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MOTIVATION The existence of complex interdependencies between genes, proteins, and metabolites
challenge the interpretation of omics experiments. Data-driven approaches have been particularly useful
for identifying gene sets of interest. However, it remains difficult to gain a mechanistic understanding of
and to quantify a cell’s functions from enriched ontology terms. Genome-scale systems biology models
can be used to analyze these datasets, but they require specialized training and can take extensive effort
to deploy. Here, we developed a framework to directly predict how changes in omics experiments corre-
spond to cell or tissue functions, thereby facilitating phenotype-relevant interpretation of these complex da-
tum types.
SUMMARY
Omics experiments are ubiquitous in biological studies, leading to a deluge of data. However, it is still chal-
lenging to connect changes in these data to changes in cell functions because of complex interdependencies
between genes, proteins, and metabolites. Here, we present a framework allowing researchers to infer how
metabolic functions change on the basis of omics data. To enable this, we curated and standardized lists of
metabolic tasks that mammalian cells can accomplish. Genome-scale metabolic networks were used to
define gene sets associated with each metabolic task. We further developed a framework to overlay omics
data on these sets and predict pathway usage for each metabolic task. We demonstrated how this approach
can be used to quantifymetabolic functions of diverse biological samples from the single cell to whole tissues
and organs by using multiple transcriptomic datasets. To facilitate its adoption, we integrated the approach
into GenePattern (www.genepattern.org—CellFie).
INTRODUCTION

High-throughput omics technologies allow researchers to

comprehensively monitor cells and tissues at the molecular level

and record subtlemolecular changes thatmight contribute to the
Cell
This is an open access article und
acquisition of a specific phenotype. However, the complex inter-

dependencies between the gene, protein, and metabolite com-

ponents limit our capacity to identify the molecular basis of spe-

cific phenotypic changes. Therefore, it remains challenging to

extract tangible biological meaning from omics data.
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Many approaches exist to systematically interpret gene

expression changes, ranging from simple enrichment analyses

to detailed mechanistic systems biology modeling. Several

user-friendly approaches have been developed that allow any

researcher to test for enrichment in groups of genes, e.g., path-

ways, biological processes, or ontology terms (Huang et al.,

2009; Khatri et al., 2012). Such approaches are invaluable for

identifying groups of genes that are more frequently differen-

tially expressed, but the methods are limited in their capacity

to describe how the differential changes affect cellular meta-

bolic functions. To interpret the impact on function, mathemat-

ical models of pathways can be used. For example, genome-

scale metabolic network reconstructions are knowledge bases

of all metabolic pathways in an organism (Feist et al., 2009; Gu

et al., 2019; Robinson et al., 2020). These networks directly link

genotype to phenotype, given that they mathematically

describe the mechanisms by which all cell parts (e.g., mem-

branes, proteins) are concurrently made. Thus, approaches

have emerged to analyze omics data in the context of these

models (Blazier and Papin, 2012; Lewis et al., 2009), yielding

a wealth of detailed insights into the mechanisms underlying

complex biological processes (Bordbar et al., 2014). However,

these approaches are not widely used because they are quite

complex, requiring months of analysis by experts with years

of specialized training.

Here, we propose an alternative approach for the interpreta-

tion of omics data (e.g., differentially expressed genes) that cap-

tures the simplicity of enrichment analyses while providing

mechanistic insights into how differential expression affects spe-

cific cellular functions, based on pre-computed model simula-

tions. To this end, genome-scale metabolic networks were de-

composed into many smaller metabolic tasks (Blais et al.,

2017; Thiele et al., 2013). We curated and standardized these

tasks, resulting in a collection of hundreds of tasks covering

seven major metabolic activities of a cell (energy generation,

nucleotide, carbohydrate, amino acid, lipid, vitamin and

cofactor, and glycan metabolism). We further developed a

framework to directly predict the activity of these metabolic

functions from transcriptomic data. To this end, we used

genome-scale models of mammalian metabolism to define

gene sets responsible for the activation of pathways required

for each specific metabolic task. Through this platform, users

can overlay their data and comprehensively quantify the propen-

sity of a cell line or tissue to be responsible for a metabolic func-

tion. Finally, we demonstrate the capacity of this approach to

leveragemetabolic functions of human cells and tissues by using

transcriptomic data from the Human Protein Atlas (Uhlén et al.,

2015) and show how the identification of metabolic tasks can

be used to understand the organization of these biological en-

tities into broader functional organ systems. Furthermore, using

data from the Single-Cell Atlas of Adult Mouse Brain (Saunders

et al., 2018), we show cell type specificity of several metabolic

functions. Finally, we highlight the potential applications of this

method to drive the discovery of new drug targets by identifying

the main metabolic dysregulations associated with Alzheimer’s

disease by using single-cell transcriptomic data from the ROS-

MAP (Religious Orders Study and Memory Aging Project) data-

set (Bennett et al., 2018).
2 Cell Reports Methods 1, 100040, July 26, 2021
RESULTS

A framework to quantify a cell’s metabolic functions
Cells deploy diverse molecular functions to interface with their

microenvironment and adapt these as needed to cope with envi-

ronmental changes. In metabolism, small modules of reactions

can be defined asmetabolic tasks (i.e., the generation of specific

product metabolites given a defined set of substrate metabo-

lites). The library of metabolic tasks a cell can sustain is

embedded in its genome, and the capacity to modulate the ac-

tivity of these tasks enables the cell’s adaptation to a changing

environment.

