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Multi–cell type gene coexpression network analysis
reveals coordinated interferon response and cross–cell
type correlations in systemic lupus erythematosus

Bharat Panwar,1 Benjamin J. Schmiedel,1 Shu Liang,1 Brandie White,1

Enrique Rodriguez,2 Kenneth Kalunian,3 Andrew J. McKnight,2 Rachel Soloff,2

Gregory Seumois,1 Pandurangan Vijayanand,1,3 and Ferhat Ay1,3
1La Jolla Institute for Immunology, La Jolla, California 92037, USA; 2Kyowa Kirin Pharmaceutical Research, Incorporated, La Jolla,
California 92037, USA; 3School of Medicine, University of California San Diego, La Jolla, California 92093, USA

Systemic lupus erythematosus (SLE) is an incurable autoimmune disease disproportionately affecting women. A major ob-

stacle in finding targeted therapies for SLE is its remarkable heterogeneity in clinical manifestations as well as in the involve-

ment of distinct cell types. To identify cell-specific targets as well as cross-correlation relationships among expression

programs of different cell types, we here analyze six major circulating immune cell types from SLE patient blood. Our results

show that presence of an interferon response signature stratifies patients into two distinct groups (IFNneg vs. IFNpos).

Comparing these two groups using differential gene expression and differential gene coexpression analysis, we prioritize

a relatively small list of genes from classical monocytes including two known immune modulators: TNFSF13B/BAFF (target
of belimumab, an approved therapeutic for SLE) and IL1RN (the basis of anakinra, a therapeutic for rheumatoid arthritis).

We then develop a multi–cell type extension of the weighted gene coexpression network analysis (WGCNA) framework,

termed mWGCNA. Applying mWGCNA to RNA-seq data from six sorted immune cell populations (15 SLE, 10 healthy

donors), we identify a coexpression module with interferon-stimulated genes (ISGs) among all cell types and a cross–cell

type correlation linking expression of specific T helper cell markers to B cell response as well as to TNFSF13B expression

frommyeloid cells, all of which in turn correlates with disease severity of IFNpos patients. Our results demonstrate the pow-

er of a hypothesis-free and data-driven approach to discover drug targets and to reveal novel cross-correlation across cell

types in SLE with implications for other autoimmune diseases.

[Supplemental material is available for this article.]

Systemic lupus erythematosus (SLE) is a chronic autoimmune dis-
ease that affects multiple organs including the skin, joints, the
central nervous system, and the kidneys (Davidson 2016; Kaul
et al. 2016). It is caused by an aberrant autoimmune response to
produce antibodies against self-antigens, and these autoantibod-
ies form immune complexes (ICs), which are then deposited
into different organs and affect their normal function (Bayry
2016). SLE is a highly heterogeneous disease in terms of develop-
ment, presentation, manifestations, and severity; also, the inci-
dence and prevalence vary significantly (Carter et al. 2016).
Thus, the time course of flares and remission is unpredictable
(Obermoser and Pascual 2010). The diverse clinical manifestations
of SLE present a challenge because of the involvement of several
organs as well as diversified autoantibodies (Tsokos 2011).
Therefore, accurate diagnosis and disease activity assessment is es-
sential for managing SLE disease (Lam and Petri 2005). Even
though the SLE Disease Activity Index (SLEDAI) score, whichmea-
sures disease activity from 24 different clinical variables
(Bombardier et al. 1992), is widely adopted, it still leaves out sev-
eral manifestations because of the heterogeneous nature of SLE
(Thanou et al. 2014). Such heterogeneity in manifestations and
in assessing disease severity and activity has made it difficult to

develop efficient therapeutics and, to date, only one drug, belimu-
mab, which targets the TNF superfamily member 13b, TNFSF13B
(also known as BAFF), has been approved for use in SLE (Kaul
et al. 2016).

Clinical heterogeneity is the main obstacle in finding effec-
tive treatments for SLE (Touma and Gladman 2017); therefore, it
is important to discover molecular subtypes and signatures that
correlate to clinical phenotypes. One strong signature character-
ized to date is the heightened expression levels of type I interferon
(IFN)-related genes in the blood transcriptome of SLE patients and
in correlation with disease activity (Baechler et al. 2003; Feng et al.
2006; Crow 2014) and pathogenesis (Obermoser and Pascual
2010). Interferons induce the expression of canonical interferon-
stimulated genes (ISGs) as well as a specific epigenetic signature
(Barrat et al. 2019). Elevated levels of IFN in SLE patients was first
reported over 40 years ago (Hooks et al. 1979), and the role of IFN
signaling has beenwell studied ever since (Rönnblomand Leonard
2019), including in clinical studies (Chaichian et al. 2019; Oke
et al. 2019). Additionally, a recent single-cell transcriptome study
revealed the up-regulation of IFN-inducible or IFN-stimulated
genes in lupus nephritis patients (Der et al. 2017). However, how
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this IFN response affects molecular programs of different immune
cells and how it influences the cross-correlation among different
types of immune cells is largely unknown, as most studies use
mixed populations of immune cells (e.g., peripheral blood mono-
nuclear cells, PBMCs) and some studies used only a few cell types
(Kyogoku et al. 2013; Catalina et al. 2019). Therefore, transcrip-
tomeprofilingwith sorted populations ofmajor immune cell types
provides an opportunity to define cell-specificmolecular programs
using traditional differential expression analysis (Love et al. 2014)
and coexpression analysis (Oldham et al. 2006; Fuller et al. 2007;
Southworth et al. 2009; van Nas et al. 2009; de la Fuente 2010)
and with multi–cell type analysis to identify cross-correlation
among expression programs that, in turn, correlatewith disease ac-
tivity and severity.

