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Abstract

Essays in Mathematical Economics
by
Markus Antonio Vasquez
Doctor of Philosophy in Mathematics
University of California, Berkeley
Professor Robert M. Anderson, Chair

We apply mathematical techniques in the context of economic decision making. First,
we are interested in understanding the behaviors and beliefs of agents playing economic
games in which the underlying action spaces are possibly non-compact and the agents’ payoff
functions are possibly discontinuous. Under these circumstances, there is no guarantee of the
existence of a Nash equilibrium in randomized strategies. In fact, there are games for which
no Nash equilibrium exists. To restore equilibrium we allow each agent access to randomized
strategies that are not necessarily countably additive. This has the unfortunate side effect
of introducing uncertainty into the players’ payoff functions due to the failure of Fubini’s
theorem for finitely additive measures. We introduce two ways of resolving this ambiguity
and show that for one we are able to recover a general equilibrium existence result.

Next, we turn to the problem that expected utility theory typically assumes that agents
use concave utility functions. This is problematic since this implies that agents are risk averse
and, consequently, will not gamble. We speculate that non-concavity may be the result of
agents’ utility functions arising from solving the the knapsack problem, a combinatorial
optimization problem. We introduce a class of utility of wealth functions, called knapsack
utility functions, which are appropriate for agents who must choose an optimal collection of
indivisible goods from a countably infinite collection. We find that these functions are pure
jump processes. Moreover, we find that localized regions of convexity—and thus a demand
for gambling—is the norm, but that the incentive to gamble is much more pronounced at low
wealth levels. We consider an intertemporal version of the problem in which the agent faces
a credit constraint. We find that the agent’s utility of wealth function closely resembles a
knapsack utility function when the agent’s saving rate is low.

Finally, we turn our attention to the Black-Scholes model of security price movements.
Our goal is to understand the beliefs and incentives of individual agents required for the
Black-Scholes model to be self-predicting. We consider a model in which each agent believes
that the Black-Scholes model is correct. Each agent observes a private stream of information,
which she uses to update her beliefs about future movements of the security price. Each
agent is then faced with an optimization problem whose solution tells us her optimal portfolio
for any given price (i.e. her demand function). Imposing market clearing conditions then



determines a price at each point in time. That is, the agents prior beliefs about the security
price process along with their private information streams generate a price process. We may
then ask under which conditions the distribution of this process matches the agents’ prior
belief. We find that that condition is fairly restrictive and imposes significant constraints
on the drift of the price process when agents are homogenous and use utility functions with
constant absolute risk aversion or constant relative risk aversion.
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Chapter 1

Equilibrium with finitely additive
mixed strategies

1.1 Introduction

We consider two equilibrium concepts in normal form games in which we allow players access
to strategies intended to model vague beliefs. Examples of the beliefs that we are trying to
model include “I will play my first action some day” and “He will charge a price slightly
higher than $1.” On a technical level, this is achieved by requiring that players’ mixed
strategies be only finitely additive instead of countably additive. We find that payoffs are
ambiguously defined when more than one player chooses a vague strategy. This ambiguity
presents difficulty when a player is considering a potential deviation from her current strategy.
We identify two interesting ways of resolving this ambiguity, leading us to two equilibrium
concepts.

The weaker equilibrium notion, which we call an optimistic equilibrium, may be inter-
preted as an equilibrium in which players are able to rationalize the candidate equilibrium
strategy profile by resolving ambiguities in the most optimistic way possible when consid-
ering the candidate profile and resolving them in the most pessimistic way possible when
considering deviations. We are able to show that every game admits at least one optimistic
equilibrium. This is a weak equilibrium concept, but the Bertrand-Edgeworth duopoly pric-
ing example in section 1.2 indicates that it can provide interesting economic insight. In
section 1.3, we analyze a well-known game formulated by Sion and Wolfe [SW57]| with com-
pact strategy spaces and not-particularly-pathological utility functions that has no Nash
equilibrium, but that does have an optimistic equilibrium.

In the stronger equilibrium notion, which we call a vague equilibrium, an player is unwill-
ing to deviate from a candidate equilibrium profile even if he believes that ambiguities in his
payoff will resolve badly for him at the candidate profile, but will resolve in his favor when
he deviates. This notion is more closely related to Nash equilibrium. In fact, every vague
equilibrium is the limit of a sequence of e-Nash equilibria. Consequently, we might think of
these as idealized equilibria that stand in for sequences of e-equilibria that are strategically
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stable as € tends to 0. Stated another way, vague equilibria classify sequences of e-equilibria
(with € tending to 0) whose “limits” are not equilibria simply because the limiting strategies
do not exist rather than because of some interesting strategic discontinuity in the limit.

The work most closely related to ours is [Mar97], in which players are given access to
finitely additive mixed strategies. However, [Mar97] considers only payoff functions satisfying
a restriction that excludes a large number of economically interesting games.! When payoff
functions satisfy the restriction, all of our equilibrium concepts coincide and our results are
equivalent.

It is well known that the standard method for proving the existence of a mixed strategy
equilibrium in a normal form game using the Glicksberg-Kakutani-Fan fixed point theorem
does not work when the players’ pure strategy sets are not compact or the payoff functions
are discontinuous. There has been substantial work in finding conditions that ensure the
existence of equilibria in discontinuous games which is formally independent of our work,
but from which we have benefitted greatly [BM13, Car09, DM86a, MMT11, Prol1, Ren99].
However, our goal is different. Rather than looking for restrictions on games that ensure the
existence of an equilibrium, we seek equilibrium concepts that allow us to understand games
which may not have equilibria in the usual sense.

The remainder of the chapter is structured as follows. We begin with a few informal
examples of our equilibrium concepts in sections 1.2, 1.3, and 1.4. We summarize the math-
ematics needed for our theory in section 1.5 and present the game theoretic setup in section
1.6. We consider first the weaker of our two equilibrium concepts in section 1.7 and the
stronger in section 1.8. In section 1.9, we consider various relationships between our equi-
librium concepts and Nash equilibrium. In section 1.10, we consider a technical restriction
on utility functions that make our extensions of the agents’ utility functions easier to work
with. We conclude in section 1.11.

1.2 The Bertrand-Edgeworth model of duopoly
pricing with limited supply

We consider a model of duopoly pricing for a homogenous good in which each seller has
a restricted quantity of the good to sell. This is the model considered in [DM86b]. It is
proved that there exists a mixed equilibrium in this game, but, to our knowledge, no explicit
equilibrium is known.

There are two sellers and a single good. Seller 7 has a stock S; of the good to sell. Each
buyer is represented by a point on the unit interval and and total demand for the good
at price p is given by D(p). Each seller chooses a price p; > 0. The buyers will choose to
purchase from the seller with the lowest price. Any unserved buyers may then purchase from
the second seller if they wish. If the sellers charge the same price, they capture the share of
the market in proportion to their stock until their stock is exceeded.

lsee section 1.6.
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In summary, the payoff function for the first seller (and analogously for the second seller)
is

(min{piS1.p1D(p1)} if p1 < p
_Jmin {plslaplD(pl)ﬁ} if py = py and S > B
(P, 2) = pi(D(p1) — S2) if py = py and Sy < %
| max {O,plD(pl)%} if p1 > po.

We will make a few assumptions that are not made in [DM86b] to simplify our analysis.
We will assume that D is continuous, strictly decreasing and that there exist p and p for
which D(p) = S; + S, and D(p) = 0. We will also assume that the unrestricted monopoly
profit function function II(p) = pD(p) is strictly concave on [p, 7).

We will write p~ for the vague strategy in which the seller plans to charge a price in-
finitesimally smaller than p.? If both sellers choose to play p~, then there is some ambiguity
about which is first-to-market. If each seller resolves the ambiguity in the most optimistic
way possible, then each will believe that she will be first-to-market and that her price will
be indistinguishable from p. That is, seller ¢ believes that she will recognize the payoft
min{pS;, [1(p)} from the profile (p—,p~).

Theorem 1. There are numbers a,b € R defined in the proof below such that when p € [a, b],
neither seller will have incentive to deviate from the profile (p~,p~) when they resolve their
payoff ambiguity optimistically.?

Proof. Let m(p) = min{pSi,II(p))}. The function m; is seller 1’s first-to-market payoff
function. That is, m1(p) is the profit that seller 1 would achieve given that the other seller
chooses a price higher than p. Let pj be the unique point in [p,p] at which m; achieves
its maximum. The existence of this point is guaranteed by our assumptions on II. Notice
that seller 1’s second-to-market profit is her first to market profit scaled down by the factor
(D(p2) — S2)/D(p2). Notice also that the sellers will never choose to match prices exactly.
Consequently, if seller 2 chooses a price py < p}, the price pj will dominate all other prices
that do not make seller 1 first-to-market. That is, seller 1 will respond either with a price
that makes her first-to-market or with the price pj.
Define p; € (p,p}) by the equation

m(p1) = m(pr)(D(P1) — S2)/D(pr).

Our assumptions on D and Il guarantee that p; is well defined. This definition of p;
ensures that

mi(p) > p1D(p1)(D(p) — S2)/D(p)

2In the formalism of the sequel, p~ will stand for a finitely additive 0-1 measure that assigns probability
1 to every interval of the form (p — €, p) with € > 0. See our remarks at the end of section 1.6.

3In general, it is not necessarily true that a < b, in which case the theorem is vacuously true. However,
we are guaranteed that a < b when the game is symmetric, so the theorem is not vacuous in general.
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as long as p; < p < pj. That is, seller 1 has no incentive to deviate to a higher price from
any price p € (p1,p;j) if she believes that she is first-to-market at the price p and that her
deviation will leave her second-to-market facing the price p on the part of seller 2.

We see that if seller 1 believes that she is first to the market with a price p € [p, p}],
she will have no incentive to lower her price since m; is increasing on [p, pj] and will have no
incentive to increase her price if it means that she will be second to the market.

We may repeat the same analysis for seller 2. Define a = max{p;, p»} and b = min{p7, p3}.
(In the symmetric case, p; = pa < p5 = pi, so a < b.) Then, neither seller will have any
incentive to deviate from the profile (p~,p~) when p € [a,b] .

m

This furnishes our first example of an optimistic equilibrium. Informally, this means that
the players are optimistic about their payoffs at the equilibrium profile, but are pessimistic
about their payoffs when they consider deviations. We will make this concept precise in
section 1.7. Notice that the strategy profile (p,p), which closely resembles (p~,p~), is not
an e-Nash equilibrium for e sufficiently close to 0.

We propose the following interpretation of this equilibrium. As long as prices fall within
a certain range, sellers will tend to set similar prices, but each will try to gain an infinitesimal
advantage so as to be first-to-market. This result is highly suggestive of a phenomenon known
as Edgeworth price cycling [KRRS94]. An Edgeworth price cycle is a dynamic description
of prices in which, as long as the prices fall in some range, we observe a price war and
prices decrease together. As soon as prices are low enough that one seller is better off being
second-to-market, that seller increases her price. This is quickly followed by a price increase
by the other seller and the cycle starts anew.

Our optimistic equilibrium concept provides some justification for each seller’s behavior
during an Edgeworth price cycle. The sellers’ pricing decisions at any point in time are quite
reasonable provided each seller believes that she will get the advantage in the price war.

1.3 A game with no value

Consider the following two-player, zero-sum game introduced by Sion and Wolfe [SW57].
Each player’s action set is [0, 1] and the payoff to player 1 is

1 ifz>yorz+3<y
w(z,y) =<0 if:vzyorx—i—%:y
-1 ifrz<y<z+i.

It is shown in [SW57] that this game has no equilibrium in countably additive mixed
strategies.

We allow each player access to strategies of the form ™ and = where 2™ means some
infinitesimal amount larger than x and x~ means some infinitesimal amount smaller than
x. We may encounter payoff ambiguities when both players consider a strategy of this type.
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+1 \0
N\

+1

Figure 1.1: A game with no value

For example, 1,0 and —1 are all plausible payoffs at the strategy profile (1/27,1/27). We
will write @;(x,y) for the highest plausible payoff at the strategy profile (z,y) and u,(x,y)
for the lowest. So, w;(1/27,1/27) =1 and u,(1/27,1/27) = —1.

We will say that the strategy z; dominates xo if w,(z1,y) > w,(z2,y) for all strategies
y. That is, we compare the worst-case outcomes when deciding that one strategy dominates
another.

We will find an equilibrium by first eliminating dominated strategies. Notice that the
strategy = 1 on the part of player 1 dominates w for each 1/2 < w < 1 (including strategies
like 1/2%). We see that u,(1,y) =1 if y # 1 and w,(1,1) = 0. Moreover, u,(w, 1) < 0 for all
w € [1/2,1). Player 1’s remaining strategies are then [0,1/2) U {1}.

Next, the strategy y = 1/2~ of player 2 dominates each strategy z with 0 < z < 1/2".
Player 2’s relevant payoff at y = 1/27 is

1 if0<w<1/2"

Uy(w, 1/27) = {_1 if w=1/2,1/2", 1.

