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MATHEMATIC AL COGNITION, 1995, 4 (23, $5-101

What Did Weierstrass Really Define?
The Cognitive Structure of Natural
and -0 Continuity

Rafael E. Nafez and George Lakoff
University of California, Berkeley, USA

The cognitive science of mathemalics is the study of mathematical ideas from the
perspective of research on our largely unconscious everyday conceptual systems as
they are embodied in the human brain. A major result is that most everyday abstract
ideas are metaphorical in nature—that is, they involve inference-preserving
mappings from one conceptual domain to another. Many mathematical ideas
are metaphorical in this respect, as when we conceptualise numbers metaphorically
as points on a line, or when we concepiualise lines metaphorically as sets of poiats,

The concept of €5 continuity is metaphoncal as well. In everyday thonght,
{matural) continuity is understood in terms of a trajectory of motion, as it was in
mathematics until the late mneteenth century. From a cognitive perspective, what
Dedekind and Weierstrass really did was to introduce new metaphors for natural
continuity, That is, they conceptualised continuity for lines and for functions in
terms of two new amd radically different concepts: gaplessness for lines, and
preservation of closeness for functions. But the mathematical community has
incorrectly seen Weicrstrass as having done something different: defining the
essence of the concept of continuity, This mistake has confused generations of
mathematics students and has led to a jmsleading, counterintuitive, and cognitively
untenable view of what continuity is.

Continuity 15 one of the most important ideas in twentieth-century mathematics. It
has been fundamental to topology and analysis and has been central to core
questions in set theory and metamathematics involving the elusive concept of the
contirmm. The concept of continuity. which in everyday life seems so funda-
mentally intuitive, immediate, and transparent, has a mathematical counterpart—
the so-called -6 definition—that is elusive and countenintuitive, Teachers of
mathematics have long bewailed the fact that it is simply hard to teach the concept
of continuity and limits of functions as defined by the e-8 definition (Keisler,
1976: P. Kitcher, personal communication, 1997; Nifiez. 1993; Robert, 1982; Tall
& Vinner, 1981),
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86 MWURMEZ AND LAKOFF

Our everyday concept, the one that arises naturally, is the so-called “intuitive”
and “non-rigorous” concept so central o seventeenth-century mathematics, The
second is what is referred 1o as the “rigorous’” one—e—38 definition—adopted by
Weierstrass two centuries later, and which has become the standard of modem
analysis ever since. Are these two characterisations of “continuity™—the natural,
everyday notion and the e-8 definition—two different faces of the same concept?
Or are they radically different ideas with independent cognitive structures? These
questions are not mathematical in nature, nor are they philosophical, They are
empirical questions that must be addressed from the perspective of contem porary
cognitive science, In this paper, we analyse the cognitive structure of these ideas
building mainly on recent advances in cognitive linguistics. We do not address
here the details of educational implications.

We argue that natural, everyday continuity and e-8 continuity are simply
different concepts. To conceptualise the first in terms of the second, as
Weierstrass did, is to use a concepual metaphor. This has an important
consequence for understanding the nature of mathematical ideas and for teaching:
the £ definition of continuity, although exiremely useful for doing interesting
mathematics, is ner cognitively about the concept of natural, everyday continuity
at all. It is mot, as is sometimes claimed, a distillation of the essence of the
continuity idea. It is, rather, a different—and metaphorical—idea. This does not
mean that there is anything wrong with it, Conceptual metaphors are inherent in
maost of mathematics (Lakoff & Nifiez, 1997, 1999). But recognising this dispels
the idea that the e~8 metaphor is “more rigorous™ and therefore superior to the
natural everyday idea of continuity. The two ideas are just different, and being
different, yield different results. Each is perfectly valid in its own sphere.

THE EMBODIED MIND

To discuss mathematical ideas at all from a scientific perspective, one must turn o
cognitive science, which over the past two decades has shown that ideas are not
purcly abstract, free-floating, disembodied, transcendent entities, but rather that
tdeas arise from and are shaped by the structure of human bodies and brains and
the nature of evervday human experience (Damasio, 1994; Dehaene, 1997;
Edelman, 1992; Johnson, 1987; Lakoff, 1987, Lakoff & Johnson, 1980, 1998;
Lakoff & Nifiez, 1997, 1999; Nifez, 1995, 1997, Thelen, 1995; Varela.
Thompson, & Rosch, 1991). For this reason, the very undertaking of the scientific
study of mathematical ideas puts one at odds with the a priorist, human-
independent philosophy of mathematics in which Weierstrass® arithmetisation
programme was immersed, and in which much of contemporary mathematics still
is, For this reason, our conclusions will not be in harmony with whal most math-
ematicians have been brought up to believe,
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Embodied cognition has a special interest in empirically studying domains such
as everyday cognition, common-sense understanding, natural language, spon-
Laneous gestures, real-world actions, and so on; that is, in studying natural mental
phenomena that in general are manifested below the level of conscious
experience. The basic finding is that most thought is unconscions and that
concepts are systematically organised. Findings in various scientific disciplines
such as evolutionary biology, neuroscience, cognitive linguistics, developmental
psychology, and cognitive anthropology have all contributed to the development
of embodied cognition as a theoretical approach.

