers 505F/816R) were
generated using a dual-indexing one-step PCR with complete fusion primers (Ultramers,
Integrated DNA Technologies, Coralville, IA, USA) with multiple barcodes (indices) [23].
PCR reactions contained 0.3–30 ng template DNA, 0.1 µL Phusion High-Fidelity DNA
Polymerase (Thermo Fisher, Waltham, MA, USA), 1X HF PCR Buffer, 0.2 mM each dNTP,
and 10 µM of the forward and reverse fusion primers. The PCR conditions were as follows:
initial denaturing at 98 ◦C for 30 s, 30 cycles of 10 s at 98 ◦C, 30 s at 55 ◦C, and 30 s at 72 ◦C,
30, an incubation at 72 ◦C for 4 min 30 s for a final extension, and a hold at 6 ◦C.

PCR products were assessed by running on 2% E-Gels with SYBR Safe (Thermo Fisher,
Waltham, MA, USA) with the E-Gel Low Range Ladder (Thermo Fisher, Waltham, MA,
USA), then purified and normalized using the SequalPrep Normalization Kit (Thermo
Fisher, Waltham, MA, USA) and pooled. The final libraries were quantified with QUBIT
dsDNA HS assay (Thermo Fisher, Waltham, MA, USA), diluted to 1.5 pM and denatured
according to Illumina’s specifications for the MiniSeq. Identically treated phiX was included
in the sequencing reaction at 25%. Paired-end sequencing of the V4 region (2 × 150 bp)
was performed on the MiniSeq (Illumina, San Diego, CA, USA).

2.4. Sequence Data Processing

All sequence data were processed and analyzed with QIIME2 (v. 2021.8) [24]. After
sequences were demultiplexed, the q2-dada2 plugin (v. 2019.1) [25] was used for quality
filtering, removal of phiX, chimeric, and erroneous sequences, and identification of ampli-
con sequence variants (ASVs) at 100% nucleotide identity. ASV sequences were classified



Vet. Sci. 2022, 9, 635 4 of 21

against the SILVA reference database (v. 132) [26,27] with the q2-feature-classifier plugin
trained on the 515–806 region of the 16S rRNA gene. ASVs were collapsed based on genus
level taxonomy, and samples with less than 5000 reads were removed and excluded from
all analyses. When the genus was not known for a particular sequence, or if the label
given by Silva was “uncultured”, “uncultured bacterium”, “uncultured organism”, or “gut
metagenome”, then the label for family was used. Statistical analyses and plotting were
performed in R (v. 4.1.1) [28] except where noted.

2.5. Core Microbiome of Healthy Cats

Of the 1859 samples collected from August 2015 through May 2021, a total of 161
samples from unique cat individuals comprised what we define as a healthy reference set
(Table 1). The requirements were: a body condition score between 3 and 6 (inclusive) or a
calculated BMI of less than or equal to 50, no clinical signs, no diagnoses, no antibiotics
within the previous 12 months, and an age within 0.5–12 years (inclusive). This age range
captures the average lifespan of cats which is 12–18 years. We did not include cats above
the age of 12 years because within this cohort, these cats were reported to have health
conditions (except for six individuals). Animals with missing data in these fields were
also excluded. Cats receiving the following medications and supplements were excluded:
probiotics, steroids, sucralfate, oclacitinib (Apoquel), cetirizine (Zyrtec), or benazepril. Cats
living in shelters or sanctuaries at the time of sampling were also not included in the healthy
reference due to limited information on their health histories and clinical signs.

Table 1. Characteristics of cats included in the healthy reference set (n = 161), and six senior cats that
were only included in age-related analyses (n = 6).

Age Class n Age (Months) Fecal
Score

Body Condition
Score F (%) SN (%)

Junior 58 21.5 (±8.48) 2.7 (±1.04) 5.2 (±0.38) 47 95

Prime 59 58.7 (±15.28) 2.7 (±0.95) 5 (±0.61) 61 86

Mature 44 109.5 (±15.84) 3.1 (±0.99) 5.1 (±0.56) 59 93

Senior 6 141.3 (±4.32) 3.2 (±0.5) 5.6 (±0.55) 50 83
Note: Fecal scores were reported for 116 cats and body condition scores were reported for 145 cats. Abbreviations:
BCS = Body Condition Score, F (%) = percentage of age class that were female, SN (%) = percentage of age class
reported to be spayed or neutered.

The core fecal microbiome of healthy cats (n = 161) was determined by identifying
genus-level bacterial taxa that were found in at least 55% of samples at a threshold of at
least 25 reads per sample. We calculated the “core microbiome sum” as the summed relative
abundance of all core taxa, and samples below the 2.5th percentile value for this parameter
(that is, where the core taxa comprise much less of the sample than is typical) were removed
from downstream analyses. From remaining samples, we calculated summary statistics and
the 2.5th, 10th, 90th, and 97.5th percentile values for each taxon. We plotted distributions
of taxon relative abundance and tested these distributions for unimodality with the diptest
package [29]. The proportion of the core taxa that were present for each sample (e.g.,
number of core taxa in sample divided by the total number of core taxa) was also calculated,
which we termed “core taxa present”.

2.6. Effect of Age on the Microbiome

We tested the effect of age on microbiome composition, alpha-diversity, and beta-
diversity in healthy cats (n = 161). A total of six senior cats (>12 years) that were not part
of the healthy reference set because of the age cutoff and otherwise met the criteria for
being apparently healthy, were included in this analysis, bringing the total sample size
to 167 (Table 1). Cats were categorized into the following discrete age categories: junior
(7 months–3 years), prime (3–7 years), mature (7–12 years), and senior (12–14 years). Four
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metrics of alpha diversity (Observed genera, Shannon diversity, Gini-Simpson index, and
Pielou’s Evenness) were calculated for each sample using the R microbiome package (v.
1.14.0) (for Pielou’s evenness) [30] and the R phyloseq package (v. 1.36.0) (for the other
three metrics) [31].