This concept of ‘‘metabolic tasks’’ has been previously used to

evaluate the quality and capabilities of genome-scale metabolic

models (Duarte et al., 2007; Thiele et al., 2013; Blais et al., 2017;

Gille et al., 2010; Mardinoglu et al., 2014; Uhlén et al., 2015; Ag-

ren et al., 2014; Bordbar et al., 2012). However, these studies

used various frameworks to define the cell’s capacity to sustain

a metabolic task (as described previously [Richelle et al.,

2019a]). Therefore, the library of metabolic tasks differed across

studies in content and form, preventing the comparison of re-

sults from the various studies. Thus, we first manually collated,

curated, and standardized existing metabolic task lists (Blais

et al., 2017; Thiele et al., 2013), resulting in a documented collec-

tion of 195 tasks covering seven major metabolic activities of a

cell (energy generation, nucleotide, carbohydrates, amino acid,

lipid, vitamin and cofactor, and glycan metabolism) (Figure 1

and Table S1). We further unified the formalism of the metabolic

tasks and the associated computational framework for their use

in the modeling context (detailed in our earlier study [Richelle

et al., 2019a]).

Here, we extend this concept beyondmodel benchmarking by

developing a platform that quantifies a cell’s metabolic functions

directly from transcriptomic data. To achieve this, we used

genome-scale metabolic models to identify the list of reactions

required to accomplish each metabolic task and to identify the

list of genes that might contribute to the acquisition of this meta-

bolic function on the basis of Gene Protein Reaction (GPR) rules.

With only 195 tasks, we can capture the activity of 40% of the

metabolic genes in the human genome-scale networks

(43.94% for Recon2.2 [Swainston et al., 2016] and 37.36% for

iHsa [Blais et al., 2017]).

The proposed computation of the metabolic score (i.e., rela-

tive activity of a metabolic task) relies first on the preprocessing

of the available transcriptomic data and the attribution of a gene

activity score for each gene (Richelle et al., 2019b). We further

selected the genes responsible for the activation of each reac-

tion required for a task by using the GPR rules and average their

activity to compute themetabolic task score (see STARMethods

for more details). In doing so, transcriptomic data can be directly

used to quantify the relative activity of eachmetabolic function in

a specific condition. Importantly, given that gene lists are pre-

computed, no modeling background is required for the user.

Metabolic tasks can leverage metabolic functions
of human tissues
Each organ, tissue, and cell type in the human body has a distinct

set of specific functions. The functions of each cell type are



Figure 1. Genome-scale metabolic models can be used to infer the activity of a defined list of metabolic functions

(A) Metabolic tasks are a modeling concept that we extend here to infer metabolic functions from transcriptomic data.

(B)We curated and reconciled a collection of 195 tasks, derived in large part from earlier modeling studies (i.e., Recon2 and iHsa). The original source of each task

and comments on the biological evidence of the associated metabolic function are presented in Table S1.

(C) The list of curated tasks covers seven main metabolic systems.
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integrated to achieve the functions of each tissue, organ, and or-

gan system. Because there is no central database comprehen-

sively describing the unique metabolic functions of different tis-

sues, we used transcriptomic data from the Human Protein

Atlas (Uhlén et al., 2015) to quantify the metabolic functions of

32 tissues by usingRecon2.2 (Swainston et al., 2016) as reference

genome-scalemodel (Figure 2A; Tables S2 and S3).We observed

that >40%of the tasks are shared by all tissues (i.e., 79 tasks, Fig-

ure 2B), and within organ systems even more tasks were shared

(Figure 2C and Table S3). To assess the significance of this com-

mon set of tasks, we collected a list of known housekeeping

genes (Blomen et al., 2015; Eisenberg and Levanon, 2013; Hart

et al., 2017; Wang et al., 2015). This list included 411 metabolic

genes from Recon2.2 (Swainston et al., 2016) (24.5% of all meta-

bolic genes in Recon2.2). Interestingly, we found that 97.5% of

tasks shared by all the tissues (i.e., 79 tasks, Figure 2B) are asso-

ciated with at least one housekeeping gene. This included 277

housekeeping genes covered by metabolic tasks, which repre-

sent 67.4% of all Recon2.2 housekeeping genes.

Metabolic tasks successfully cluster histologically
similar tissues
We further analyzed the similarities of metabolic tasks of tissues

within the same organ systems as classified in the Human

Protein Atlas (Uhlén et al., 2015). Specifically, we compared

the similarities of tissues belonging to three different organ sys-

tems (i.e., female reproductive system, gastrointestinal tract,

and lymphatic system; see STAR Methods for more details).

We found that the metabolic task approach successfully groups
tissues by organ system (Figures 3A and S1 show the clusters

from the binary version of the metabolic task approach).