Results about the structure of conceptual systems have come mainly from
cognitive linguistics, especially the theory of conceptual metaphor {Lakoff, 1993;
Lakoff & Johnson, 1980). Most abstract concepts are metaphorical in nature,
drawing upon the inferential structure of everyday bodily experience to reason
about abstractions, Time, for example, is primarily conceptualised in terms of
maotion, either the motions of future times toward an observer (“Christmas is
appraacking”) or the motion of an observer over a time landscape (“We're
approaching Christmas™).

Conceptual metaphors are cross-domain “mappings” that project the inferential
structure of a source domain onto a target domain, allowing the use of body-based
inference to structure abstract inference. Such “projections” or “mappings” are not
arbitrary and can be studied empirically and stated precisely. They are not
arbitrary, because they are motivated by our evervday experience—aespecially
bodily experience. For example, “atfection” is conceptualised as “warmth {as in
“She greeted me warmiy™), since we experience a correlation between affection
and warmth from birth onwards, Research in contemporary conceptual metaphor
theory indicates that there is an extensive conventional system of conceptual
metaphors in every human conceptual system. Unlike traditional swdies of
metaphor, contemporary embodied views do not see conceptual metaphors as
residing in words, but in thought. Metaphorical linguistic expressions thus are
otly surface manifestations of metaphorical thought,

It should be clear that these theoretical claims are not based on mere
introspection or on anecdotal personal accounts, Rather, they are based on em-
pirical evidence from a variety of sources, including psycholinguistic experiments
(Gibhbs, 1994}, generalisations over inference patterns (Lakoff, 1987, Case Study
11, generalisations over conventional and novel language (Lakoft, 1993; Lakoff &
Tuener, 19891, and the study of historical semantic change (Sweetser, 1900), of
language acquisition (C. Johnson, 1997), of spontanecus gestures (McNeill,
1992), of American sign language (Taub, 1997}, and of coherence in discourse
(Narayanan, 1997). For surveys of conceptual metaphors, their properties,
research methodologies, and theory required to understand how they function, see
Lakoft (1993), Lakoff and Johnson (1980, 1998).
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Much of mathematical understanding is based on spatial relations concepts,
which are expressed in English by prepositions like in, on, through, and so on.
These concepts are decomposable into primitive spatial relations concepts called
image schemas. Image schemas are basic dynamic topological and orientation
structures that characterise spatial inferences and link language to visual
experience (see Johnson, 1987; Lakoff & Johnson, 1998, Chapter 3; Regier,
1996). Their inferential structure is preserved under metaphorical mappings.
which characterise the meanings of abstract uses of prepositions (as in, “He isina
depression”™). It is claimed that image schemas are realised through such neural
structures as topographic maps of the visual field, orientation-sensitive cells, and
so on (for a computer simulation, see Regier, 1996). As such, they are dynamic
recurrent regular patierns of ongoing perceptions and actions. These neural
structures emerge as meaningful for us mainly through the bodily experience of
movement in space, manipulation of objects, and perceptual interactions, They are
not static, not symbol-like, and not part of some putative objective, disembodied
structure in the universe outside of human beings.

Some examples are the container schema (underlying concepts like v and our),
source—path—goal schema (ro and From). the contact schema, and verticality
schema. The notion of a path in the source-path—goal schema is central w our
evervday notion of a continuous line or curve. Many basic concepts are built on
combinations of these schemas, The concept on, as in “the book is on the desk”,
uses three basic schemas: verticality, contact, and support. Each image-schema
has its own inferential structure that is preserved by metaphorical mappings onto
abstract domains. In mathematics, [or example, the classical notion of a set is
bhased on contaner schemas., Boolean logic is the logic of container schemas
mapped onto categories of any sort via the metaphor that “Categories Are
Containers” (Lakoff, 1987, Lakoff & Nuaiiez, 1999),

