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ARTICLE OPEN

Comprehensive pan-cancer genomic landscape of KRAS
altered cancers and real-world outcomes in solid tumors
Jessica K. Lee1,5, Smruthy Sivakumar1,5, Alexa B. Schrock1,5, Russell Madison1, David Fabrizio1, Ole Gjoerup1, Jeffrey S. Ross1,2,
Garrett M. Frampton1, Pavel Napalkov3, Meagan Montesion1, Jennifer L. Schutzman3, Xin Ye3, Priti S. Hegde1, Misako Nagasaka4,
Geoffrey R. Oxnard1, Ethan S. Sokol1, Sai-Hong Ignatius Ou 4✉ and Zhen Shi3✉

Recent clinical development of KRAS inhibitors has heightened interest in the genomic landscape of KRAS-altered cancers. We
performed a pan-cancer analysis of KRAS-altered samples from 426,706 adult patients with solid or hematologic malignancies using
comprehensive genomic profiling; additional analyses included 62,369 liquid biopsy and 7241 pediatric samples. 23% of adult pan-
cancer samples had KRAS alterations; 88% were mutations, most commonly G12D/G12V/G12C/G13D/G12R, and prevalence was
similar in liquid biopsies. Co-alteration landscapes were largely similar across KRAS mutations but distinct from KRAS wild-type,
though differences were observed in some tumor types for tumor mutational burden, PD-L1 expression, microsatellite instability,
and other mutational signatures. Prognosis of KRAS-mutant versus other genomic cohorts of lung, pancreatic, and colorectal cancer
were assessed using a real-world clinicogenomic database. As specific KRAS inhibitors and combination therapeutic strategies are
being developed, genomic profiling to understand co-alterations and other biomarkers that may modulate response to targeted or
immunotherapies will be imperative.

npj Precision Oncology            (2022) 6:91 ; https://doi.org/10.1038/s41698-022-00334-z

INTRODUCTION
The Kirsten rat sarcoma viral oncogene homolog (KRAS) gene
belongs to the rat sarcoma (RAS) family of oncogenes that also
includes Harvey rat sarcoma (HRAS) and neuroblastoma rat
sarcoma (NRAS) viral oncogene homologs and, when mutated,
can initiate or promote cancer growth1–5. Activating mutations in
KRAS are among the most prevalent oncogenic driver mutations in
human cancers and are associated with tumorigenesis as well as
aggressive tumor growth. Despite decades of research, KRAS had
been an “undruggable” target until the landmark discovery of
covalent inhibitors specific for KRAS G12C6. Clinical trials of
mutant-specific KRAS G12C inhibitors have shown promising
activity7–12. Sotorasib and adagrasib each received FDA break-
through designation for the treatment of advanced or metastatic
non-small cell lung cancer (NSCLC) harboring a KRAS G12C
mutation, and sotorasib has now received marketing authorization
in the US and other countries for the treatment of certain patients
with KRAS G12C NSCLC13. Besides the clinical development of
direct covalent KRAS G12C inhibitors, there are significant efforts
underway to develop other mutant-specific and pan-KRAS
inhibitors, and inhibitors that target upstream of the RAS pathway
(SOS1, SHP2)14–16.
Here we performed a comprehensive pan-cancer genomic

analysis to identify the incidence of KRAS alterations across 24
tumor types, the distribution of KRAS alterations inclusive of and
beyond G12C. We evaluated the genomic co-alteration landscapes
and immune biomarker patterns in association with different KRAS
mutations in terms of tumor mutational burden (TMB), PD-L1
expression, co-alterations, and mutational signatures that may
modulate response to KRAS inhibitors, immune checkpoint
inhibitors (ICI) or other therapies. We also interrogated a real-
world clinicogenomic database (CGDB) to assess prognostic

implications for KRAS mutated subsets compared to other
genomically defined cohorts of NSCLC, colorectal cancer (CRC),
and pancreatic ductal adenocarcinoma (PDAC).

RESULTS
Prevalence of KRAS alterations in adult and pediatric cancers
A total of 426,706 unique tissue or hematologic samples from
adult patients with cancer were submitted for testing during
routine clinical care from December 2013 to December 2021. KRAS
was the most frequently altered oncogene with alterations
identified in 97,062 (23%) pan-tumor tissue samples. The vast
majority (88%) of the alterations were mutations (99.7% substitu-
tions and 0.2% insertion or deletions [indel]), 8.4% were KRAS
amplifications and 3.8% a combination of mutation with
amplification (Fig. 1a). The estimated incidence for KRAS altered
cancers in the US based on this prevalence data is highest in CRC
with almost 75,000 cases followed by PDAC and non-squamous
(non-Sq) NSCLC (>50,000 cases each; Fig. 1b and Supplemental
Table 1). KRAS G12D (29%), G12V (23%), G12C (15%), G13D (7%),
and G12R (5%) were the five most common KRAS mutant isoforms
together accounting for ~80% of all KRAS alterations. The tumor
types with the highest prevalence of KRAS mutations (KRASm)
were PDAC (92%), appendiceal adenocarcinoma (61%), small
bowel adenocarcinoma (SBA, 53%), CRC (49%), and non-squamous
(non-Sq) NSCLC (35%) (Supplemental Table 2); CRC, non-Sq
NSCLC, PDAC together represented 71% (63,480/88,907) of the
KRASm pan-tumor population (Fig. 1c, d). Additionally, several
other tumor types harbored KRASm including most notably:
extrahepatic cholangiocarcinoma (35%), carcinoma of unknown
primary (CUP, 22%), intrahepatic cholangiocarcinoma (ICC, 18%),
endometrial (17%), gastric (11%), as well as breast (2.1%) and

