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Network-wide Emissions Estimation Using the 
Macroscopic Fundamental Diagram 

EXECUTIVE SUMMARY 

This report presents a comprehensive review of studies incorporating Macroscopic 
Fundamental Diagram (MFD) dynamics for emissions estimation using various microscopic 
estimation frameworks. These studies show the potential of applicability of MFD-based tools 
for emissions estimation. However, the accuracy of existing models in estimating the emissions 
of large-scale urban networks is questionable due to their inability in capturing the variations in 
traffic conditions across such networks. 

As a solution to this problem, we have proposed to develop multi-reservoir emissions 
estimation framework by partitioning large-scale networks into smaller regions with 
homogeneous traffic conditions and low-scatter MFDs similar to the multi-reservoir Dynamic 
Traffic Assignment (DTA), which can result in more accurate network-wide emissions 
estimation. The key component of this framework is finding a method to accurately estimate 
the emissions using aggregated network representation and its corresponding variables. A 
numerical experiment on an arbitrary network shows that the estimation efficiency can 
increase significantly by implementing aggregated network representation, albeit the results 
will be less accurate the more aggregated the representation becomes. The possible reasons 
and considerations for future application have been discussed, which would lead to developing 
calibrated aggregated-level methods, which can estimate the emissions efficiently and 
accurately. 

After calibrating the MFD-based emissions estimation method to acceptable levels of accuracy 
and efficiency, traffic control strategies can be proposed to optimize the energy consumption 
and emissions of CO, CO2, NOx, PM2.5, CH4, VOC, etc. The proposed control strategies can 
include perimeter control strategies in the boundaries of the regions, ramp-metering strategies 
at the connections to the freeways and signal timing strategies, which is known to influence the 
shape of the MFD. 
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Introduction 

The continuously increasing mobility demand in developing communities is resulting in several 
consequences where (i) delays caused by congestion directly result in economic loss, (ii) 
uncurbed fuel consumption exacerbates the depletion of non-renewable energy resources, and 
(iii) emissions from the vehicles provoke local (air pollution, acid rain, health issues) and global 
(climate change, global warming effect) damages. Therefore, from a sustainable development 
perspective, such effects must be studied and controlled to prevent any hindrance to the 
development process. 

The motor vehicles emissions can be categorized into two general categories: (i) the air 
pollutants such as Particular Matter (PM), Non-Methane Hydrocarbons (NMHC), Nitrogen 
Oxides (NOx), Carbon Monoxide (CO) and Sulfur Dioxide (SO2), which impact the air quality and 
can result in human health issues, and (ii) Greenhouse Gases (GHG) including Carbon Dioxide 
(CO2), Methane (CH4) and Nitrous Oxide (N2O), which have broader impacts such as climate 
change and global warming. Although the predominant GHG emitted from motor vehicles is 
CO2, the latter two GHGs have higher Global Warming Potential (GWP) despite their lower 
emission rates (Azar & Johansson, 2012). 

According to a recent fact sheet published by the United States Environmental Protection 
Agency (EPA), transportation sector accounted for the largest portion (28%) of total U.S. GHG 
emissions in 2016 (EPA, 2018). Between 1990 and 2016, GHG emissions in the transportation 
sector has increased more in absolute terms than any other sector (i.e., electricity generation, 
industry, agriculture, residential, or commercial) due in large part to increased demand for 
travel. 

Several national and international policies including 1990 Clean Air Act Amendment, Kyoto 
Protocol and Paris Agreement have been proposed to control the GHG and pollutants 
emissions. The kernel technical basis of all these policies is the requirement of reliable 
emissions data, which is estimated using emission models. Emission models can be categorized 
as microscopic and macroscopic models (Rakha, et al., 2003). Macroscopic models such as EPA’s 
MOBILE and California Air Resources Board’s EMFAC models use average aggregate network 
parameters to estimate network-wide energy consumption and emission factors. The major 
drawback of these macroscopic models is in the use of a single traffic-related variable to 
estimate emissions, thereby ignoring other important explanatory variables that can 
significantly affect emission estimates. 

The project level of EPA’s state-of-the-science emissions model, MOVES (MOtor Vehicle 
Emission Simulator) (EPA, 2020), is a microscopic model that incorporates the effects of 
different instantaneous speed and acceleration profiles on vehicle emissions, thereby trying to 
reflect the real driving conditions as much as possible. The latest approved version of MOVES is 
required by the regulations to be used in all transportation and air quality planning and 
assessment work. However, the complicated interface of MOVES, the need to comprehensive 
data and analysis for each link of the network and exhaustive run-time make it impractical for 
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real-time analysis and control purposes on large-scale city streets networks with hundreds of 
thousands of links. 

Up until recently, the main objective of most traffic control strategies has been to alleviate 
congestion and to reduce the delay incurred by travelers and emission and fuel consumption 
control have only gained interest in the past few years. However, the optimal emission and fuel 
consumption strategy may not lead to minimal delay and congestion (Csikos & Varga, 2011). 
Therefore, the optimal control strategy considering all aspects must be a tradeoff between 
optimum emissions and optimum delay conditions.  

The emissions and energy consumption calculations using MOVES or other microscopic models 
are resource intensive for large-scale networks and intractable for real-time analysis and 
control purposes. Several efforts have lately been made to improve the efficiency of MOVES 
model, e.g., MOVES Lite (Liu & Frey, 2013) and MOVES-Matrix (Liu, et al., 2016), but still the 
need to link-level computations is a hurdle to the real-time emission estimation for traffic 
control purposes. 