NATURAL CONTINUITY

For centuries, the characterisation of continuity was based on the idea of motion—
the motion of a physical object with definite direction and speed. Such motion,
based on the source—path—goal schema, proceeds without gaps, intermuptions or
“discontinuities”, Great mathematicians such as Kepler, Leibniz, Newton, and
Euler based their mathematical work invelving continuity on this intuitive notion.
Euler referred to a continuous curve as “a curve described by freely leading the
hand™ (cited in Stewart, 1995, p. 237). It is the same intuitive idea that earlier
allowed Kepler to measure “an area swept out by the motion of a (celestial ) point
on a physical ‘continuous carve” ™ (Kramer, 1970, p. 528). This idea, although
simple, proved to be extremely rich and powerful in generating one of the most
beautiful and productive branches of all mathematics: seventeenth-century
calculus. We call this everyday idea of continuity, nafural continuity.
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Everyday, natural continuity—continuity as we normally conceptualise it
outside of mathematics—has the following cssential featurcs,

. Itis continuity traced by motion, which takes place over time.
2. The trace of the motion is a static holistic line with no “jumps™.

The motion and the line tracing the motion are related by a well-known cognitive
mechanism, ficiive motion (Talmy, 1996). It is through this everyday cognitive
mechanism that we can conceptualise a (static) curve in terms of the motion
tracing that curve, In terms of conceptual metaphor, this can be stated as follows
iFictive Motion Metaphor):

+ A Line Is the Motion of an Object Tracing That Line.

Examples of this fundamental metaphor are abundant in everyday language:
“Highway 101 goes to Los Angeles.,” “After crossing the bay, Highway 80
reaches San Francisco.” “Tust before reaching the border, that highway goes
through several wnnels.” In these everyday expressions, a highway (one-
dimensional line), which is a static object, is conceptualised in terms of a traveller
(object) moving along the route of the highway. It is because of this cognitive
mechanism that in mathematics we can speak of a function as growing, moving,
oscillating, approaching values, and reaching limits. Expressions of this kind are
not limited to students. They are manifested in professional mathematicians as
well. This is not surprising, since mathematical ideas are systematic extensions of
everyday common forms of understanding such as fictive motion. What is
extremely important to keep in mind is that, formally speaking, the mathematical
function does not move, but cognitively speaking—uwhich is what we really care
about here—under this conceptual metaphor, the function does move, does
approach limits,

But how did mathematicians of the seventeenth century conceptualise a
function as a naturally continuous line? They used conceptual metaphor, A
function from the real numbers to the real nombers was conceptualised geo-
metrically, using analytic geometry. At the heart of analytic geometry is a central
conceptual metaphor: Real Numbers Are Points on a Line {Lakoff & Nifez, 1997,
1999, The structure of that metaphorical mapping is shown in Table 1.

This mapping projects aspects of the inferential structure of the line onto the
real numbers, with properties of points on a line projected onto properties of
numbers. For example, the denseness of the line (hetween every two points there
is a point) becomes denseness for numbers (between every two numbers there is a
number). [n addition, the continuity of the line (there are no “holes” in the line) is
projected onto continuity for the real numbers (there are no “gaps” in the real
numbers). Similarly, the fact that distarce maps onto difference has the con-
sequence that distinctness for points (in order for two points to be distinct, there
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TABLE 1

Feal Mumbers Are Paints on a Line
Searve Domaing Poinis ona Line Target Domain: Kool Numbers
The points ™ on a line L -3 The real numbsers K,
A distance {J_,:F_:, Fibetwern cach ¥ A difterence relation ﬂ.{'f,ﬁml. R‘JI 2
prair oof points |8~ &, | between each pair of real numbers
A spatial erderad-before relution —# A less-than relation holding baween
holdmg hetween all pars of poans all pairs of reul numbers
Designuted podms o and &, with a ¥ Dresagmated real numbers and |,
spatially ordered-befone & with [ less than 1

must be a nonzero distance between them) maps onto difference for numbers (in
order for two numbers to be different, there must be a nonzero difference between
them ).

This metaphorical mapping from points on a line to numbers allows for the
formation of a new conceplual struciure, in which the source and target domains of
the metaphor are combined inw what is called in cognitive science a “conceptual
blend™ (Fauconnier & Tumer, 1998). What resulls in this case is the Number-Line
Blend, which defines the familiar “number line™ in which points and numbers arc
blended to form number-points (for funher discussion, see Lakoll & MNanez,
1999, It is the Number-Line Blend that is the basis of the analytic geometry used
in the development of calculus in the seventeenth century through the lale
nineteenth century.