In order to interrogate both cell-specific and cross–cell type
correlates of SLE, we have generated gene expression profiles of
six major human immune cell types from a cohort of SLE patients
and healthy controls using RNA-seq (Stark et al. 2019). Our cohort
consists of samples from 64 SLE patients and 24 controls as well as
their demographic information, clinical features (e.g., SLEDAI),
and measurements of the plasma levels of several relevant cyto-
kines and chemokines. For classical monocytes, we generated
RNA-seq data from all donors (64 SLE, 24 healthy). In addition,
we profiled T cells (n=24), neutrophils (n= 24), B cells (n=20),
and conventional (n=20) and plasmacytoid (n= 22) dendritic cells
from SLE patients and from healthy control subjects (n =11 or 12
for each cell type).

Results

Transcriptional profile of classical monocytes reveals two

molecular subtypes of SLE

Because SLE is known for its heterogeneity, we first investigated
the full set of patients in our cohort (Supplemental Table S1)
for distinct molecular signatures. To this end, we analyzed the
bulk RNA-seq-based transcriptome profiles of classical monocytes
(cMos) from 64 SLE patients and compared them to that of 24
healthy controls (HCs) (Fig. 1A; Supplemental Fig. S1A,B). For
this analysis, we only used the samples gathered from the first
study visit of each patient, setting aside the longitudinal samples
for validation. This analysis revealed a total of 125 differentially
expressed genes (DEGs) (P.adj < 0.05) with 109 up- and 16
down-regulated genes (Supplemental Fig. S1C). The PCA plot of
these 125 DEGs highlights the heterogeneity within SLE patients,
with one group showing clear differences compared to HCs and
the other showing no such separation (first principal compo-
nent) (Fig. 1B). Further analysis of these 125 DEGs showed that
most of these DEGs are enriched in interferon-related pathways,
and a hierarchical clustering based on the top 50 most variable
DEGs showed a clear distinction between patients with high
(IFNpos) versus low (IFNneg) expression of IFN genes in SLE
(Fig. 1C; Supplemental Fig. S1C; details in Supplemental Table
S2). To further illustrate this point, we used 20 interferon signa-
ture genes (IFN-20) for Gene Set Enrichment Analysis (GSEA)
(Subramanian et al. 2005) and showed a significant enrichment
of their expression in SLE compared to HC (normalized enrich-
ment score [NES] = 0.962; FDR q-value =0.023) (Supplemental
Fig. S1C). Additionally, IFNpos versus IFNneg SLE patients
showed a clear difference in their expression of ISGs (first visit
for each patient) (Fig. 1D; Supplemental Fig. S1D), a pattern
that was conserved when we included their longitudinal samples

(Supplemental Fig. S1E). To better quantify these differences,
we conducted pairwise comparisons of the resulting three
groups (IFNpos, IFNneg, HC) identifying 1439 DEGs between
IFNpos and IFNneg and 1288 DEGs between IFNpos and HC,
whereas there were only five DEGs between IFNneg and HC
(P.adj < 0.05) (Supplemental Table S2). These results suggest that
it is important to investigate these two molecular subgroups of
SLE (IFNpos and IFNneg) separately and that there is no clear
cMo molecular signature that distinguishes IFNneg patients
from HCs. This distinction is likely also critical for developing
therapeutics for SLE, as their clinical testing may suffer from
such high heterogeneity among the patient cohort.

The bulk RNA-seq data provides average gene expression but
lacks the resolution to determine the proportion of cMos that are
positive for the expression of IFN signature genes. To this end,
we used single-cell RNA-seq to test whether the IFNpos status is
conferred by a subset of cells or is shared across each individual
cMo cell. Our analysis of the transcriptome profiles of ∼156 single
cells from three different IFNpos patients demonstrated that nearly
all cMos are positive for the expression of at least several of the ISGs
(Supplemental Fig. S1F). Particularly, IFI6 and LY6E, both well-
known type I interferon-related genes (Zhang et al. 2015a), are
highly expressed in most cMos across different patients (violin
plot, Supplemental Fig. S1F). A recent high-throughput 10x
Genomics–based single-cell study also showed an expansion of
monocytes with enriched ISG expression in SLE patients (adult
and pediatric), with the highest disease activity in both pediatric
and adult SLE patients (Nehar-Belaid et al. 2020) confirming the re-
sults from our low-throughput single-cell data.