The idea of an aggregated relationship between the network-wide traffic variables dates back 
to 1960s (Smeed, 1967; Godfrey, 1969) and a few other studies in 1980s (Herman & Prigogine, 
1979; Mahmassani, et al., 1984; Ardekani & Herman, 1987). However, the recent empirical 
verification of existence of a network-level Macroscopic Fundamental Diagram (MFD) on urban 
areas has opened up a new paradigm (Geroliminis & Daganzo, 2008). 

The MFD gives average traffic variables as a function of the number of vehicles inside the 
region, 𝑛. For instance, the average flow MFD: 

 Q = Q(n),  (average flow MFD)  (1) 

gives the average flow, 𝑄, on network arguably independently of trip origins and destinations, 
and route choice. This makes the MFD an invaluable tool to overcome the difficulties of the 
traditional link-level planning and control models including the microscopic emissions 
estimation models. If the MFD is accurately derived using empirical data or estimated using the 
analytical models on a region with homogeneous traffic distribution, it can be used to replace 
the links inside the region with a single entity, whose traffic dynamics is given by the MFD 
variables, in the emissions estimation method without significant loss of accuracy. The MFD has 
been widely used in other aspects of traffic planning and management such as dynamic traffic 
assignment (Yildirimoglu, et al., 2015; Batista, et al., 2019; Aghamohammadi & Laval, 2020; 
Aghamohammadi & Laval, 2020), optimal control (Ramezani, et al., 2015; Haddad, 2017; 
Kouvelas, et al., 2017), parking (Cao & Menendez, 2015; Leclercq, et al., 2017) and pricing 
(Zheng, et al., 2016; Yang, et al., 2019). 

Nevertheless, the implementation of MFD in emissions estimation is yet an underdeveloped 
field of research and practice, with only a handful of studies conducted on this topic up until 
now. Furthermore, since emissions analysis is required to be done according to certain 
regulations or using specific models by the national or local agencies, many authorities are 
limited to use the specific models and software packages for the emissions estimation 
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purposes. Therefore, researchers tend to explore innovative ways to incorporate the state-of-
the-art developments in the traffic modeling realm into the existing emissions estimation 
methods to improve their efficiency. Furthermore, the MFD has the potential to provide a tool 
to control the congestion and emissions of urban networks simultaneously. 

In this project, we will first conduct a review of the existing literature on implementation of the 
MFD for emissions estimation purposes in the recent years. Of foremost importance is the 
studies which try to incorporate the MFD dynamics into the existing well-established emissions 
estimation models mandated by the authorities to be used for emissions analysis. Later, we will 
use the MFD-based aggregated traffic conditions at different aggregation levels to estimate the 
emissions from a grid network using the MOVES model and the efficiency and accuracy of the 
results will be discussed. 

Background 

Considering the monotonous increase of the share of transportation industry in the pollutants 
and GHG emissions (EPA, 2021), there will be a need to develop traffic control and routing 
strategies in the near future not only based on the travel time minimization criterion, but also 
seeking to optimize the pollutants and GHG emissions and energy consumption, which would 
require accurate real-time emissions estimations. In general, the emissions estimation models 
can be categorized into three different approaches based on their need to different levels of 
data (Yin, et al., 2013): 

1) The emission factor models, which assign an emission factor derived from repetitive 
experiments to the whole analysis period. The emission factor can be multiplied by 
correction factors to incorporate different vehicle speeds, fuel type, vehicle age, etc. 
The total amount of emission for any specific pollutant or GHG is found by multiplying 
the corresponding emission factor by the total vehicle miles travelled (VMT) for the 
analysis period. 

2) The physical power-demand models, which consider the vehicle’s operational conditions 
and driving environment to provide second-by-second emissions. These models usually 
consider different operational characteristics of vehicles such as engine power, engine 
speed, air/fuel ratio, fuel use, etc. for different vehicle operation states. This type of 
models estimates the emissions more accurately, however, their extensive need to 
obtain a large variety of detailed data is an obstacle in their application. 

3) The acceleration and speed-based models, which compute emission rates as nonlinear 
functions of instantaneous speed and acceleration values. This approach has gained 
more popularity recently, since they provide more accurate estimates compared to the 
emission factor models and require less information compared to physical power-
demand models. 

The current microscopic methods of emission estimation such as the MOVES model are 
unsuitable for real-time applications in large-scale networks with thousands of links despite 
their higher accuracy compared to the previous models. In this section, we will perform a 
review of the state of the art in incorporating MFD in vehicular emissions estimation. It is worth 
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mentioning that we have changed the mathematical notation of some of the reviewed studies 
in order to keep the consistency of the notations throughout this report.  

Reservoir-based Models 

Most of the MFD-based emissions estimation models in the literature model the entire network 
as a reservoir, whose traffic dynamics are given by the MFD of the reservoir. The network wide 
aggregated MFD variables are then used to estimate the vehicular emissions inside the 
network. 