Given the Mumber-Line Blend, pairs of lines {coordinates) generate the
Cartesian plane in which a naturally continuous {unction from the reals into the
reals can be characterised. Then the function can be visualised as a curve in the
Cartesian plane, with each point on the curve defined by an ordered pair of points
{x, flx)). Here the curve, as a conceptual curve, continues to have the properties of
a natural everyday curve. As James Pierpont, a noted analyst at Yale, observed a
century ago (Pierpont, 1899}, a curve taken as representing a function was seen as
having the following properties:

It can be generated by the motion of a point.

It is continuous.

It has a tangent.

It has a length.

When closed, it forms a complete boundary of a region.
This region has an area.

A curve is not a surface.

It is formed by the intersection of two surfaces.

e I U L o

These properties were presented as “intuitive” and “meore or less undisputed”.
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SOME HISTORICAL ORIGINS OF -6 CONTINUITY

But this intuitive idea of a function as a naturally continuous curve changed |
dramatically towards the end of the nineteenth century, when mathematicians
ereated new, rich, and complex mathematical objects that demanded a revision of |
migjor basic concepts. Here are some of the Tamous examples: '

1. fix) = sin (I/x), for x # O, and f{x) = 0, for x = (. As this function |
approaches 0, the number of periods increases to infinity. At 0, it has no |
tangent; that is, there is no specified direction from which the “curve™ |
“approaches zero”. It cannot, therefore, be characterised by the motion of a |
point. '

. fixy =1, if x is irrational, and f{x) = O, if x is rational.  This cannot bhe |
thought of as a curve at any point. It violates all of the eight conditions. |

3. Space-filling curves, like the Peano curve or the Hilkert curve, map from the |

interval [0,1] onto the unit square, going through every point in the unit|
square. This “curve” “fills" the square and therefore has an area and does |
not form a boundary of a region. '

4. The Cantor odd-even function, which maps the interval [(),1] onto the unit |

square, by mapping each infinite decimal, r, onto the pair of infinite|
decimals {rl : r;j, where r consists of the sequences of odd places in », and sl
consists of the sequence of even places inr,  There is no way even to begin |
to think about this function as a curve. It violates all the properties given
abhove, |

3. The so-called “Cantor function” from the interval [(,1] to the Cantor set: |

The function can be characterised algorithmically by successively removing |
the middle third of each continuous portion of the interval from 0 to 1; for
example, first removing [ 143, 2/3], then removing [1/9, 2/9] and [7/9, §/9],|
and so on till infinity. The resulting function also violates the properties
given by Pierpont and cannot be conceptualised in natural geometrical|
Lerms.

2

For these cases and many more, it became impossible to give a unifonn |
definition of a function in geometric terms as a curve. This became a crisis, rather|
than a discussion of mere curiosities, because of the cultural values of the
mathematical community of the times, which saw a need for “secure and|
tigorous foundations”, As a consequence, the very notion of rigour was redefined |
in such a way as to banish or tame the monsters, This contributed o what we willf
call;

The Formal Foundations Principle

= Every basic concept has to be defined in symbolic notation using symbolic|
logic by a set of necessary and sufficient conditions that characterise the
essence of the concept.
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« The definition must be in terms of the ontelogy taken as characterising the
foundations of the discipline (e.g. sets and formal logic: sets, numbers, and
formal logic; or whatever ontology is to be taken as “foundational ).

Many contemporary mathematicizns lake this principle as being so obviously
necessary that it does not have to be stated, much less justified, and indeed no
mathematics text that we have ever seen has ever stated or tried to justfy it. Yet
mathematics proceeded quite well up until the late nineteenth century without it,
This principle is part of the cultural history of mathematics and suited the tenor of
the times. At that period, mathematicians tended to view mathematics in the
following way:

l. Mathematics is transcendentally true. Its truths are universal, unigue,
disembodied. and not dependent on anything physical.

2. Mathematics is about absolute certainty.

3. All truths could be proved rigorously and without any doubt from a finite
number of axioms and definitions.

4. Therefore, mathematics had to be completely symbolisable in a ngorous

way.

. Mothing could be left o mere intuition,

6. Definitions must be formulated in terms of some ontology, language, and
form of reason. That ontology had to be absolutely clear and unambiguous.
The language had to be universal, and the form of reason had to be
universally valid.

7. Concepts are defined by essences—necessary and sufficient conditions—
and therefore each formal definition must specify such conditions.