To test whether fecal microbiome alpha-diversity correlated with host age, linear mod-
els were constructed for each alpha diversity metric and each core microbiome metric (core
microbiome sum, core taxa present) using the lm function of the R stats package (v. 4.1.1) [28].
Models specified age in years as a continuous predictor variable. For beta-diversity analyses,
we first calculated Bray–Curtis dissimilarity from genus relative abundances using phyloseq.
Differences in microbiome composition between the discrete age categories were tested
using Permutational Multivariate Analysis of Variance (PERMANOVA) on Bray–Curtis
dissimilarity using the adonis2 function from the R vegan package (v. 2.6-2) [32]. The
grouping of samples was visualized with principal coordinate analysis (PCoA) plots. Pair-
wise comparisons of microbiome beta-diversity between age categories were conducted
with the EcolUtils package (v. 0.1) [33]. Differences in microbiome dispersion were tested
with Permutational Multivariate Analysis of Dispersion (PERMDISP) analyses on the same
data using the same package [32]. To identify the bacterial genera that were differentially
abundant among age groups, we used MaAsLin2 (v. 1.7.3) [34] in R. Briefly, unrarefied
relative abundance data was normalized with total sum scaling, log transformed, and all
genera at a minimum prevalence of 10% and minimum relative abundance of 0.1% in all
samples were analyzed with linear models that set age as a continuous predictor. The false
discovery rate for multiple comparisons was set to 5% (α = 0.05).

2.7. Effect of Diet on the Microbiome

A total of thirty-three healthy cats had missing diet information or non-specific diet
information and were excluded from all analyses involving host diet, as were two cats that
had a diet of both dry and raw food (a rare combination). Thus, for diet related analyses,
samples from a total of 126 healthy cats were included (n = 126). Information on diet was
conceptualized into diet components (e.g., includes dry food (Y/N), includes wet food
(Y/N), or includes raw food (Y/N) for statistical analysis, and as diet combinations (e.g.,
wet and dry; dry, wet, and raw) for visualization. Several diet combinations were present
in only a small number of cats in the dataset, so the use of diet components for statistical
analyses allowed these cats to be included for more powerful tests on the effects of diet.
Interactions between diet components were not tested due to insufficient data and/or
highly unequal sample numbers for some interactions.

Analyses on alpha diversity and the two core microbiome metrics were tested with
linear models as described above, with the three diet components as fixed terms. If
linear models were not appropriate because the values were not normally distributed,
Kruskal–Wallis tests and pairwise Wilcoxon tests were used. The effect of diet components
on microbiome composition or microbiome dispersion was tested with PERMANOVA and
PERMDISP tests, and the differential abundance analyses were done with MaAsLin2 as
described above.

Because many of the cats in the healthy reference set were fed a diet that included dry
food, we explored the effect of this diet component in greater detail. We used a supervised
learning approach to determine whether samples from cats that ate dry food and cats that
did not could be differentiated based on their microbiome compositions. The q2-sample-
classifer plugin [35] from the QIIME 2 “sample-classifier-ncv” pipeline was used to train the
Random Forest classifier. Briefly, nested five-fold cross-validation was selected to ensure
that all features (genus-level taxa) were tested for relative importance to the model. Two
hundred estimators were used, and parameter tuning and feature selection optimization
were enabled to select the optimal features and the optimal number of features for the
model, with recursive feature elimination.
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2.8. Effect of FIV Status and Living Environment on the Microbiome

To test the effect of FIV status and living environment on the microbiome, we compared
the fecal microbiomes of healthy house cats (n = 41) with those of shelter cats with FIV
(n = 28) and without FIV (n = 33). An additional five FIV+ cats living in homes were also
included in the analysis. Cats from shelters were primarily in the junior (7 months–3 years)
or prime (3–7 years) age categories when data on age was available. Not all shelter cats had
their age recorded, but statistically these age groups comprise the majority of the population
at the sampled shelters. Because most cats living in shelters are fed a combination of dry
and wet food, we selected 41 cats from the healthy reference set that matched these age
and diet criteria when conducting our analyses.

One Random Forest classifier was trained to distinguish FIV+ cats, FIV− shelter cats,
and the age- and diet-matched subset of the healthy reference set of house cats, using
the sample-classifier pipeline as described above. The only exception was using a simple
five-fold cross-validation rather than a nested cross-validation. In order to more fully
investigate the signal of living environment in the microbiome of healthy cats, FIV+ cats
from both shelters and homes were removed from this dataset to eliminate this potentially
confounding variable. Thus, the second classifier was trained to discriminate between
healthy cats living in homes and FIV negative shelter cats.

Healthy house cats, FIV positive shelter cats, and FIV negative shelter cats were
compared based on alpha diversity and core microbiome metrics as described above where
these variables were normally distributed, as determined by Shapiro tests. If values were
not normally distributed, Kruskal–Wallis and pairwise Wilcoxon rank-sum tests were used.
PERMANOVA tests, PERMDISP analyses, and PCoA ordination plots were conducted as
were described for the age-related analyses.