IFN response status of SLE patients correlates with the levels

of pro-inflammatory cytokines and chemokines

For a subset of donors from our cohort, we measured the plasma
level of different cytokines and chemokines such as IFNA2,
IFNB1 IFNG, IL2, IL6, IL10, CXCL10, TNF, and TGFB1 and com-
pared the levels from only the first study visit data across the three
groups: HC (n= 16), IFNneg (n=30), and IFNpos (n=30). Out of
these, IFNA2 (P= 0.0190), IFNB1 (P=0.0460), IL6 (P=0.0413),
and CXCL10 (P=0.0002) levels were higher in SLE subgroups in
comparison to HCs. These three cytokines (IFNA2, IFNB1, IL6) as
well as CXCL10 had a statistically significant difference between
IFNpos and IFNneg SLE patients as well (Fig. 1E; Supplemental
Fig. S2A). The plasma levels of different interferons, pro-inflamma-
tory cytokines that are well studied in SLE (Banchereau et al. 2016;
Rönnblom and Leonard 2019), all showed a positive but nonsig-
nificant correlationwith a transcriptome-derived IFN score derived
using gene set variation analysis (IFN-20 GSVA; Spearman’s corre-
lation of 0.25, 0.22, and 0.16with IFNA2, IFNB1, and IFNG, respec-
tively). Another pro-inflammatory cytokine with a significant
difference between IFNpos and IFNneg is IL6, which induces the
maturation of B lymphocytes into plasma cells and increases Ig
secretion. Increasing IL6 levels have been shown to correlate
with increased disease activity and with anti-DNA autoantibody
levels in human SLE (Lai and Yap 2010). It has also been shown
that IL6-174G/C and IL6-572G/C polymorphisms are associated
with the development of SLE (Cui et al. 2015). We also identified
a significantly higher level of a pro-inflammatory chemokine,
C-X-C motif chemokine ligand 10 (CXCL10) in IFNpos patients
(Fig. 1E), the level of which has also been reported to correlate
with SLE disease activity andwith organmanifestations of this dis-
ease (Kong et al. 2009).
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Figure 1. Transcriptional profiling of classical monocytes reveals two molecular subtypes of SLE. (A) Overview of the SLE cohort. Healthy control (HC)
samples are highlighted in green color and SLE samples are highlighted in magenta color. Six different immune cell types, including classical monocytes
(cMo), Polymorphonuclear Neutrophils (PMNs), conventional dendritic cells (cDC), plasmacytoid dendritic cells (pDC), T cells, and B cells are displayed in
different colors. (B) The PCA plot based on 125 DEGs (P.adj < 0.05 from a Benjamini–Hochberg test in DESeq2) between SLE and HC in classical monocytes.
Green and magenta colors represent HC and SLE patients, respectively. (C) Heat map of top 50 most variable DEGs (one per row) in a SLE versus HC com-
parison (P.adj < 0.05) clustered with hierarchical clustering and presented as row-wise z-scores (−2.0 [blue] to 2.0 [yellow]) of transcripts per million (TPM)
in SLE (magenta) or HC (green); each column represents an individual patient. IFNpos (red) and IFNneg (blue) are shown in different colors. (D) SLE patients
(first study visits) within each group (HC, IFNneg, IFNpos) are sorted with respect to the first principal component of IFN-20 gene expression. The SLEDAI
CLASS panel shows the SLEDAI score and is divided into three different categories based on score: DA1 (0–2), DA2 (3–7), andDA3 (>7) (yellow, orange, and
red, respectively). Patients with active disease status and those taking treatment are highlighted in purple color. This color scheme is used throughout all
figures. (E) Scatter dot-plots show the expression level (pg/ml) in plasma of IFNG, IL6, and CXCL10. Only first visit samples (n=76) were used in these
scatter dot-plots. The difference in measurements from IFNpos and IFNneg patients has been calculated using unpaired t-test, two-tailed. (ns) Not signifi-
cant, (∗) <0.05, (∗∗∗) <0.001. (F) Longitudinal IFN response status of 17 SLE patients (five patientswere IFNpos and 12 patientswere IFNneg at the first study
visit) (top left). Only one patient (S1057) changed their IFN response status between study visits, changing from IFNpos to IFNneg between the first and
second study visit and remained IFNneg in all follow-up visits. Similar heat maps of IFN status and different clinical parameters such as SLEDAI, disease
status, and treatment for patients with longitudinal information. (G) Two plots with connecting lines (upper and lower) showexpression changes ofmultiple
cytokines and chemokines in the longitudinal data for patient S1057, where different analytes are plotted on different y-axes (IFNG on y1-axis in red color
and IL6 on y2-axis in blue color) in different colors. The RNA-level expression of CXCL10 is also shown (y2-axis) with protein-level expression of CXCL10
(y1-axis). The lower panel of each plot shows their IFN response status over multiple longitudinal visits.



IFN response status molecular signature is mainly conserved

in longitudinal samples

Next, we asked whether the IFN response status changes across dif-
ferent visits of the same patient and if this change is related to se-
rum levels of pro-inflammatory molecules or other clinical
features. We observe that, for the majority of the patients, the
IFN response status is identical across all their follow-up visits, re-
gardless of changes in disease activity, flares and/or treatment reg-
imens (e.g., prednisone use and dose) across the multiple visits.
Among the 17 SLE patients with longitudinal data from multiple
visits that are at least 1 mo apart, 12 patients were IFNneg and
five patients were IFNpos at their first study visit (Fig. 1F). Out of
these, only one patient (S1057) showed a change in the IFN re-
sponse status, with the first collection being IFNpos and the next
three follow-up visits being IFNneg (Fig. 1F). To understand the
variation across different IFNs, pro-inflammatory cytokines (IL6
and CXCL10), and clinical parameters such as SLEDAI, disease sta-
tus, and treatment, we generated a series of heat maps (Fig. 1F;
Supplemental Fig. S2B) highlighting that IFN levels in plasma do
not always correlate with transcriptome-derived IFN status in clas-
sicalmonocytes. All three patients (S1057, S1055, and S1053) with
≥4 visits show uncoordinated changes in IFNs plasma level with
respect to changes in IFN signature gene-based GSVA score
(Supplemental Fig. S2C). Furthermore, a principal component-
based clustering of the plasma levels of three different interferons
is not able to distinguish either the IFNpos versus IFNneg patients
or their SLEDAI score-based disease activity categories (DA1 [0–2],
DA2 [3–7], and DA3 [>7]) (Supplemental Fig. S2D).