8. Concepts are assumed o be literal. No metaphor could possibly enter the
definition of a concepl.

(]

Findings in contemporary cognitive science are at odds with such a view of
mathematics, if mathematics is viewed as a human conceptual system (Dehaene,
1997: Lakoff & Nifez, 1999). Human concepts, on the whole, are not
characterised in this way. They are embodied, not defined by essences, not by any
means entirely literal, and so on. Yet, o the mind of the late nineteenth-century
mzthematician, these eight properties of mathematics seemed obviously true and
beyond dispute, as did the Formal Foundations Principle that arose from them. For
these reasons, the problems with the geometric definition of a real-valued function
as a curve in the Cartesian plane crested a crisis in late nineteenth-century
mathematics. The erisis could only be resolved using the Formal Foundations
Principle.
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THE COGNITIVE STRUCTURE OF THE
ARITHMETISATION OF CALCULUS

Applying the Formal Foundations Principle

If the concept of 4 function—as basic a concept as there is in all of mathematics—
could not be defined for all cases in accord with the Formal Foundations Principle,
then it was thought that the whole field of mathematics as the epitome of rigorous
thought would be called into question. If the Formal Foundations Principle was to
be met, the geometric definition of functions as curves would have to be replaced.
Creometry would have to be rooted out of calculus altogether, and functions from
numbers o numbers would have to be conceptualised in purely arithmetic terms,
as would notions like denvative and integral. Accordingly, the central notions of
calenlus would have to be redelined in non-geometric terms, especially the notion
of “approaching a limit”, which, of course, had been thought of in terms of
geomelry and motion. Similarly, the notion of continuity itself, which had only
been thought of in geomettic terms, would have to be reconceplualised.

How do vou get rid of geometry and motion in characterising calculus, when
the whole idea of calculus was thought of. and formulated in terms of, geometry
and motion? All of caleulus had been built on the conceptual metaphor that Real
Numbers Are Points on a Line. The notion of continuity used in calculus was
everyday, natural continuity defined in terms of the intuitively clear notion of a
continuous curve, “described”, as Euler has said, “by freely leading the hand™,
The answer, from a cognitive perspective, was (o re-metaphorise calculus, to find
new non-geometric, static conceptual metaphors to replace the dynamic geometric
metaphors. This re-metaphorisation of calculus involved three new conceptual
metaphors:

= A Line Is a Set of Points.
= Connnuity [s Gaplessness.
= Approaching a Limit Is Preservation of Closeness Near o Point,

1. "A Line Is a Set of Points”

How do we get from a dynamic geometrised calculus to a static arithmetised
calculus? Start with the Number-Line Blend and gradually eliminate the geometry
and the maotion. The first step is to reconcepalise the line metaphorically as a set
of points.

Traditionally, a line was seen as holistic—traced by continuous motion and not
made up of discrete elements. Points were seen as locations on the line. The line as
a whole was taken to be ontologically independent of any locations one might
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happen to pick on it, just as a bird resting on a telephone line is ontologically
independent of any location on the phone ling,

According to the new metaphor for a line, A Line s a Set of Points, a line is
constituted by its points and does not exist independent of its points. It is a
cosnpresite entity, rather than a holistic one—like a flock of birds, Just as there is
no flock without the birds, so there is no ling without the points,

It is important 1o understand how deep the traditional holistic conception of a
line is. Consider how we think and talk about “a gap in a line”™, To conceptualise
this at all, one must be thinking of a traditional holistic line. Notice that it is “a gap
in a line™; that is, the line is being conceptualised as a container relative to the
“gap™” and the “gap” is the empty interior of that container, This is especially clear
when we think of “filling in™ the gap, where the line as whele without the gap
defines what counts as “filling” the gap. Moreover, it is "a gap in « line”. Thar is,
there is only one line, which includes the space where the gap is. Consider the real
line with a gap at ¥2, Notice that we do not speak of two lines with a gap between
them, but one line with a gap “at” a location on that line. “The™ line here is the
holistic line,

Compare this with the composite line, which is just a set of points. If we literally
concepiualise the number ling in this way, it would make no sense to speak of a
“gap in the” real line. The real line minus the point at ¥2 would be just the set of
real numbers without ¥2. This set, as g set (not a holistic line), has no “gap™; it is
complete in itself; it is the set it is. It is only relative to the holistic line that the
notion “gap” makes sense here.