The gastrointestinal system presents the lowest grouping

significance, as two tissues seem to be group outliers (i.e.,

esophagus and salivary gland). Interestingly, these two tissues

are histologically substantially different from the rest of the

gastrointestinal system. Specifically, they are the only tissues

without columnar epithelium. The salivary gland is the only tissue

in this group having cuboidal cells in its epithelium, whereas the

esophagus contains squamous epithelium (Figure 3B). The

histological distance between tissues belonging to the gastroin-

testinal system was successfully captured by metabolic task

analysis (Figure 3C).

Metabolic task analysis captures tissue- and cell-
specific functions
Somemetabolic functions only occur in specific organs, tissues,

or cells. For example, taurine is the major constituent of bile

secreted by the liver, and its biosynthesis also occurs in the kid-

ney and brain (Ripps and Shen, 2012). Furthermore, taurine plays

an important role in maintaining normal reproductive functions of

mammals (Lobo et al., 2000; Mu et al., 2015). Metabolic task

analysis shows taurine synthesis in those known tissues and

reproductive tissues (Figure 4A). Similarly, metabolic task anal-

ysis predicts that starch degradation occurs in the digestive tis-

sues, consistent with the reported localization (Ao et al., 2007).

Thus, the analysis can capture tissue-specific metabolism.

Serotonin biosynthesis is similarly accurately predicted to be

synthesized in the gastrointestinal tract. However, the method
Cell Reports Methods 1, 100040, July 26, 2021 3



Figure 2. Metabolic tasks capture functional similarities between human tissues

(A) The proportion of tasks identified as active in the seven major metabolic activities for each of the 32 tissues present in the Human Protein Atlas (Uhlén et al.,

2015).

(B and C) Shown are (B) the percentage of active tasks that are shared by all tissues and (C) those shared within the same organ systems (Table S3). The

background shaded color distribution represents the assignment of the 195 curated tasks to seven main metabolic systems.
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does not predict its known synthesis by the brain (Berger et al.,

2009). This can be expected, as serotonergic neurons are local-

ized to the raphe nuclei, whereas the bulk brain transcriptomic

data in the Human Protein Atlas RNA sequencing (RNA-seq)

were sampled from cerebral cortex (Uhlén et al., 2015). Thus,

we used the metabolic task approach on single-cell RNA-seq

data of the adult mouse brain (Saunders et al., 2018) (Tables

S5 and S6) and found that serotonergic neurons can be success-

fully identified (Figure 4B).

Metabolic task analysis captures the differences
between brain cell types
The human brain is a metabolically demanding organ consisting

of diverse cell types, each one with unique metabolic capabil-

ities. Although some metabolic interchanges between brain

cell types are well known (e.g., glutamate-glutamine shuttle be-

tween neurons and astrocytes), there remain many open ques-

tions concerning the specific contribution of each cell type in

brain function. Thus, we used single-cell RNA-seq data from

adult mouse brain (Saunders et al., 2018) to assess the main
4 Cell Reports Methods 1, 100040, July 26, 2021
metabolic features that differentiate astrocytes, neurons, and ol-

igodendrocytes (Figure 5A; see STAR Methods for details). The

metabolic task approach clearly differentiates the three cell

types and details their metabolic specialization (Figures 5B,

5C, S2, and S3). Our analysis confirms previously known specific

metabolic features such as the evidence that astrocytes fuel the

glutamate-glutamine shuttle (Amaral et al., 2013) (Figure 5B) and

that oligodendrocytes are likely the primary source of creatine in

the brain (Chamberlain et al., 2017) (Figure 5C). Interestingly,

there has been a debate as to whether oligodendrocytes serve

as sources of glutamine synthesis (Anlauf and Derouiche,

2013) in the glutamate-glutamine shuttle. Our analysis of sin-

gle-cell RNA-seq clearly supports this hypothesis (Figures 5B

and S3D).

To analyze the capacity of this method to be used to resolve

open questions, we also created a new set of tasks specific to

neurotransmitter synthesis (Table S6).We compared the expres-

sion of these tasks with respect to the type of genemarkers used

to differentiate the single cells. We observe that each set of gene

markers used for identifying the different clusters of neurons in



Figure 3. Metabolic tasks capture the histological similarities of tissues

(A) Visual representation of the similarity between tissues computed on the basis of themetabolic task approach using a principal coordinates analysis. Themean

Euclidean distance for 100,000 randomly selected groups with the same number of tissues (inset) highlights the significance of the tissues clustering into organ

systems. The vertical lines are the mean Euclidean distance between tissues belonging to the same organ system and their empirical p value (see STARMethods

for more details).

(B) Heatmap and hierarchical clustering of histological similarities between tissues of the gastrointestinal group.