Shabihkhani and Gonzales (2014) developed a methodology for GHG emissions estimation using 
the MFD of a single homogeneous network for estimating driving cycle components, i.e., (i) 
time spent cruising at free-flow speed, 𝑇𝑐, (ii) time spent idling while stopped, 𝑇𝑖, and (iii) the 
number of vehicle stops per distance traveled, 𝑠, without the need for extensive trajectory 
analysis using conventional microscopic methods. Then, the total emissions per vehicle distance 
traveled, 𝐸, is computed as: 

 E = 𝑒𝑐𝑇𝑐 + 𝑒𝑖𝑇𝑖 + 𝑒𝑠𝑠,  (total emissions per distance travelled)  (2) 

where 𝑒𝑐 is the emission factor per unit cruising time, 𝑒𝑖 is the emission factor per unit idling 
time and 𝑒𝑠 is the emission factor associated with complete cycle of deceleration from the free-
flow speed, 𝑣𝑓 , to 0 and then acceleration from 0 to 𝑣𝑓. To estimate the emission factors, a 

traffic simulation has been conducted on a simple ring network with a single intersection 
representing a long arterial or a network with homogeneous traffic conditions. The ring 
network has been loaded with the full range of possible densities from an empty network to 
complete jam. The vehicle trajectories are extracted to be used for microscopic emissions 
estimation via the project level of the MOVES model as a comparison benchmark to compute 
the emission factors and the duration of a full deceleration and acceleration cycle, 𝜏. 

The next step is to approximate the aforementioned driving cycle components using the MFD. 
It has been assumed that the vehicles stop only once during each traffic signal cycle, 𝐶. The 
driving cycle components for each traffic state, with average MFD speed v are estimated as: 

 𝑠 =
1

𝑣𝐶
,  (number of stops per unit distance travelled)  (3a) 

 𝑇𝑐 =
1

𝑣𝑓
−

𝜏

2
𝑠,  (cruising time)  (3b) 

 𝑇𝑖 =
1

𝑣
−

1

𝑣𝑓
−

𝜏

2
𝑠.  (idling time)  (3c) 

Later, sensitivity analysis has been done to see the impact of the three main factors, the green 
time to cycle length ratio, the signal cycle length, and the block length on GHG emissions 
estimates and their relative error compared to the benchmark emissions rate computed using 
the MOVES model. It has been found that the green time to cycle length ratio plays a key role in 
both the shape of the MFD and the rate of emissions and the estimation errors are significant 
and consistently positive at near-to-jam density values. A significant shortcoming of the 
proposed model is not being capable of taking different vehicle types into account. 



 5 

Csikos, et al. (2015) developed an optimal perimeter control model aiming to minimize the 
emissions from the vehicles inside the perimeter built on the emissions estimation model 
proposed in Csikos (2012) using the average speed (𝑣), total travel distance (𝑇𝑇𝐷) and total 
time spent (𝑇𝑇𝑆) variables obtained using the MFD. The emission factors for different traffic 
states for the network are calculated similar to the linkwise emission factors formulation 
provided by (Ntziachristos, et al., 2009) using the MFD average speed, which has later been 
multiplied by the 𝑇𝑇𝐷 of the network to find the total emissions of the network. The CO 
emission estimates for two different case studies indicate that the proposed method has a 20% 
error compared to the link-level microscopic Versit+Micro model (Smit, et al., 2007) but yields 
in very similar results compared to the link-level Copert IV model (Ntziachristos, et al., 2009). 

Amirgholy, et al. (2017) proposes a model for optimal design of public transportation systems in 
congested urban networks. As a component of the total cost of the transportation system, the 
external cost of emissions is approximated by using the average speed of the network MFD in a 
VMT-based emissions estimation model proposed by Affum, et al. (2003). In this model, the 
external cost of emissions (𝐸𝑁) is computed as a function of the fuel consumption of 
automobiles (𝐹𝐴) and transit vehicles (𝐹𝑇), where the MFD speed for any given average density 
state in the network is only used for computation of the fuel consumption of the average 
automobile per unit distance traveled in the network. 

Ingole, et al. (2020) proposed an optimal perimeter control model for a network comprised of 
an inner city modeled as a reservoir with entrances and exits at three locations on the 
perimeter and bypass freeways connecting and exit points. The model aims to minimize the 
NOx emissions inside the reservoir using a gating strategy based on Nonlinear Model Predictive 
Control (NMPC). The reservoir emissions are computed by integrating the fourth-degree 
polynomial formulation proposed by Lejri, et al. (2018) into the COPERT IV model (Ntziachristos, 
et al., 2009). The total emissions of pollutant 𝑚 ∈  {CO2, NOx} between 𝑡 and 𝑡 +  𝑑𝑡, 𝐸𝑑𝑡

𝑚(𝑡), 
in [g] is found as: 

 𝐸𝑑𝑡
𝑚(𝑡) = 𝐸𝐹𝑚(𝑣(𝑡)) × 𝑛(𝑡) × 𝑣(𝑡) × 𝑑𝑡,   (4) 

where 𝐸𝐹𝑚(𝑣(𝑡)) is the emission factor of pollutant m in [g/km], 𝑛(𝑡) is the accumulation of 

vehicles inside the reservoir at time 𝑡, 𝑣(𝑡) is the MFD mean speed at time 𝑡 in [km/h] and 𝑑𝑡 is 
the time step in [h]. The emission factors are calibrated through curve fitting to the actual 
microscopic emissions for different MFD mean speeds. The emissions of each internal route 𝑖 
inside the reservoir is found by replacing 𝑛 in Eq. (4) with the partial accumulation of the route 
𝑛𝑖. Furthermore, the emissions of each bypass link can be calculated by replacing the 
accumulation and average speed of the link in Eq. (4). 