When mathematicians speak of the irmationals as “filling in the gaps in the
rationals™, they again are taking the holistic line a3 a background, as defining what
“filling in” means. In short, even though most mathematicians consciously believe
the metaphor that A Line Is a Set of Points, they unconsciously use the traditional
concept of the holistic line,

When mathematicians think of the line as a sct of points, they usually think
unconsciously in terms of a conceptual blend of the source and target domains of
the Line Is a Set of Points metaphor. That is, they construct a conceptual blend of
both the holistic line and the composite line—what we will call “The Pointset-
Line Blend™—in which the line is both a set of points and a holistic line with
points as locations, It is relative to this blended conception of the line that a line
segment can both have length yet be composed of points of zere length, which add
upto no length at all. From a cognitive perspective, the length of a line segment is
a property of the holistic part of the Pointset-Line Blend, not of the composite part,

Thus, in the process of getting rid of the geometric portion of the number line,
the holistic line is not cognitively eliminated but only further metaphorised as a set
of points,
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2. Natural Cantinuity Is Gaplessness

Dedekind considerad “a one-dimensional or finear continun to be, like a line
segment, a dense aggregate with no gaps™ (Kramer, 1970, p. 3%). Notice that, in
using the term “aggregate”, Dedekind is viewing the line as a set of points—a
composite line. Notice also that, in seeing that “aggregate” as having "no gaps”, he
is using the concept of a gap, which makes sense only relative to the holistic line.
In short, Dedekind is conceptualising the line using both concepts at once. That is,
he is thinking in terms of the Pointset-Line Blend.

Dedekind is. of course, celebrated for defining the real numbers in terms of
what has come to be called “the Dedekind cut™. Dedekind conceived of the
irrational numbers as filling the “gaps™ in the rationals. That is, he thought about
irrationals in terms of the Number-Line Blend, with the rationals spread out along
the line. From this geometric perspective, an irrational number [ was a point on the
line, dividing or “cutting™ the line into two parts. A and B. with A containing all the
rationals less than [, and B containing all the rationals greater than [ Dedekind
then got rid of the geometry by creating a new metaphor using only numbers and
sets. In that metaphor, the set of rational numbers is divided into two subsets, A
and B. We then form the ordered pair (A, B). If A has a largest rational, or B has a
smallest rational, then that rational is conceptualised metaphorically as the pair (A,
B} But if A has no largest rational and £ has no smallest rational, then the pair (A,
By is conceptualised metaphorically as being the irrational number £, This is the
same § that. in the number-line blend. would “cut™ the rationals into sets A and B.
The “cut”, of course, is not performed on sets but is (unconsciously ) performed on
the holistic part of the Pointset-Line Blend. In shon, the Dedekind Cut Metaphor
states: A real number is an ordered pair of sets (A, B) of rational mumbers, with all
the rationals in A being lesy than all the ravionals in B. Through this conceptual
metaphor we have the domain of real numbers (targel domain) being con-
ceptualised in terms of an ontologically different domain, the domain of ordered
pairs of sets of rational nombers (source domain). (For details, see Lakofl &
Niifiez. 1999.)

The Dedekind Cut Metaphor is stated inosuch a way as o guarantee that there
will be mo “gaps™ in the real numbers, The reason 1s that alf of the pairs (A, B) of
rationals {with all the rationals in A being less than all the ationals in B) are
metaphorically defined as being the real numbers. There are no more left. Hence,
there can be no gaps between the real numbers, “Continuity” can then be
metaphorically defined for the real numbers so defined, which is an aggregate of
discrete entitics: Continuity Is Gaplessness. The result s a metaphorical
“continoum” of discrete entities: the “real number continuom"—the “gapless™
sequence of all real numbers defined metaphorically as “cws” without any
peomelry.
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This kind of metaphorical “conlinuity”™ is not our everyday notion of what
continuity is about. It is not the namral confinuity of the holistic line; that is, it is
not the continuity of our image-schematic concept of a path in the source—path—
goal schema. Natural continuity is a product of our everyday conceptual systems,
And it is this concept of continuity that students have when they come into a
mathematics class. Natural continuity for a holistic line is fundamentally differem
to Dedekind's metaphorical notion of “continuity™ as “gaplessness” in the set of
discrete real numbers defined metaphorically as “cuis”.

Since texthbooks try to give infuitive motivation for the gaplessness notion of
continuity using the natural notion of continuity, stndents are faced with two
fundamentally different ideas, both given the same name. Moreover, they arc
told—incorrectly—that the gaplessness version defines the essence of the natural
version, which, as we have seen, is simply not true,

3. Approaching a Limit Is Preserving Closeness Near a Point
{Metaphorical Continuity for Functions)

It is to Weierstrass that we owe the contemporary metaphor for continuity of
functions in static, purely arithmetic terms. Weierstrass' classic “e—8 definition of
continuity™, as it is normally introduced in textbooks, goes as follows:

A function [ is continuous at a number a if the [ollowing three conditions are
satisfied:

l. fis defined on an open interval containing a.
2. lim,_,_ f(x) exists, and
3. lim__ fix)=fla)

[

where lim __ f{x) (the limit of the function fat a) is defined as follows:
Let a function f be defined on an open interval containing a, except possibly at

a itself, and let L. be a real number. The statement
lim,_,_ftx) = L
means that for every € = (0, there exists a & > 0 such that
if0<lx—al <8 then |fixi—Li<e

This definition of continuity 15 considered a very important technical and
theoretical achievement, for the reasons given above. First, it eliminated geometry
so that it could be applied straightforwardly to functions that did not fit the
definition of a function as curve, Second, it fit the requirements of the Formal
Foundations Principle.