(C) Hierarchical clustering of similarities between tissues of the gastrointestinal group computed on the basis of the metabolic task approach.
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the Single-Cell Atlas of Adult Mouse Brain (Saunders et al., 2018)

are associated with specific neurotransmitter patterns (Fig-

ure 5D). Specifically, the Slc17 gene family is associated with

the non-expression of the GABA neurotransmitter presumably

corresponding to glutamatergic neurons. Contrarily, all

the neurons identified by using GAD family gene markers are

associated with a high GABA synthesis corresponding to

GABAergic neurons (Saunders et al., 2018). Interestingly, tyro-

sine hydroxylase is a marker of dopaminergic neurons (Contini

et al., 2010), and we observe that the neurons identified with

this gene are the only ones presenting the synthesis of

dopamine.

Metabolic task analysis highlights metabolic
dysregulations in Alzheimer’s disease
Alzheimer’s disease is a neurodegenerative disorder affecting

millions of people, but to date we lack a cure. Despite decades

of research into the disease, many questions remain regarding

the molecular basis of its progression. However, increasing evi-

dence suggests that metabolic dysfunction might contribute to

nervous system degeneration (Butterfield and Halliwell, 2019;

Kang et al., 2017; Lewis et al., 2010b). Whether metabolic alter-
ations are the cause or the consequence of the pathogenesis re-

mains unclear, but metabolic pathways might themselves

contain potential targets for future therapies (Cai et al., 2012).

In this context, we used single-cell RNA-seq data from ROSMAP

(Bennett et al., 2018) to elucidate the main metabolic dysregula-

tions associated with Alzheimer’s disease. To this end, we clus-

tered the excitatory neuron samples and identified the tasks that

were active in more than 50% of the dataset. Only three meta-

bolic tasks correspond to this criterion: the conversion of phos-

phatidyl-1D-myo-inositol to 1D-myo-inositol 1-phosphate, the

synthesis of tetrahydrofolate, and the synthesis of ‘‘Tn antigen’’

(i.e., glycoprotein N-acetyl-D-galactosamine). We further used

them to divide the samples into eight metabolic clusters depend-

ing on the combination of their activity in each sample (Figures

6A and 6B; see STAR Methods for more details). For each meta-

bolic cluster, we tested their associations with pathological traits

by using a one-tailed Fisher’s test (Figure 6C) and observed that

specific metabolic clusters were enriched in samples associated

with either Alzheimer’s pathology (clusters M3 and M4) or no pa-

thology (cluster M6). Interestingly, we were able to group the

48 patients from the dataset depending on their disease

prognosis with 75% accuracy by sorting them with respect to
Cell Reports Methods 1, 100040, July 26, 2021 5



Figure 4. Metabolic specificities of tissues

and brain cells

(A) Metabolic task scores associated with the

synthesis of taurine and serotonin and the degra-

dation of starch. Note that the figure presents only

the 16 tissues for which these tasks have been

predicted.

(B) Score associated with the synthesis of seroto-

nin for 12 different brain cell types. The central

black mark indicates the median, and the bottom

and top edges of the box indicate the 25th and

75th percentiles, respectively. The whiskers

extend to the most extreme data points not

considered outliers, and the outliers are plotted

individually by using orange circles with dots.
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the proportion of their samples in M3 and M4 (Figure 6D). Note

that we applied the clustering approach and subsequent trait

enrichment analysis to the six major cell types identified in the

original study presenting this dataset (Mathys et al., 2019), and

we did not find such a strong correlation for the other brain cell

types (Table S7).

To better understand the metabolic functions differentiating

the eight clusters, we computed the median of the combined

metabolic task score (i.e., score in its binary version multiplied

by the continuous one) and observed that only 13 tasks pre-

sented a median score different from zero in a metabolic cluster.

We further used these identified tasks to investigate their expres-

sion patterns (i.e., percentage of patient samples associated

with an active task and related median score) across the groups

of patients presenting or not presenting a positive diagnosis for

Alzheimer’s disease. We observed distinct median score distri-

butions depending on diagnosis for four tasks previously high-

lighted in the literature as being implicated in the Alzheimer’s dis-

ease (Figures 6E–6G): the synthesis of Tn antigen (Frenkel-Pinter

et al., 2017; Schedin-Weiss et al., 2014) (glycoprotein N-acetyl-

galactosamine), the synthesis of tetrahydrofolate (Troesch

et al., 2016), and the salvage of inosine 50-monophosphate and

guanosine 50-monophosphate (Garcia-Gil et al., 2018). Although

the other metabolic tasks identified do not present distinct pat-
6 Cell Reports Methods 1, 100040, July 26, 2021
terns at the level of the median score dis-

tribution, we observe that healthy sub-

jects often present a higher percentage

of samples for which these tasks are

active (Figure S4). Thus, an overall defi-

ciency of these metabolic activities is

observed in patients with Alzheimer’s dis-

ease. Interestingly, some dysregulated

metabolic tasks have been observed in

previous studies, such as pyridoxal phos-

phate synthesis (di Salvo et al., 2012), the

presence of the thioredoxin synthesis

(Silva-Adaya et al., 2014), fructose degra-

dation (Cisternas et al., 2015), and the

conversion of myo-inositol (Chhetri,

2019), whereas the others have not been

specifically investigated. In this context,

the metabolic dysregulations identified
with our approach provide a hypothesis of new potential drug

targets.