In the single patient with IFN response status change, the se-
rum levels of CXCL10 significantly dropped (2.4-fold), in linewith
switching from IFNpos to IFNneg between the first and second
sample collections (Fig. 1G). This sharp decrease is also reflected
as a 2.7-fold decrease in the mRNA levels of CXCL10, which en-
codes CXCL10 protein, in classical monocytes between the same
two visits (Fig. 1G). Although the differences in IFNG levels be-
tween IFNpos and IFNneg groups did not reach statistical signifi-
cance (P=0.0644) for the overall cohort (Fig. 1E), for this specific
patient, IFNG levels also showed a threefold decrease in the second
visit (Fig. 1G). Consistent with comparisons from the whole co-
hort, the level of IL6 also showed a twofold decrease for the second
visit of this patient (Fig. 1G). Even though these results suggest a
tight link between levels of pro-inflammatory molecules and IFN
status for this patient, our analysis of two other patients (S1055
and S1053) with at least four visits shows that significant changes
in plasma levels of pro-inflammatory molecules are not always ac-
companied by changes in the transcriptome-based IFN status (e.g.,
S1055 in Supplemental Fig. S2E). Overall, these results show that
IFN-based stratification of SLE patients is relatively stable across
their longitudinal samples and the relationship between changes
in gene transcriptome-derived status and changes in the plasma
levels of specific pro-inflammatory cytokines or chemokines is
not one-to-one.

Weighted gene coexpression network analysis highlights

important gene modules

The major limitation with differential gene expression analysis is
that it treats each gene individually while comparing expression
profiles, whereas most biological functions are performed by a
group of genes working together in coordination. The traditional
approach is to study each cell type one-by-one and to find differen-
tially expressed genes for those cells based on the gene-level ex-

pression estimates within and across different groups. This
approach is complemented by analyzing the patterns of correlated
gene expression (coexpression) which relies on the “guilt-by-asso-
ciation” principle (Chu et al. 1998), suggesting genes with coordi-
nated changes in expression are more likely to be involved in
similar biological functions. Therefore, we used weighted gene
coexpression network analysis (WGCNA) to generate a network
from classical monocyte gene expression profiles of 64 SLE donors
(Langfelder and Horvath 2008). This coexpression network re-
vealed a total of 25 different modules, represented by different col-
ors, where each module is a cluster of coexpressed genes.
Furthermore, the correlation of eigengene value of each module
with external clinical features showed that IFN response status is
the most-correlated feature in comparison to other available clini-
cal features (module-trait relationships) such as age, ethnicity,
flare, severity, SLEDAI, and treatment regimens (Fig. 2A). The
blue module is positively correlated (r=0.83; P-value =5×10−17)
with IFN response status (Fig. 2B) and it consists of 1684 genes.
In addition to our IFN-20 gene set, we also manually curated a
broader set of 363 IFN-related genes (IFN-363) from different
sources and found that most of the hub genes (genes with highest
connectivity in the coexpression network) in the blue module
are part of this IFN-363 set (Supplemental Fig. S3A). The red mod-
ule is negatively correlated (r=−0.73; P-value=1×10−11) with IFN
response status and it has 662 genes, most of which are related to
protein translation (Supplemental Fig. S3B). This WGCNA sug-
gests that the dominance of IFN response signature in the stratifi-
cation of SLE patients using gene expression is conserved whenwe
use gene coexpression relationships. From the same analysis, we
also identified two modules that significantly correlate with flare
in SLE patients: the purple module (r=0.44; P-value= 0.0003)
(Supplemental Fig. S3C) and the light green module (r=−0.44;
P-value=0.0003) (Supplemental Fig. S3D). Among the hub genes
of the purple module was TNFRSF12A (Supplemental Fig. S3C),
which is the receptor of TNFSF12 (also known as TWEAK), a pro-
inflammatory cytokine targeted as a potential therapeutic for
SLE (Leng et al. 2011). For the light green module, TLR5
(Supplemental Fig. S3D) was one of the hub genes, a stop codon
polymorphism of which was shown to be involved in resistance
to SLE (Hawn et al. 2005; Devarapu and Anders 2018).