Shelter cats may be more likely than house cats to be occultly unhealthy due to
more limited opportunities to observe clinical signs, unknown health histories, or newly
developed health conditions. To investigate this further, we curated a test set of 10 mildly
symptomatic house cats to test whether the classifier pre-trained on FIV− shelter and house
cats would be able to correctly group them as “house” cats rather than “shelter” cats. The
healthy mildly symptomatic cats were of junior or prime age, ate a wet and dry diet, and
experienced one or two of the following clinical signs: diarrhea, vomiting, constipation, or
compulsive grooming.

3. Results
3.1. The Core Microbiome of Healthy Pet Cats

Samples from a total of 161 healthy cats living in households were used to describe the
core fecal microbiome in healthy pet cats (Table 1). Thirty genus-level taxa from five phyla
were determined to be part of the “core” microbiome in cats (Table 2). The core genera
with the highest relative abundances were Prevotella, Bacteroides, Collinsella, Blautia, and
Megasphaera. The most prevalent core genera were Bacteroides, Blautia, Lachnoclostridium,
Sutterella, and Ruminococcus gnavus. Most distributions of taxon relative abundances were
markedly positively skewed, with a long tail of higher values (Supplementary Materials,
Figure S1). A few genera showed possible multimodal distributions (e.g., Prevotella, Ru-
minococcus gauvreauii), although no statistically significant deviations from unimodality
were detected for any of the genera tested (Figure S1).
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Table 2. Thirty bacterial genera comprise the core microbiome in healthy pet cats.

Phylum Class Order Family Genus Median SD Prev. 2.5th 10th 90th 97.5th

Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Collinsella 5.93 6.456 96.4 0.81 1.62 16.98 25.35

Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Slackia 0.15 0.178 55.6 0.04 0.06 0.51 0.66

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 8.34 9.421 100 0.45 1.3 25.74 32.25

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella 9 23.17 17.55 80.5 0.11 1.02 46.51 56.69

Bacteroidetes Bacteroidia Bacteroidales Tannerellaceae Parabacteroides 0.51 1.038 80.5 0.08 0.14 1.57 3.71

Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium
sensu stricto 1 1.2 3.237 84 0.06 0.15 6.39 11.39

Firmicutes Clostridia Clostridiales Lachnospiraceae Ruminococcus
gauvreauii 0.37 0.503 90.5 0.07 0.13 1.05 1.67

Firmicutes Clostridia Clostridiales Lachnospiraceae Ruminococcus
gnavus 0.51 1.478 97 0.06 0.11 2.4 5.1

Firmicutes Clostridia Clostridiales Lachnospiraceae Ruminococcus
torques 0.6 0.818 91.1 0.08 0.16 2.12 2.8

Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia 5.44 5.65 100 1 1.84 13.88 20.96

Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnoclostridium 1.13 1.103 98.2 0.2 0.4 3 4.28

Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae
NK4A136 0.28 0.43 86.4 0.05 0.11 0.83 1.68

Firmicutes Clostridia Clostridiales Lachnospiraceae Unclassified
Lachnospiraceae 0.92 1.165 96.4 0.13 0.28 2.63 3.72

Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae
UCG-009 0.18 0.223 72.2 0.05 0.07 0.57 0.94

Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae
uncultured 0.8 0.888 93.5 0.11 0.21 2.04 3.22

Firmicutes Clostridia Clostridiales Peptococcaceae Peptococcus 0.57 1.37 65.1 0.09 0.13 2.64 4.62

Firmicutes Clostridia Clostridiales Peptostreptoco-
ccaceae Peptoclostridium 4.52 5.047 89.3 0.55 1.19 12.82 19.28

Firmicutes Clostridia Clostridiales Ruminococcaceae Butyricicoccus 0.17 0.28 68 0.04 0.07 0.45 0.92

Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium 1.38 1.95 79.9 0.08 0.24 4.72 7.49
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Table 2. Cont.

Phylum Class Order Family Genus Median SD Prev. 2.5th 10th 90th 97.5th

Firmicutes Clostridia Clostridiales Ruminococcaceae Negativibacillus 1.19 1.529 95.3 0.11 0.23 3.58 5.69

Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillibacter 0.25 0.327 79.9 0.04 0.08 0.61 0.99

Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium
9 0.43 0.458 84.6 0.05 0.08 1.15 1.65

Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae
UCG-014 0.61 3.432 74.6 0.06 0.12 3.07 9.41

Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae
uncultured 0.15 0.255 60.4 0.03 0.05 0.48 0.95

Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Catenibacterium 2.01 2.179 56.2 0.16 0.39 5.6 7.42

Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Holdemanella 0.85 2.371 66.9 0.08 0.17 3.32 10.01

Firmicutes Negativicutes Selenomonadales Veillonellaceae Megamonas 1.81 5.355 75.7 0.1 0.15 8.37 19.25

Firmicutes Negativicutes Selenomonadales Veillonellaceae Megasphaera 5.21 7.796 58 0.15 0.4 16.67 28.39

Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 3.95 6.149 88.8 0.11 0.28 13.43 21.86

Proteo
bacteria

Gamma
proteobacteria Betaproteobacteriales Burkholderiaceae Sutterella 2.23 2.846 97 0.14 0.46 6.28 9.85

Core Microbiome Total 82.59 6.775 NA 67.65 74.07 91.59 93.99

Shown are the taxonomic designations (Silva v. 132) of thirty bacterial taxa identified as being part of the core microbiome in healthy cats. These were all bacterial genera that were found
in at least 55% of samples at a threshold of at least 25 reads per sample. Also shown are the median, standard deviation, prevalence, and summary statistics for the 2.5th, 10th, 90th, and
97.5th percentile values for each taxon. Not all sequences were classified to genera and in those instances, their last known classification (e.g., Family) was used.
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3.2. Effect of Age on the Microbiome