Each strategy y € [0,1/27) does as poorly as 1/2~ in the worst case against w = 1/2,1/27, 1.
Player 2’s remaining strategies are then [1/27,1].

Now, the strategy x = 0 on the part of player 1 dominates each strategy w with 0 < w <
1/2. Player 1’s payoff from = = 0 is

—1 ifz=1/2"
u(0,2) =¢0 ifz2=1/2
1 ifz>1/2
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However, every strategy w € (0,1/2) has a worst-case payoff of —1 against z = 1/27 or
z = 1/2. Notice that using the worst-case evaluation is necessary here to eliminate w = 1/27.
Player 1 is then left with the strategy set {0, 1}.

Then, each strategy y € (1/2,1) returns a payoff of —1 against each remaining strategy
of player 1, so we may eliminate these. Player 2’s strategy set is then {1/27,1/2,1}.

Then, player 2’s strategy y = 1/27 does better than z = 1/2 in the worst case against
w = 0. Both y = 1/27 and z = 1/2 perform equally poorly against w = 1 in the worst case,
so we may eliminate z = 1/2. Player 2 is then left with the strategies {1/27,1}.

We are left with the game with payoff matrix:

s |1
-1 |1
1 1

It is straightforward to show that player 1 playing = = 0 with probability 1/3 and z =1
with probability 2/3 and player 2 playing y = 1/2~ with probability 1/3 and y = 1 with
probability 2/3 is an equilibrium with payoff 1/3. This furnishes our second example of an
optimistic equilibrium.

1.4 The Bertrand competition model of duopoly
pricing with anti-predatory pricing regulation
In this model, two sellers are able to supply an unlimited quantity of a good at a fixed per

unit cost of ¢. The total market demand at a price p is D(p), which we will assume bounded
and decreasing. The payoff to seller 1 (and analogously for seller 2) is

(Pl - C)D(Pl) if pr < po
uy(pr,p2) = { 2(p1 — ¢)D(p1) if p1 = ps
0 lf pl > pg.

As stated so far, most of our readers will recognize that the price profile (¢, ¢) is the unique
Nash equilibrium in this game. However, suppose that there is also an anti-predatory pricing
law that prevents the duopolists from selling at or below cost.*

Let us allow the duopolists access to strategies of the form p* and p~ as before. Suppose
that the duopolists are playing the profile (¢, ¢™). If each duopolist believes that they will
receive the smallest possible payment at this profile, then each believes that she will make
a profit of 0. However, every other price will result in a profit of 0, even if any ambiguities
are resolved as optimistically as possible. The profile (¢, ¢) furnishes our first example of
a vague equilibrium. That is, this equilibrium suggests that players will charge prices very
close to cost, but will not charge exactly at cost to avoid prosecution.

4This is reasonably close to the interpretation of the Sherman Antitrust Act as argued in [AT75], although
setting a price exactly equal to the cost would not be prohibited.
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Notice that although there is a unique vague equilibrium, we still have optimistic equi-
libria of the form (p—,p~) for every p > ¢ for which p’ — p'D(p’) is non-decreasing on |[c, p|.
That is, in this model we also recover seemingly collusive strategy profiles as optimistic equi-
libria. This could provide a non-collusive justification for instances in which prices fail to fall
instantaneously to the competitive level after a competitor enters a monopolist’s market.

1.5 Mathematical preliminaries

Let (X,Y) be a measure space with X a separable metric space and ¥ the Borel o-algebra.
Definition 1. We will say that i : ¥ — R s a bounded, finitely additive measure if
(i) there is some M > 0 such that |u(E)| < M for oll E € 3;
(i1) 1 (Ufil E]-) = Zjil w(E;) for every finite, pairwise disjoint collection Ej, ..., Ex
from X.

Furthermore, we will say that u is countably additive if the last condition holds for every
countable, pairwise disjoint collection {E;}%2,.

The word measure without qualification will mean a bounded, finitely additive measure.
The set of bounded, measurable functions on X will be denoted F(X). The set of bounded,
finitely additive measures on X will be denoted ba(X). The weak* topology on ba(X) is the
smallest (coarsest) topology that makes the map

a»—>/decr

Definition 2. We will call a measure p € ba(X) a probability measure if

(1) p(X) =1
(i1) u(A) >0 for all A € X.

continuous for each f € F(X).

Theorem 2 (Banach-Alaoglu). The set of probability measures on X is weak* compact.
Proof. See [AB06], theorem 6.25, for example. ]

It is the Banach-Alaoglu theorem that makes the space of finitely additive probability
measures useful as an extension of the space of countably additive probability measures.
Instead of thinking about extending the space of countably additive probability measures
on X to the space of finitely additive probability measures, we could instead think about
expanding X to a larger space and then considering countably additive measures on that



CHAPTER 1. EQUILIBRIUM WITH FINITELY ADDITIVE MIXED STRATEGIES 8

space. A remarkable theorem of Yosida and Hewitt shows that these perspectives are equiv-
alent [YH52], as we will now see.

Let ©(X) be the set of finitely additive measures w on X that take only the values 0 and
1° (i.e., w(A) =0 or w(A) =1 for all A € X). For any x € X, the point mass 4, is in Q(X),
so we may regard X as a subset of Q(X). We have assumed that X is a separable metric
space precisely so that every countably additive 0-1 measure is a point mass.

We will regard Q(X) as a topological space with the weak* topology that it inherits as
a subset of ba(X). We have a description of this topology that is perhaps more intuitive.
Given A € 3, define

A={weQX):wA) =1}

Each set A is open and sets of the form A generate the weak* topology on Q(X).

Theorem 3. Q(X) is compact.

Proof. This follows immediately from the Banach-Alaoglu theorem and from the fact that
Q(X) is closed in the unit ball in ba(X). O

Theorem 4. X is a dense open subset of Q(X).
Proof. The weak™ topology is generated by sets of the form
W(T, {Bj}§:17{€j ;C:l) = {0' € Q(X) : ‘13],(0') — 1Bj(7')’ < Ej,j =1,.. ,k}
={oeQX):0(Bj)=7(Bj),j=1,...,k}

with 0 < ¢; < 1 and B; measurable for all j. Replacing B; by Bj as necessary, we may
assume that 7(B;) = 1 for all j. From the formula

T(CND)=71(C)+7(D)—7(CUD),

we see that the intersection of any two sets of 7-measure 1 must have measure 1. It follows
that ﬂ?:l B, is non-empty. Then,

0. € W(r, {B;}j=1, {&;})=1)

=D

for any x € ﬂ?zl B;.
To see that X is open, note that {z} = {z} and X = Usexiz} O

Given a bounded, measurable function f : X — R, we may extend it to a function on
Q(X) by defining f: Q(X) — R by

flo) = [ i

5Some readers may prefer to think of these as ultrafilters on X.
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Notice that f(0,) = f(z) for all z € X. By definition of the weak* topology, the map
w +— f(w) is continuous.

It turns out that every probability measure® on X may be represented as a countably
additive measure on (X).

Theorem 5 (Yosida-Hewitt [YH52], comment 4.5). Let o be a probability measure on X.
There is a regular, countably additive Borel probability measure @ on Q(X) such that for
every bounded, measurable function f on X,

/X o = / RCLOE / . /X F(@) duo(z) dr ().

We also know that every probability measure may be approximated by a linear combi-
nation of 0-1 measures.

Theorem 6 (Yosida-Hewitt [YH52], theorem 4.6). Every probability measure v is the weak*
limit of linear combinations of 0-1 measures, in the sense that for every e > 0 and every
collection { f; ?:1 of bounded, measurable functions, there is a measure § = Zle o;w; with
each w; € Q(X) and each «; a scalar such that

/ijdv—/xfjdé

We will state a few results that are not necessary for the sequel, but that are interesting in
their own right and may be helpful for understanding the space of finitely additive probability
measures. Let 3 be the o-algebra generated by sets of the form A for A € ¥. In general &
is a sub-o-algebra of the set of Borel measurable subsets of (X).

<€

forallj=1,... 0.

Lemma 1. [fA€ X, then ANX € X.

Proof. Let A be the collection of sets A in Y for which ANX € ¥. A contains each set of
the form B with B € ¥ since BN X = B. Moreover, it is a o-algebra, so A = 3. O

We have a characterization of countably additive probability measures, which we believe
we are the first to observe.

Theorem 7. Let o be a probability measure on X. Then, o is countably additive if and only
if5(A) =c(ANX) for all A€ .

6We will state our results for probability measures since they are all that we need in the sequel. However,
Yosida and Hewitt show in theorem 1.12 [YH52] that every measure may be written as a difference of
nonnegative measures, which may be used to generalize the following results to all of ba(X).
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Proof. Suppose first that o is countably additive. Let D be the collection of sets A in ¥ for
which 7(A) = 0(AN X). We know that A € D for each A € X regardless of the countable
additivity of o since AN X = A. Our goal then is to show that D is a Dynkin system. We
know already that Q(X) € D. Suppose that A, B € D with A C B. Then,

a(B\ A) =37(B) —a(A)
=o0(BNX)—-0o(ANX)
=o((B\A4)NX),

so B\ A € D. Suppose now that Ay, Ay,... € D with A, C A,,1. Then,

7 (U An> = lim 7(A,)
n=1

= lim (4, N X)

n—0o0

=0 (G(A,ﬂﬁX))

:(@A) mX),

where we used the countable additivity of ¢ in the second to last equality. It follows that
U,—, A, € D, so D is a Dynkin system and the result follows.

Suppose now that 7(A) = 0(A N X) for all A € 3. Suppose that A,, | @ with A, € %.
Then,

lim o(A4,) = lim 5(A,)

n—oo n—o0

= 0. O

Yosida and Hewitt show that every probability measure may be written as a sum of a
countably additive measure and a measure which is purely finitely additive in the following
sense.

Definition 3. We will say that a probability measure o is purely finitely additive if the only
countably additive measure T for which 0 <7 <o is 7 =0.
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Theorem 8 (Yosida-Hewitt [YH52], theorem 1.23). Let o be any probability measure. Then,
o may be written uniquely as the sum of a countably additive measure o. and a purely finitely
additive measure op,.

We are able to show that purely finitely additive probability measures are confined to a
closed, nowhere dense G, .

Theorem 9. Let 0 > 0 be a purely finitely additive probability measure on X. There is a
set B € X such that BN X = @ and 7(B) = 7(2(X)). Moreover, we may choose B to be a
Gso."

This is a weak version of the converse to the following theorem of Yosida and Hewitt.

Theorem 10 (Yosida-Hewitt [YH52|, theorem 4.16). Let o be a probability measure. If G is
confined to a closed, nowhere dense G,% then o is purely finitely additive.

Under the hypotheses of Yosida and Hewitt’s theorem, we may find a sequence A; D
Ay D -+ of sets from ¥ such that (", A4, = @, but (77, 4, is the closed G5 on which o
is concentrated. That is, lim, . o(4,) = 1.

It is reasonable to conjecture that the converse is true. That is, if ¢ is purely finitely
additive, then there is a sequence A; D Ay D - -+ of sets from o such that (2, 4, = &, but
lim:? , 0(A,) = 1. That is, if o is purely finitely additive, there is a single decreasing sequence
of sets that demonstrates that fact. Neither proof nor counterexample for this conjecture
has been forthcoming. Our theorem tells us that while there may not be a single decreasing
sequence of sets, we can find a countable number of sequences decreasing to nothing that
carry all of the mass of o.

Proof of theorem 9. We will call {A,}22, from ¥ a null sequence if A, | @. Let
a = sup { lim o(A,) : {A,}o2, is a null sequence} :
n—oo

For each k € N, choose a null sequence {A*}%° | for which lim,, ., o(A4%) > a — 1/k.

Define BF = U§:1 AF. We see that for each k, {B¥}>°  is a null sequence for which
lim,, oo 0(B¥) > o — 1/k. Moreover, B¥ C B**1 for all n, k.

Define B¥ = >°, B, We see that B¥ C B¥*'. Moreover, 7(B*) > a — 1/k. Let
B = U, B*. We see that 7(B) = a.

Define the measure p on X by p(A) = (AN B°). Since 0 < p < o, if u is countably
additive then we are done. Suppose then that p # 0. Then, there is some € > 0 and a
null sequence {C,}°°, for which lim, ., u(C,) = €. Letting C = (>, C,, we see that
g(CNB°) =e.

A Gs, is a countable union of countable intersections of open sets.
8A G5 is a countable intersection of open sets.
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Now, for each k, {BF U C,}2, is a null sequence. Since {Bf}>°, and {C,}>2, are
decreasing, we have

N (BiuT,) = (ﬁB_ﬁ> U (ﬁ@) - B*uc.

n=1 n=1
So,
7}1—{20 o(BFuC,) =aB*uC)
> 7(BF) +7(C N B°)
>a—1/k+e

As soon as 1/k < €, we find a null sequence that contradicts our choice of «. It follow that
1 =0 and the result follows. m

Corollary 1. Let o be a purely finitely additive probability measure. Then, a(X) = 0.
Proof. (B°) =0 and X C B°. O

It would be very tidy if it were true that a(X¢) = 0 for every countably additive o, but
alas, that is not the case as our next result shows.