1Foundation Medicine Inc., Cambridge, MA, USA. 2Upstate Medical University, Syracuse, NY, USA. 3Genentech, Inc., South San Francisco, CA, USA. 4Chao Family Comprehensive
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Fig. 1 Prevalence of KRAS alterations among adult patients with cancer. a In the Foundation Medicine (FM) dataset of tissue or hematologic
samples from 426,706 adult patients with cancer, KRAS was the most frequently altered oncogene with alterations in 23% of samples. A
longtail of other top frequently altered oncogenes is shown; bar colors indicate alteration classes, SV: short variant mutation (e.g.,
substitutions, indels), CNA: copy number alteration, RE: rearrangement. b Prevalence in the FM dataset (left) and incidence estimates in the
United States (right) of KRAS alterations in common adult tumor types (Supplemental Table 1). KRAS alterations are most prevalent in PDAC,
appendix adenocarcinoma, small bowel and CRC tumor types. The highest incidence of KRAS alterations is estimated in CRC, non-Sq NSCLC
and PDAC. c, d Number of cases in the FM database with KRAS mutations among (c) the 8 top indications with highest incidence of KRAS
alterations and carcinoma of unknown primary (CUP) and d the 5 most common KRAS mutant isoforms.
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prostate (1.3%) carcinomas (Supplemental Table 2). KRAS ampli-
fication (median 11 copies, range 5-421) was rare across most
tumor types but common in germ cell tumors (24%) and
esophageal adenocarcinoma (18%).
Although the KRASm distribution varied across adult tumor

types, similar patterns of KRASm were observed among tumors
originating from similar tissue types. KRAS G12C was the most
common variant among NSCLC (40% and 36% of KRASm non-Sq
and Sq, respectively). Gastrointestinal cancers (including CRC and
cancers of the esophagus, stomach, small bowel, and appendix)
also share a similar profile where KRAS G12D and G12V were the
top two common variants. KRAS G12D was also most common
among many other tumor types including PDAC (43%), and
endometrial (30%), and KRAS G12V was the second most common
in the majority of tumor types studied and the most common
KRASm in breast (26%) (Supplemental Table 2 and Fig. 2a, b).
KRASm isoforms were all largely clonal indicating that these
mutations are likely truncal in all four major tumor types studied
(Supplemental Fig. 1 and Supplemental Table 3). For comparative
analysis, 62,369 samples underwent liquid genotyping from May
2016 to December 2021. KRAS alterations were detected in 15% of
all liquid biopsies, and in 19% of liquid biopsies with elevated
tumor fraction, including mutations (95.5%), amplification (3.2%)
and a combination of mutation with amplification (1.3%;
Supplemental Fig. 2A). KRAS G12D (26%), G12V (20%), G12C
(17%), G13D (6%), and G12A (4%) were the five most common
KRASm detected by liquid genotyping, which was similar to the
pan-tumor distribution seen in tissue (Supplemental Fig. 2B).
Available clinicogenomic characteristics of the four major

KRASm tumor types (NSCLC, CRC, PDAC, endometrial) selected
based on prevalence, incidence, and the landscape of KRAS
inhibitor development, stratified by major KRAS isoforms, are
shown in Table 1, and additional tumor types as well as pan-
cancer analysis are described in Supplemental Table 4. The pan-
tumor KRAS G12C subset was notably distinct from cases with
non-G12C mutations or KRAS WT, with patients carrying G12C
mutant tumors being older (median age 66 vs 64 vs 64 years),
more often female (58% vs 52% vs 54%), having higher TMB (32%
vs 12% vs 16% with TMB ≥ 10 mutations/Mb), and a greater
fraction with high PD-L1 expression (37% vs 14% vs 14%) (all
comparisons p < 0.001).
Analysis of a pediatric cohort was also performed. Among tissue

or hematologic samples from pediatric patients (n= 7241 unique
patients), KRAS alterations were present in 5.5% of samples. The
pediatric group with the largest number of KRASm cases was acute
leukemia where diverse KRASm were represented with KRAS G13D
and G12D being the most common. KRASm were most prevalent
in CRC (28%), germ cell tumors (20%), and myelodysplastic-
myeloproliferative neoplasms (MDS-MPN, 20%); however, the total
number of patients with KRASm are small due to their rarity
(Supplemental Fig. 3). Based on the estimated incidence rates of
different pediatric tumors in the US and prevalence of KRAS
alterations observed in our cohort, we estimate the highest
incidence of KRAS altered cases to be in acute leukemia (n= 553),
followed by colorectal (n= 88), ovary (n= 71), and glioma (n= 64;
Supplemental Table 1).