Bacterial community composition remained relatively stable across the different age
classes of healthy pet cats (Figure 1A). The most abundant bacterial genera across samples
were Prevotella, Bacteroides, and Fusobacterium. The total percentage of the fecal microbiome
comprised by the core taxa did not change with age (Figure 1B, PERMANOVA F = 0.26,
R2 = 0.002, p > 0.05).
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Figure 1. The fecal microbiomes of cats across different ages. (A) Stacked bar plot depicting the
relative abundances of the most abundant bacterial genera in fecal samples by age class. When the
genus was not known, the label for Family was used. (B) Scatter of the relationship between two core
microbiome metrics (percentage of microbiome comprised by core; total number of core taxa present)
and age (years) as a continuous variable. (C) Violin plots of microbiome alpha-diversity (Observed
Richness, Shannon diversity, Gini-Simpson index, and Pielou’s Evenness) by age class. (D) PCoA
ordination based on Bray–Curtis dissimilarity. Closeness of points indicates microbiome similarity
and points are color-coded by host age (years).

However, the number of core taxa that were present (characterized as a % of the
30 taxa), decreased significantly with age (Figure 1B, PERMANOVA F = 8.364, R2 = 0.048,
p < 0.01). Thus, while cats lose members of the core taxa as they age, it appears that
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populations of other core members of the community may increase in relative abundance
as a result.

Furthermore, no significant differences in microbiome alpha diversity were observed
among cats of different ages (Figure 1C, Tables S1 and S2), and age class did not signifi-
cantly predict fecal microbiome beta-diversity either (Figure 1D, PERMANOVA F = 1.56,
R2 = 0.027, p = 0.08). We did identify three genera that were differentially abundant among
age groups. Overall, the relative abundances of Fusicatenibacter, Subdoligranulum, and
Megasphaera decreased as the host aged (Supplementary Materials, Table S3, Figure S2).
Subdoligranulum and Megasphaera were highly prevalent among healthy cats and were
found in >62% (100/161) of individuals from the healthy reference set. The opposite was
true of Fusicatenibacter, which had a low prevalence in the health reference set, and was
detected in only 14% (24/161) of cats in the healthy reference.

3.3. Effects of Diet on the Microbiome

Of the various diets fed to the set of healthy (primarily North American) cats, the most
common combination was canned wet food with dry kibble (Supplementary Materials,
Table S4). Overall, dry food was a component of the diet for 72% of healthy cats in the
dataset for which diet information was known (Table S4). Fecal microbiome composition
varied with host diet category in healthy cats (Figure 2A); cats that ate raw food for example,
contained larger relative abundances of Collinsella in their gut microbiomes than the rest
of the surveyed cats (Figure 2A). Cats that ate purely dry food appeared to have lower
relative abundances of Peptoclostridium compared to cats with other diets.

The total percentage of the fecal microbiome made up by the core taxa tended to be
slightly higher in cats that included dry kibble in their diet than cats that did not include
dry kibble in their diet (Figure 2B, Supplementary Materials, Table S5). Furthermore,
individuals that ate raw food had fewer core taxa in their fecal microbiomes compared
to individuals that did not have any raw food in their diet (Figure 2B, Table S5), but the
combined relative abundance of the fecal microbiome composed by the core taxa did
not vary between the two groups. Thus, the core microbiome of raw-fed cats appears to
contain taxa that are not highly prevalent or as abundant in the gut microbiomes of other
individuals. No differences in core microbiome metrics were observed between cats that
ate wet food and those that did not (Figure 2B, Table S5).

When examining fecal microbiome alpha-diversity, differences among dietary types
were detected. Generally, fecal microbiome richness and evenness were lowest among cats
that incorporated dry food in their diet compared to the rest of the surveyed individuals
(Figure 2C, Tables S4 and S6). Fecal microbiome evenness (Shannon diversity, Simpson’s
index, and Pielou’s evenness) was highest among cats whose diet contained wet food
over cats whose diet did not contain wet food (Figure 2C, Tables S4 and S6). Furthermore,
fecal microbiome beta-diversity also varied with host diet, and the largest difference
was found between cats that included dry food in their diet compared to cats that did
not (Figure 2D, Supplementary Materials, Table S7). Microbiome dispersion, which is a
measure of community variability or heterogeneity in a group of samples, varied with diet
type, specifically, between cats that ate wet food and those that did not eat any wet food
(Table S7). Thus, differences detected for this variable could also be partially attributed to
variability in fecal microbiome dispersions.

According to differential abundance analyses, 21 bacterial genera were significantly
associated with dry food, 2 with raw food, and 14 with wet food (Supplementary Materials,
Table S8, Figure S3); 14 of the 21 genera were members of the core microbiome. Prevotella,
Megamonas, and Megasphaera for example, were found at larger relative abundances in
the fecal microbiomes of cats that ate dry food vs. cats that did not (Table S8, Figure S3).
Fusobacterium relative abundances were lower in dry food fed cats than the other surveyed
cats. The bacterial genera Blautia and Faecalibacterium were enriched in fecal microbiomes
of cats that ate some wet food over those that did not (Table S8, Figure S3). Lastly, cats with
raw food in their diet tended to harbor fewer Faecalibacterium than other cats. A total of five
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bacterial taxa were associated with more than one diet type (diet component): Ruminococcus
torques, Tyzzerella, Faecalibacterium, Subdoligranulum, and Faecalitalea (Table S8).
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Figure 2. Fecal microbiome variation is significantly associated with host diet category. (A) Stacked bar
plot depicting the relative abundances of the most abundant bacterial genera in fecal samples. Samples
are categorized by diet category. (B) Violin plots showing the values of two core microbiome metrics
(percentage of microbiome comprised by core; total number of core taxa present) by diet category.
(C) Violin plots of microbiome alpha-diversity (Observed Richness, Shannon diversity, Gini-Simpson
index, and Pielou’s Evenness) by diet category. (D) PCoA ordination based on Bray–Curtis dissimilarity.
Closeness of points indicates microbiome similarity and points are color-coded by diet category.