Theorem 11. Suppose that o is a finitely additive probability measure on X and that (X ) =
1. Then, o is countably additive and atomic.

Proof. Tt follows from corollary 1 that ¢ is countably additive. Since & is regular,
o(X) =sup{a(K) : K compact, K C X}.

Suppose that K is an infinite compact subset of X. Then, we may choose a sequence
{z,}5°, of distinct elements of K. This sequence has a convergent subnet, which cannot be
an element of X since it assigns probability zero to each point in the sequence and to each
singleton in X not in the sequence. It follows that no such K may exist. So, for each n, we
may choose a finite set K, for which (kK,) > 1 —1/n. Letting A = [J,~, K,,, we see that
A is countable and 7(A) = 1. O

Definition 4. We will say that a probability measure o is atomic on an algebra A containing
the singletons if there is a sequence of points {ax}32, in A such that limy_,o o{a1, ..., ax} =
1. We will say that a point ay of the sequence is an atom if o{a;} > 0.

The only subtlety is that {ai,as, ...} need not be A-measurable. In what follows, our
next theorem will guarantee that profiles of atomic probability measures will give us a unique
product probability measure.

Theorem 12. Let A be an algebra containing the singletons that generates 3 as a o-algebra.
Suppose that o is a probability measure on 3 such that o|4 is atomic. Then, o is countably
additive and atomic.



CHAPTER 1. EQUILIBRIUM WITH FINITELY ADDITIVE MIXED STRATEGIES 13

Proof. Let the sequence {a}?2; be as in the defition of an atomic probability measure.
Let A1 D Ay D Asz--- be any sequence of sets in Y decreasing to the empty set and let

e > 0. Pick K large enough that o{ay,...,ax}® < e. For large enough N, we must
have Ay C {p1,..., Px}¢, which implies that o(Ay) < €. It follows that o is countably
additive. O]

1.6 Game theoretic setup

We consider a normal form game with N players. Each player has a strategy space A;,
which we assume to be a separable metric space. Let A; be the Borel g-algebra on A;,
let A = Hi\; A;, and let A be the algebra on A generated by the measurable boxes. We
will assume that each payoff function u; : A — R is measurable with respect to o(A), the
smallest o-algebra containing A.

Let P, = Q(A;), the space of 0-1 measures on A;, and let P = Hf\il P;. Finally, let F; be
the space of countably additive probability measures on P; and let F' = Hf\il F;. We will call
strategies in F; vague strategies. Theorem 5 tells us that F; is the same as the space of finitely
additive probability measures on A;. We would like to extend each u; to a weak*-continuous
function on F', but this is not generally possible.

Consider for example the zero-sum game in which each player chooses a natural number
and the player who selects the larger number receives payment of 1. Let v be any weak*
limit of the sequence {4, }nen. Let us try to figure out what u, (v, v) would be if u; extended
continuously to Q(N) x Q(N). On the one hand, we would have

uy (v, v) = Jirgonli_}rréoul(én,ém) = —1.

On the other hand, we would have

u(v,v) = lim lim wy(,, 6y) = 1.
m—00 N—r00
We see that, in general, our utility functions need not extend continuously to our expanded
strategy spaces.

The only general condition on u; that we know of that ensures that u; : A — R extends to
a continuous function u; : F — R is that u; be A-measurable [Mar97]. Since this restriction
excludes a large number of interesting games, we will focus instead on upper- and lower-
semicontinuous extensions of the players’ payoff functions.

We will do this in two ways. First, we will define a dense subset S of F' on which we know
that our utility functions are well defined. We will then take the least upper-semicontinuous
extension (denoted U;) and largest lower-semicontinuous extension (denoted U;) to all of
F'. Second, since A is a dense subset of P, we may extend each utility function to the least
upper-semicontinuous extension (denoted @;) and the largest lower-semicontinuous extension
(denoted u;) on P. We can then extend w; and u; to functions on F' by integration.

Let S be the space of profiles of linear combinations of point masses. That is, 0 € S
if o; = Zf;izl )\,’féaf with a¥ € A; and Zi:l e = 1 for some ¢; < oo for each i. Since
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finite sets of points in A are A-measurable, we see that each profile in S specifies a unique
probability measure on A. Moreover, this probability measure is countably additive. These
“well-behaved” profiles are dense in the space of all profiles.

Lemma 2. S is dense in F.
Proof. This follows from theorems 4 and 6. O

Let T'; be the graph of U; : S — R regarded as a subset of F' x R and let I'; be the closure
of I';. Define U; : F — R by

Ui(o) = inf{u: (o,u) € I';}.
Similarly, U, : F' — R is defined by
U,(0) = inf{u: (o,u) € I;}.

This gives us our first set of extensions of ;.
For the second set of extensions, let A; be the graph of u; : A — R regarded as a subset
of P x R and let A; be the closure of A;. Define

U;(p) = sup{u : (p,u) € A;}

and similarly B
u;(p) = inf{u : (p,u) € A}
Then, define V; : FF — R and V,: F—Rby

Vi(O'l,...,O'N):/ﬂid(51®"‘®aN)
P

and
Ki(gla---agN) :/ﬂid(61®"‘®5N).
P

Since 7; is countably additive on P; for each i, there is no issue with defining the product
measure. As a result, we will write & for 7; ® - - - ® oy and similarly for 7_;.

Notice that the map V; is upper-semicontinuous and V; is lower-semicontinuous since
the weak™* topology on F; corresponds to the topology of weak convergence on the space of
countably additive measures on P;. The functions V, and V, are the second set of extensions
of u; to F.

We can say a few things about the relationship between our various ways of extending
our utility functions.

Theorem 13. For allo € F and all i, V(o) < U,;(0) < Us(o) < V(o).

Proof. We know that V; and U, are upper-semicontinuous and V., and U, are lower-semicontinuous.
Moreover, U; is the smallest upper-semicontinuous extension of U; to F' and U, is the largest
lower-semicontinuous extension of U; to F'. ]
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All of our extensions agree when all of the players choose pure strategies and at most one
player takes advantage of a non-countably additive strategy.

Theorem 14. Let p € P such that at most one p; s not countably additive. That s, there
s some j such that for each i # j, there exists a; € A; such that p; = d,,. Then,

xmm=zw=[Qmewwmm%»

J

Proof. Without loss of generality, assume j = 1. Suppose that we have a net

(Oagry -5 0ag, Ui(af, ..., ay)) = (P15 00y, - - -5 Oay» )

for some u € R.
We may choose § € A so that d,~(1,,) =1 for all i > 2 for all &« > §. This implies that

as, Uiat, ... ay)) = (6a2, 0ay, - - -5 Oay, Us(af, . . an))

5a17 asy v (5aNa/ Ul al,... déaix(al)>
Ay

(p175a27"‘ (ZN7/ U?, a1,...Q dpl(CLl))
Aq

U:/ Ui(al,...aN)dpl(al). ]
Aq

R

4

for all a > 3. It follows that

This extends to countably additive atomic strategies.

Theorem 15. Suppose that o € F such that o; is countably additive and atomic for all but
at most one i. Then, V,(c) = V(o). This implies that U,(c) = U;(0).

Proof. Let j be the player for which o, is not necessarily countably additive and atomic. It
follows from theorem 12 that o_; specifies a unique probability measure on A_; and that
this probability measure is countably additive. Let T_; € A_; be the set of atoms of the
measure o_;. Then,

Viio) = [ wp)dere e
Z/ w,(pj, a—;) do;(p;)

a_j€T,
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The atomic assumption may appear strange to some readers. We conjecture that it may
be safely removed, but have been unable to prove that this is the case. In section 1.10, we
prove that there is a large class of utility functions, which we call agreeable functions, for
which we may remove the atomic assumption. All of the utility functions in examples that
we consider in this paper fall into this class.

It turns out that the upper-semicontinuous extensions agree and the lower-semicontinuous
extensions agree when restricted to P, although the upper-semicontinuous extensions need
not agree with the lower-semicontinuous extensions.

Theorem 16. U;(p) = u;(p) and U,(p) = u,(p) for all p € P.

Proof. In view of theorem 13, it suffices to show that u;(p) < U,(p) and similarly for the
lower-semicontinuous extensions. This follows immediately from the following facts. First,
theorem 14 implies that all of the extensions agree on A. In particular, U; extends u; : A —
R. That is, the restriction of U; to P is an upper-semicontinuous extension of u;. Since ;
is the smallest upper-semicontinuous extension of u; : A — R to P, the result follows. n

In the event that the strategy spaces are one-dimensional it is often convenient to work
with certain equivalence classes of elements of P. Suppose that each A; is a Borel-measurable
subset of R. For any a; € A; we will write a; for the set of measures in F; that assign
probability 1 to each of the sets (a — €,a) N A; with € > 0. Similarly, a] will denote the set
of measures in P, that assign probability 1 to each of the sets (a,a +€) N A; with e > 0. We
will also abuse notation to write a; for the set containing the probability measure d,,. The
sets —oo™ and 0o~ are defined analogously.

Our next theorem tells us that these sets partition A;, so we may regard them as specifying
an equivalence relation on A;.

Lemma 3. Suppose that A; is a Borel-measurable subset of R. Then, each element of p; is

a member of aj,a; , or a; for some a; € A; U {—00, 00}.

Proof. Let F' be the cumulative distribution function of the probability measure p; € P;. F
is non-decreasing and takes (at most) the values 0 and 1. Let

a=inf{z: F(x) =1}.

If {x: F(z) =1} is empty, we set a = oo and see that p; must assign probability 1 to each
set of the form (M, 00) with M € R, so p; € co™. Similarly, if

a = —00,

we see that p; € —oo™. Suppose then that a € R. Let € > 0. Then,
pila —e,a+¢)=1.

Written another way we see that

pila—e€,a) +pi({a}) +pi(a,a+¢€) = 1.
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Since p; is a 0-1 measure, exactly one of these terms is 1 and the others are 0. Since the
nonzero term must be the same for all € > 0, the result follows. O

In our introductory examples, we were evaluating our utility functions at equivalence
classes by saying, for example,

Ei<a1+7a5) = sup ﬂi(plaPQ)-
pleaf,pzea;

Using these equivalence classes greatly simplifies working with finitely additive measures
in one dimensional games, but caution is necessary as there is no guarantee that the supre-
mum will be achieved simultaneously by the same pair (p1, p2) for both @; and @,. In each
of our examples this problem may be solved by picking a single finitely additive probability
measure 0. We then interpret at as the translation of this probability measure by a (i.e.
at(B) = 07(B — a)), 0~ as the reflection of this measure across the origin, and a~ as the
translation of 0~ by a. However, this cannot justify use of these equivalence classes in every
situation.

1.7 Optimistic equilibria

We turn now to formalizing and investigating an equilibrium in which players evaluate the
equilibrium profile favorably and deviations unfavorably.

Definition 5. We will say that o € F is an optimistic equilibrium f for each player i and
each potential deviation 1; € Fj,

Vi(o) = Vi(7i,0-).
Our most important result is that optimistic equilibria always exist.
Theorem 17. Every game has an optimistic additive equilibrium.

The proof follows the standard script. We will define a best response correspondence and
observe that a fixed point corresponds to an optimistic equilibrium. We will then show that
the best response correspondence satisfies the hypotheses of the Kakutani-Glicksberg-Fan
fixed point theorem [Fan52, Gli52, KT41].

Definition 6. We will say that a correspondence T' : X — 2% is Kakutani if each of the
following hold

(1) X is a subset of a topological vector space;
(i1) T is upper-hemicontinuous;

(i1i) T'(x) is non-empty, compact and convex for all x € X.
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Notice that if X is compact, to show that I' is Kakutani, it suffices to show that I is
upper-hemicontinuous and that I'(x) is non-empty and convex for all z € X. Notice also
that if {I'“},ea is any collection of Kakutani correspondences on a compact space X, then
to show that () ., I'* is Kakutani, it suffices to show that (1), ., I'*() is non-empty for all

reX.

a€cA

Theorem 18 (Kakutani-Glicksberg-Fan). Let X be a non-empty, convex, compact subset of
a topological vector space. If ' : X — 2% is Kakutani, then I has a fized point.

We are now prepared to give the equilibrium existence proof.

Proof of theorem 17. For any ~; € F;, define the correspondence

p BRi () = {1 € F: Vi(ri, ui) >V, (vi, i)}

We claim that the correspondence p — BR;(p,7;) is Kakutani. We will first show
that this correspondence has a closed graph. Consider nets pu® — p and 7 — 7 with
7% € BR;(1*, ;). Then, since V; is upper-semicontinuous and V, is lower-semicontinuous,

Vi(Ti,u_i) > lim supvz-(Tf, *.) > lim me (Vi 1) > V(i i)

That is, 7 € BR;(i, ;). Since F is compact, this implies that p — BR;(u,;) is upper-
hemicontinuous.

To see that BR;(u, ;) is non-empty, note that (v;, u—;) € BR; (1, 7).