Co-alteration landscapes, mutational signatures, and
immunotherapy biomarkers
Among four major KRAS altered tumor types, volcano plots of co-
occurring or mutually exclusive alterations with KRAS are shown in
Fig. 3a (see also Supplemental Tables 5–8). In non-Sq NSCLC, CRC
and endometrial cancer TP53 was the most frequently altered
gene and tended to be mutually exclusive from KRAS, whereas
TP53 alterations tended to co-occur with KRAS in PDAC. Consistent
with KRAS being a key oncogenic driver, alterations in KRAS were
highly mutually exclusive with other driver alterations in the

RTK/MAPK pathway, including EGFR, ALK, MET, ERBB2, BRAF, RET,
and ROS1 in non-Sq NSCLC (Fig. 3b); BRAF, FGFR2, ERBB2, RET and
NTRK1 in PDAC; NRAS, BRAF, and ERBB2 in CRC; and ERBB2 in
endometrial. Genes with co-alterations notably enriched in KRASm
subsets included STK11 in non-Sq NSCLC, PIK3CA and APC in CRC,
and ARID1A, PTEN, and PIK3CA in endometrial tumors. Of note,
largely similar patterns of co-mutations and mutual exclusivity
were observed when limiting to a subset of microsatellite stable
(MSS) CRC and endometrial tumors (Supplemental Fig. 4 and
Supplemental Tables 6 and 8). Volcano plots for four additional
tumor types (Sq NSCLC, SBA, ICC, and appendix adenocarcinoma)
also support mutual exclusivity of KRAS with other driver
alterations (Supplemental Fig. 5 and Supplemental Tables 9–12).
For the top differentially occurring genes with KRAS, the co-

alteration landscape was largely similar across KRASm isoforms,
but distinct for KRAS WT within a given tumor type (Supplemental
Fig. 6). Statistical analysis of the three most common KRASm
isoforms revealed additional allele-specific differences, especially
in relatively rare gene alterations, within specific tumor types
(Supplemental Table 13). For example, alterations in GNAS were
more common in KRAS G12D compared to KRAS G12C mutated
non-Sq NSCLC (5.7% vs. 2.0% respectively; FDR p < 10−4). Co-
mutations in other MAPK/PI3K pathway genes tended to be more
frequent in KRAS G13D compared to KRAS G12D mutated CRCs
(NF1: 3.0% vs. 1.2%, AKT1: 2.0% vs. 0.8%, BRAF: 1.7% vs. 0.7%
respectively; all FDR p < 10−4). Similarly, in endometrial tumors,
KRAS G13D mutated tumors showed a higher prevalence of NF1
and PTEN alterations compared to KRAS G12D (NF1: 14.0% vs.
6.1%, FDR p= 0.005; PTEN: 70.6% vs. 55.1%, p= 0.0006, respec-
tively). In PDAC, ARID1A and ERBB2 alterations were detected more
commonly in KRAS G12D mutated tumors compared to KRAS G12R
mutated tumors (ARID1A: 9.7% vs. 4.6%, FDR p < 10−4; ERBB2: 2.2%
vs. 1.0%, FDR p= 0.0003).
In non-Sq NSCLC, KRAS G12C mutated tumors were enriched for

high TMB ≥ 10 mutations/Mb (40% vs 33% vs 32% for KRAS non-
G12C and WT, both p < 0.001) and for high PD-L1 expression (44%
vs 38% for KRAS non-G12C and 29% for WT, both p < 0.001),
whereas KRAS G12D mutated tumors had lower incidence of
elevated TMB (24% with TMB ≥ 10 mutations/Mb) relative to other
KRASm isoforms assessed (Fig. 4a, b and Table 1). In Sq NSCLC the
same trends were observed, but most differences were not
statistically significant (Supplemental Table 4). Relative to non-Sq
NSCLC, the fraction of samples positive for high PD-L1 expression
in KRASm CRC, PDAC, and endometrial was low (Fig. 4b), and
relatively few ICC, SBA and appendiceal samples were tested for
PD-L1 (Supplemental Table 4). High TMB was also less frequent in
KRASm CRC, PDAC, ICC, SBA, and appendiceal compared to NSCLC;
however, endometrial was similar to NSCLC with 21–34% of
samples having TMB ≥ 10. In endometrial cancers, high TMB was
enriched in KRAS G13D, G12D, G12C, and G12A (45%, 34%, 30%,
and 31%) compared to G12V and WT (21% and 16%, p < 0.05 for
all comparisons; Table 1 and Fig. 4a). High MSI was rare (<1%)
across non-Sq NSCLC subtypes, and infrequent in PDAC and CRC
relative to endometrial cancer where 14–39% of KRASm isoforms
were MSI high. Across tumor types, KRAS G13D and G12D were
associated with the highest levels of MSI high relative to other
KRASm isoforms (Fig. 4c). We also investigated KRAS allele-specific
patterns of the loss of heterozygosity in the human leukocyte
antigen class I locus (HLA LOH) in the four major disease subtypes
and identified largely similar patterns of HLA LOH across the
different KRASm isoforms (Supplemental Fig. 7). In non-Sq NSCLC,
22% of G12C-mutated cases exhibited HLA LOH; in comparison
20% to 23% of the other isoforms and 21% of WT cases had HLA
LOH. In PDAC, G12D mutated cases showed a higher prevalence of
HLA LOH (28%) compared to G12V (23%, p= 0.03) and G12R
mutated cases (22%, p= 0.04). Rate of HLA LOH was also slightly
elevated in KRAS G12D mutated CRC (18%) compared to KRAS-WT
CRC (15%, p= 0.008).
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We also looked at mutational signatures across KRASm
isoforms of the four major disease subtypes (Fig. 4d and
Supplemental Table 14). Tobacco signature was detected in
38–45% of different KRASm and KRAS WT subsets of non-Sq
NSCLC but was less frequent in G12R non-Sq NSCLC (22%) and
rare in other tumor subtypes. Mismatch repair (MMR) signature
was rare in non-Sq NSCLC but common in KRASm and KRAS WT
PDAC, CRC and endometrial cancers, although relatively less
frequent in KRAS G12C CRC relative to other subgroups. POLE
signature was detected in small subsets of PDAC, CRC, and
endometrial.
We further assessed the co-occurrence of KRASm isoforms and