Saedi, et al. (2020) developed a model to estimate the network-wide emissions by 
incorporating the MFD into the microscopic emission model considering different light and 
heavy-duty vehicle compositions. The benchmark microscopic emission rates are obtained 
using the polynomial model proposed in Panis, et al. (2006) as: 

 𝐸𝑚(𝑡) = max[0, (𝑓1)𝑖
𝑚 + (𝑓2)𝑖

𝑚𝑣𝑖 + (𝑓3)𝑖
𝑚𝑣𝑖

2 + (𝑓4)𝑖
𝑚𝑎𝑖 + (𝑓5)𝑖

𝑚𝑎𝑖
2 + (𝑓6)𝑖

𝑚𝑣𝑖𝑎𝑖], (5) 
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where 𝑖 ∈ {gasoline car, diesel car, LPG car, heavy-duty vehicles} is the vehicle type, 𝑚 ∈ {CO2, 
NOx} represents different emission types, 𝑣𝑖 is the vehicle’s speed in [m/s], 𝑎𝑖 is the vehicle’s 
acceleration in [m/s2] and (𝑓1)𝑖

𝑚 to (𝑓6)𝑖
𝑚  are model constants determined by non-linear 

multiple regression methods. For the macroscopic emissions estimation the authors propose: 

 𝐸𝑚(𝑡) = (∑ 𝛼𝑖
𝑚𝑝𝑖

𝑁
𝑖=1 )𝑘(𝑡)(𝛽𝑚 + 𝑣(𝑡)) = (∑ 𝛼𝑖

𝑚𝑝𝑖
𝑁
𝑖=1 )(𝛽𝑚𝑘(𝑡) + 𝑞(𝑡)),   (6) 

where 𝐸𝑚(𝑡) is the rate of emission in [g/s] of pollutant 𝑚 ∈ {CO2, NOx} at time step 𝑡 in the 
observation period, 𝑝𝑖 is the penetration rate of vehicle type 𝑖 in the traffic stream, 𝑘(𝑡), 𝑣(𝑡), 
and 𝑞(𝑡) are the network-wide average density, speed, and flow, respectively, and 𝛼𝑖

𝑚and 𝛽𝑚 
are the model parameters for vehicle type 𝑖 and pollutant 𝑚. 𝛽𝑚 can be perceived as a penalty 
factor for high density scenarios, when the traffic is congested and repeated stop and go 
movements have a significant toll on the emissions. 

A micro-simulation is used to produce traffic data for different demand and vehicle composition 
scenarios in order to calibrate the proposed macroscopic emission model parameters using the 
microscopic emission estimates found by Eq. (5). The significant difference between the 
calibrated parameters for a congested central business district (CBD) inside the network and 
the entire network, which is less congested on average, demonstrate that the model 
parameters are very sensitive to the network topology and demand intensity and that the 
parameters must be calibrated for each network. The results indicate that different vehicle 
compositions only have a scaling factor on the resulting total emissions. Using the results, 3-
dimensional Network Emission Diagrams (NED) are developed showing the emission rate for 
any average flow and density pair for the studied network. 

The next subsection will review another class of MFD-based emissions estimation models, 
which do not explicitly state the incorporation of MFD in their model but in fact are using MFD 
for their local traffic flow relationships like the continuum-space DTA models presented in 
Aghamohammadi & Laval (2020). 

Continuum-space Models 

Another major approach observed in the literature is to model the network as a continuum 
space where the vehicles can circulate at any point 𝑥 = (𝑥, 𝑦) of a Euclidean two-dimensional 
domain Ω ⊂ 𝑅2, see Figure 1(a). The basic notion behind the continuum-space traffic models is 
that when the network is dense enough such that the distances between road segments are 
small compared to the size of network, the network can be approximated by a continuum 
space. There is a vast body of literature on continuum-space Dynamic Traffic Assignment (DTA), 
emanating from the seminal pedestrian flow model by Hughes (2002). Later, researchers have 
adapted this framework to the vehicular traffic and have proposed various DTA models in 
continuum space, see e.g., (Jiang, et al., 2011; Du, et al., 2013; Lin, et al., 2017), which consist of 
a conservation law partial differential equation (PDE) in two dimensions, supplemented with an 
Eikonal or Hamilton-Jacobi PDE for the route choice component. 

The connection between the continuum-space models and the MFD theory lies in the numerical 
solution of these models, where the continuum space is partitioned into a grid of small regions, 
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see Figure 1(b), and the traffic dynamics inside each region is described by a local speed-density 
relationship. Several recent studies in the continuum-space DTA literature have mentioned the 
local speed-density relationship as MFD (Du, et al., 2013; Du, et al., 2015; Long, et al., 2017). 
Aghamohammadi & Laval (2020) shows that the speed-density relationship can in fact be 
interpreted as the MFD, since it is defined on a portion of the network and must also take the 
network effects such as signal timing into account. Note that the local MFDs in the continuum-
space models are defined only on a small portion of the network, while in the reservoir-based 
models there is a single MFD defined over the entire network. 

As the first study investigating the emissions in the continuum space, Yin, et al. (2013) proposes 
a bi-level optimization problem to optimize housing allocation to minimize vehicular emissions 
in an integrated land use and transportation modeling framework. The lower-level subprogram 
formulates the traffic assignment problem to achieve the user optimum (UE) solution, where 
the total cost for each user is consisted of the travel and housing costs and solves the resulting 
system of PDEs using the finite element method (FEM). For a complete review of formulation 
and different solution methods of continuum-space traffic assignment models refer to 
Aghamohammadi & Laval (2020). 