To show that BR;(ju, ;) is convex, suppose that o,7 € BR;(u, ;) and A € (0,1). We
have

Vz()‘az + ( )‘)7—17 ) - )‘V (01, ) + (1 - )\)V (7—1’ ) - V (%a 1)

It follows that BR;(u, ;) is convex. We have shown that p+— BR; (i, ;) is Kakutani.
Define a new correspondence by

p= BRi(u) = ) BR(u, ).

Vi €F;

To show that BR; is Kakutani, we need only show that BR;(u) is non—empty Since F' is
compact and BR;(u,;) is compact for each %, it suffices to show that ﬂf L BRy(1,7f) is
non-empty for every finite collection {~; PRRRRNL k1 C F;. Choose v/ such that V;(v/) > V;(+f)
forall ¢ =1,...,k Then, (/,u_;) € ﬂg L BRi(p, 7). It follows that BR,; is Kakutam

As before, to show that BR = M\, BR; is Kakutani, it suffices to show that BR(z) is
non-empty for all . This is clear from the definition of BR;.

The result now follows from the Kakutani-Glicksberg-Fan theorem. n

Having proved that optimistic equilibria always exist, we will prove a few results to help
us identify them. First, optimistic equilibria have the single deviation property.

Theorem 19. A profile o € F' is an optimistic equilibrium if and only if for every i and
every p; € P, Vi(o) > V,(pi, o).
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Proof. Suppose that 7; is a favorable deviation for player i: V;(o) < V,(7i,0_;). Then, since
Virrd = [ [ wlpp-d oo arin).
there must be at least one p; for which
Vi(pi,o—i) = /P.Hi(pz”pz)dﬁi > V(o).
The other implication is part of the definition of an optimistic equilibrium. n

One of the most useful tools at our disposal for finding optimistic equilibria is iterated
elimination of dominated strategies.

Definition 7. We will say that p; € P, worst-case dominates ¢; € P; if w;(p;j,v—i) >
u; (G, =) for all v_; € P_;.

Of course, we need to show that iterated elimination of worst-case dominated strategies
is legitimate in the sense that an optimistic equilibrium obtained after eliminating strategies
is an optimistic equilibrium in the original game.

Theorem 20. Suppose that we remove some or all of the strategies worst-case dominated by
some strateqy p; € P; (other than p; itself). If o is an optimistic equilibrium in the resulting
game then it is an optimistic equilibrium in the original game.

Proof. Let o be an optimistic equilibrium after some collection of strategies worst-case dom-
inated by p; have been removed. Suppose that ¢; is a potential deviation for player i that
was eliminated. Then,

The result then follows from theorem 19. O]

1.8 Vague equilibria

We now turn to an equilibrium notion which is very strong in the sense that the equilibrium
profile is evaluated unfavorably and potential deviations are evaluated favorably.
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Definition 8. A strategy profile T € F is a vague equilibrium if, for each player i and all

Vi € Fz \ {Ti}f _
Ui(1) =2 Ui(7i, 7).

We call this vague equilibrium because it is, in our view, the most reasonable equilibrium
notion when players have access to vague strategies. Analogously with optimistic equilibria,
to show that a profile is a vague equilibrium it suffices to show that it is immune to pure
deviations.

Lemma 4. A strategy profile o € F is a vague equilibrium if and only if for every i and
every p; € Py, Ui(pi,0-i) < U (o).

Proof. The forward implication is part of the definition of a vague equilibrium.

Suppose then that o is not a vague equilibrium. Then, there is some 7; € F; such
that U,(0) < U, Ji(Ti,0-). Pick {(77,0%;)}aea from S such that (77,0%;) — (7;,0-;) and
Ui(t®,0%) — Ui(ri,0_;). For each a, there is some a® € A; for which Uj(a,o®;) >
Ui(t8,0%,). Pass to a subnet on which a®* — p; for some p; € P;. Then,

Ui(pi, o) > limsup Us(a$, 0%,) > Ui(r;,0_;) > U, (o). O
Our only real tool for finding vague equilibria is iterated elimination of dominated strate-
gies.

Definition 9. We will say that a strategy p; € P; decisively dominates ¢; € P; if w;(p;, v—i) >
Wi(q, i) for all v_; € P_,

Vague equilibria behave as we might expect with respect to iterated elimination of deci-
sively dominated strategies. That is, if we are able to find a vague equilibrium in the game
that results from iterated elimination of decisively dominated strategies, it will be a vague
equilibrium in the original game.

Theorem 21. Suppose that we remove some or all of the strategies decisively dominated by
some strateqy p; (other than p; itself). If o is a vague equilibrium after the removal of these
strategies then it is a vague equilibrium with the strategies still in place.

Proof. Let o be a vague equilibrium after the weakly dominated strategies have been elim-
inated. Suppose that player ¢ has some potential deviation ¢; € P; that was eliminated.
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Then,
Ui(ina—i) < Vi(Qiaa—i)
:/ ﬂz(‘]wp—z) da——z
P_;
< / w(piopi) do
pP_;
- Kz (pla O—fi)
< Ui(pi, o)
< Qi(a)-
The result then follows from lemma 4. OJ

1.9 Relations between equilibrium concepts

We see that vague equilibrium is a stronger notion than optimistic equilibrium.
Theorem 22. Suppose that o is a vague equilibrium. Then, o is an optimistic equilibrium.
Proof. This is immediate from the definitions. O]

We will use Nash equilibrium to mean exactly what it usually means. It is a fixed point
of the best response correspondence when players have access to countably additive mixed
strategies. It turns out that vague equilibrium is stronger than Nash equilibrium when it
makes sense to compare them.

Theorem 23. Suppose that o is a vague equilibrium and that o is countably additive. Then,
o 18 a Nash equilibrium.

Proof. Any profitable deviation in the countably additive extension would give us a deviation
in the finitely additive extension. O]

While we expect for the analogous result to be true for optimistic equilibria, we have
been unable to prove it. The issue is that we are unable to show that all of our utility
function extensions agree when evaluated at a not-necessarily-atomic, countably additive
mixed strategy. Instead, we have the following weaker result that uses the theory of agreeable
functions developed in section 1.10.

Theorem 24. Suppose that o is an optimistic equilibrium and that o is countably additive.
Suppose also that each player’s utility function is agreeable. Then, o is a Nash equilibrium.

Proof. The proof is the same as that of the previous theorem in view of theorem 27 below. [

Our next result suggests another way of finding optimistic equilibria. They may appear
as limits of e-Nash equilibria as € tends to 0.
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Theorem 25. Suppose that {o"}2, is a sequence of countably additive strategy profiles
such that 0" is an €"-Nash equilibrium. Then, any limit point of {o"}2, is an optimistic
equilibrium.

Proof. Let {0“},ca be a subnet of {0"}°, that converges to 0. Let p; € P; be some

n=1
potential deviation for player i. Pick a net {a%},ca from A; for which a® — p;.° Then,

U,(pi,o—;) <lim iAnf Ui(as,o?,)
ae
< 3 : i (07 o
< hglehnf(Uz(O' )+ €%)
S UZ'<O'Q). ]

We might hope that a sequence of e-Nash equilibria would converge to the stronger vague
equilibrium, but, as the following example shows, that is not the case.

Example 1. Consider the two-player, symmetric game in which player 1 chooses some
x1 € (0,1) and then receives payoff =y if #; # x5 and 0 if 7 = x9. For any € > 0, the
strategy profile (1 —€/2,1 — €/4) is an e-Nash equilibrium. Now, we have

ll_r%Ul(l —€/2,1—¢€/4) =1

and similarly for player 2. However, the profile (17,17) is not a vague equilibrium. The
worst case payoff is obtained via the sequence (1 —€,1 — €). This sequence implies that

U,(17,17) < lmUi(1—e,1— ) = 0.

Since U1(1/2,17) = 1/2 > 0, the strategy 1/2 is a profitable deviation for player 1.

While it is not true that every limit of e-equilibria is a vague equilibrium, every vague
equilibrium is the limit of e-equilibria. Moreover, these e-equilibria are very simple in the
sense that each player plays a linear combination of point masses.

Theorem 26. Suppose that o is a vague equilibrium. Then, there is a net {(0%, €*)}aca
such that 0 — o and € — 0 and o® is an €*-Nash equilibrium.

Proof. Let {0“}aca be a net of profiles in S that converges to . Let €* be the smallest €
for which ¢® is an e-Nash equilibrium. Let € = liminf,c4 €* and pass to a subnet for which
€* — e. If e =0, then we are done. Otherwise, assume € > 0. For each «, there is some

9A priori, this net may have a different index set than {o“},c4, but the product construction for nets
that allows us to find a single net {(c?,p?)}sep for which (o2, p7) —= (0, p;).
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player i* who has an €*/2-favorable deviation. Pass to a subnet on which i = i for some 1.
Then,

U,(0) < haneglf Ui(c%)

< liminf <U¢(0?7 o) — %)

acA
<Ui(pi,o-i) — Eu
2
but we know that U,(c) > U;(pi,0_;). This contradiction shows that e = 0. O

1.10 Agreeable functions

We now consider a condition which we will call agreeability on functions which ensures
that, as far as the agreeable functions are concerned, every profile of countably additive
strategies extends uniquely to a probability measure on A. We start by defining agreeability
for measurable sets. Recall that A is the algebra generated by the boxes in A and o(A) is
the o-algebra generated by A.

Definition 10. We will say that a set B € o(A) is agreeable if for every profile (o1,...,0n)
of countably additive strategies and every finitely additive measure T on o(A) that agrees with
o1 ® - ®oy on A, we have 7(B) = (01 ® - - ® on)(B).

First, it is clear that the collection of agreeable sets is an algebra extending A. We will
call this algebra G.

Definition 11. We will say that a function g : A — R is agreeable if it is G-measurable.

We care about agreeable functions because we know that if 7 is any finitely additive
probability measure that agrees with 01 ® - - - ® o with each o; countably additive and if f
is any agreeable function, then

[ rir= [ aoia 00w,

In the context of extending our utility functions to the profiles of finitely additive mea-
sures, this implies the following.

Theorem 27. If u; is agreeable, then U,(c) = U;(c) for all countably additive o.

We want to have quite a few agreeable sets. First, it is immediate that every A-
measurable function is agreeable. We have a few ways of finding A-measurable functions.

Proposition (Marinacci [Mar97]). Let f; : A; — R be A;-measurable for each i. Then,
(i) F(xy,...,ox5) = [1, fi(z:) is A-measurable;



CHAPTER 1. EQUILIBRIUM WITH FINITELY ADDITIVE MIXED STRATEGIES 24

(ii) F(xy,...,xx) = S0, filz:) is A-measurable.

Proposition (Marinacci [Mar97]). Let f be A-measurable and suppose that g is a continuous
function on R. Then, go f is A-measurable.

We have the following proposition which (after proving theorems 28 and 29) will cover
all of the utility functions that we are interested in.

Proposition. Suppose that f*,..., fX are A-measurable functions and G*,...,G¥ are G-
measurable sets. Then, 25:1 fFlae is agreeable.

Proof. This is immediate from the definition of an agreeable function. O]

It may be the case that every o(A)-measurable function is agreeable. However, we are
unable to show this.

Conjecture 1. Every o(A)-measurable set is agreeable: o(A) = G.

Since we are unable to prove the conjecture, we will satisfy ourselves with a theorem that
will ensure that the sets that we are interested in are agreeable. In particular, the graphs of
measurable functions are agreeable as the corollary to the next theorem shows.

Theorem 28. Let J be some proper subset of {1,...,N} and let f : A_; — Aj be any
(A_;, Ay)-measurable function. Let D¢ be the graph of f:

Df = {(a,J,f(a,J) ta_y € A,J}.

Let o be a profile of countably additive probability measures and let T be any probability
measure on A which agrees with o on A. Let QQ; be the atoms of o;. Then,

= 3 o ) x os{a)):

q€Qy

Since the expression for 7(Df) depends only on the value of 7 on A, we obtain the
following corollary.

Corollary 2. Dy is agreeable.

Proof of theorem 28. Let 0 < e < 1. For each j € J, let Q5 be a finite collection of atoms
(possibly empty) such that o; assigns probability less than € to the atoms not in Q5.
First, we see that f~'({q}) x {¢} C Dy when ¢ € Q5 =[], Q5. Tt follows that

> o (T {a}) x os({a}).

q€Q9

Letting € — 0, we have )5 1 @, from which we conclude that

> oy (f T {a}) x os({a})-

q€Q g
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Next, let B§ be a finite collection of pairwise disjoint sets from A; such that

A4=Q5u | B

BeB;

and for all B € B, B and Q5 are disjoint and 0;(B) < €. Let C§ be the collection of sets of
the form [[,c; C’ with elther Cj € B or Cj an atom of 0;. Notice that 0,;(C) < € unless
each Cj is an atom. We have

DfC Uf CJ XCJ

CjeCy

By definition of C'; and f, we see that each of these sets is A-measurable. It follows that

(U FHCy) xcj>

CyeCy

— Z o_i(f7HCy)) - 04(Cy)

CyeCy

< S o W) xoua) + S o (FTHC) e

7€Q5 CreC\Q5

<> o {a)) - ou({a}) + e

qeQ;

<Y o (f T {a}) ou({a}) +e

qEQ]
Letting € — 0, the result follows. n

Theorem 29. Suppose that By, ..., By are open, pairwise disjoint subsets of A such that
(Ule Bj> is agreeable. Then, B; is agreeable for each j.