Combined analysis of differential network and gene expression

of classical monocytes reveals known immune modulators

Our application ofWGCNAon all cMo SLE samples highlights im-
portant gene modules and confirms our findings from the differ-
ential expression analysis. Differential network analysis uses
these coexpression patterns across different conditions to identify
differentially connected genes (DCGs), revealing irregularities in
the transcriptome wiring in the disease state (Oldham et al.
2006; Fuller et al. 2007; Southworth et al. 2009; van Nas et al.
2009; de la Fuente 2010). In order to prioritize specific genes and
upstream regulators driving differences in gene expression be-
tween IFNpos and IFNneg groups, we then applied a differential
WGCNA, which uses differential connectivity to identify differen-
tially regulated genes (Fuller et al. 2007). Conceptually, a DCGmay
have the same level of expression in two different groups but may
be coexpressed with distinct sets of genes, suggesting a rewiring of
the underlying biological pathways involving this gene. A gene
that is both differentially expressed and differentially connected
is also likely to have a broader impact in the molecular profile
that distinguishes the compared groups from each other. With
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Figure 2. Combined analysis of differential network and gene expression of classical monocytes reveals two known immune modulators (TNFSF13B and
IL1RN). (A) Themodule-traits correlationmatrix heatmap ofWGCNA based on total 25 differentmodules and external clinical features such as assigned IFN
response status, age, ethnicity, flare, severity, and other clinical parameters. The color shows significance (−log10 of P-value) of the Spearman’s correlation
between a trait and themodule eigengenewith the correlation values in each cell that corresponds to a significant correlation (P-value < 0.01). The number
of genes in eachmodule is also shown (in brackets) with themodule name. IFN response status is the most correlated clinical feature, with the blue module
being the top positively correlated (r=0.83; P=5×10−17) and the redmodule being the top negatively correlated (r=−0.73; P=1×10−11). (B) The line plot
shows significance (−log10 of P-value on the y1-axis in red color) and Spearman’s correlation (y2-axis in blue color) of different clinical traits with blue mod-
ule’s eigengene. The clinical traits are sorted in decreasing order of statistical significance of the correlation for the blue module. (C ) The plot shows dif-
ferential expression and differential connectivity of genes between IFNpos and IFNneg patients (x-axis is DiffK = K1−K2; K1 = connectivity in IFNpos
network; K2 = connectivity in IFNneg network, and y-axis is the DESeq2-based log2 fold change). Colors of genes represent different modules based on
the IFNpos (Network1) network. (D) Sixty-four genes were selected from the green module using significant DEGs (P.adj < 0.05; 1.5-fold change) as
well as DCGs (|DiffK| > 0.25) and visualized by Gephi, where nodes are sized according to the number of edges (connections) and the edge thickness is
proportional to the strength of coexpression. Available IFN signature genes (IFN-20) are highlighted in red colors, and two known immune modulators
(IL1RN and TNFSF13B [BAFF]) are highlighted in yellow. (E) An example showing the importance of differential network analysis because IL1RN and
TNFSF13B, which are in same green module, have a large number of connected genes in the IFNpos network but no connected genes (at a threshold
of 0.05 edge weight) in the IFNneg network. The strength of coexpression is also varying and is presented by the width of the connection. TNFSF13B
and IL1RN are in different modules (salmon and turquoise, respectively) in the IFNneg network. (F) Expression of TNFSF13B and IL1RN is plotted according
to IFN response status and SLEDAI class (DA1, DA2, or DA3). Green, blue, and red colors represent HC, IFNneg, and IFNpos, respectively. The provided
P-values are calculated using an unpaired t-test (two-tailed). (G) The Spearman’s correlation between TNFSF13B and IL1RN expression (TPM) for HC,
IFNneg, and IFNpos group as well as the whole cohort (r=0.6637; P<0.0001). (H) Gene expression changes for TNFSF13B and IL1RN in longitudinal
data from patient S1057, where genes are plotted on different y-axes; TNFSF13B on y1-axis in red and IL1RN on y2-axis in blue. The lower panel of this
plot shows corresponding IFN response status over multiple longitudinal visits.



this motivation, we applied WGCNA to generate two separate
coexpression networks, one for IFNpos and one for IFNneg, to
identify DCGs between the two conditions. For each gene in
each coexpression network, we computed network connectivity
as the sum of connection strengths (based on coexpression) with
the other genes in that network. We identify DCGs by computing
the difference between the connectivity (DiffK) values for each
gene between the IFNpos and IFNneg network. Using stringent cri-
teria, we identified a total of 99 genes that are DEGs (1.5-fold chan-
ge; P.adj < 0.05) as well as DCGs (>0.25 or <−0.25 DiffK) when
IFNpos and IFNneg patients are compared. A majority of these
genes (64/99) are from the green module which includes known
IFN-related genes aswell as several other genes previously implicat-
ed in the context of SLE (Fig. 2C; Supplemental Table S3). A joint
visualization of differential expression and connectivity high-
lights that the green module genes are enriched in significant dif-
ferences in both expression as well as connectivity (Supplemental
Fig. S4A) with enrichment in IFN-related pathways (Supplemental
Fig. S4B). Aside from 16 genes from the IFN-20 set, the green mod-
ule also harbors several hub genes such as TNFSF13B, IL1RN,
BLVRA, ZBP1, PARP9, APOBEC3G, LGALS9DP, GMPR, and USP41
(Fig. 2D). This short list of genes includes two known immune
modulators, TNFSF13B (BAFF) and IL1RN (highlighted in Fig.
2D). TNFSF13B is the target of the only approved therapeutic (beli-
mumab) for SLE to date (Kaul et al. 2016). A recombinant form
(anakinra) of the other gene, IL1RN (interleukin 1 receptor antag-
onist), is a therapeutic agent marketed for the treatment of rheu-
matoid arthritis (Furst 2004), and it inhibits the binding of pro-
inflammatory IL1A and IL1B to the IL1 receptor (Sims and Smith
2010).

TNFSF13B and IL1RN expression is dysregulated in SLE

TNFSF13B is significantly differentially expressed (P.adj = 8.14×
10−16; 1.55-fold change) as well as differentially connected
(DiffK=0.401) between IFNpos and IFNneg patients (Supplemen-
tal Table S3). IL1RN is also significantly differentially expressed
(P.adj = 3.20×10−11; 1.8-fold change) and differentially connected
(DiffK=0.330). Both genes are hubs in the green module of the
IFNpos network (Fig. 2E) but are not connected/coexpressed
with any other gene in the IFNneg network (edgeweight threshold
of 0.05). The expression levels of both TNFSF13B and IL1RN are el-
evated, with higher SLEDAI scores (DA3 class) for IFNpos in com-
parison to IFNneg patients (Fig. 2F). This correlation is valid when
the continuous SLEDAI score is used or when this score is divided
into three different disease activity categories: DA1 (0–2), DA2
(3–7), and DA3 (>7) (Fig. 2F) as previously described (Banchereau
et al. 2016). The expression levels of TNFSF13B and IL1RN are
also strongly correlated with each other (r=0.6637; P<0.0001)
(Fig. 2G). In the longitudinal data, the expression levels of both
genes go down when the IFN response status of patient S1057
changes from IFNpos to IFNneg (from the first to second collec-
tion) (Fig. 2H; Supplemental Fig. S4C). The DICE database
(Schmiedel et al. 2018), which profiled gene expression of nearly
100 healthy donors for 13 distinct human primary immune cell
populations (including cMos and T and B cells), also shows that
the expression ofTNFSF13B and IL1RN are specifically high in clas-
sical monocytes in the circulating blood (Supplemental Fig. S4D).