In addition to differential abundance analyses, we also used a supervised machine
learning approach to determine whether samples from the different diets could be differen-
tiated based on their microbiome compositions. The random forest classifier was highly
accurate (96%) at distinguishing cats that consumed any dry food from those that did not.
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A total of 24 bacterial genera comprised half of the model’s importance, and 9 of these taxa
were members of the core microbiome (Supplementary Materials, Table S9). Alloprevotella
relative abundances appeared to be enriched in the fecal microbiomes of cats that consumed
dry food, while the opposite was true of Romboutsia relative abundances (Supplementary
Materials, Figure S4). Interestingly, half of these taxa (12/24) were also singled out by our
differential abundance analyses as being significantly associated with cats that ate dry food
(Tables S8 and S9). These results suggest that a dry food diet is a strong predictor of fecal
microbiome composition, and that the gut microbiomes of cats that eat any amount of dry
food is distinct from those of cats that do not eat any dry food.

3.4. Effects of FIV Status and Living Environment on the Microbiome

Finally, we investigated whether the fecal microbiomes of domestic cats varied with
host living environment (house vs. shelter), and feline immunodeficiency virus (FIV) status
(negative vs. positive) (Supplementary Materials, Table S10). For this, we conducted
analyses comparing the fecal microbiomes of healthy house cats, FIV negative shelter
cats, and FIV positive shelter cats. When examining fecal microbiome composition, both
groups of shelter cats harbored lower relative abundances of Bacteroides, Blautia, Collinsella,
and Peptoclostridium compared to healthy house cats (Figure 3A). Cats diagnosed with
FIV had similar microbiome compositions as cats without FIV (Figure 3A). Additionally,
compared to healthy house cats, both groups of shelter cats had fewer core microbiome
genera and a smaller percentage of their microbiome represented by core genera (Figure 3B,
Supplementary Materials, Table S11). Cats with FIV had the same number of core genera
and the same percentage of the microbiome represented by core taxa as did cats negative
for FIV (Figure 3B, Table S11).

Healthy house cats and both groups of shelter cats had fecal microbiomes of equal
richness, but healthy cats had more even fecal microbiomes than shelter cats (Figure 3C,
Supplementary Materials, Table S12). Shelter cats diagnosed with FIV had fecal micro-
biomes of similar richness and evenness as shelter cats without FIV (Figure 3C, Table S12).
Overall, it appears living environment is a strong predictor of fecal microbiome compo-
sition, while differences relating to FIV status are only apparent when comparing FIV
positive shelter cats with healthy house cats. If cats come from the same living environment,
the potential influences of FIV status are diminished.

Similar to diet analyses, we used a random forest classifier to determine whether
healthy house cats had distinct fecal microbiome signatures from those of FIV− and FIV+
shelter cats. The classifier did not perform well at discriminating between the two groups
of shelter cats (FIV+ vs. FIV−). For FIV+ cats, 66% of the test set was correctly assigned,
and for FIV− cats, 43% of the set was correctly assigned. However, the classifier performed
well at distinguishing the healthy reference set from both groups of shelter cats to 100%
accuracy. A total of 27 bacterial genera comprised half of that model’s importance, and
8 of these taxa were members of the core microbiome (Supplementary Materials, Table S13,
Figure S5). Specifically, both groups of shelter cats harbored greater relative abundances
of Lactobacillus, Lactococcus, Peptococcus, and unclassified Prevotellaceae than cats living in
homes (Figure S5). Conversely, home cats were enriched in Bacteroides, Peptoclostridium,
and Collinsella compared to shelter cats (Supplementary Materials, Figure S5, Table S13).
Among shelter cats, cats negative for FIV had slightly more Campylobacter and uncultured
Lachnospiraceae than cats with FIV, which instead were enriched in Ruminococcus gnavus
(Figure S5).

Lastly, we tested whether there was a bias in our random forest model by determining
whether shelter cats were easily distinguishable from house cats because they were occultly
unhealthy. For this, we compared the gut microbiomes of mildly symptomatic house cats
with FIV negative shelter cats. The model achieved an overall accuracy of 80% and only two
out of ten house cats were incorrectly classified as shelter cats. The model’s performance
decreased relative to the previous test set, but was still above random chance. These results
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suggest that the gut microbiomes of shelter cats and indoor cats are distinct and this is not
due to differences in their health condition.
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Figure 3. The fecal microbiome is distinct between indoor house cats and shelter cats. (A) Stacked
bar plot depicting the relative abundances of the most abundant bacterial genera in fecal samples.
Samples are categorized by host environment (house vs. shelter) and FIV status (negative vs. positive).
Note that both FIV+ and FIV− cats came from shelters. (B) Violin plots showing the values of two
core microbiome metrics (percentage of microbiome comprised by core; total number of core taxa
present) for house cats and FIV+ or − shelter cats. (C) Violin plots of microbiome alpha-diversity
(Observed Richness, Shannon diversity, Gini-Simpson index, and Pielou’s Evenness) by FIV status
and environment type. (D) PCoA ordination based on Bray–Curtis dissimilarity. Closeness of points
indicates microbiome similarity and points are color-coded by FIV status and environment type.