Proof. Let o be a profile of countably additive probability measures and let 7 be any prob-
ability measure on A which agrees with ¢ on A. Let C' = (U?:l Bj)c. We know that
T(C) =o(C).
Since each Bj is open, we may write B; = |J,, D} with D? € A. Moreover, we may
choose the D} such that Djl. C DJQ. C Dj.’ C
Since 7(B;) > (D7) for all n, we see that
7(B;) 2 lim 7(D}) = lim o(D}) = o(B;).

n—o0 n—0o0



CHAPTER 1. EQUILIBRIUM WITH FINITELY ADDITIVE MIXED STRATEGIES 26

We then have

j=1
k
> o(C)+ ) a(B))
j=1
=1.
It follows that 7(B;) = o(B;) for each j. O

1.11 Conclusion

In this chapter, we have introduced two equilibrium concepts that are applicable when we
allow players access to finitely additive strategies: optimistic equilibria and vague equilibria.
Optimistic equilibria have the important property that they always exist. This provides,
at the very least, a starting point in the analysis of any game. On a case-by-case basis,
we may decide that an optimistic equilibrium are interesting economically, or, as may be
the case even with Nash equilibria, we may decide that an optimistic equilibrium is simply
an artifact of the process of formalizing an economic situation. In the Bertrand-Edgeworth
duopoly example, we showed that optimistic equilibria can identify economically interesting
strategy profiles even in games that are known to possess Nash equilibria. In our example,
the optimistic equilibrium had the interpretation of justifying an instantaneous decision on
the part of a duopolist in a dynamic setting.

Vague equilibria are more reasonable as a solution concept in the sense that they are closer
to Nash equilibria. However, for this reason they tend not to identify new interesting strategy
profiles. We regard their introduction as a contribution to the game theory vocabulary that
allows us to make precise intuitive notions about the kinds of qualitative behavior that we
might expect to see in normal form games that lack equilibria for compactness—rather than
for strategic—reasons.
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Chapter 2

Utility of wealth with many
indivisibilities

2.1 Introduction

We investigate the properties of the utility of wealth function of an agent who chooses an
optimal set of items from among a large number of indivisible items. Each item has a
cost and provides some amount of utility to the agent. We are interested in the utility of
wealth function obtained by solving this optimization problem for each wealth level. In the
computer science literature this optimization problem is called the knapsack problem [KPP],
so we will refer to the resulting utility function as a knapsack utility function.

It has been known since the seminal paper of Friedman and Savage [FS48] that an agent
who seeks to maximize her expected utility may simultaneously gamble and purchase in-
surance when her utility function has a region of convexity sandwiched between regions of
concavity. There has been a substantial amount of work in finding economic conditions that
give rise to utility of wealth functions with convexities [AK81, Dob88, Hak70, HH13, Jon88,
Kwa65,McC94]. Among these, Jones [Jon88], Kwang [Kwa65], and McCaffery [McC94] have
suggested that an indivisibility in the consumption set may induce a region of convexity in
the utility of wealth function and from this they recover Friedman and Savage’s result that
gambling may be part of an optimal utility maximization strategy.

We extend the results of Jones and Kwang to the situation in which all of the consump-
tion goods are indivisible. By considering a model in which there are a large number of
indivisibilities, we are able to consider the effect of an agent’s wealth on the incentives to
gamble that are caused by indivisibilities. In the single-indivisibility models presented by
Jones and Kwang, if the agent is wealthy enough that she is past the region of convexity
induced by the indivisibility she will prefer not to gamble. However, this conclusion appears
to be an artifact of the assumption that there is a single indivisibility. In our model, we find
that wealthy agents will tend to see relatively small (but sometimes positive) increases in
expected utility from gambling as a result of large scale decreasing marginal utility.

By incorporating a large number of indivisibilities, we find that most wealth levels fall
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in a region of convexity sandwiched between regions of concavity. As a result, we find
that simultaneous gambling and insurance purchase is commonplace. This suggests that
trying to predict the agent’s behavior with respect to some gamble or contingent liability
from a classification of the agent as “risk-loving” or “risk-averse” will likely be unsuccessful.
Instead, an understanding of the main items relevant to the agent’s consumption decision are
necessary for good prediction. While the agent’s attitude toward any particular risk depends
a great deal on the particulars of the risk, we find that large gambling expenditures and a
large monetary value placed on gambling will tend to result from the presence of high-cost,
high-utility items that the agent is close to being able to afford.

We consider the applicability of knapsack utility functions to consumer behavior by con-
sidering the utility of wealth function in a continuous-time intertemporal model in which the
agent’s utility of consumption function at each point in time is a knapsack utility function.
If the agent is able to borrow freely, the convexities which drive the interesting behavior of
knapsack utility functions are absent from the utility of wealth function [Jon88|. However,
after introducing a credit constraint we find that the agent’s utility of wealth function con-
verges to a knapsack utility function as the agent’s saving rate becomes small. That is, the
behavior of a credit-constrained agent with a low saving rate may be closer to that predicted
by a knapsack utility function than by a concave utility function. To our knowledge, we are
the first to use this model to justify transferring convexities in the utility of consumption
function to the utility of wealth function.

In the intertemporal model, repeated negative-expected-return gambling may be rational
in the sense that each gamble maximizes the agent’s expected utility at the time that the
agent undertakes it. From a societal perspective, this may be suboptimal because the law
of large numbers implies that populations for whom gambling is rational will collectively
become poorer. Moreover, members of these populations may find themselves in situations
in which repeated participation in negative-expected-value gambles prevents their wealth
from increasing with high probability. In short, our results suggest that indivisibility-induced
gambling is a kind of poverty trap. In our conclusion, we point out the parameters of our
model that could be targeted to reduce incentives for unfavorable gambling.

2.2 Knapsack utility functions

For us, an instantiation of the knapsack problem is specified by an infinite list of items, each
with a cost and a utility. The lists ¢ = {¢;}$2, and u = {u;}$2, are the costs and utilities of
the items. Given a wealth level w, a solution to the knapsack problem is a sequence (a;)52,

of 0s and 1s that maximizes
o0 o

Zaiui subject to Zaici < w.

i=1 i=1
We may define the utility of wealth function by

U(w) = sup {i a;u; iaici < w}
@ i=1 i=1
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where the sup is taken over all lists a = {a;}32; with a; € {0, 1}.
We will make various assumptions about the collection of items. Define the utility density
of item ¢ to be d; = u;/c;.

Assumptions. (1) For alli, ¢; >0 and u; > 0.
(ZZ) di > 0anddy >dy > ---.
(i1i) There is some C' > 0 for which ¢; < C for all i.

Assumption (i) states that the agent is a buyer rather than a seller and that all of the
goods are positive goods.

Assumption (ii) states that the utility densities tend to 0. The assumption that d; —
0 implies that we may order our items so that d; > dy > ---. This assumption is the
analogue of the typical assumption of decreasing marginal utility of wealth. We insist that
this sequence be strictly decreasing to make our results easier to state and prove.

Assumption (iii) asserts that the costs of items are bounded. If we regard indivisibilities
as market imperfections that impede trade, we would expect for mechanisms to arise that
divide these indivisible items, causing very large indivisibilities to be uncommon. We will
not use this assumption most of the time. The primary importance of assumption iii is that
it and assumption (ii) together imply that u; — 0.

Definition 12. We will call a function U a knapsack utility function if it is the utility of
wealth function for a knapsack problem with item set satisfying assumptions (i)-(ii).

A related problem that is useful as a benchmark is the linear relazation of the knapsack
problem. In this problem, the constraint that we either buy or not buy a given item is
relaxed so that we are allowed to buy any fraction of an item. The utility of wealth function
in the linear relaxation of the knapsack problem is given by

o o
U(w) = sup {Zaiui : Zaici < w} ,
@ i=1 i=1

where now the supremum is taken over all lists a = {a;}32; where a; € [0,1]. The greedy
algorithm is optimal for this problem. This is the algorithm that puts as much money as
possible into the item with the highest utility density, then proceeds to the second highest
utility density item and so on. We insist on assumption ii in the definition of a knapsack
utility function precisely because it guarantees that the greedy algorithm is well-defined.

It follows that U is concave. In fact, U is the convex hull of the function U. That is,
U is the smallest concave function larger than U. Since U(w) < dyw for all w, we are able
to conclude that U(w) < oo for all w. That is, our optimization problem never becomes
infinite.

In figure 3.2, we show a knapsack utility function with its convex hull. This figure
illustrates the features of knapsack utility functions that we find most interesting. First, the
frequent oscillation between concavity and convexity can lead to concurrent gambling and
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Figure 2.1: A knapsack utility function and its convex hull.

insurance purchase as in Friedman and Savage [FS48]. This is because the agent wants the
next large purchase and is fearful of losing her last large purchase. Second, this oscillation is
more pronounced at low wealth levels. This is caused by the fact that a wealthy agent will
have already moved past the largest jumps in her utility function. That is, the agent will
have already taken advantage of highest utility density opportunities.

2.3 Insurance and gambling

In this section, we will see that the concurrent purchase of insurance and gambles that
motivated Friedman-Savage utility functions is not unusual when our agent uses a knapsack
utility function. Our first result says that for most wealth levels, there is some contingent
liability which the agent is willing to pay a premium to insure against. Our second result
says that for most wealth levels, there is some gamble that the agent is willing to pay to
accept. Putting the two results together, we find that the potential for concurrent purchase
of gambling and insurance exists most of the time.

Definition 13. A contingent liability is a random variable L such that L < 0 and E[L] < 0.
An insurance policy against the contingent liability L is any random wvariable of the form
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—L + E[L] — p, where p > 0 is called the premium. A gamble is any random variable.!

Let
Wi:cl+---+ci

foralli=1,2,3,... and let Wy = 0. W; is the wealth level at which the agent has purchased

the 7 highest utility density items. Each W; is important because U(W;) = U(W;), so
gambling can only improve the agent’s position if the gamble has positive expected value.

Theorem 30. Suppose that the agent has wealth level w € (W, Wiy1) for somei =1,2,3,....2
There is a contingent liability L that the agent is willing to pay a positive premium to insure
against. Moreover, we may choose the contingent liability L and the premium p so that the
agent’s wealth after purchasing insurance lies in (W;, Wiy).3

The idea behind the proof of the theorem is that if the agent’s wealth level falls below
W;, then the agent loses the ith highest utility density item.* Since the items that the agent
acquires between W; and her current wealth w have relatively low utility density, she will be
willing to sacrifice some of them to avoid losing the high utility density item.

Proof. Let w' € (W;_1,W;). Let o € (0,1) be such that
a(w) + (1 —a)(w) =W,

We know that

aU(w') + (1 — a)U(w) < aUWw') + (1 — a)U(w) < UW;) = U(W,).
By continuity of the map
§ = oUw') + (1 —0)U(w),

it follows that there is some € > 0 such that
(5U(w/) + (1 -0)U(w) < UW;)

for all § € (a — ¢, ).

Let § € (o — €, ) be fixed and let L be the contingent liability that costs (w — w') with
probability ¢ (and costs 0 otherwise). Our choice of § allows us to find p > 0 such that
w+ E[L—p>W,.

'We will use the convention that U(w) = —oco if w < 0 to avoid making any boundedness assumptions
on the gambles.

2A similar result holds for almost all w € (Wy, W1).

3All proofs may be found in the appendix.

4The agent’s allocation at w € (W;, Wi,1) is difficult to compute exactly. It is likely that she will choose
to purchase the ¢ highest utility density items along with various lower utility density items, but this is not
always the optimal allocation. When we say that she will “lose the ith highest utility density item” we mean
that she will lose the jump in utility that she realized when her wealth reached W;.
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We see that the agent is willing to pay the premium p to insure against the contingent
liability L:

Uw + E[L] - p) > UW;)
> 5U(w') + (1 — 6)U(w)
— E[U(w+ L)),

]

Theorem 31. Suppose that the agent has wealth level w € (W;, Wiy 1) for somei =0,1,2,....
There is a gamble with negative expected value that the agent is willing to take.

The idea behind the proof is that the agent is happy to accept the mean-zero gamble
that leaves the agent with either wealth W; or W, ;. This gamble allows the agent to achieve
expected utility equal to U(w) > U(w). Slightly increasing the probability with which the
agent ends up with W; leaves the agent’s decision unchanged.

Proof of theorem 31. Let a € (0,1) such that
w=aW;+ (1 —a)W;,;.