DISCUSSION

Here, we present an approach to predict the activity of hundreds

of metabolic functions from transcriptomic data. This framework

enables the comprehensive quantification of the propensity of a

cell line or tissue to express a metabolic function, thereby facili-

tating phenotype-relevant interpretation of these complex datum

types. We usedmultiple omics datasets to highlight the power of

our approach to quantify metabolic functions from organ sys-

tems to single cells.

Enrichment analyses are invaluable for identifying gene clas-

ses that are significantly over- or under-represented in gene

expression data. These gene groups can suggest functional bio-

logical processes by leveraging existing knowledge embedded

in gene ontologies. Although these approaches are useful for

genome-wide association studies and differential screening,

they do not provide mechanistic details of metabolic pathway

activities. Our framework, on the other hand, integrates omics

datasets into pathways from computational models to quantita-

tively describe the genotype-phenotype relationship. The anal-

ysis of gene expression data with genome-scale systems



Figure 5. Metabolic differences between astrocytes, neurons, and oligodendrocytes

(A) Schematic representation of spatial connection between astrocytes (blue), neurons (red), and oligodendrocytes (yellow).

(B) Principal component analysis (PCA) component scores for the three different cell types (astrocytes, blue; neurons, red; oligodendrocytes, yellow) and the five

dominant tasks in the second principal component. The five tasks most influencing the third principal component are presented in Figure S2A.

(C) PCA component scores for only two cell types (astrocytes, blue; oligodendrocytes, yellow) and the five dominant tasks in the second principal component. The

five tasks most influencing the third principal component are presented in Figure S2B.

(D) Heatmap of metabolic tasks scoremean values associatedwith the synthesis of main neurotransmitters in the context of the genemarkers for different neuron

types (i.e., mean of the metabolic task score obtained for all samples associated with specific set of gene markers). The known genemarkers are highlighted with

different colors (e.g., GAD family in green, Slc17 gene family in orange, Chat gene marker in purple).
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biology models is well established and can provide deep mech-

anistic insights into the metabolic capabilities of a cell and/or tis-

sue. Indeed, Uhlén et al. (2015) used a network-based approach

and the concept of metabolic tasks to construct tissue-specific

metabolic networks. The approach enforced the activity of tis-

sue-specific metabolic tasks into each model to capture cellular

functionalities known to occur in all cell types. In doing so, they

also found metabolic housekeeping functions shared across all

tissues and showed similarities between metabolic activities

across tissues in the same organ systems. Unfortunately, the

construction and analysis of such computational models is a

complex and difficult task requiring expert knowledge of the

tissues and modeling framework (Richelle et al., 2019a; Opdam

et al., 2017). To overcome this problem, our framework success-

fully combines the capacity to provide mechanistic insights of
network-based approaches and the simplicity of enrichment an-

alyses. To further facilitate adoption of the approach, we inte-

grated a CellFie module into the list of tools available in GenePat-

tern (Reich et al., 2006) (www.genepattern.org; see STAR

Methods for more details).

The list of metabolic functions presented in this study covers

the functions of a substantial proportion of human metabolic

genes (43.94% of the genes in Recon2.2 [Swainston et al.,

2016] and 37.36% in iHsa [Blais et al., 2017]). Therefore, we

focused here on demonstrating the use of the metabolic tasks

rather than on the tasks themselves. However, this list can be

easily expanded upon for mammalian cells and extended to

diverse organisms and more cellular functions captured in sys-

tems biology models of metabolism, transcription, translation,

and signaling. For example, genome-scale metabolic networks
Cell Reports Methods 1, 100040, July 26, 2021 7
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Figure 6. Metabolic clusters of excitatory neurons and their link with Alzheimer’s disease

(A) The single-cell transcriptomic dataset was clustered into eight metabolic clusters with distinct patterns of activity for three metabolic tasks.

(B) Percentage of the representation of each metabolic cluster within the ROSMAP dataset (Mathys et al., 2019).

(C) Enrichment analysis (one-tailed Fisher’s exact test) within each metabolic cluster of clinic-pathological variables (Mathys et al., 2019) (AD, pathology; stage,

stage of the disease; amyloid, overall amyloid level; braaksc, Braak stage; ceradsc, assessment of neuritic plaques; cogdx, clinical consensus diagnosis; apoe,

APOE (apolipoprotein E) genotype; sex, sex of the patient).

(D) Percentage of samples of each metabolic cluster from each patient and their associated Alzheimer’s diagnosis.

(E–G) Expression patterns of the metabolic tasks (left: percentage of patient samples associated with an active task; right: related median score) presenting a

dysregulated activity across groups of patients with different diagnosis for Alzheimer’s disease (blue and red represent patients without and with Alzheimer’s

disease, respectively). The horizontal lines represent the median of the distribution.
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exist for hundreds of organisms, and updates on available net-

works are often released. A community standard for metabolic

tasks will facilitate efforts to build an extensive resource of meta-

bolic and cellular functions, including tasks unique to individual

organisms. Such exhaustive lists of tissue- and/or organism-

specific metabolic features can be developed and validated,

as we did, on the basis of existing knowledge from the literature.