Additionally, this differential expression and connectivity
analysis also revealed many interesting novel genes that have sim-
ilar expression patterns to TNFSF13B and IL1RN, including the
interferon-related genes IFI6, LY6E, and IFIT3 (Supplemental Fig.

S4E). For example, BLVRA (biliverdin reductase A) has a canonical
function to convert biliverdin to bilirubin, but it plays an anti-in-
flammatory function by activation of the PI3K–AKT-IL10 pathway
as well as inhibition of TLR4 expression via direct binding to
the TLR4 promoter (Wegiel and Otterbein 2012). ZBP1 (Z-DNA
binding protein 1) encodes a cytosolic DNA sensor that can acti-
vate type I IFN response (Takaoka et al. 2007), and it also regulates
programmed cell death and other inflammatory responses
(Kuriakose and Kanneganti 2018). DDX60L (DExD/H-Box 60
like) is an IFN-stimulated gene and is involved in antiviral immu-
nity (Grünvogel et al. 2015). APOBEC3G (apolipoprotein B mRNA
editing enzyme catalytic subunit 3G) is related to RNA editing and
also plays an important role in antiviral immunity (Wang et al.
2012). GMPR (guanosine monophosphate reductase) was recently
reported as a potential therapeutic target for Alzheimer’s disease
(Liu et al. 2018). The revelation of these validated immune-related
genes (Supplemental Fig. S4E) shows the robustness of our data-
driven and unbiased bioinformatics analysis in identifying known
and novel therapeutic targets for SLE and potentially for other au-
toimmune diseases, in general.

All of the above-mentioned genes were up-regulated and
highly connected in the IFNpos network compared to IFNneg.
We did not identify any genes showing the opposite effect
(1.5-fold higher expression in IFNneg and DiffK <−0.25) (Fig.
2C). However, when we explored the IFNneg WGCNA network
on its own (Supplemental Fig. S3E), we identified the dark green
module that negatively correlated (r=−0.5; P-value =0.002) with
the SLEDAI score. However, we found several interesting hub
genes in the dark green module, such as TLR2 that was shown to
be up-regulated in PBMC from SLE patients, alongside two other
Toll like receptors TLR7 and TLR9 (Komatsuda et al. 2008) and
RBPJ, the variants of whichwere shown to be highly disease-specif-
ic for rheumatoid arthritis (RA) and SLE (Lim and Kim 2019).
When we used all 56 genes from this module, we did not find
any significant Gene Ontology (GO) term enrichment
(Supplemental Fig. S3F). A future direction would be to reevaluate
our findings in larger cohorts of IFNneg SLE patients to better char-
acterize the molecular correlates of disease activity and severity for
this group of SLE patients.

IFN response molecular signature is conserved across multiple

different immune cell types

The recent studies highlight that multiple immune cell types are
involved in the pathogenesis of SLE (Moulton et al. 2017).
Therefore, it is important to systematically investigate distinct im-
mune cell types from the same cohort of patients and to jointly
study them in the context of disease heterogeneity and disease
severity. Here, we used RNA from bead- or flow cytometry-based
sorted populations of six different immune cell types including
classical monocytes, polymorphonuclear neutrophils (PMNs),
conventional dendritic cells (cDC), plasmacytoid dendritic cells
(pDC), total T cells, and total B cells (Supplemental Fig. S1B) and
performed bulk RNA-seq to understand the stability of IFN re-
sponse signature as well as the importance of cell type–specific fea-
tures in SLE pathogenesis. For this multi–cell type profiling, we
used a matched set of HC, IFNneg, and IFNpos samples (n=9–12
for each) from the first sample collections of different donors.
The principal component analysis of these different cell types
across each donor based on the top-1000 most variable genes re-
veals that each cell type clusters separately as expected (Fig. 3A).
We then carried out PCA using only the expression of the 20 genes
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Figure 3. IFN response signature is present in all immune cell types. (A) PCAplot based on 1000most variable genes across six different immune cell types
represented by different colors. (B) PCA plots of different cell types based on IFN signature genes (IFN-20) colored either by cell types (left) or by IFN re-
sponse status (right). (C) Average expression of IFN-20 genes clustered based on hierarchical clustering and presented as row-wise z-scores of TPM in
IFNpos (red), IFNneg (blue), and HC (green) for each cell type separately. The DA panel shows disease activity categories determined by SLEDAI score.
Patients with active disease at the time of visit and those taking treatments are highlighted in purple color. The detailed expression heat map with each
one of the IFN-20 genes in all six cell types is provided in Supplemental Figure S5G. (D) Gene expression of TNFSF13B and IL1RN across six different cell
types using IFN response status and SLEDAI-based categories. (E) A stacked column plot shows the number of RNA-seq-based differentially expressed genes
with an adjusted P value threshold of 0.05 (Benjamini–Hochberg correction on DESeq2 P-values) in multiple cell type–specific data sets and different com-
parisons. (F) The flower plot (generated by jvenn [Bardou et al. 2014]) shows the overlap of DEGs from the IFNpos versus IFNneg comparison (Benjamini–
Hochberg correction on DESeq2 P-values) in six different cell types. Some cell-specific genes of interest are highlighted in boxes with outline colors match-
ing the color used for the relevant cell type. (G) Functional annotations (generated by clusterProfiler) of cell-specific DEGs from F. We used a similarity cutoff
of 0.40 to remove similar Gene Ontology terms. The color shows the significance (in terms of P.adj) and the size is gene ratio of annotations.
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in the IFN-20 set and colored each sample either by its cell type
(Fig. 3B, left panel) or by the IFN response status of the donor,
which we determined from cMo data as previously described
(Fig. 3B, right panel). This analysis highlights that, for each cell
type, the IFNpos samples (red) are clearly separated from IFNneg
andHC samples (green and blue, respectively) by the first principal
component (Fig. 3B). The individual PCA plots for each cell type
also show that the IFN-based annotations are cell type–indepen-
dent and can be assigned at the patient level (Supplemental Fig.
S5A–F). Heat map visualization using the IFN-20 gene set confirms
this separation for each donor and for each cell type, both when
the 20 genes are aggregated (Fig. 3C) and when visualized sepa-
rately (Supplemental Fig. S5G). Out of 12 IFNpos patients, nine
are classified into higher disease activity classes (DA2 or DA3),
whereas for the IFNneg group, none of the patients were in the
DA3 group, suggesting that IFN-based molecular stratification of
SLE patients is also clinically relevant (Fig. 3C). Analysis of
TNFSF13B and IL1RN gene expression, originally identified from
our cMos analysis, shows that both are expressed at high levels
in PMN cells and are specifically up-regulated in IFNpos samples
(Fig. 3D), likely contributing to disease activity. Together with
the results discussed before, we established that our classification
with respect to IFN response status correlates with disease activity
and is robust to themode of gene expression profiling (bulk or sin-
gle-cell) and to the immune cell type under investigation, support-
ing its clinical relevance in SLE.