Let Zs be the gamble that costs w — W; with probability ¢ and pays W;,; with probability

1 — 6. Since the sequence (d;)$2, is strictly decreasing, the solution to the linear relaxation

of the knapsack problem is unique. It follows that
E[U(w+ Z,)] = aUW;) + (1 — a)U (W) = U(w) > U(w).
By continuity of the map
5 E[U(w 4+ Zs)] = SUW;) + (1 = §)U(Wipy),

there is some € > 0 such that
ElU(w+ Zs)] > U(w)

for all § € (a,a + €). The agent is willing to take any gamble Zs with § € (a,«a + €) and
these gambles all have negative expected value. O]

These results are illustrated in figure 2.2.

2.4 Measures of risk seeking

The typical measures of risk-aversion and risk-seeking for differentiable utility functions are
the Arrow-Pratt coefficients of absolute and relative risk-aversion.® However, these measures
are never well defined for knapsack utility functions as a result of the following theorem.

5Given a differentiable utility function u, the Arrow-Pratt coefficient of absolute risk-aversion is
—u" (w)/u'(w). The Arrow-Pratt coefficient of relative risk-aversion is —wu” (w) /v (w).
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Figure 2.2: The agent begins with some non-random allocation, point A. Exposure to a
contingent liability, moves her to point B. Purchasing an insurance policy with a positive
premium moves her to point C. Finally, accepting a negative mean gamble moves her to
point D. The agent would have obtained the same increase in expected utility by moving
directly from B to D by simultaneously gambling and buying insurance.

Theorem 32. The derivative of a knapsack utility function exists and is zero everywhere
outside of a set of measure zero.

Proof. This follows immediately from theorem 38, which we prove below. O

We will investigate several alternative measures of risk-seeking behavior: the cost of the
optimal gamble, the certainty equivalent of a gamble, and the change in expected utility
from a gamble. For simplicity, we will consider only mean-zero gambles.

Definition 14. The cost of a gamble Z which takes only finitely many values is the magni-
tude of the smallest value that Z takes with positive probability.

If the cost of Z is ¢z, then we may write Z = —cz + Z1 where Z+ > 0 and Z1 = 0 with
positive probability. That is, the gamble Z provides the agent with the opportunity to pay
cz for the non-negative random variable Z7.
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Definition 15. By an optimal gamble at wealth level w, we mean a mean-zero gamble Z*
for which
ElU(w+ Z%)] > ElU(w + Z)]

for all mean-zero gambles Z.

We have an exact characterization of the optimal gambles.

Theorem 33. Suppose that w € [W;, W;1) for some i. Then, the mean-zero gamble Z* for
which the agent’s final wealth is either W; or W1 is the unique optimal gamble.

Proof. We compute

Wiy1 —w w—W;
ElU(w+ 2] = ==Y yw+ W, - Uw+ Wigy —
R e A s T
Wipn —w w—W;
=— - U(W; U(W;
W =, (W), VW)
= U(w).

The fact that Z* is unique follow from the following two facts. If Z is mean-zero and takes
values below the line ¢ connecting (W;, U(W;)) to (Wiyq, U(W;i1)), then

ElU(w+ 2)] < U(w).
The line ¢ intersects the graph of U only at the points (W;, U(W;)) and (W;y1, U(Wiyq)). O

Heuristically, the agent’s willingness to accept Z* says that the agent is willing to gamble
all of her items, except for the 7 highest utility density items, for the opportunity to have
the ¢ + 1 highest utility density items. Another way of thinking about Z* is that it is the
only gamble which allows the agent to achieve expected utility equal to U(w). Theorem 33
allows us to write down the cost of Z*.

Corollary 3. Let w € [W;,W,;,1) for somei. The cost of the optimal gamble at w is w— W,
and is therefore bounded above by c; 1.

This characterizes the gambling behavior of an agent who may choose freely among mean-
zero gambles. To the extent that our agent has free choice among gambles, large gambling
expenditures are associated with large indivisibility costs.

We turn now to considering the certainty equivalent of a gamble.

Definition 16. The certainty equivalent of a mean-zero gamble Z at the wealth level w is
Cw,Z)=sup{b e R:U(w+0b) < E[U(w+ Z)]}.
From the definitions of optimal gamble and certainty equivalent, we see that
Clw, Z*) > C(w, Z)

for all mean-zero random variables Z. Since the certainty equivalent of the optimal gamble
at w € (W;, W;11] is bounded by W;,; — w, we have the following corollary.
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Corollary 4. Let w € (W;, W;i4] for some i. For any mean-zero random variable Z, the
certainty equivalent of Z at w is bounded above by W1 — w, and therefore by c¢;.1.

This continues the theme that large monetary values placed on gambling are associated
with the presence of large, high utility density items. We will turn now to utility-based
measures of risk-seeking behavior. We begin with a straightforward observation.

Theorem 34. Let w € (W;, W;y1). Then,

Uw) —U(w) < .

Proof. We know that

and that -
Ulw) > UW;) = UW,)
Since B B
UWip) = UW;) = g,
the result follows. O

Since for any mean-zero random variable Z, E[U(w + Z)] < U(w), theorem 34 implies
that the utility than an agent derives from a gamble is bounded by the size of the item with
the highest utility density that she does not already own.

Corollary 5. Let Z be any mean-zero random variable. Suppose that w € (W;, Wi,1) for
some 1. Then,
ElU(w+2)] —U(w) < 1.

Proof. We have
ElU(w+ 2)] < E[U(w+ 2)] < U(w)

since U 1is concave. OJ

Stated another way, the agent always prefers reaching the next high utility density item
(i.e. reaching W; 1), to any mean-zero gamble. Compare corollary 5 to corollary 4. These
results concern two different ways of measuring the desirability of a gamble: the expected
utility and the certainty equivalent. For differentiable utility functions, the derivative pro-
vides a link between these two measures—at least for small gambles. However, theorem 32
(and theorem 38 below) tell us that the derivative cannot play the same role when considering
knapsack utility functions.
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2.5 Approximate concavity at large wealth levels

Our results in this section arise from comparing a knapsack utility function to the utility
function arising from the linear relaxation of the underlying knapsack problem. In this
section, we will make use of assumption iii: there is some C' > 0 such that ¢; < C' for all
1. Our assumptions on the item set now imply that u; — 0, which gives us the following
corollaries of theorems 34 and 5. The first tells us that U is very close to U at large wealth
levels.
Corollary 6. lim sup |U(w') — U(w')| = 0.

wW—00 w/zw
Proof. 1f lim;_,o, W; < oo then the result is trivial since U(w) = U(w) if w > W; for all i.
Suppose then that W; — oco. For any w > W7, let

i(w) =sup{i e N:w > W,;}.

Then,
sup [U(w') — U(w")] < sup [U(w') — U(w')]
w'>w w!' >i(w)
< sup u;.
>i(w)
Since the last expression tends to 0 as w — 0o, the result follows. O

This result is illustrated by figure 3.2. The second corollary tells us that for large wealth
levels, the increase in expected utility (if any) from gambling will tend to be very small.

Corollary 7. Let Z be a mean-zero random variable. Then,

limsup (E[U(w + Z)] — U(w)) < 0.

w—00

Consider the example, illustrated in figure 2.3, in which item ¢ costs ¢; = 10 and provides
utility u; = 10/i. Suppose that the agent has access to the mean-zero gamble Z that pays
—5 with probability 1/2 and pays 5 with probability 1/2. Consider the case in which the
agent has wealth 5 + 10n for some n € N. If she accepts the gamble and loses, her utility
will be unchanged since

U5+ 10n) = U(10n).

However, if she accepts the gamble and wins, her utility will increase to
U(10+10n) = U(5+ 10n) + 10/(n + 1).
It follows that the agent’s increase in expected utility from gambling is

E[U(5 + 10n + Z)] — U(5 + 10n) = 5/(n + 1).
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Figure 2.3: At wealth levels 5,15,25,... the agent will be able to achieve
U(5),U(15),U(25),... by betting 5 on a fair coin flip. Accepting the gamble increases the
agent’s expected utility at these wealth levels, but the amount by which the expected utility

increases tends to 0 as the wealth level becomes large.

We see this sequence tends to 0, but is always positive. This example shows that it is possible
for a wager to provide some incentive to gamble even at very large wealth levels, but corollary
7 ensures that this incentive tends to zero as wealth becomes large.

A slightly different perspective is given by considering our next result, which tells us that
the marginal utility of a fixed sum tends to 0 as the initial wealth level becomes large.

Theorem 35. Let M > 0. Then,
lim (U(w+ M) —U(w)) = 0.
w—00

Proof. If lim;_, . W; < oo, then the result is trivial. Suppose then that W; — oo. Let
w € [W;, Wiy1). Then,

Ulw+ M) = U(w) <UWi + M) = UW;) < dipa(C+ M)
and d; — 0 as 1 — oo. ]

However, the convergence in the theorem need not be monotonic. It is precisely the
regions in which we observe a rising marginal utility of wealth that the agent will derive
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positive (though possibly very small) incremental utility from gambling, even at large wealth
levels.

2.6 Proof that knapsack utility functions are pure
jump processes

The proof that a knapsack utility function is a pure jump process will require some prepa-
ration. The first step is showing that the supremum in the definition of the knapsack utility
function is always achieved.

If x and y are sequences, we will write x -y = >~ 2;y;.

Theorem 36. For cach w € [0,00), there exists an a € {0,1}N for which u-a = U(w).

Proof. Suppose that (a™)>2; is a sequence of selections for which ¢-a™ < w and u-a"™ 1 U(w).
Since {0,1}" is compact and metrizable, we may replace (a™)S%; by a subsequence that
converges, say, to a. Fatou’s lemma implies that

c¢-a <liminfc-a" <w,
n—oo

so a is feasible. Similarly, we see that u-a < U(w).
Next, let € > 0. Pick K large enough that wdx < €. Pick N large enough that a™<F =
a<¥ for all n > N. Then, for n > N, we have

U - an,>K S dKC' an,>K
<dg-w<e.

From this we have

u-a=u-a K +u-a¥

K K

_u_an,>
K

=u-a"+u-a”

>u-a” —u-a™”

>u-a” —e.
Letting n — oo, we see that u-a > U(w) — € and letting ¢ — 0 gives us u-a > U(w). O

A variant of the knapsack problem that we will find useful for the proof is obtained by
restricting the item set. Given a list = (7;)°; and a natural number N, we will write
=N = (z;);<y. With this notation, we can define the utility of wealth function in the
knapsack problem with only the first N items by

UsN(w) = sup {v=N-a:cN-a <w}.
ac{0,1}V

We will also be interested in the problem where the item set is restricted to { N, N+1, - - - }.
The notation for this problem is completely analogous to the previous problem.

Our next theorem tells us that for sufficiently large N, USY is a good approximation to
U if we restrict our attention to a bounded subset of [0, co).
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Theorem 37. For any W > 0,

sup |U(w) — USN(w)] — 0

0<w<W
as N — oco. That is, USN converges uniformly to U on compact subsets of [0, 00).

Proof. Let a be any optimal allocation in the knapsack problem with wealth w. Let a” be
any optimal allocation in the knapsack problem with the item set restricted to the first N
items and wealth level w. Then,

Uw)—UNw)=u-a—u-a

=(u-a=N —u-a") +u-a”V

<wu-a” >N

<dypw
The first inequality follows from the optimality of a”V. The result follows. O
Proposition. U is cadlag.’

Proof. Theorem 37, tells us that (USY)_, converges uniformly to U on compact subsets
of [0,00). Each USY is evidently cadlag, and the uniform limit of cadlag functions is again
cadlag, so the result follows. O

Since U is a nondecreasing, cadlag function, Lebesgue’s decomposition theorem tells us
that we may write U uniquely as a sum of U; and Uy where

(i) Uy and Ug are both nondecreasing and cadlag;
(i) U;(0) = Uc(0) = 0;
(iii) Ue is continuous;

(iv) Uy is a pure jump process.

Our next proposition is a reverse dynamic programming equation for solving the knapsack
problem given a solution to the tail of the item set.

Proposition. Let N be any non-negative integer. Then, for any wealth level w,

(w ae%?ﬁlv{u a+ (w—c>"-a)}

6Cadlag is an acronym for continue a droite, limite & gauche, which is French for right continuous with
left limits.
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We can now prove theorem 38. The rough idea of the proof is this: Fix W > 0. We know
that U>Y (w) < dyW. If there is an interval [w,w’) on which the max in proposition 2.6
is achieved by a fixed a € {0, 1}, then

Uc(w') — Uc(w) = Uz (w') = Uz" (w) < dy1(w' — w).

If [0,W) can be covered by disjoint intervals for which this is true, then we are able to
conclude that
Uc(W) <dyaW

for all N and so Us(W) = 0.

However, we are not able to guarantee the existence of intervals of this form, so the idea
above does not go through. In our proof, we show that it is sufficient to consider intervals
[w, w’) for which there is some a € {0,1}" such that the max in proposition 2.6 is achieved
by a at w and at some sequence of wealth levels increasing to w’. We show how to write
[0, W) as a disjoint union of intervals in this form.

Proof of theorem 38. Lebesgue’s decomposition theorem tells us that it suffices to show that
Uc(W) =0 for all W > 0. Let N be any positive integer and let W > 0.