co-altered genes with implications for immunotherapy response
including TMB ≥ 10 mutations/Mb, and PD-L1 expression in non-
Sq NSCLC and Sq NSCLC for comparison. In non-Sq NSCLC, TMB
and PD-L1 were independent biomarkers; across KRASm isoforms
49–62% had TMB ≥ 10 mutations/Mb or high PD-L1, but only
15–20% had both. With KRAS G12C mutated non-Sq NSCLC
samples, co-mutations in STK11 and KEAP1 were more commonly
associated with low (28% and 16%) or negative (53% and 27%)
PD-L1 expression vs high (9.4% and 8.3%), and these associations
were largely consistent across KRASm subsets. Across KRASm
isoforms of non-Sq NSCLC, 46–51% harbored TP53, 5.1–9.2% TP53/
STK11 and 1.3–2.6% TP53/STK11/KEAP1 co-alterations (Supplemen-
tal Fig. 8). In non-Sq NSCLC, there were 1487 distinct mutations
throughout the TP53 gene in KRASm tumors, where 45% resulted
in single amino acid changes. Co-mutations occurred throughout
both STK11 and KEAP1 genes in KRASm tumors; NEF2L2 co-
mutations were generally uncommon and clustered around G31
and G81 positions (Supplemental Fig. 9).

Clinico-genomic database outcomes analysis
A total of 16,357 patients with advanced NSCLC (aNSCLC), 10,430
patients with metastatic CRC (mCRC), and 3323 patients with
mPDAC were included in the Flatiron Health-Foundation Medicine
CGDB with 5938, 3838, and 1398 patients, respectively, meeting
eligibility criteria, having started first line (1 L) of therapy after
tissue biopsy CGP, and having available clinical characteristics for
outcomes assessment (Supplemental Fig. 10).
Among aNSCLC patients, KRASm were identified in 29% of cases

including 93% at codons G12 or G13 (G12/13) and 6.8% at non-
G12/13 codons. Patients with KRASm predominantly had non-Sq
histology and most frequently were treated with 1 L chemother-
apy or chemotherapy with immune checkpoint inhibitor (ICI),
although over 20% of KRASm patients received ICI monotherapy
(Supplemental Table 15). Patients with KRAS G12C mutation had
similar overall survival (OS) to patients with other common KRAS
mutations including G12V (11 vs. 10 mos, HR 1.0, 95% CI 0.86–1.20,
p= 0.88) and G12D (11 vs. 12 mos, HR 0.91, 95% CI 0.75–1.11,
p= 0.36) and also similar OS with rarer non-G12/13 KRASm (11 vs.
9 mos, HR 1.1, 95% CI 0.82–1.35, p= 0.67). OS for NSCLC
oncodriver negative patients, although statistically different, there
was very minimal clinical difference (11 vs 11 mos, HR 1.1, 95% CI
1.00–1.23, p= 0.04). Patients with aNSCLC without a KRAS
alteration but exhibiting other oncogenic drivers with available
approved targeted therapies, had significantly better OS than
patients with NSCLC harboring KRAS G12C mutations (27 vs. 11
mos, HR 0.55, 95% CI 0.49–0.63, p < 0.001). These trends remained
similar in a multivariable model incorporating treatment group,
age, performance status, smoking history, histology, and con-
current STK11 and KEAP1 alterations (Fig. 5a).
Among mCRC patients, 49% had a KRASm, 8.1% had BRAF