Cell-specific transcriptional differences between two molecular

subtypes of SLE

It is essential to study each sorted immune cell type separately,
which unlike bulk analysis of PBMC, provides the resolution to
identify cell type–specific transcriptional programs in relation to
SLE pathogenesis. Therefore, we performed differential gene ex-
pression analysis comparing SLE-vs.-HC, IFNpos-vs.-HC, IFNneg-
vs.-HC, and IFNpos-vs.-IFNneg for each cell type separately (Fig.
3E; Supplemental Table S4).We found only a fewDEGswhile com-
paring SLE-vs.-HC whereas the IFNpos-vs.-HC comparison provid-
ed hundreds of DEGs inmost cell types (Fig. 3E). We also observed
a large number of DEGs between IFNpos and IFNneg groups for all
cell types except B cells. B cells also have the largest number of
DEGs for IFNneg-vs.-HC analysis compared to all other cells.
Most DEGs (P.adj < 0.05) are specific to one particular cell type,
and only 35DEGs, all of which are a part of the IFN-363 set, are pre-
sent in all cell types when we performed the IFNpos-vs.-IFNneg
comparison (Fig. 3F). The Gene Ontology–based functional
annotation of DEGs revealed that all cell types were enriched for
common IFN-related pathways (Supplemental Fig. S5H; Supple-
mental Table S5).

For the IFNpos-vs.-IFNneg comparison, a large fraction of
DEGs from each cell type were differentially expressed only in
that cell type (29%–78%) (Fig. 3F), suggesting that, aside from
the common IFN response genes, each cell type has uniquemolec-
ular differences between the two SLE subgroups. The functional
enrichment analysis of these cell type–specific differences high-
lights several cell type–specific functions (Fig. 3G; Supplemental
Table S5). The cDC-specific genes are involved in T cell activation
(mainlyXCL1, IL18, and PRDX2 genes) through antigen presenta-
tion. Expression ofXCL1 (X-Cmotif chemokine ligand 1) by cross-
presentingCD8+ dendritic cells has been reported to determine co-
operationwith CD8+ T cells inmurinemodels (Dorner et al. 2009).
IL18 is a pro-inflammatory cytokine that plays an important role

in generating inflammation in lupus nephritis (Mohsen et al.
2013). PRDX2 (peroxiredoxin 2) is an antioxidant that plays a
key role in inflammation (Knoops et al. 2016). The pDC-specific
DEGs are enriched for heterotypic cell-cell adhesion (LILRB2,
CD44, JUP, ITGB7), and B cells have an enrichment of electron
transport chain (NDUFA8 and AKR1B1)-related genes. PMNs
have genes enriched in neutrophil degranulation and neutrophil
activation involved in immune response (CXCL1, CEACAM1,
and CD63). T cell DEGs have an enrichment for annotations in-
cluding cell-cycle (CENPM, CKS2, CDK1), T cell receptor signaling
pathway (FOXP3, PSMB1, PSMA1), and antigenprocessing andpre-
sentation of peptide antigen (LAG3, PSMB10). Even though we
onlymention a few genes here (Fig. 3F), we also provide a complete
list of genes and their GO-based functional enrichments for each
cell type (Fig. 3G; Supplemental Fig. S5H, Supplemental Table
S5). The number of DEGs is relatively low for each cell type in
our SLE-vs.-HC comparisons (Fig. 3E), highlighting the necessity
of stratifying patient groups prior to comparative transcriptomic
analysis.

Integrated multi–cell type weighted gene coexpression network

analysis (mWGCNA)

Multiple immune cell types are involved in immuno-pathogenesis
of SLE, and they likely act in coordination (Tsokos et al. 2016;
Moulton et al. 2017), which renders the approach to studying
each cell type in isolation suboptimal. The availability of multi–
cell type transcriptome profiles from a sufficient number of pa-
tients provides us the unprecedented opportunity to develop
and apply data-driven and integrative bioinformatics approaches
to study cross-correlation of SLE-related gene expression programs
across these cells. The standard WGCNA (Langfelder and Horvath
2008) does not support multicell analysis; therefore, we developed
a novel multi–cell type WGCNA (mWGCNA) approach, which
combines transcriptomes of different cell types by representing
each gene with its name plus a cell type identifier (e.g., cMo-
IL1RN) to generate a single integrated weighted coexpression-
based network. This integrated network resulted in 78 different
modules from a total 101,282 “genes” (nearly 17,000 genes from
each cell type), with most of the modules containing a substantial
number of coexpressed genes from multiple cell types (Fig. 4A;
Supplemental Table S6), with the exception of the largest module
(∼19,000 genes), which consisted of over 70% B cell genes
(Supplemental Fig. S6A). The existence of largely mixed modules
suggests that genes from different cell types co-vary across patients
and that a systematic quantification of such covariation could be
useful for identifying disease-relevant signatures encompassing
different cell types.