 

Figure 1. Illustration of (a) continuum space and (b) typical solution grid 

In the upper-level subprogram, the housing allocation is optimized to minimize the CO2 
emissions. The emissions and fuel consumption estimation model proposed by Ahn, et al. 
(2002) is adopted to estimate the emission rate of each type of emission as: 

 𝐸𝑚(𝑣, 𝑎) = exp(∑ ∑ 𝜔𝑖,𝑗
𝑚3

𝑗=0 𝑣𝑖𝑎𝑗3
𝑖=0 ),   (7) 

where 𝐸𝑚 is the instantaneous emission rate and fuel consumption with superscript 𝑚 
denoting different kind of emissions, HC and CO in [mg/s] and fuel consumption in [gal/h], 𝑣 is 
the speed in [km/h], 𝑎 is the acceleration in [km/h2] and 𝜔𝑖,𝑗

𝑚  denotes the model regression 

coefficient for emission type 𝑚, speed power 𝑖, and acceleration power 𝑗. However, this model 
cannot be directly used to estimate the CO2 emissions and the CO2 emission rate can be found 
using the carbon balance between fuel consumption and emissions of other gases including 
carbon as: 

 𝐸𝐶𝑂2(𝑣, 𝑎) = 2458.29𝐹(𝑣, 𝑎) − 3.17𝐸𝐻𝐶(𝑣, 𝑎) − 1.57𝐸𝐶𝑂(𝑣, 𝑎),   (8) 
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where 𝐹, 𝐸𝐻𝐶  and 𝐸𝐶𝑂 are Fuel consumption in [gal/h], HC emission rate in [mg/s] and CO 
emission rate in [mg/s], respectively, which all can be computed using Eq. (7) using the 
available model coefficients. The total CO2 emissions in the network are found by integrating 
the CO2 emission rate multiplied by the norm of the optimum flow vector at any point 𝒇∗(𝑥, 𝑦) 
over the entire network considering that the speed and acceleration values at the vicinity of 
any point is given by the local MFDs described earlier.  

Jiang, et al. (2018) proposes a second-order continuum-space DTA model, where the travelers 
seek to minimize their travel cost based on the dynamic user equilibrium (DUE) principle 
considering that the travelers only perceive their instantaneous travel times as the travel cost. 
After solving the DTA problem using the standard PDE solution methods, the instantaneous 
emission rate 𝐸𝑖

𝑚(𝑥, 𝑡) in [g/s/veh] for each vehicle type 𝑖 and emission type 𝑚 ∈ {CO2, NOx, 
PM, VOC} at any location 𝒙 ∈ Ω and time 𝑡 is found using the Panis, et al. (2006) model given by 
Eq. (5). The rate of the emission for the 𝑖-th vehicle type and the 𝑚-th emission type at location 
𝒙 ∈ Ω and time 𝑡 is expressed as 𝐷𝐸𝑖

𝑚(𝒙, 𝑡) in [kg/km2/h] and is calculated as: 

 𝐷𝐸𝑖
𝑚(𝒙, 𝑡) = 3.6 × 𝜌𝑖(𝒙, 𝑡)𝐸𝑖

𝑚(𝒙, 𝑡),  (emission rate at location 𝒙) (9) 

where 𝜌𝑖(𝒙, 𝑡) is the density of 𝑖-th vehicle type at location 𝒙 and time 𝑡. The total emission 
rate for the 𝑖-th vehicle type and the 𝑚-th emission type in the entire continuum space at time 
𝑡 is denoted by 𝑇𝐸𝑖

𝑚(𝑡) in [kg/h] and is obtained as: 

 𝑇𝐸𝑖
𝑚(𝑡) = ∬ 𝐷𝐸𝑖

𝑚(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦
⬚

Ω
,  (total emission rate) (10) 

The corresponding cumulative emission for the 𝑖-th vehicle type and the 𝑚-th emission type in 
the entire network since the beginning of analysis until time 𝑡, 𝐶𝐸𝑖

𝑚(𝑡) in [kg], can be found as: 

 𝐶𝐸𝑖
𝑚(𝑡) = ∫ 𝑇𝐸𝑖

𝑚(𝑠)𝑑𝑠
𝑡

0
,  (cumulative emission) (11) 
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Discussion and Outlook 

In this section, we discuss the main findings in terms of the observed trends in the literature 
and identify the issues and challenges that deserve further research. Table 1 presents an 
overview of the studied papers, their specifications, and main contributions. 

Table 1. Overview of the studied papers 

Source 
Estimated 
Emissions 

MFD 
Variables 

Base Model Main contribution 

Reservoir-based Models 

Shabihkhani 
& Gonzales 
(2014) 

GHG 𝑣 
MOVES 

(EPA, 2020) 
Computed driving cycle components to 

be used in the MOVES model 

Csikos, et al. 
(2015) 

CO 
 

𝑣, 
𝑇𝑇𝐷, 
𝑇𝑇𝑆 

COPERT IV 
(Ntziachrist

os, et al., 
2009) 

Replaced the MFD-based variables for 
network into the link-level COPERT IV 

model 

Amirgholy, et 
al. (2017) 

External 
cost of 

emission 
𝑣 

Affum, et 
al. (2003) 

Proposed optimal transit system design 
by incorporating external emissions 

cost in the total cost 

Ingole, et al. 
(2020) 

CO2, NOx 𝑣, 𝑛 

COPERT IV 
(Ntziachrist

os, et al., 
2009) 

Proposed optimal perimeter control 
minimizing the emissions inside the 

reservoir 

Saedi, et al. 
(2020) 

CO2, NOx 𝑣, 𝑞, 𝑘 
Panis, et al. 