However, further experimental validation will be important to

more objectively benchmark the new tasks.

In this context, a major value of this work will be to propose

cell-type- or tissue-specific functions based on transcriptomic

data. To facilitate further validation of predicted tissue-specific

task beyond established literature observations, one could use

various databases. For example, we tested whether ontological

information available in the Human Metabolome Database

(HMDB) (Wishart et al., 2018) could cross-validate the tissue-

specific human metabolic functions identified on the basis of

the Human Protein Atlas dataset. Sixty-four of our metabolic

tasks can be translated into the accumulation of a metabolite

of interest listed in HMDB for which ontological data are avail-

able. We found that 73.2% of the tissue specificities listed in

HMDB for these metabolite accumulations corroborated with

identified tissue-specific metabolic tasks (Table S2). The

increasing availability of other public experimental data, through

consortia such as Human Cell Atlas (www.humancellatlas.org),

EcoCyc (www.ecocyc.org), and Saccharomyces Genome Data-

base (www.yeastgenome.org), will definitively facilitate such

validation while also enabling the curation of new metabolic

tasks for various model organisms.

The inclusion of other biological processes (e.g., transcription,

translation) can easily be formulated into our framework by using

different types of models (Thiele et al., 2012; Lerman et al., 2012),

as our approach only requires gene information. Furthermore,

gene ontology repositories could provide a starting point to iden-

tify new tasks bymapping existing gene sets onto genome-scale

metabolic networks. Finally, futureworkwill investigate contribu-

tions from different isoenzymes within each metabolic task,

given that different cells and tissues can present the samemeta-

bolic reactions but using different isoenzymes with different ac-

tivities (Uhlén et al., 2015). This variation in enzyme usage might

underlie adaptations of metabolism to biological perturbation

such as a disease. The CellFie framework can be further used

to study other omics data, including proteomics, assay for trans-

posase-accessible chromatin using sequencing (ATAC-seq),

and any other type that can quantify genes or proteins. For

example, in proteomics, one will input abundance of proteins

associated to each reaction involved in a metabolic task instead

of selecting the gene that will be the main determinant of gene

abundance. Also, this could be used to uncover previously un-

known protein functions or inversely to associate a new meta-

bolic function with prior knowledge at the level of the protein.

In this context, we anticipate that co-expression analysis and

studies of protein structures will complement biochemical as-

says to assign activities to new proteins, which can then be

added to the genome-scale models and existing or new meta-

bolic tasks.

In conclusion, this framework provides an approach to contex-

tualize gene expression data. Combined with knowledge-based
functional analysis, this might, one day, enable the complete

description of the molecular basis of any biological system

based on a simple omics data analysis.

Limitations of the study
The list of metabolic tasks in this study represents a limited

collection of curated metabolic functions in human cells. The

aim of this study was not to create and benchmark all metabolic

tasks but rather to standardize previously identified metabolic

tasks and use these to develop a tool for data analysis. Although

the curated list covers a substantial proportion of human meta-

bolic genes, there is a need for further work to describe themeta-

bolic tasks involving the remaining genes not covered in the

current task list, including those tasks unique to individual non-

human organisms.

The list should also be expanded for other mammalian cells

and extended to diverse organisms, along with more cellular

functions captured in systems biology models of metabolism,

transcription, translation, and signaling. However, further exper-

imental validation will be important to objectively benchmark

these new tasks, given that to date there is no exhaustive list of

cell-, tissue-, and/or organism-specific metabolic functions. In

this context, a major value of this work will be to propose cell-

type- or tissue-specific functions based on transcriptomic data.

The presented framework currently only relies on the usage of

transcriptomic data. The method could be adapted to study

other omics data, including proteomics, ATAC-seq, and any

other type that can quantify genes or proteins. Such applications

would be beneficial to uncovering previously unknown protein

functions or inversely associated new metabolic functions

thanks to prior knowledge at the level of the protein.
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A., Ganeshan, R., König, M., Rother, K., et al. (2010). HepatoNet1: a compre-

hensive metabolic reconstruction of the human hepatocyte for the analysis of

liver physiology. Mol. Syst. Biol. 6, 411.

Gu, C., Kim, G.B., Kim, W.J., Kim, H.U., and Lee, S.Y. (2019). Current status

and applications of genome-scale metabolic models. Genome Biol. 20, 121.

Hart, T., Tong, A.H.Y., Chan, K., Van Leeuwen, J., Seetharaman, A., Aregger,

M., Chandrashekhar, M., Hustedt, N., Seth, S., Noonan, A., et al. (2017). Eval-

uation and design of genome-wide CRISPR/SpCas9 knockout screens. G3

(Bethesda) 7, 2719.

Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S.N., Richelle, A., Heinken, A.,
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Reagent or resource Source Identifier

Deposited data

RNA-Seq data for the 32 human tissues Uhlén et al., 2015 proteinatlas.org

Adult mouse brain single-cell transcriptomic dataset Saunders et al., 2018 dropviz.org

Human brain single-cell transcriptomic dataset from

ROSMAP (Religious Orders Study and Memory Aging

Project).