V600E, 4.2% had an NRASm, and 39% of cases were negative for
KRASm, NRASm, and BRAF V600E (Supplemental Table 16).
Patients with KRAS G12C mutated tumors had similar OS to

patients with other common KRAS mutations including G12D (19
vs. 20 mos, HR 0.96, 95% CI 0.75-1.22, p= 0.73) and G12V (19 vs.Ta
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19 mos, HR 1.04, 95% CI 0.81-1.34, p= 0.77). Patients with KRAS
G12C mutated tumors had slightly elevated OS compared to
patients with BRAF V600E (19 vs. 12 mos, HR 1.19, 95% CI 0.92-1.54,
p= 0.19) and patients with non-G12/13 mutations (19 vs 16 mos,
HR 1.13, 95% CI 0.86-1.47, p= 0.38), although not statistically

significant. KRAS/NRAS/BRAF V600E negative (RAS/RAF negative)
patients had more favorable OS than the KRAS G12C subgroup (24
vs. 19 mos, HR 0.74, 95% CI 0.59–0.93, p= 0.009), which was
consistent in a multivariable model (Fig. 5b).
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Finally, KRASm were identified in 93% of patients with
metastatic PDAC, 94% of which occurred within codons G12/
G13 (Supplemental Table 17). Patients with tumors harboring KRAS
G12C mutation had statistically worse, though clinically similar, OS
compared those with KRAS negative tumors (5.9 vs. 8.8 mos, HR
0.59, 95% CI 0.37-0.94), p= 0.03) and similar OS to patients with
non-G12/13 KRASm tumors (5.9 vs. 6.9 mos, HR 0.80, 95% CI
0.50–1.29, p= 0.36). However, in a multivariable model, patients
with KRAS G12C mutated tumors were not significantly associated
with worse OS compared to patients with KRAS negative tumors,
although this may be limited by the small number of KRAS
negative cases (Fig. 5c).

DISCUSSION
We performed the largest pan-cancer survey to date of KRAS
alterations in patients with solid tumors and hematologic
malignancies. KRAS is a pan-tumor oncodriver with alterations
identified in 23% of over 400,000 adult cases, including 21% with
mutations, similar to smaller published studies17–19. In common
tumor types including NSCLC, CRC and PDAC, KRAS mutation
frequencies and hotspot mutation clusters were confirmatory of
published literature20,21. Taking a disease focused approach, we
observed that non-Sq NSCLC, CRC, and PDAC represented 71% of
all patients with KRASm cancers; the most common alterations
pan-cancer were G12D (30%), G12V (23%) and G12C (15%), totaling
68% of KRASm cases, which represent potential therapeutic
targets. However, we also explored less well characterized KRAS
landscapes such as in endometrial cancer, where KRAS G12V and
G12D are predominant, as well as small bowel and appendiceal
cancers, cholangiocarcinoma, and others. Across 24 major tumor
types studied, KRASm were detected at frequencies from 1.3% to
92%. We also observed KRAS alterations in 5.5% of over 7000
pediatric cases assessed, with G13D being the most common
variant. In a sub analysis of CGP of liquid biopsies, we observed a
similar frequency and distribution of KRAS alteration and mutation
isoforms pan-tumor. KRAS amplification is also a potential
therapeutic target being explored, and we saw notable enrich-
ment of this alteration in esophageal adenocarcinomas.
In our analysis, we assessed the presence of co-alterations in

over 300 genes across KRASm isoforms for eight disease types and
observed some degree of similarity across KRASm isoforms, which
tended to be distinct from the KRAS WT landscape. On the other
hand, we did observe some KRASm specific differences in the
prevalence of co-occurring gene alterations, immunotherapy-
associated biomarkers and across six mutational signatures. In
NSCLC, there is clear evidence that the co-alteration landscape in
KRASm cancers is an important determinant of outcomes.
Previously published exploratory analysis of KRAS G12C inhibitor
trials suggests that co-alterations in KEAP1 and STK11 may
modulate outcomes to KRAS targeted therapies, though addi-
tional studies assessing these biomarkers are warranted7,8,22.
STK11 and KEAP1/NEF2L2 have also been identified as negative
predictors of outcomes to chemotherapy and immunotherapy,
which remain important factors to consider when treating KRASm
NSCLC23–25. Our results confirm prior findings showing STK11 and

KEAP1 alterations each occur more frequently in KRAS altered vs
WT tumors, whereas driver alterations across disease types tend to
be mutually exclusive with KRAS. Of note, our findings of elevated
co-alterations in MAPK/PI3K pathway genes among KRAS G13D
mutated CRCs and endometrial cancers compared to G12D
mutated tumors, further supports that KRAS G13D mutated
tumors may present unique biochemical and clinical mechan-
isms26–28. Overall, while we observed statistically significant
differences in prevalence of some co-alterations, additional
studies are warranted to examine the biological implications of
these findings.
It is well established in NSCLC, CRC and other solid tumors that