(2006) 

Developed the most detailed MFD-
based emissions model in the literature 

using mean MFD 𝑣, 𝑞 and 𝑘 

Continuum-space Models 

Yin, et al. 
(2013) 

CO2 𝑣, 𝑎 
Ahn, et al. 

(2002) 

Developed a housing allocation 
optimization model by minimizing the 

CO2 emissions in the network 
Jiang, et al. 
(2018) 

CO2, NOx, 
PM, VOC 

𝑣, 𝑎 
Panis, et al. 

(2006) 
Developed a comprehensive method to 
estimate emissions in continuum space 

From Single-reservoir to Multi-reservoir Models 

The studies reviewed here demonstrate that the MFD can be a powerful tool in making the 
microscopic emissions estimation models less resource intensive and more efficient for real-
time network control and management purposes. However, due to the heterogeneity of 
realistic large-scale networks, the single-reservoir models presented here cannot accurately 
estimate the emissions in large-scale networks. The current trend of dealing with heterogeneity 
in large-scale networks is to partition the network into smaller regions with homogeneous 
traffic conditions, which will exhibit accurate low-scatter MFDs. This approach has been 
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recently very popular among the researchers for network control and traffic assignment 
purposes (Yildirimoglu, et al., 2015; Haddad, 2017; Aghamohammadi & Laval, 2020). 

In a similar way, for emissions estimation purposes the large-scale networks can be divided into 
smaller regions in order to estimate the emissions inside the network more accurately. The size 
of regions can be determined based on the physical reality of the networks or in a way to make 
a balance between the accuracy and efficiency of the model. The smaller the regions inside the 
network, the more accurate the emissions estimations will be but on the other hand the higher 
number of regions would increase the computation times and reduce the model efficiency. 

After appropriately partitioning the network into smaller regions, the same single-reservoir 
emissions estimation methods presented here can be applied to estimate the emissions from 
each region, which would sum up to the emissions from the entire network. Furthermore, the 
knowledge about emissions at each part of the network will pave the path to develop traffic 
control and routing strategies aiming to minimize the emissions inside the network. 

Challenges in Estimation of the MFD 

Although the proposed multi-reservoir approach sounds promising, a main concern which can 
be a hurdle in implementation of this approach is deriving the MFDs for each region inside the 
network. The MFD can be empirically derived using empirical data such as loop detector data 
(LDD). However, the required empirical data is not available for many networks and even when 
available it is subject to significant errors and bias.  

Another approach is to determine the MFD analytically, which does not require empirical data 
and estimates the shape of the MFD using network topology and control characteristics such as 
block length, existence of turn-only lanes, and traffic signal settings. Up until recently, the 
analytical estimation of the MFD was not an easy task because the Method of Cuts (MoC) in 
Daganzo & Geroliminis (2008) becomes intractable for real-life networks and one needs to 
resort to simulation methods, which defeats the purpose of macroscopic modeling. Laval & 
Castrillon (2015) develops the Stochastic Method of Cuts (SMoC) by extending the MoC to 
stochastic corridors with different block lengths and signal timing settings and shows that (the 
probability distribution of) the MFD can be well approximated by a function of mainly two 
parameters: the density of traffic signals (𝜆) and the mean red to green ratio of traffic signals 
(µ).  

Adopting the analytical methods discussed above or other analytical MFD estimation methods 
in the literature can help to overcome the obstacle of determining the MFDs of regions in the 
multi-reservoir approach by only needing some information about the network topology and 
control characteristics. Moreover, if the data for analytical methods are not easy to obtain, one 
can resort to micro-simulation methods to derive the MFD, which would need precise 
calibration and validation to represent the ground truth accurately. 
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Incorporating the MFD in the MOVES model 

Out of the studied papers, only one study builds an MFD-based emissions estimation model 
based on the MOVES model (EPA, 2020) required by the US EPA for emissions analysis. The 
European researchers tend to utilize the COPERT IV model (Ntziachristos, et al., 2009), which is 
developed and required by the European Environment Agency. Therefore, it would be better if 
the researchers in the US put more emphasis on incorporating recent advances in traffic 
modeling domain such as the MFD in order to improve the efficiency of the MOVES model. It is 
worth noting that there are efforts in the literature to improve the efficiency of the MOVES 
model, such as MOVES Lite (Liu & Frey, 2013) and MOVES-Matrix (Liu, et al., 2016), but in this 
project, our focus is on increasing the efficiency of the MOVES model by implementing 
aggregated representation of the traffic dynamics inside urban networks. In addition to 
increasing the efficiency of the emissions estimations, the MFD can help to reduce monitor the 
traffic conditions in a macroscopic level and has the potential to be implemented for control 
purposes aiming to reduce the congestion and emissions simultaneously. 

The project level of the MOVES model allows the traffic data to be included in the model via 
three different methods: (i) the average link speed for the analysis period, (ii) the second-by-
second link drive schedule demonstrating instantaneous link speeds, or (iii) the operating mode 
distribution for all links in the network. The derivation of the second set of data might be 
unattainable from the MFD only, unless we have information about the evolution of the MFD 
over time. The sequential MFD data can help us to derive the driving cycle components more 
accurately compared to the method presented in Shabihkhani & Gonzales (2014), which uses 
only the mean MFD speed in order to find the driving cycle components. Furthermore, the 
variance of MFD at any given density value might be helpful in determining the driving cycle 
components, which needs further investigation. 