Let wg = W and let ag be an optlmal allocation with wealth wy. Given w; and a;, stop if

w; = 0. Otherwise, define w;,; = ¢V -a;. Let (w")22, be any sequence such that w™ 1 w;, 1,

and for each n let a™ be an optimal allocation with wealth w". Define a;,; to be any limit

point of (a™)2,. Since for each i, j, aiSN ajSN and {0,1}" is finite, this process must

terminate at some stage K. For each k € {0,1,--- | K}, let
Up(w) = u=N ot + UPN(w — =V - a2,

This is the utility function that arises from imposing the requirement that a,?N be purchased.
For any function f, we will write

Fa) = lim ().

Our choices of xp and a; ensure the following for all £k =0,1,..., K:
(2) Uk(wpr) = u=N - o™

(b) Ulzy) = Urlwy);

(c
(d

(Tre1) < U(zppa);

)
)
) Uk

) Ukl(zy) = Uk(zp41) = UM (g — 2p41).-
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We then have

K—1
UcW) <>y (Ulx) —U(zgs1)) (by neglecting jumps at each xy,)
k=0
K—1
< ) (Uk(zy) — Uk(z41)) (by (b) and (c))
k=0
K—1
= U M(ay — wh41) (by (d))
k=0
K—1
< UM (g — 2p41) (since U>Y is nondecreasing)
k=0
K-1
< Z dns1(2k — Tps1)
k=0
= dN+1W

Letting N — oo, we see that Us(W) = 0. It follows that U = Uy is a pure jump process. []

2.7 An intertemporal model with credit constraints

Since Friedman and Savage first explained concurrent gambling and insurance purchase using
a utility function with convexities [FS48], several papers have investigated whether or not
a convexity in the utility of consumption function in an intertemporal allocation problem
results in a convexity in the utility of wealth function in either the discrete or continuous time
case. Assuming perfect capital markets, the agent is able to reduce the convexities in the
discrete case [BOWS80] [HF02] and remove them entirely in the continuous time case [Jon88]
by spreading consumption out over time. The convexities that remain in the discrete time
case appear to us to be an artifact of discrete time, suggesting that some market imperfection
is necessary to elicit convexities in the utility of wealth function.

Any constraint on the agent that makes it more difficult for her to optimally distribute
her consumption over time as in [Jon88] is an opportunity for convexities in the utility
of consumption function to manifest in the utility of wealth function. We believe that
credit constraints represent the most plausible mechanism by which indivisibilities induce
convexities in the utility of wealth function. In the presence of credit constraints, the only
way for an agent to obtain a costly item is to save for it. If saving is very slow, convexities
in the utility of initial wealth function will result.

We will consider a model in which a credit-constrained agent saves over time to purchase
items.” We will assume that durable goods retain their full value indefinitely and that the
agent faces no transaction costs. Allowing for depreciation or transaction costs would make

"We are very grateful to an anonymous referee for suggesting this model.



CHAPTER 2. UTILITY OF WEALTH WITH MANY INDIVISIBILITIES 42

it more difficult for the agent to spread her consumption over time, resulting in even more
pronounced regions of convexity.

Consider a credit-constrained agent with initial wealth w who saves s per unit time,
so that the agent’s accumulated wealth at time ¢ is w + st. The agent may choose from
an infinite collection of items as before. Item ¢ costs ¢; and provides utility at a rate u,.
The agent discounts future utility exponentially with discount rate r. We will normalize so
that item ¢ provides total discounted utility equal to w; if it is purchased at time 0. Our
assumption that durable goods retain their value and that they may be bought and sold
costlessly implies that the agent will have wealth w + st at her disposal at time ¢. As a
result, she will allocate her resources so that she achieves utility at the rate U(w + st) at
time ¢. In summary, her utility of wealth at time 0 is given by

Vi(w) = /0 U(w + st)re” " dt.

The following theorem will help us understand the behavior of V.

Theorem 38. The knapsack utility function U is a pure jump process. That is, there are
sequences of point {q;}52, and {A;}32, such that

Uw) = Ajlig<w)
j=1

The number A; is the size of the agent’s increase in the rate of utility when she reaches
wealth ¢;. After some elementary calculus, theorem 38 implies that we may write

Vi(w) = Z A;min{e®=%)/5 1}
=1

We may interpret the function min{e(*~%)/s 1} as a less convex version of the step
function that jumps from 0 to 1 at w = ¢;. In figure 2.4, we plot V; for various values of s
using r = 0.1 and the knapsack utility function from figure 2.2. The most important factor
in determining the eventual utility that an item provides is the amount of time that the
agent must save before purchasing it. When s = 50 an additional 50 in initial wealth will
avoid only a year of discounting, whereas the same additional 50 would prevent 5 years of
discounting when the agent is saving at the rate s = 10. If we regard 90% as a meaningful
yearly discount rate, we see that significant convexities appear even when the agent wishes
to purchase an item that requires only a few years of saving.

The illustration suggests that the agent’s utility of wealth function approaches the knap-
sack utility function as her saving rate becomes very small. This is in fact the case.

Theorem 39. lim,_,o Vi(w) = U(w) for all w > 0.



CHAPTER 2. UTILITY OF WEALTH WITH MANY INDIVISIBILITIES 43

o
LO pu—
—
o
O p—
> —
x
=
o
o _|
o
o p—

Wealth level

Figure 2.4: If the agent values utility a year from now at about 90% of current utility, we
see that V; very close to U when s is small is is approximately concave when s is large.

Proof of theorem 39. This follows from our representation of U in theorem 38, our represen-
tation of V; as

Vi(w) = 3 Ay min{e® 9/, 1},

j=1

and the fact that min{e(*~9)/ 1} converges to 0 when w < ¢; and converges to 1 when
w > ;. 0

Consider the behavior of an agent with a low saving rate who finds that at some wealth
level w, there is a gamble with negative expected value that maximizes her expected utility.
If she loses, she will either save or choose to gamble again. If she manages to recoup her losses
from the first gamble via saving, she will choose to gamble again when her wealth reaches
w. It is also possible that she will choose to gamble again before she has fully recouped her
losses. In either case, we expect to see the agent gambling repeatedly until she wins some
gamble that increases her wealth above w.

We turn now to the subject of low saving rates. The most straightforward reason for
a low saving rate is simply that the agent has a low income. Another reason that may
be more plausible for agents with higher wealth levels is the use of hyperbolic discounting.
A more sophisticated (and much less tractable) model might allow the agent to choose
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between current consumption on non-durable goods and saving for durable goods. As in
O’Donoghue and Rabin [OR00], a sophisticated agent who uses hyperbolic discounting may
wish (at time 0) to save money for a large purchase, but will correctly anticipate that at
some intermediate time she will spend the money on some other purchase. If the agent
prefers current consumption to the anticipated consumption at the intermediate time, she
will consume and fail to save as a result.

Our results in this section do not depend crucially on the specific saving or discounting
scheme that we used. Any wealth accumulation scheme coupled with discounting that has
utility from future consumption decreasing to 0 as the consumption becomes more distant
will yield the same result as the rate of wealth accumulation decreases. In particular, theorem
39 will continue to be true when the agent uses hyperbolic discounting.

2.8 Conclusion

We introduced knapsack utility functions to serve as a benchmark for the case in which
all consumption goods are indivisible. We saw that the convexities that are typical of these
functions are more pronounced at low wealth levels. An implication of this is that gambling is
a greater source of utility at low wealth levels than at high wealth levels. We then considered
the effect of indivisibility size on gambling behavior. We saw that even at large wealth levels,
where gambling provides relatively little utility, an agent may very well spend a large sum
of money on gambling if she is facing a large indivisibility.

Given that poorer agents derive more expected utility from gambling than wealthy agents,
we would expect for poorer agents to gamble at least as often as more wealthy agents.
Moreover, we would expect to see a poorer agent expending more effort to gamble, but for
the amount gambled to be more correlated with the size of the relevant indivisibilities than
the wealth of the gambler.

We hope that our examples have impressed upon the reader the importance of under-
standing the specifics of the items underlying the agent’s consumption decision. The decision
about whether or not a particular gamble is worthwhile may change drastically with rela-
tively small changes in the agent’s wealth level. Our results indicate that a belief that an
agent has a concave utility function when she in fact has a knapsack utility function may
lead to wildly incorrect predictions.

We showed that a credit-constrained agent who saves to purchase goods will face signifi-
cant convexities in her utility of wealth function when her saving rate is low. This effect is in
addition to our earlier observation that the large increases in expected utility from gambling
will tend to be more common at low wealth levels. Our observation that the agent may
find herself again and again in a situation in which participating in a gamble with negative
expected value is optimal suggests that indivisibility-induced gambling has the potential to
prevent upward mobility. Based on our analysis, we will suggest several targets for removing
this barrier.

First, we may attempt to decrease the size of indivisibilities. For example, we might
encourage the acceptance by employers of degrees from two-year universities or we might
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ensure that low-cost neighborhoods have quality schools. Second, we may attempt to in-
crease saving rates. This could be accomplished by attempting to increase incomes or by
increasing the percentage of income saved. Third, we may attempt to make agents more pa-
tient. Decreasing the rate at which future utility is discounted will result in less pronounced
convexities. If our analysis accurately reflects the economic reality, the practice of filling
state coffers with gambling revenue would appear to be a highly regressive practice. We
highly recommend [McC94]| for a non-technical analysis of some of the practical and ethical
considerations of indivisibility-induced gambling.
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Chapter 3

Information Aggregation in Financial
Markets

3.1 Introduction

Since it was introduced, the Black-Scholes [BS73] framework for modeling security price
processes has become ubiquitous. However, this framework is agnostic about the motivations
for the decisions made by market participants that drive price changes. Moreover, it is
unclear how information about the real economy affects the price of a security.

We introduce a model in which the agents start out believing that the price of the
security is governed by a stochastic differential equations as in Black-Scholes. Each agent
then observes a private information stream and continuously updates her beliefs about the
price process. This spurs each agent to change her trading strategy. The aggregate of the
trading strategies then drives the price process. This model allows for events in the real
economy to influence prices as long as they show up in the agents’ information streams.

In our model, the price process itself is determined by two factors: the beliefs of the agents
and the information that the agents receive. The price is not determined solely by beliefs
about the fundamentals of a security, but by beliefs about the distribution of the entire price
process. Stated another way, if we imagine holding fixed the information streams available
to the agents, the security price process will be determined entirely by the beliefs that the
agents hold about the security price process. This begs the central question of this chapter:
when will agents’ beliefs about the distribution of the security price process lead them to
behave in a way that makes their initial beliefs correct”? That is, when are the agents’ beliefs
self-fulfilling? We find that the condition that the agents’ prior beliefs be correct allows us
to draw strong conclusions about the price processes.

Solving each agent’s optimization problem after she has observed her private information
stream involves representing the price process as an [to process with respect to the filtration
generated both by the market processes and the information stream. Work with the theory
of enlargement of filtrations was initiated by Jacod [Jac85], but is able to treat only the
case in which the enlargement is achieved by adding a single random variable at time 0.
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The work of Ankirchner, Dereich, and Imkeller [ADIO7] is sufficiently general to allow the
types of enlargements that we are interested in. We primarily make use of the later work of
Pikovsky and Karatzas [PK96], in which they show how we may solve optimization problems
in continuous time finance after having made an enlargement of filtration.

Our model may be regarded as a model of widespread insider trading. Certainly, we
have benefitted from exposure to the Kyle model [Kyl85] and its continuous time analogue
[Bac92]. The use of enlargement of filtration in insider trading models is well established
[CCD11, Dan10, FWY99]. Our model differs from these primarily in the sense that it is
not game-theoretic. Our agents behave intelligently in the sense that they make difficult
optimization decisions in the face of uncertainty, but they do not behave strategically as
they do not attempt to respond to the other agents’ behavior. Our model has the flavor of
a self-confirming equilibrium model as in [FL93], but is perhaps best viewed as a mean-field
game [LLO7] with a small (i.e., finite) number of players.

The rest of the chapter is organized as follows. In section 3.2 we present our model. In
section 3.3, we examine our model in the case that agents use CARA utility functions. In
section 3.4, we consider the case of CRRA utility functions. In section 3.5, we conclude.

3.2 The model

There are N agents and a security whose price process is { P };+>o. Each agent also has acess
to a risk-free bond whose rate of return is normalized to 0. Each agent seeks to maximize
her expected utility from wealth at some common end date T.! We will make specific
assumptions about the utility of wealth functions below.

Suppose that the agents start out with a prior belief under which we may write

dPt = Pt(rt dt + O'dBt)

where {B,;}1>0 is a Brownian motion with respect to the completed filtration F = {F;}i>0
that it generates and {r;};>o is an F-adapted stochastic process.

Each agent’s private information stream is modeled by a complete, right-continuous fil-
tration G" = {G}'}+>0 extending the filtration F.