responses to KRAS inhibitors are variable; combination strategies
in development will depend on characterization of the diverse
genomic landscape of KRAS mutant cancers both pre-treatment
and upon acquired resistance to therapies29–31. The significance of
co-alterations, PD-L1 expression and mutational signatures in
NSCLC and other KRASm tumor types as prognostic and predictive
markers for targeted therapies and immunotherapies, warrant
future investigations. Numerous combination trials with KRAS and
other MAPK pathway (SHP2/MEK/ERK) inhibitors are in progress
aimed at improving outcomes in patients with KRASm cancers and
exploiting the presence of targetable co-alterations. Notably, in
NSCLC and other solid tumors, several KRAS G12C inhibitors are
being combined with immune checkpoint inhibitors (ICI), SHP2
inhibitors, EGFR inhibitors, and bevacizumab in clinical trials22,29.
In CRC, trials of KRAS G12C inhibitors in combination with anti-
EGFR therapies have shown promising initial results with 100%
disease control rate reported for the combination of adagrasib
and cetuximab32. With recent evidence for tumors employing loss
of heterozygosity of the HLA locus as a common mechanism of
immune evasion33–35, our study also presented the incidence of
HLA LOH across cancers with frequent KRAS alterations. Investi-
gating the role of tumor HLA status in the context of the clinical
development of vaccines targeting KRAS mutations will play an
important role in addressing biomarkers associated with clinical
benefit from such therapies.
This study is limited by lack of available clinical and treatment

information for patients in the Foundation Medicine genomic
database not included in the CGDB. In the CGDB, clinical data were
derived from EHR and may be incomplete or missing, particularly
for events occurring outside of the Flatiron Health network. Finally,
all patients in this study received CGP, which likely introduces
selection bias. Our genomic analysis employs tumor-only sequen-
cing (without matched normals) and subsequent filtering is relied
on to select variants known or likely to be pathogenic for inclusion
in analysis.
Notwithstanding these limitations, the findings from this study

have significant implications for the development of KRAS
inhibitors targeting G12C, G12D, G12V and beyond. Genomic
profiling to detect co-alterations and mutational signatures, and
trials to understand the clinical importance of these biomarkers as
predictors of response to targeted therapies and immunothera-
pies in patients with a wide range of KRAS altered tumor types will
be imperative to improve therapy selection and outcomes.

Fig. 3 Co-occurrence of gene alterations among KRAS altered non-Sq NSCLC, PDAC, CRC and endometrial cancer. a The prevalence of
alterations was compared for KRAS altered and KRAS wild type (WT) non-Sq NSCLC (N= 62,836), PDAC (N= 19,386), CRC (N= 48,905), and
endometrial (N= 14,375) tumor samples. For each tumor cohort, only genes altered in at least 50 cases and targeted across all the assay
versions were included. For each gene, substitutions, short insertions/deletions, rearrangements, and copy number changes of known or likely
functional significance detected using our assay were included. Driver genes highlighted in the National Comprehensive Cancer Network
(NCCN) Guidelines as well as genes altered at a high prevalence (≥10%) are labeled for each volcano plot. Alterations in known driver
oncogenes (labeled in green) tend to be mutually exclusive with KRAS alterations (left side of plots) in all four major tumor types studied
(p ≤ 0.05; Odd’s ratio <1). b Oncoprints showing the frequency and mutual exclusivity of NCCN driver genes in KRAS altered (N= 22,794) vs
KRAS WT (N= 40,042) non-Sq NSCLC. Fisher’s exact test was applied to assess patterns of co-occurrence and mutual exclusivity between KRAS
and other genes alterations. P values were corrected with the Benjamini–Hochberg FDR method.
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METHODS
Foundation medicine comprehensive genomic profiling
We interrogated pan-cancer cases submitted for comprehensive
genomic profiling (CGP) during routine clinical care (Foundation

Medicine Inc., Cambridge, MA). For tissue biopsy samples, DNA
was extracted from 40 microns of FFPE sections, and CGP was
performed on hybridization-captured, adapter ligation based
libraries to a mean coverage depth of >550X for 315
(n= 143,020), 324 (n= 250,197) or 405 (n= 40,730) cancer-
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related genes and selected introns from 28, 31, or 36 genes
frequently rearranged in cancer36 (Supplemental Table 18). TMB
was calculated by counting the number of non-driver synonymous
and non-synonymous mutations across a 0.8–1.2 megabase (Mb)
region, with computational germline status filtering, and reporting
as mutations/Mb. This method has been previously validated for
accuracy against whole exome sequencing37. Microsatellite
instability (MSI) was determined by analyzing intronic homo-
polymer repeat loci for length variability and compiled into an
overall MSI score via principal component analysis38. Results were
analyzed for substitutions, short insertions/deletions and rearran-
gements, and copy number changes. A statistical copy number
model was generated and fitted to each sample to determine
gene copy numbers. KRAS amplifications as described here include
amplifications ≥4 copies above the overall ploidy of the specimen.
In most cases, this represents amplifications ≥6 copies. The
detection of gene alterations followed a multi-step approach, as
described previously36,39,40. Briefly, commonly occurring germline
variants were excluded based on their presence in public
databases such as dbSNP, 1000 Genomes Project and ExAC41–43;
however, known pathogenic germline variants (e.g., in BRCA1,
BRCA2) were considered as reportable. Genomic alterations were
designated as known or likely pathogenic using annotations such
as presence in the COSMIC database, additional knowledge about
the gene affected (e.g., truncations and deletions in known tumor
suppressor genes), or mutations that have been characterized as
pathogenic in the scientific literature; all other uncharacterized
short variant alterations were denoted as variants of unknown
significance (VUS) (Supplemental Fig. 11). Detected copy number
alterations (amplifications of oncogenes and homozygous dele-
tions of tumor suppressors) recurrent fusions or rearrangements
(predicted to activate oncogenes or inactivate tumor suppressors)
were also designed as known or likely to be pathogenic. For the
analysis outlined in this study, only genomic alterations known or
likely to be pathogenic were included and VUS were excluded.
Analysis of co-occurring and mutually exclusive gene alterations