On the other hand, the average link speed input method provides a straight-forward method to 
incorporate MFD variables in the MOVES model. Following the aforementioned 
recommendations, after dividing the network into several regions with homogeneous traffic 
conditions, all the links inside each region can be replaced by a single entity with its average 
speed given by the mean MFD speed. However, case-specific correction factors may be needed 
to estimate the emissions accurately by this approach, which can be found by calibrating the 
results using the results of link-level emissions estimates. 

The next section will present the results from a numerical experiment incorporating the 
aggregated traffic variables in the MOVES model and will compare the efficiency and accuracy 
attained by 4 different aggregation levels of network representation. 

Numerical Experiment 

In this section, we will try to estimate the running exhaust emissions of several pollutants in the 
MOVES model for a grid network by implementing the aggregated representation of traffic (i.e., 
the MFD) in different aggregation levels. Due to the limitations of this project, we did not delve 
deeper into estimation of the MFDs and have used the aggregated traffic conditions as a proxy 
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to the MFD in this numerical experiment. The project scale is the most in-detail module of the 
MOVES model requiring detailed inputs describing the vehicle population and activity at the 
site. This module is capable of estimating the emissions of different pollutants emitted from a 
transportation network for a one-hour period in a specific month of the year at a specific 
county given information on network geometry, vehicle type, fuel type and age distribution of 
the fleet, meteorology data, and any ongoing maintenance programs at the project location. 

The numerical experiment here aims to demonstrate the potential of implementing 
aggregated-level representation of a network in the MOVES model by comparing the accuracy 
and efficiency of emissions estimations conducted in 4 different aggregation levels: (i) lane, (ii) 
link, (iii) corridor, and (iv) network. The corridor aggregation level implemented here might not 
be applicable to networks with arbitrary shapes, where no clear corridors can be observed. This 
aggregation level has been included in the analysis here to showcase an intermediate step 
between the link-level and network-level aggregations to balance off the accuracy and 
efficiency levels. Toward this purpose, a 5-by-5 homogeneous grid network with identical block 
lengths of 200 meters, 2 lanes in each direction and traffic signals with a cycle length of 90 
seconds at all intersections, as shown in Figure 2, has been loaded with a constant demand rate 
of 5 vehicles per second for 2100 seconds with randomly distributed origins and destinations 
across the network using the SUMO traffic simulation package (Lopez, et al., 2018). The 
evolution of departures, arrivals, accumulation, and network average speed during the analysis 
period is demonstrated in Figure 3. The accumulation curve, indicating the number of running 
vehicles on the network, can be derived as the difference between the cumulative departures 
and arrivals curves at any time. 
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Figure 2. Illustration of the 5-by-5 grid network 
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Figure 3. Evolution of the cumulative curves and average speed over time 

Figure 4 exhibits the average speed versus accumulation and average flow versus average 
density MFD plots for the network. The two different branches in each of these diagrams, 
known as the “hysteresis loops” in the literature, are associated with the loading and unloading 
phases of the network and different behavior of the urban networks in loading and unloading 
periods due to abrupt and immense changes in the demand as in this experiment. However, in 
real life, the changes in demand pattern are usually gradual and the networks do not exhibit 
distinct loading and unloading behavior. This will reduce the likelihood of observing hysteresis 
loops and will result in well-defined MFD functions. The analysis in this experiment will not be 
impacted by this phenomenon since we can directly obtain the speed values at any point of 
time, needless of referring to the MFD. 
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Figure 4. (a) Average speed vs. Accumulation, and (b) Average Flow vs. Average Density MFDs 

The simulation provides second-by-second speed, density, and flow measurements for each 
lane in the network, which can be inputted to the MOVES model to compute the lane-level 
emissions, which results in the most accurate estimates and will be used as a benchmark for 
comparison purposes. Furthermore, 3 other emissions estimations have been performed the 
link, corridor, and network levels by replacing all the lanes inside each of the aggregated 
representations by a single entity, whose traffic conditions are computed by averaging the 
traffic variables of all lanes inside them. The other required inputs of the MOVES model, which 
will be the same through all runs, are given in Table 2. 

Table 2. MOVES input parameters for the numerical experiment 

Parameter  

Year, Month, Day Weekday in June 2021 
Time of day 17:00 to 18:00 

Location Fulton county, Georgia 

Vehicle type Passenger cars 
Fuel type  Gasoline 

Road type Urban unrestricted access 

The estimated emissions, total energy consumption and MOVES run-times for different 
aggregation levels are presented in Table 3. The provided run-times only include the 
computation times by the MOVES model, and it has been assumed that the computational time 
for aggregating the traffic conditions is similar for different aggregation levels once the traffic 
conditions is known and is negligible compared to the MOVES computation times. The lane-
level network representation estimates are the most accurate results and have been selected 
as a benchmark to compare the accuracy and efficiency of the estimates using other 
aggregation levels. 
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The numbers in parentheses in this table show the relative percent change in the estimates 
with respect to the lane-level estimates, which have been further plotted against the run-time 
of each estimation process in Figure 5. The results indicate that using an aggregated network 
representation in link, corridor, and network levels, will result in 1.8, 5.3, and 13.1 times faster 
estimation, respectively, compared to the lane-level estimation. However, this higher efficiency 
comes at the expense of losing some accuracy. While the link-level estimates have a maximum 
relative error rate of 8%, the relative error of network-level estimates is as high as 25%. On the 
other hand, the relative error of the corridor-level results for all components except PM2.5 is 
below 10%. Considering the 81% reduction in the execution time, the corridor-level aggregation 
looks as an efficient and plausible approximation method for the microscopic emissions 
estimation at the lane level. 