Bennett et al., 2018 radc.rush.edu

Software and algorithms

GenePattern Reich et al., 2006 genepattern.org

Cobra Toolbox 3.0 Heirendt et al., 2019 github.com/opencobra/cobratoolbox

Escher King et al., 2015 escher.github.io

Other

iMM1415 Sigurdsson et al., 2010 bigg.ucsd.edu

Recon2.2 Swainston et al., 2016 bigg.ucsd.edu
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dr. N.E.

Lewis (nlewisres@ucsd.edu).

Material availability
This study did not generate new unique reagents.

Data and code availability
The code sources to compute the metabolic task score are available as a MATLAB package at https://github.com/LewisLabUCSD/

CellFie and as a module of GenePattern at www.genepattern.org.

METHODS DETAILS

Curation of metabolic tasks
The curation was done by first taking the union of previously published lists of metabolic tasks (Blais et al., 2017; Thiele et al., 2013).

We removed duplicated tasks and lumped tasks that rely on the description of similar metabolic functions. Each remaining task

without strong biological evidence was removed. We also created 9 new tasks that were essential for the acquisition of already

describedmetabolic functions (i.e., intermediate biosynthetic steps for the acquisition of other tasks). Doing so, we obtained a collec-

tion of 195 tasks associated with 7 systems (energy, nucleotide, carbohydrates, amino acid, lipid, vitamin & cofactor and glycan

metabolism). For each task, we provided its original source (Recon and/or iHsa) and comments on the biological evidence of this

metabolic function (Table S1).

Inference of metabolic tasks from transcriptomic data
The ‘‘metabolic tasks’’ framework has been previously used to evaluate the quality and capabilities of genome-scale metabolic

models in multiple publications (Duarte et al., 2007; Thiele et al., 2013; Blais et al., 2017; Gille et al., 2010; Mardinoglu et al., 2014;

Uhlén et al., 2015; Agren et al., 2014; Bordbar et al., 2012). We recently unified the formalism of the metabolic tasks and the asso-

ciated computational framework for their use in themodeling context (details are presented in our earlier study (Richelle et al., 2019a))

but also benchmarked the methods used to process gene expression data for such computational analysis (Richelle et al., 2019b).

Themetabolic task framework presented in Richelle et al., 2019ahad to be adapted to enable the direct inference of metabolic task

scores from the transcriptomic data, and in doing so, extend the application of the concept beyond the model benchmarking scope.

To this end, we extracted the reaction sets associated with eachmetabolic task and accessed to the list of genes that may contribute

to the acquisition of this metabolic function based on the GPR rules. Specifically, we used the Parsimonious Flux Balance Analysis

(pFBA) to define the smallest set of reactions and associated genes required to pass a task within a specified model (Lewis et al.,
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2010a). The waymetabolic task has been defined (i.e., capacity of producing a defined amount of an output products set when only a

defined list of input substrates is available in defined quantities) ensures that only the shortest metabolic route can be used to perform

a task, which is a valid statement for the proposed list of tasks. Thanks to the availability of this information, metabolic functions can

now be directly assessed from transcriptomic data.

Specifically, the computation of metabolic task scores relies first on the definition of the set of active genes in each cell or tissue. As

presented in our benchmarking study (Richelle et al., 2019b), there are many different ways to perform this preprocessing step.

Therefore, all the results presented in the present publication have been computed by using the preprocessing parameter combina-

tion presenting the best performance (i.e., combination ‘‘Local T2 + GM1 + Order 2’’). In brief, a local thresholding approach using

lower and upper bounds on the gene activity profile (i.e., respectively, the 25th and the 75th percentile of the overall gene expression

value distribution) is implemented to attribute a score to each gene.

Gene Score = 5,log

�
1 +

Expression level

Threshold

�

These gene scores are further mapped to the genome-scalemodel by parsing theGPR rules (i.e., selection of theminimum expres-

sion value amongst all the genes associated to an enzyme complex -AND rule- and the maximum expression value amongst all the

genes associated to an isozyme -OR rule (Jensen et al., 2011)) associated with the set of reactions representing one metabolic task.

Therefore, each reaction involved in a task is associated with a reaction activity level (RAL) that corresponds to the preprocessed

gene expression value of the gene selected as the main determinant for this reaction.

We also computed the significance of each gene selected with regard to its overall use throughout the whole metabolism in the

observed condition. Some genes will be mapped to multiple reactions (e.g. promiscuous enzyme). Therefore, we assume that there

may be some competition between the reactions using this gene. We define the significance of a gene (S) by its specificity for a re-

action. It is computed as the inverse of the number of reactions in which this gene is used as the main determinant. Finally, the meta-

bolic score can be computed as the mean of the product of the activity level of each reaction with the significance of its associated

gene:

MT score = sumðRAL �SÞ=number of reactions involved in the task

MT score values enable the relative quantification of the activity of a metabolic task in a specific condition based on the availability

of data for multiple conditions. Indeed, some important housekeeping genes always present at very low expression values. There-

fore, a metabolic function that will completely rely on this set of genes will always result in a lowMT score. Contrarily, some tasks can

be associated with highly expressed genes. Therefore, MT scores cannot be compared across tasks but only across samples. To

partly overcome this problem, we also propose this scoring approach in its binary version to determine whether a metabolic task

is active or not based on a gene expression profile. To this end, a metabolic task will be considered as active if the average of its

associated RAL is superior to 5log(2).