4. Discussion

If we are to use insights gained from microbiome testing to develop new diagnostics
and therapeutics, it is essential to develop reference sets from populations of healthy indi-
viduals. In this study, we explored a dataset of 16S rRNA gene sequence data derived from
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fecal samples collected from >1800 pet cats, focusing on the <10% (161 samples) reported to
have been collected from apparently healthy cats. We used this healthy reference dataset to
explore how age, diet, feline immunodeficiency virus (FIV) status, and living environment
correlate with fecal microbiome composition, alpha-diversity, and beta-diversity. In this
population of healthy cats, we found that host diet and living environment were more
influential factors than age and FIV status.

4.1. Core Microbiome

The ranges of 30 core genera found in at least 55% of individuals in a population of
apparently healthy cats were statistically defined, with Prevotella, Bacteroides, Collinsella,
Catenibacterium, Blautia, Faecalibacterium, and Megasphaera among the highest in relative
abundance in the feline fecal microbiome. These results are consistent with prior studies
that found that Bacteroides and Prevotella are main bacterial constituents of the healthy feline
gut microbiota [36]. Even when using culture-dependent methods, isolates classified as
Bacteroides are the most frequently recovered from cat fecal samples [37]. Prior studies
found that Faecalibacterium are also common in the fecal microbiomes of healthy kittens fed
a range of diets [38].

Many of the core genera detected in cat fecal microbiomes are associated with the
synthesis of short-chain fatty acids (SCFAs; e.g., acetate, butyrate, and propionate) and
branched-chain fatty acids (BCFAs; e.g., valerate, isobutyrate, and isovalerate) from the
fermentation of carbohydrates, protein, and fiber in the GI tract [39–41]. Both SCFAs
and BCFAs act as indispensable energy sources for host colonocytes, stimulate colonic
blood flow and motility and promote the growth of commensal and resident bacteria,
outcompeting pathogenic microbes [42–44]. Additionally, SCFAs have been linked to
appetite suppression and weight loss in rodents and humans [45]. There is increasing
evidence that gut microbial metabolites may act as regulators of gene expression via their
interactions with histone deacetylases [46]. They may also act as signaling molecules via
their agonistic interactions with inflammatory G protein-coupled receptors [46]. This body
of work highlights the wide systemic effects that gut bacteria and their metabolites have on
the host and its associated microbes (the holobiont).

Prevotella, Catenibacterium, and Megasphaera are highly correlated with propionate
production in the mammalian intestine and have the metabolic machinery to produce
propionate from the digestion of glucose or lactate [40]. Faecalibacterium are strongly
correlated with acetate concentrations, can ferment dietary carbohydrates into SCFAs like
acetate, and can further convert this acetate to butyrate [47]. This is significant as the SCFAs
differ in their potential impacts on host physiology. Butyrate is preferentially used by the
gut mucosa, propionate contributes to gluconeogenesis in the liver and acetate is most
concentrated in the blood [47]. Thus, the proportions of core bacterial genera and their
metabolic byproducts could have widespread effects on host functioning.

4.2. Age

The fecal microbiome composition was fairly consistent among the different age classes
in healthy pet cats. In terms of alpha and beta diversity measures, younger cats did not
have vastly different fecal microbiomes from those of mature or senior cats. However, the
total number of core taxa in these age classes declined significantly with age, even though
the percentage of the microbiome comprised by core taxa did not change.

Prior studies report that in kittens, the gut microbiome undergoes a period of change
at 18 to 30 weeks and then stabilizes after 42 weeks, with this change being primarily
attributed to dietary transitions [48]. At 18 weeks of age, the kitten fecal microbiome is
dominated by the genera Lactobacillus (35% average relative abundance) and Bifidobacterium
(20%) whereas at 42 weeks of age the genera with the highest relative abundances are
Bacteroides (16%), Prevotella (14%) and Megasphaera (8%) [48]. In our study, we did not focus
on the development of the fecal microbiome in kittens and did not include cats under seven
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months of age, with most over a year old. Thus, the window where differences in the
microbiome associated with weaning and early life had likely already passed.

A number of studies have identified changes in intestinal function associated with
aging in a number of mammalian species, including a reduction in microbiome alpha-
diversity, and slower intestinal transit times [49]. Here, we focused on individuals with no
known health conditions, which becomes increasingly challenging with age. It is possible
that some of the studies reporting age associated changes in the microbiome in individuals
are actually associated with health conditions that become more prevalent with age.

A previously published study reported age related changes in the intestinal microbiota
of pre-weaned, young, mature, and geriatric cats using culture-based methods and real time
PCR [50]. They reported that Eubacterium were more frequently isolated from pre-weaned cats
while Bifidobacterium from geriatric cats, and Lactobacillus from younger cats [50]. However, these
findings come from culture-based studies and are not directly comparable to composition-wide
surveys of the gut microbiome that are achieved from next-generation sequencing.