with KRAS alterations was limited to genes altered in at least 50
cases and targeted across all the assay versions. For each gene,
substitutions, short insertions/deletions, rearrangements, and
copy number changes of known or likely functional significance
detected using our assay were included. A Fisher’s exact test with
FDR-based correction for multiple testing was applied for this co-
mutation analysis.

Liquid CGP
For blood samples, cell free DNA (cfDNA) was extracted from
blood plasma to create adapted sequencing libraries before
hybrid capture and sample-multiplexed sequencing to a median
unique exon coverage depth of >6000x for 62, 70, or 324 genes
(Supplemental Table 18)40. Testing was performed in a CLIA-
certified/CAP-accredited laboratory (Foundation Medicine Inc.,
Cambridge, MA).

The levels of ctDNA shed for each specimen was quantified by
calculating an investigational composite tumor fraction (TF)44, which
merges two methods for estimation of TF45. When TF is elevated
(generally above 10%), an estimate is returned based on measure of
tumor aneuploidy that incorporates observed deviations in coverage
across the genome46. This aneuploidy-based approach avoids
erroneously inferring elevated TF due to the presence of germline
variants detected at high variant allele frequency. When lack of
tumor aneuploidy limits the ability to estimate TF (generally at lower
TF) a variant-based calculation is made by identifying the highest
allele fraction non-germline variant, excluding specific clonal
hematopoiesis (CH) associated alterations.

PD-L1 expression
PD-L1 expression was determined by immunohistochemistry (IHC)
performed on FFPE tissue sections in a CLIA certified/CAP-accredited
laboratory using the Dako 22C3 PD-L1 antibody. A pathologist
determined the percentage of tumor cells with expression (0–100%)
and the intensity of expression (0, 1+, 2+). PD-L1 expression was
reported as a continuous variable with the percentage of tumor cells
staining with ≥1+ intensity. PD-L1 expression was summarized as
negative (<1%), low positive (1–49%), or high positive (≥50% of
tumor cells staining with ≥1+ intensity). IHC staining for PD-L1 was
performed with Dako 22C3 antibody (catalog number SK006)
according to the manufacturer’s instructions.

Foundation Medicine-Flatiron Health Clinico-Genomic
Database
We leveraged real-world data from the Flatiron Health (FH)-
Foundation Medicine (FM) Clinico-Genomic Database (CGDB), a
nationwide de-identified electronic health record (EHR)-derived
database which includes patients sequenced at FM who received
care within the FH network. The de-identified data originated from
approximately 280 US cancer clinics (~800 sites of care). The FH-
FM CGDB includes 16,357 patients with a diagnosis of advanced
NSCLC, 10,430 with metastatic CRC, and 4438 with metastatic
PDAC who received care within the FH network between 01/2011-
09/2021. Cohorts included in our analysis were limited to those
who had tissue CGP (FoundationOne® or FoundationOne®CDx).
Patients who were diagnosed with metastatic disease greater than
90 days prior to their first visit within the FH network or received
their FMI report greater than 60 days after their last FH visit date
were excluded to ensure all therapies received prior to CGP were
captured. Additionally, patients who had their biopsy collected
after starting first line (1 L) treatment were excluded to ensure all
therapies received prior to CGP were captured and that the tumor
genomics were accurate prior to 1 L treatment initiation. Retro-
spective longitudinal clinical data were derived from EHR data,
comprising patient-level structured and unstructured data,
curated via technology-enabled abstraction of clinical notes and
radiology/pathology reports and linked to CGP data by de-
identified, deterministic matching47.