Assessment of tissue similarities
We computed the scores of the 195 metabolic tasks in their continuous version based on the transcriptomic data available for 32

different tissues in the Human Protein Atlas (Uhlén et al., 2015) dataset using Recon2.2 (Swainston et al., 2016) as the reference

genome-scale metabolic model (Swainston et al., 2016). These scores were used to compute the Euclidean distance between

each tissue. We associated each tissue to an organ system as defined in the Human Protein Atlas (Uhlén et al., 2015) (Table S3)

and computed the average Euclidean distance between tissues belonging to the same organ system. Note that, we only considered

organ systems presenting more than two tissues within the same group (i.e. Female Reproductive, Lymphatic and Gastrointestinal –

total of 15 tissues). To compute the significance of our results, we generated the mean Euclidean distance for 10000 randomly

selected groups with the same number of tissues (i.e. random selection of 3 tissues among the 15 considered for the Female Repro-

ductive group) and computed the exact p value (i.e. proportion of random distance lower than the observed distance) associated to

each organ system.We also performed this analysis using themetabolic scoreswhen computed in their binary version (Figure S1 and

Table S2). The histological information used in the assessment of tissue similarities has been collected from the microscopy images

and associated description available in the Human Protein Atlas (Uhlén et al., 2015).

QUANTIFICATION AND STATISTICAL ANALYSIS

Principal component analysis for differentiating brain cell-types
A matrix representing the metabolic function scores for 3 brain cell types (i.e., astrocytes, neurons and oligodendrocytes) was

constructed by multiplying the metabolic task scores computed in their continuous version (Table S4) with the ones in their binary

version (Table S5). A PCA analysis on this matrix was conducted. As this analysis did not enable the differentiation between astro-

cytes and oligodendrocytes, we performed a subsequent similar PCA analysis by only using the samples related to these specific

cell-types.
Cell Reports Methods 1, 100040, July 26, 2021 e2
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Clustering of excitatory neurons samples from the ROSMAP dataset
We clustered the samples identified as excitatory neurons by identifying the tasks that were active in more than 50% of the dataset.

This threshold has been set with respect to the percentage of excitatory neurons samples associated with a positive diagnosis of

Alzheimer’s disease (i.e., 51,2%). Only three metabolic tasks correspond to this criterion: the conversion of phosphatidyl-1D-

myo-inositol to 1D-myo-inositol 1-phosphate, the synthesis of tetrahydrofolate synthesis and the synthesis of Tn antigen (Glycopro-

tein N-acetyl-D-galactosamine. We further used them to divide the samples into 8 metabolic clusters depending on the combination

of their activity in each sample (Figures 6A and 6B). Note that prior to this choice, other clustering methods have been investigated.

Our first approach was using k-means clustering. To this end, we used the percentage of coordinates that differ (hamming distance)

in the binary matrix of the metabolic task score (active vs non-active) and the matlab function k-means with 10 replicates. To identify

the appropriate number of clusters to separate the data, we computed the within-cluster sum of square distance (wws) and the

average silhouette value by iteratively increasing the number of clusters from 1 to 15. This approach also led to the identification

of 8 metabolic clusters that were displaying the same metabolic dysregulations. In order to ensure the reproducibility of the results

presented, we preferred to use a more straightforward clustering method.

We compared the metabolic clusters obtained with our approach to the clusters identified in a publication (Mathys et al., 2019)

using the ROSMAP data (Figure S5). We can observe that the metabolic clusters M3 and M4 are only enriched in clusters Ex2

and Ex4 who were identified as highly correlated with Alzheimer’s pathological traits in the reference publication. The same obser-

vation can be done with M6 metabolic cluster and Ex6, the cell type cluster identified as highly correlated with patients without Alz-

heimer’s disease.

ADDITIONAL RESOURCES

Analysis with the GenePattern CellFie module
We created a web-based CellFie module that has been integrated into the list of tools available in GenePattern (Reich et al., 2006)

(www.genepattern.org). A tutorial explaining how to run CellFie as a GenePattern module is available on the wiki section of the github

repository: https://github.com/LewisLabUCSD/CellFie. This repository includes the source code of the computational framework

running on Matlab. The source code has been developed based on functions from the Cobra Toolbox (Heirendt et al., 2019). It

also includes a tutorial to visualize the output results of CellFie on metabolic maps using Escher (King et al., 2015). The metabolic

task score can be computed based on any type of transcriptomic data type (e.g., microarray or RNA-seq, bulk or single cell) regard-

less of data unit as long as the whole dataset has been generated from the same analytical platform. CellFie can also be used to

compute metabolic tasks for CHO cells, rat and mouse.
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