4.3. Diet

In our study, the fecal microbiome composition of healthy cats varied with diet. The
fecal microbiomes of cats fed any amount of dry food were significantly different from
those of cats not fed any dry kibble. Our random forest classifier was highly accurate at
distinguishing cats that ate dry food from cats that did not eat dry food and achieved
96% accuracy. It is clear that there is something fundamentally different about the fecal
microbiomes of cats that ingest any type of dry food. Furthermore, fecal microbiomes
of cats with raw food included in their diet were enriched in different bacterial genera
than cats that were not fed any raw food. This is not surprising as dry kibble, commercial
wet food, and raw-based diets contain different ratios of protein, carbohydrates, and fat,
which promote the growth of different bacteria and may lead to distinct gut microbiome
compositions [51–53]. Raw food diets for example, are high in protein and low in fiber,
whereas wet food diets have slightly less protein and more fat [51–53]. Kibble diets have
slightly less protein and fat than canned wet food, and much more carbohydrates than
canned wet food or raw food [51–53]. Bacteria will vary in their abilities to metabolize,
ferment, or transform those dietary components or their derivatives, leading to the enrich-
ment of different microbes under different diets. Raw food diet in particular may enrich for
different microbes because of its high protein intake, given that this food usually consists
of pure skeletal muscle, fat, organs, cartilage, and bones from small animals [54].

In our study, cats fed dry kibble harbored greater relative abundances of Prevotella and
Megasphaera compared to cats that did not eat any dry kibble. In a previously published
study, cats fed dry kibble diets also tended to be enriched in Prevotella compared to cats
fed raw food; those cats were instead enriched in Clostridium and Fusobacterium [40]. This
makes sense as Prevotella are prominent carbohydrate utilizers and are abundant in the
fecal microbiomes of cats fed moderate protein diets [55], whereas Clostridium typically
degrade protein and are associated with high-protein diets in cats and dogs [56]. Similarly,
a study found differences in the gut microbiomes of cats fed a moderate protein and
high carbohydrate diet (32% protein, 32% carbohydrates) and cats fed a high protein, low
carbohydrate diet (51% protein, 11% carbohydrates) [53]. Specifically, cats consuming less
protein had larger abundances of Megasphaera whereas those fed more protein had larger
abundances of Faecalibacterium. Lastly, a third study compared the microbiomes of cats fed
dry kibble vs. commercial wet food and found that cats fed dry kibble harbored greater
relative abundances of Megasphaera and Lactobacillus, and less Blautia than cats fed wet
food [52].

4.4. Environment

In our study, our random classifier was highly accurate at distinguishing healthy
house cats from shelter cats (positive or negative for FIV) based purely on their fecal
microbiome compositions. The microbiomes of healthy house cats were distinct from those
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of shelter cats and there are several reasons as to why this might be the case. Compared to
house cats, shelter cats might experience more crowded housing, less play time and human
interactions, and lesser quality diets [57,58]. Their shelters might be noisier than private
homes and may also house dogs. Shelter cats may be handled more than typical indoor
house cats, or may be more likely to experience changing caregivers, all of which could
increase their stress and potentially impact their microbiome [58,59]. Conversely, indoor
house cats might also receive more quality time with their owner, and their owner might
have more resources to maximize the cat’s welfare and wellbeing, potentially shaping their
microbiome. It has also been shown that there might be greater sharing and exchange of
microbes between cat owners and their pets, thus, indoor house cats might have slightly
different compositions than shelter animals due to their close physical contact with their
human owners [60].

Furthermore, cats in shelters are also more likely to be exposed to or infected with
pathogens. In a study examining the incidences of infection among house cats, shelter cats,
and stray cats, shelter cats were two times more likely to be infected by at least one enteric
parasite (e.g., Toxocara cati, Cytospora spp., Giardia spp., Dipylidiidae or Taeniidae tapeworms,
Isospora spp., etc.) than cats in private homes [61,62]. Shelter cats might also be more likely
to contract a respiratory disease because of the crowded housing conditions [63]. It is widely
known that the gut microbiomes of wild and domestic mammals with a range of infections
are distinct from those of healthy animals [64,65]. Regardless of whether the shelter cats
in our study were or were not currently diagnosed with infections, the conditions of their
living environment could be contributing to their divergent microbiomes.

4.5. FIV Status

While the fecal microbiome compositions of shelter cats with FIV were not funda-
mentally distinct from those without FIV, they were distinct from the fecal microbiomes
of healthy house cats. This is understandable as FIV infections cause a weakening of the
immune system and are a source of significant morbidity and mortality in cats [66,67].
Cats diagnosed with FIV may have a greater risk of developing lymphoma, neurological
dysfunction, and secondary opportunistic infections due to their immunocompromised
state [66,67]. This retroviral infection understandably impacts a cat’s health and physiology,
which may lead to consequential changes in the microbiome. Similar to our study, a prior
study also found that the fecal microbiome of cats with an FIV infection differed from
those of uninfected controls [68]. Authors stated that FIV-infected cats had greater relative
abundances of Acidobacteria and Actinobacteria and fewer Fibrobacteres in their microbiomes
than control cats [68]. Our findings also echo prior microbiome studies which report associ-
ations between the gut microbiome and other viral infections including astrovirus (AstV)
infections in Jamaican fruit bats [69], Acquired Immune Deficiency Syndrome (AIDS) in
chimps [70], and Adenovirus (AdV) infections in Malagasy mouse lemurs [71].

5. Limitations

This study employed 16S rRNA amplicon sequencing which provides information
on the composition of the fecal microbiome, but at a limited taxonomic resolution. Future
studies will benefit from the use of whole-genome sequencing, shotgun sequencing, or
other -omics technologies to determine the specific bacterial species and bacterial functions
that are present in the fecal microbiomes of healthy pet domestic cats. Moreover, our study
used broad dietary categories (dry food, wet food, raw food) to examine the relationship
between host diet and the microbiome. To get a more in-depth understanding of what
exactly may be driving differences in the microbiome, we need to directly measure the
macronutrient and nutritional content of the cat diets.