Fig. 4 Immunotherapy biomarkers and mutational signatures associated with KRASm isoforms in non-Sq NSCLC, PDAC, CRC, and
endometrial cancers. a Box plots showing the distribution of tumor mutational burden (TMB) in KRASm and KRASWT tumors. TMB is higher in
KRASm vs KRAS wild-type (WT) non-Sq NSCLC and endometrial cancer, and in particular for G12C and G12D subsets of non-Sq NSCLC and
G13D in endometrial cancer. Each box plot displays the interquartile range (IQR), with the lower boundary representing the 25th percentile
and the upper boundary representing 75th percentile. The line within the box displays the median and the whiskers extend to ±1.5 x IQR.
b PD-L1 expression was relatively consistent across KRASm and WT subsets for the four major tumor types. In non-Sq NSCLC PD-L1 high
expression was enriched in G12D/V/C and G13D subsets relative to WT and in endometrial tumors, any PD-L1 expression was enriched in
G12C and G13D relative to WT. c Microsatellite instability (MSI) was low across non-Sq NSCLC and PDAC. In CRC, MSI-high was enriched in
KRAS WT compared to KRASm subsets, whereas in endometrial tumors, G12D/V/C and G13D subsets had elevated MSI-high compared to WT.
Each KRAS mutation isoform was compared against WT with p value thresholds: 0.0001: ****, 0.001: ***, 0.01: **, 0.05: *. d Six mutational
signatures were assessed for KRASm isoforms. Tobacco signature was common across KRASm and WT non-Sq NSCLC and mismatch repair
(MMR) was common across PDAC, CRC and endometrial tumors. Only a subset of cases were able to be assessed for mutational signatures and
number of cases is shown below each bar.
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Fig. 5 Real-world outcomes for patients with NSCLC, PDAC, and CRC carrying different oncodriver alterations. Kaplan Meier curves for real
world overall survival (rwOS) are shown with univariate (top) and multivariate (bottom) analysis tables for each disease subtype. Analysis was
performed using the Flatiron Health-Foundation Medicine real-world clinicogenomic database. Patients with multiple driver alterations
spanning >1 category were excluded. a In patients with advanced NSCLC harboring KRAS G12C mutant tumors have similar rwOS to other
KRAS G12/13, KRAS non-G12/G13C, and driver negative patients. b In metastatic CRC, patients with KRAS G12C had similar rwOS compared to
other KRAS mutant isoforms, BRAF V600E, and NRAS mutations, but worse rwOS compared to patients negative for KRAS and NRAS mutations
and BRAF V600E (RAS/RAF negative). c In metastatic PDAC, rwOS was marginally inferior for KRAS G12C vs KRAS WT, although the differences
were small and were not observed in the multivariable model.
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Mutational signatures
Mutational signatures for each sample were determined by
examining the distribution of point mutations in the following
six substitution classes: C > A, C > G, C > T, T > A, T > C, T > G, and
their trinucleotide context from the bases flanking the mutated
base, producing 96 possible combinations48. All point mutations
were included in the analysis after excluding known oncogenic
driver mutations and predicted germline mutations. In samples
with at least 20 assessable mutations, the composition of the
following six major mutational signatures was determined:
Alkylating, APOBEC, MMR, POLE, Tobacco, and UV. A sample was
deemed to have a dominant signature if a mutational class
harbored a score of 0.4 or greater. Cases where a single dominant
signature could not be identified were annotated as ‘None’.

Estimation of clonality
The somatic-germline-zygosity (SGZ) algorithm was applied to
each sample to distinguish somatic49. For each predicted somatic
alteration observed in a sample, a tumor fraction was estimated
from the variant allele fraction (AF), mutant copies (mc) and wild-
type copies (wc), using the following formula: 2AF/(mc−AF(wc+
mc-2)). The highest estimated tumor fraction from all the somatic
alterations in a sample was used as an approximate for the tumor
fraction of the sample. Clonal fraction of each alteration is
obtained as the ratio of the variant and sample estimated tumor
fractions, with ≥50% considered clonal. Samples that failed
pipeline quality control thresholds and for which SGZ could not
be run were excluded from this analysis.

Determination of HLA class I loss of heterozygosity
Determination of HLA loss of heterozygosity was performed for
samples profiled using FoundationOne® or FoundationOne® Heme
assays34. Briefly, the minor allele frequency (MAF) of each HLA-I
gene (HLA-A, HLA-B, and HLA-C) was calculated separately. HLA-I
genotyping was performed using OptiType to a four-digit resolu-
tion50 and HLA-I reference sequences that matched the germline
alleles for each sample were obtained. Only germline heterozygous
alleles were assessed for LOH using the SGZ algorithm49.

Statistical considerations
For analysis of clinical outcomes, real world overall survival (rwOS)
was defined as time from first therapy administration to date of
death51. Patients without a death event were censored at their
date of last known activity. To account for left truncation and to
reflect the process of cohort eligibility, a patient’s entry date into
the clinicogenomic database (CGDB) was considered the later of
the date of a patient’s second visit within the FH network or their
first eligible FM CGP report. Risk set adjustment was used to ensure
patients treated prior to entry date were not included in the at-risk
population in OS analysis until they reached their entry date.

IRB approval
For Foundation Medicine (FMI) genomic analysis, approval for this
study, including a waiver of informed consent and a HIPAA waiver of
authorization, was obtained from the WCG Institutional Review Board
(IRB; Protocol No. 20152817). The IRB granted a waiver of informed
consent under 45 CFR § 46.116 based on review and determination
that this research meets the following requirements: (i) the research
involves no more than minimal risk to the subjects; (ii) the research
could not practicably be carried out without the requested waiver;
(iii) the waiver will not adversely affect the rights and welfare of the
subjects. The CGDB is a de-identified database, where data from
Foundation Medicine and Flatiron are linked by an independent third
party and there is no route to identify the included patients. For the
Flatiron Health-Foundation Medicine CGDB analysis, IRB approval

with waiver of informed consent based on the observational, non-
interventional nature of the study (WCG IRB, Protocol No. 420180044)
was also obtained prior to study conduct.
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