Table 3. Emissions estimates and run-times for different aggregation levels 

Component 
Aggregation Level 

Lane Link Corridor Network 

Carbon Monoxide 
(CO) [kg] 

64.51 
 

59.36 
(-7.97%) 

66.14 
(2.53%) 

76.4 
(18.43%) 

Carbon Dioxide 
Equivalent (CO2) [kg] 

3646.90 
3753.68 
(2.92%) 

3875.27 
(6.26%) 

4162.17 
(14.12%) 

Oxides of Nitrogen 

(NOx) [g] 
996.26 

923.57  
(-7.29%) 

896.41 
(-10.02%) 

744.6 
(-25.25%) 

Primary Exhaust 
PM2.5 [g] 

32.95  
31.13 

(-5.51%) 
27.95 

(-15.14%) 
24.71 

(-24.99%) 

Methane  
(CH4) [g] 

127.43 
126.03 

(-1.09%) 
130.19 
(2.17%) 

116.9 
(-8.25%)  

Total Energy 
Consumption [109J] 

50.59 
52.07 

(2.92%) 
53.75 

(6.26%) 
57.75 

(14.15%) 

MOVES Run-time 
[s] 

1098.7 
612.5 

(-44.25%) 
206.2 

(-81.24%) 
84.0 

(-92.35%) 
* Relative percent change with respect to the lane-level results in parentheses 

Although the results presented here are for an arbitrary and simplified network, the two main 
impacting factors for the aggregated-level emissions estimation in the MOVES model can be 
listed as: 

1) The lengths provided in the network configuration to the MOVES model serve as the trip 
length on the given entity. This is valid for the lane- and link-level network 
representations; however, in the corridor and network levels, the travelers do not 
necessarily travel the entire length and their trip length is usually lower than the length 
of the corridor or network. Therefore, using the actual corridor and network lengths will 
most probably result in overestimation of the emissions. Using average trip length 
instead of entity length in corridor- and network-level representations can help to 
mitigate this issue and increase the accuracy of the results. 
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2) Implementing an aggregated representation will result in a less-detailed rendition of the 
traffic flow evolution in the emissions estimation process, which will prevent the 
estimation process from capturing the entire driving cycles in the network and 
presumably result in underestimation of the emissions. Although this was expected by 
implementing aggregated representations of the network, it can be diminished by 
calibrating the aggregated estimates to the microscopic estimates. 

As it can be seen in Figure 5, the error rate varies with different pollutants stemming from 
individual formulations with different weights of the impacting factors used to compute the 
emissions of each component, except for the CO2 emissions and the total energy consumption 
which have totally similar behaviors due to similar computations in the MOVES model (EPA, 
2020). Therefore, any calibration process for the emissions estimates in different aggregation 
levels should be network and component specific. 

Once the results from a training set have been calibrated for a network, a general recipe can be 
provided to estimate the emissions with high accuracy using the aggregated traffic variables. 
Furthermore, the driving cycles capturing the drivers’ behaviors in the MOVES model may need 
to be updated if the aggregated representation of traffic conditions is implemented to estimate 
the emissions considering that the aggregated traffic conditions provide less details on the 
variations of traffic flow inside the urban networks or zones (Shabihkhani & Gonzales, 2014). 
The main advantage of such method in addition to its significantly higher efficiency would be 
that the emissions inside any region of the network can be easily estimated by tracking a single 
traffic variable: the number of vehicles inside the region or accumulation. This will enable the 
practitioners to develop perimeter control strategies aiming to minimize the emission of any 
component for a multi-region network with well-known MFDs and calibrated MFD-based 
emissions estimation methods. 

 

Figure 5. Emission estimates vs. Run-times for different aggregation levels 
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Although the network-level emissions estimation using the MFD outputs can increase the 
efficiency of the emissions estimation, the results will only reveal the total emissions inventory 
of the entire network and will not be helpful in identifying the emissions hotspots inside the 
network. To overcome this shortcoming, one can partition the network into smaller zones and 
feed the zone-level traffic conditions produced by their respective MFDs to the MOVES model 
to estimate the emissions in the zone level. Not only this will increase the accuracy of the 
estimated emissions, but also it will help to identify the zones with higher emissions. If the 
hotspot zones are still large, link-level emission estimations can be conducted in these zones to 
detect the exact links with the highest emissions.  
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Data Summary 

Products of Research  

This study has produced simulation traffic data for the numerical experiment and the emissions 
estimations outputs by the MOVES model in 4 different aggregation levels for the numerical 
experiment. 

Data Format and Content  

The data includes: 

1) The second-by-second traffic conditions of the network in the numerical experiment in 4 
different aggregation levels: (i) lane, (ii) link, (iii) corridor, and (iv) network, in csv 
format. 

2) The outputs of the MOVES model for different aggregation levels in MySQL database 
format. 

Data Access and Sharing  

The data can be publicly accessed at https://zenodo.org/doi/10.5281/zenodo.11575091.  

Reuse and Redistribution  

The data can be reused and redistributed by the general public using the following citation: 

Laval, J., & Aghamohammadi, R. (2024). Network-wide Emissions Estimation Using the 
Macroscopic Fundamental Diagram [Data set]. Zenodo. 
https://zenodo.org/doi/10.5281/zenodo.11575091 

https://zenodo.org/doi/10.5281/zenodo.11575091
https://zenodo.org/doi/10.5281/zenodo.11575091
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