For these reasons, it is widely acceptled in mathematics as rthe definition of
continuity, as if no other concept of continuity existed. I is seen as the ultimate
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characterisation of continnity. Moreover, it is scen as a triumph of reason and
rigour over the vagueness of intuition: that is, the concept of natural continuity for
the holistic line—the normal concept that we use everyday, both outside of
mathematics and in our attempt to understand this technical definition,

Today, this definiion is waght in regular calculus courses all over the world,
implicitly supporting the idea that, with rigour, mathematics is able to define the
essence of objects and properties in a way that is completely independent of
human intuitions and the peculiarities of the human mind. Generation after
generation of students is rained in this mode of thinking, sustaining the widely
spread view that mathematics is timeless, unigue, absolutely objective, literal,
disembodied, and independent of human understanding,

From a cognitive perspective, however, Weierstrass has given us a new
metaphor for the continuity of a function in static, non-geometric terms to go with
Dedekind’s metaphors. Weierstrass' metaphor does the job that it was intended to
do, But it is at a cost, since it differs considerably from our ordinary notion of
natural continuity for functions concepiualised as holistic curves,

In Weierstrass' £—0 definition of limit, there is no motion, no time, and no
“approach”, Instead, there arc static elements, In this definition, there are no
holistic lines and no holistic surfaces in the metaphorical ontology for the
Cartesian plane. The “plane” itself is not what we naturally take a “surface™ 10 be,
but is a made up of a set of discrele elements, each of which is a pair of real
numbers, Each real number is in wrn conceptualised in terms of another
metaphor—for example, Dedekind’s “cut™ metaphor. It is worth mentioning that
this is not the only metaphor for the real numbers. Other metaphors, which have
different entailments. are Real Numbers Are Infinite Nested Intervals and Real
Numbers Are Limits of Infinite Sequences of Rational Numbers.

Weierstrass' £—0 definition has more peculiarities. [t calls for a gapless “open
interval” of numbers. The notion of an “open interval” is not the same as the
notion of an open interval on the holistic line—namely, a holistic line segment
without end points. Rather, it is cognitively produced by a combination of
metaphors—The Line Is a Set of Points metaphor and Dedekind’s metaphors of
Feal Numbers Are Cuts and Continuity 1s Gaplessness. This “open interval™ is
thus a set of discrete numbers, not a line segment without endpoints. To com-
prehend it takes at least three metaphors.

The idea of the function fapproaching a limit L as x approaches a is replaced by
a different idea in order to anthmetise and to avoid motion. The new 1dea is also
metaphorical, that Approaching a Limit Is the Preservation of Closeness Near a
EReal Number, namely, that f(x) is arbitrarily close to L when x s sufficiently close
to «. The £-& condition expresses in formal logic exactly what “arbitrarily close™
and “sufficiently close™ mean.

Weilersirass characterises this new metaphor in two steps: first at a single
arbitrary real number in a (gapless) “open interval”, and then thronghout that
interval. His metaphor for continuity uses the same basic idea as his metaphor for
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a limit: preservation of closeness. Continuity at a real number is conceptualised as
preservation of closeness not just near a real number but also ar it. Continuity of a
function throughout an open interval is thus preservation of closeness near and at
every real number in the interval. Since Weilerstrass, preservation of closeness by
a function has become a central idea in modern mathematics. Unfortunztely, this
idea is not presented as such in textbooks,

DISCUSSION

It should be clear by now that the two definitions of continuity—natural and e-8
continuity—are radically different from a cognitive perspective. They are realised
through completely different cognitive mechanisms. This does not mean that one
15 essentially better or worse than the other. Moreover, the terminology 1s
confusing to beginning students, for whom continuity means only natural con-
tinuity for holistic curves. Epsilon-delta continuity is a technical concept, and the
word “continuity” 15 2 misleading term for it