Assumption 1. For each agent n, there are G"-adapted processes o and B™ such that
(i) B" is a G"-Brownian motion;
(ii) dB, = o dt + dB}; and
(iii) E [fOT(agz)?dt} < .
!Setting an end date makes it easy for us to define the problem, but our results are independent of T

in the sense that a different choice 77 > T for the end date would yield exactly the same processes on the
interval [0, T7.
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Heuristically, this assumption is satisfied when agents retain some uncertainty about the
value of the price process at any point in the future even after they observe their private
information streams. For details, see [ADIO7] or [PK96].

Agent n, working with the filtration G", may write

dP; = P(rdt + oaldt + odBY).

We will assume that the agent has access to a risk-free bond with interest rate normalized
to 0. The agent believes herself a price-taker, so this is now a classic portfolio optimization
problem. The agent’s optimal portfolio (the optimal number of shares to hold) at time ¢ will
be denoted by 6. In general, 07 will be a function of the current price P, of the security.
To determine this price, we will enforce the market clearing condition and normalize the
number of shares of the security to one:

N
1=> 0.
n=1

We will now consider separately the cases in which agents use utility functions with
constant absolute risk aversion (CARA) or with constant relative risk aversion (CRRA).

3.3 CARA utility functions

In the CARA case, we will assume that each agent uses the utility function u"(c) =1 —e¢
with fixed parameter 7 € R for all agents.

Theorem 40. Suppose that the agents use CARA utility functions. Suppose also that the
agents’ prior belief about the distribution of the security price process is correct.

(i) The process B is a Brownian motion with respect to the filtration G = A\, _, G".
(i1) The drift process r satisfies
th = Tt<7"t dt +o0 dBt)

(111) The drift process {r:}i>0 has the explicit solution

exp {—c%t/2 + 0B}
ro! — [y exp{—02s/2 + 0B} ds

Ty =

(iv) The drift process either converges to 0 or diverges when rq > 0. Moreover, if the map
o(z) = P(ry = Olrg = x)

is twice differentiable on (0,00) and continuous on [0, 00), it must take the form

(z) = exp (-%;-) |
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(v) The price process satisfies
r
P =N—.
yo
We will make a few comments before proving the theorem. First, (i) tells us that the
process B is unpredictable given only the information that all market participants have in
common. However, it is possible that every agent knows something that the others do not,
so each may have a nonzero expected drift aj'. The forms of (ii), (iv) and (v) are dependent
on our choice of CARA utility functions.
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Figure 3.1: Sample paths of » with CARA utility functions, o = 0.05, and ¢ = 0.1.

The conclusion that r; either converges to 0 or diverges is a bit odd. The belief that the
price of a security will not rise faster than the risk free rate will certainly be self-perpetuating
provided that the market does not receive any information that contradicts this. The agents
are risk-averse, so they will not be willing to tolerate the variance of the security without
being compensated, so this means that the price must be tending to zero in tandem with
the drift. We see then that (iv) tells us the probability that the security will be worthless
from a starting expected rate of return.

Second, the belief that a high drift is a precursor to a yet-higher drift will allay fears that
the security may be overpriced, allowing for a perpetual increase in the price. It is unclear
to us which property of CARA utility functions is driving this behavior as we fail to observe
this kind of perpetual speculative boom in the CRRA case below.
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We now present the proof.

Proof. We find that the optimal trading strategy? of agent n, given the filtration G*, is given
by

L Titoay
o; = P
Yo

If we have some quantity by for each agent, then we will denote the value of that quantity
averaged across agents by b; or by b}

Applying our market clearing condition, we see that

N
IESA
n=1

_ yretox
Y02 Py

Solving for P, we have

Ty + o0y

vo?

Pt:N

Then, we must have that a; is F-adapted (since we can solve the previous equation to
write a; in terms of F-adapted processes). We then have

C_L’t - E[C_Kt’ft]

1 N
= > Ela}|F]
n=1
= 0.

This implies (v). At this point, the price process is determined by two equations: a; = 0
and
Pt — N—

Let us focus on the first of these for a moment. We know that
dB; = o dt + dB?.

Averaging over the agents tells us that

dB, = @, dt + dB" = dB.

2See [Kar89] for solving general optimization problems in the context of continuous time finance and
[PK96] for solving them in the context of enlargements of filtration.
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Rewriting this in integral form, we have for s <t
|
R P
Recall that G; = /\7]:;1 Gr. Since each B" is a G"-Brownian motion, we have

E [B;l—ég

G.| =k BB - B

g:|

g, = o.
It follows that
E[B; — Bs|Gs| =0

Since B; is Gs-measurable we obtain (i).
We turn now to the equation

P, = NI
yo?
This implies that
N
dPt = _ert-
o

In view of the equation
dPt Pt(rtdt + O'dBt)

we obtain the equation in (ii):
d?"t = Tt<7"tdt + UdBt).

51

A straightforward, but lengthy, application of Ito’s lemma implies that (iii) is in fact a

solution to this stochastic differential equation.

Let ¢(z) be the probability that r; converges to 0 when ry = . Since ¢ is assumed to be

twice differentiable, we may write
1
do(ry) = ¢'(re) dry + §¢”(7"t)(d7"t)2
= ¢/ (r)ridt + ¢ (r,)ro dB; + %gb”(rt)rfa2 dt
2
= <¢I(T’t) + %Qb”(rt)) T? dt + ¢/(Tt)rt0 dBt

Since
¢(rs) = P({r: — 0}|F;) = E[l(rt—)O)lst

we see that ¢(r) is a square integrable martingale with respect to the filtration F generated
by B. It follows that the drift term in d¢(r;) must be 0 almost surely. Since r;, > 0 for all

t > 0 (unless 79 = 0), we see that ¢ must satisfy the differential equation

2
¢ + %qb" = 0.



CHAPTER 3. INFORMATION AGGREGATION IN FINANCIAL MARKETS 52

This is straightforward to solve with the boundary conditions ¢(0) = 1 and lim, - ¢(x) =

0. The solution is 5
o(z) = exp (——x) :

o2

This proves (iv). O

3.4 CRRA utility functions

In this section, we will consider the case in which each agent uses a CRRA utility function.
That is,
-1
L
for some v € R.? Define X to be the market value of agent n’s security and bond holdings
at time t. We will write v
X => X
n=1

for the total wealth of the market. We see that X is an F-adapted process since dX; = dP;.

To make headway with CRRA utility functions, we will also need to assume that the agent
only forms a belief about the drift o at time ¢. That is, the agents’ private information
streams give them information about the instantaneous future, but the agents remain in the
dark about anything beyond that.

u"(c) =

Theorem 41. Suppose that the agents use CRRA wutility functions, that the agents’ prior
belief about the distribution of the security price process is correct, that o s independent of

gr =0 (U, G"). Then,
(i) The process B is still a Brownian motion with respect to the filtration G = /\7]:7:1 gr.

(ii) The drift process {ri}i>o satisfies
Tt
th =Tt (1 - —2) (Tt dt + O'dBt).
~yo
(iii) The drift process {ri}i>o either converges to 0 or to yo*. Moreover, if the function

o(z) = P(ry = Olrg = x)

is twice differentiable on (0,v0?) and continuous on [0,v0?], then

¢(x) _ (1_%)274-1

for all 0 < x < yo?.

3If v = 1, we set u™(c) = log(c) as usual.
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(iv) The price process satisfies
P=X,—L.
Yo

The result that B is a Brownian motion with respect to the “market filtration” G is
essential for the rest of the results and our proof of this result is dependent on our assumption
that agent’s receive only instantaneous glimpses into the future (i.e. that o} is independent
of GI).

In the CRRA case, the long run behavior of the rate of return is much more reasonable
than in the CARA case. One might think that the fact that the price remains finite is due
to risk aversion. In fact, if the price were to increase rapidly, the agents would become
wealthier and, consequently, less risk averse. We would expect for this to lead to more risk
taking rather than less. A good explanation as to why CARA utility functions result in a
speculative bubble whereas CRRA utility functions do not is wanting.
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Figure 3.2: Sample paths of » with CRRA utility functions, ro = 0.05, and o = 0.1.

The alternative to a collapse in the price is that the drift tend to yo. This meshes well
with the intuition that v is the required relative return on an investment to justify a unit of
variance. That is, yo? = r,. Another interesting feature of this long-run equilibrium is that
we will have P, &~ X,. For this to be the case, we must have almost full investment in the
security.

We now present the proof.
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Proof. The optimal G-adapted trading strategy for agent n is*

T + oy
0 = X' ————.
¢ t ")/O'QPt

In this section, when we have a quantity b} for each agent, we will define
| XN
bﬁzwszEZX&,

n=1

In the previous section, we averaged over each agent equally. In this section, we are weighting
each agent by her wealth.
Now, when we apply the market clearing condition we obtain

N
1= o
n=1

_ X, Ty +2004t‘
o2 Py

Solving for P, we have

P - x,[Ho%
Yo

As before, we see that a; is F-adapted. We then have
O_ét — E[@t’Ft]
| N
= & 2 Elop X717
n=1
Now, since F; is generated by the continuous process B;, we have F;, = F;—. It follows that
F: € G*. That and the fact that o} is independent of G* imply that

Eloi X7'|Fi] = BIE[a} XT|G ]| Fi]
EIX{ Elof |G ]1F]
EIX} Elof]|Fi
0,

where the second equality makes use of the fact that X" is continuous and F-adapted. This
implies that @; = 0.
Once again, the price process is determined by two equations:

ar =0, P=X—1.
Yo

4For details, see [Kar89] and [PK96].
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which gives us (iv).
Taking the wealth-weighted average of the equation
dB, = o} + dB?
over all agents yields the equation
| X
dB; = <+ > X[dBy.

t n=1

In integral form this equation is
N o et
X -
B,—B,=)_ 71 dB.
n=1"v"$

Let G = /\2;1 G". Then, since B! is a G"-martingale and X/ X, is bounded and G"-adapted,

we have
tXn _ tXn _
E L d4dB"G,| = FE |E L apr
[/s Xi tg} [ [/s X, !

E[B; — Bs|G4] = 0.

Since By is F; measurable and F; C G, this implies that F[B;|G;| = Bs. This proves (i).
We return to the equation:

9’?] gs] =0.

It follows that

Pt:Xti

vo?

Writing this equation in differential form, we have
1
df)t = —Q(Xtdrt + Ttht>.
Yo
We know that dX; = dP;, so we may write
1
df)t = —Q[Xtdrt -+ T’tdpt].
Yo

We also have

dPt = Pt(Ttdt + O'dBt)

. Xyry
= o

(redt + odBy).

Setting these last two equal to each other gives us

Xtht + T’tdpt = XtTt(T'tdt + O'dBt)
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Substituting in the equation for dP; again gives us

X
Xodry + 1y~ (it + 0dBy) = Xyry(rydt + 0dBy)
~yo

We can divide everything by X; and rearrange to find

drt = ( —TI't——= "t )(Ttdt + O'dBt)
'YO'

r
=Tt (1 — F:-Z) (Ttdt + O'dBt)

This proves (ii).
Let ¢(x) = P(ry — O|rg = x). Then, using our assumption that ¢ is twice differentiable,
we may write

Tt

do(ry) = @' (r)re (1 - 77) (redt +0dBy) + = gzﬁ”(frt) (1 - %)2 o dt

t / 1 t i /
=r? (1 — #) [gzﬁ (r) + 502 (1 — %) ) (rt)} dt + o' (ry)ry <1 — 77) dB,.

As in the previous section, we notice that ¢(r;) is a martingale with respect to F. This
implies that the drift term in d¢(r;) must be 0 almost surely. For r; € (0,v0?), this gives us
the differential equation

0=¢(z)+ %J2 (1 —

This equation is separable. We solve to find

i) ¢ (z).

Yo

for 0 < x < yo?. For 1y = x < 0, we see that 7, is a bounded above submartingale whose
drift is bounded away from 0 when r; is bounded away from 0, so r;, — 0. Similarly, when
ro = x > Y02, 1, is a bounded below supermartingale whose drift is bounded away from 0
when r; is bounded away from yo2. This proves (iii). O

3.5 Conclusion

We have considered a continuous time financial model in which agents make trading de-
cisions based on prior beliefs about the distribution of a security price process after they
have observed some private information stream. Under specific assumptions on the utility
functions used by the agents, we have found explicit descriptions of the dynamics of the
model that make the agents’ prior belief about the price process correct. In both of the
cases that we considered, we observe that the price process is driven by a process which is a
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Brownian motion with respect to the filtration containing all of the events that were known
to all agents. That is, according to what is known to everyone, the future is unpredictable.
We also observed that a long run equilibrium in which prices collapse to zero is a pos-
sibility in both cases. However, in the CARA case we observed the unrealistic scenario in
which the drift and price of the security diverge quickly. In the CRRA case, we fail to
observe this scenario, but instead observe the possibility of a long run equilibrium in which
the drift converges to a rate that offsets the agents risk aversion and leads to approximately
exponential growth of the security price along with full investment in the security.

We believe that this model provides a plausible starting point from which we may ask
questions about the way in which prices might conform to a given distributional belief when
the form of the belief itself affects the distribution. We have focused our discussion on the
Black-Scholes model because it is both popular and tractable. It would be interesting to see
a thorough treatment of the case of stochastic volatility.
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