The study provided valuable insights regarding the diversity of microbiome com-
positions present in healthy domestic cats of a single species. It would be interesting to
examine whether these findings also apply to populations of wild cats from other species
(e.g., leopards, pumas, or tigers).
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Lastly, the study did not examine sex- and breed-related differences in the fecal micro-
biomes of healthy pet cats, but a permutational ANOVA indicated that these influences
were not significant in this dataset. The fecal microbiomes of cats in this study did not vary
by sex (marginal PERMANOVA R2 = 0.072, p = 0.39) or breed (marginal PERMANOVA
R2 = 0.008, p = 0.12).

6. Conclusions

In this study, we built and examined a healthy reference dataset composed of micro-
biome samples collected from healthy pet cats living in homes. Additional samples were
also collected from cats living in shelters or sanctuaries and compared with the healthy
reference set. While some effects of age and FIV status on fecal microbiome composition
were detected, host diet and living environment were more influential factors, and should
be carefully considered when designing future studies. Thus, we show that the ‘healthy’
cat fecal microbiome does not look one certain or averaged way, but is rather represented
by a diversity of compositions that are dependent on host characteristics and lifestyle.
Our analyses helped establish the expected ranges for the structure of these communities
within a healthy population of cats, which will be useful to veterinarians, pet owners, and
pet-related industries.
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diets. Figure S4: Random forest classifier accurately distinguished the fecal microbiomes of cats that
include dry food in their diet from those that do not. Figure S5: Random forest classifier accurately
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65. Vlčková, K.; Pafčo, B.; Petrželková, K.J.; Modrý, D.; Todd, A.; Yeoman, C.J.; Torralba, M.; Wilson, B.A.; Stumpf, R.M.; White,
B.A.; et al. Relationships between Gastrointestinal Parasite Infections and the Fecal Microbiome in Free-Ranging Western Lowland
Gorillas. Front. Microbiol. 2018, 9, 1202. [CrossRef]

66. Ryan, G.; Grimes, T.; Brankin, B.; Mabruk, M.J.E.M.F.; Hosie, M.J.; Jarrett, O.; Callanan, J.J. Neuropathology Associated with
Feline Immunodeficiency Virus Infection Highlights Prominent Lymphocyte Trafficking through Both the Blood-Brain and
Blood-Choroid Plexus Barriers. J. Neurovirol. 2005, 11, 337–345. [CrossRef]

67. Hartmann, K. Clinical Aspects of Feline Immunodeficiency and Feline Leukemia Virus Infection. Vet. Immunol. Immunopathol.
2011, 143, 190–201. [CrossRef] [PubMed]

68. Weese, J.S.; Nichols, J.; Jalali, M.; Litster, A. The Rectal Microbiota of Cats Infected with Feline Immunodeficiency Virus Infection
and Uninfected Controls. Vet. Microbiol. 2015, 180, 96–102. [CrossRef] [PubMed]

69. Wasimuddin; Brändel, S.D.; Tschapka, M.; Page, R.; Rasche, A.; Corman, V.M.; Drosten, C.; Sommer, S. Astrovirus Infections
Induce Age-Dependent Dysbiosis in Gut Microbiomes of Bats. ISME J. 2018, 12, 2883–2893. [CrossRef] [PubMed]

70. Barbian, H.J.; Li, Y.; Ramirez, M.; Klase, Z.; Lipende, I.; Mjungu, D.; Moeller, A.H.; Wilson, M.L.; Pusey, A.E.; Lonsdorf, E.V.; et al.
Destabilization of the Gut Microbiome Marks the End-Stage of Simian Immunodeficiency Virus Infection in Wild Chimpanzees.
Am. J. Primatol. 2018, 80, 2515. [CrossRef]

71. Wasimuddin; Corman, V.M.; Ganzhorn, J.U.; Rakotondranary, J.; Ratovonamana, Y.R.; Drosten, C.; Sommer, S. Adenovirus
Infection Is Associated with Altered Gut Microbial Communities in a Non-Human Primate. Sci. Rep. 2019, 9, 13410. [CrossRef]

http://doi.org/10.1016/j.vprsr.2019.100270
http://doi.org/10.22233/9781910443330.ch15
http://doi.org/10.1016/j.ijpara.2015.04.001
http://doi.org/10.3389/fmicb.2018.01202
http://doi.org/10.1080/13550280500186445
http://doi.org/10.1016/j.vetimm.2011.06.003
http://www.ncbi.nlm.nih.gov/pubmed/21807418
http://doi.org/10.1016/j.vetmic.2015.08.012
http://www.ncbi.nlm.nih.gov/pubmed/26315773
http://doi.org/10.1038/s41396-018-0239-1
http://www.ncbi.nlm.nih.gov/pubmed/30061706
http://doi.org/10.1002/ajp.22515
http://doi.org/10.1038/s41598-019-49829-z

	Introduction 
	Materials and Methods 
	Participatory Research 
	Sample and Metadata Collection 
	Sample Processing and Sequencing 
	Sequence Data Processing 
	Core Microbiome of Healthy Cats 
	Effect of Age on the Microbiome 
	Effect of Diet on the Microbiome 
	Effect of FIV Status and Living Environment on the Microbiome 

	Results 
	The Core Microbiome of Healthy Pet Cats 
	Effect of Age on the Microbiome 
	Effects of Diet on the Microbiome 
	Effects of FIV Status and Living Environment on the Microbiome 

	Discussion 
	Core Microbiome 
	Age 
	Diet 
	Environment 
	FIV Status 

	Limitations 
	Conclusions 
	References