Epsilon-delta continuity serves an important function in mathematics, but it is
important to see that it is not “superior”™ to natural continuity. It is simply a
different concept with a different purpose. The difference can be seen in what each
says about the function fix) = x sinf1/x) when ¥ # 0 and 0 when v = 0. This
function is not naturally continwous, since it violates the idea that natural
continuity is conceptualised in terms of motion, which has direction. As it “hits”
zero, that function cannot be said to have any specific direction. Hence, it cannot
be characterised in terms of motion and so 15 not naturally continuous. I is,
however, e-8 continuous, since it preserves closeness at every real number,
including 0. These are not contradictory results, They are simply different
concepts applying differently to the same case. The resull scems strange or
counter-intuitive only if you believe that £-8 continuity defines the essence of
natural continuity. [t does not, as this example and the above discussion should
make clear; it is just a different concepl that serves a different purpose. We are
aware that a detailed analysis of the implications of our results for mathemarics
education gobeyond the scope of this article. We must say, however, that in order
to teach meaningful mathematics, students should be told how formal definitions
arise through a series of concepiual metaphors and other natural cognitive
mechanisms. They should be told that, underly ing abstract mathematical concepts,
there are human cognitive mechanisms that make these concepis possible,

Precision

What makes e-8 continuity precise and formal? Often we are led to believe that it
is the -8 portion of these definitions that constitutes the rigour of the arith-
metisation of analysis and that the e~8 portion is part of the arithmetisation. But
the -8 aspect of the definition actually plays a far more limited role. All it
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accomplishes is a precise characterisation of the notion “comrespondingly”. We
could wse it perfectly well without arithmetisation in a precise geometric
charactierisation of “correspondingly”. For example, we could easily define limits
and continuity of functions in dynamic terms (i.e. based on motion), by
considering the values of f{x) as getting “correspondingly™ closer o L as x gets
closer to a. For instance, lim,__f(x) = L could be defined to mean:

for every £ > (), there exists a & = 0, such that
as x moves toward g and gets and stays within the distance & of a,
Jix) moves toward L and geds and stervs within the distance g of L

The Preservation of Gaplessness

Another interesting facet of the £-6 definition is its interaction with the idea of
“maplessness”. Welersirass formulates the definition of continvity with the
explicit condition that the function 15 defined over an open imferval. It assumes
this open interval to be gapless. What the e=8 definition does is to gnarantee that
ia) when lines are metaphorically conceptualised as sets of real numbers, and
(b when the input of the function is gapless, and () when the function preserves
closeness in that gapless interval, then (d) the output is also gapless. In short, the
£=0 definition functions to preserve gaplessness,

Rigour

As we have seen, the £-6 condition is separate from the arithmetisation of
calculus, since it can equally well make precise the notions of continuity and limits
for the dynamic geometric notion of a function. It is therefore not the =8 con-
dition that makes calculus in the Weierstrass tradition “rigorous”™, What makes it
“rigorous” is a set of metaphors that allows us to replace dypamic geometric
calculus with static arithmetic calculus.

So far as we can see, the static arithmetic metaphors are neither more nor less
rigorous in any absolute sense than the dynamic geometric metaphors. The static
arithmetic meiaphors do, however, serve an important culfural function in the
mathematical community. They allow one to satisty the Formal Foundations
Principle.

MNow, we know from results in twentieth-century mathematics that the formal
foundations movement collapsed. Even if you believed in it at some past date,
there would be no good mathematical reason for believing in it now. Yet the
community of mathematicians has, for the most part, preserved the Formal
Foundations Principle. It is an anachronism, in a way. But it has come to serve a
different function from the one it was intended to serve. It is used to define new
forms of mathematics through formal axiomatisations. 1t is not unusual in cultural
processes that a cultural anachronism has come to serve a new function when its
original function is lost,



100  NUNEZ AND LAKOFF

A century after Weierstrass® £-8 definitions of limits and continuity were
adopted, they have become a cultural anachronism. Their original function as part
of a foundations movement has been lost, They are still taught, but not because
anyone believes in the foundations movement. They are tanght because another
cultural anachronism, the Formal Foundations Principle, has alsobeen retaincd by
the mathematical community long after its fupction in the foundations movement
of the last century ceased to be of any relevance. It is the Formal Foundations
Principle that tells us that the Weicrstrass e-8 definitions are “rigorous™. Bul that
notion of rigour as guarantecing sccure foundations and absolute certainty within
mathematics is itsell an anachronism.

Mathematics 15 not what the foundations movement took it to be. It is not
transcendental, absiract, disembodied, unique, and independent of anything
physical including anything human. Instead, it is a product of the human body,
brain, and mind and of human experience in the physical world. The Formal
Foundations Principle does not characterise human mathematics. 1t is, however,
part of metamathematics as it has been practised over the last century. As such, it
is part of the subject matter for study in the cognitive science of mathematics,
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