To demonstrate the functional and biological relevance of our
mWGCNA approach and the modules we report here, we first as-
sessed whether absolute gene expression levels could be a con-
founding factor. To this end, we classified genes into five
different categories based on TPM values to see their distributions
in different modules. This analysis showed that all modules have
genes from all expression classes with no clear clustering of genes
according to their expression level categories (Supplemental Fig.
S6B). We also looked at whether mWGCNA tends to put genes
from different cell types with similar static gene annotations
(e.g., GO terms) into the same module (e.g., all cell cycle genes
from all cell types in a single module or a few modules), which
would hinder its value in identifying disease-relevant cross-corre-
lation patterns. Quantification of the fraction of genes that have
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Figure 4. Multi–cell typeWGCNA (mWGCNA) analysis reveals IFN-driven cross-talk between T cells and B cells. (A) A figure depicting themWGCNAusing
combined transcriptomes from six different cell types. ThemWGCNA has generated 78 differentmodules, and examplemodules showdifferent proportion
of genes from six different cell types. (B) We found 13modules (out of total 78) that have significant enrichment of DEGs (IFNpos-vs.-IFNneg) in at least one
cell type. The x-axis shows modules with their enrichment in each cell type and y1-axis shows −log10 of the adjusted P-value (based on a hypergeometric
test). This includes four modules (black, blue, light yellow, and dark olive green) where the DEGs are significantly enriched in two ormore cell types. (C) The
line plot shows significance (−log10 of P-value) on the y1-axis in redandSpearman’s correlation on the y2-axis in blue for the correlationof different traitswith
the blackmodule eigengene. The clinical traits are sorted in decreasing order of statistical significance of the correlation for the blackmodule. (D) Functional
annotations (generated by clusterProfiler) of genes from each cell type in the blackmodule. The color shows the significance (adjusted P-value), and the size
of the dot corresponds to the proportion of genes with the corresponding annotation. (E) Enrichment of TFH and TREG gene sets in all 78 modules high-
lighting four modules with significant overlap for at least one of these gene sets. The x-axis is different modules, the y1-axis is −log10 of the adjusted P-value
(based on a hypergeometric test), and the y2-axis shows the number of genes from T cells present in the corresponding module. (F) The functional anno-
tations of significantly enrichedgenes fromdifferent cell types in the light yellowmodule. (G) Examples of T cell and B cell genes from the light yellowmodule
as visualized by Gephi. The nodes are colored according to the cell of origin (T cells in green node with blue text and B cells in pink node with red text) and
sized according to the number of edges (connections), and the edge thickness is proportional to the strength of coexpression.
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multiple copies fromdifferent cell types (cMo-IL1RN, PMN-IL1RN,
T-IL1RN) clustered in the same module showed that this is the
case for only <1% of the genes for three or more cell types
(Supplemental Fig. S6C). This co-clustering of the same genes
across different cell types wasmost pronounced for the blackmod-
ule that mainly consists of highly shared IFN-related genes.
However, even for the black module, 63% of genes came from
only a single cell type and 18% came from two cell types
(Supplemental Fig. S6D). These results suggest that coordinated
variation of gene expression across patients (either within or across
cell types), rather than gene expression category similarities
or static gene annotations, drives the module identification by
mWGCNA as aimed. Another implication of these findings is
that gene coexpression relationships, hence modules, are highly
cell type–specific.

To see whether our integration of multiple cell types in one
coexpression framework caused this high cell type specificity, we
also compared our results with the standard WGCNA for each
cell type separately. To this end, we generated all possible coex-
pressed gene pairs in each module for each cell type (except the
gray module that contains genes are not coexpressed with others),
leading to a total of ∼148million distinct pairs of genes that are in
the samemodule for at least one cell type. Amajority of these gene
pairs (54%), however, were present in the same module only in
one particular cell type and not the others (i.e., coexpressed only
in one cell type) (Supplemental Fig. S6E). Only ∼3% of overall
gene pairs were present in the same module for four or more cell
types. These results indicate that the highly cell-specific nature
of coexpression relationships and module assignments is not spe-
cific to mWGCNA and also is the case for the standard, per-cell-
type WGCNA.

mWGCNA reveals IFN-driven cross-correlation among

different cell types

Another important feature we implemented with mWGCNA to
ease interpretation and to allow prioritization of modules is the
calculation of theDEG enrichment for eachmodule. The statistical
significance of DEG-module overlaps for each cell type and for
each module is computed using a hypergeometric test. Out of
the 78 modules, we found 13 with a significant enrichment of
DEGs (IFNpos-vs.-IFNneg) for at least one immune cell type and
four (black, blue, light yellow, and dark olive green) with DEG en-
richment from at least two cell types in the samemodule (Fig. 4B).
Among them, the black module consisted of genes from each of
the cell types and is relatively large, with 3940 genes (1216 from
cMo, 1004 from PMN, 594 from pDC, 534 from T cells, 520 from
cDC, and 72 fromB cells) (Supplemental Table S6). Although there
are several clinical features such as severity, flare, SLEDAI, and
BILAG severity that are significantly correlated with the black
module, the correlation with IFN response status is the dominant
feature (Fig. 4C,D; Supplemental Fig. S7A; Supplemental Table S7).
The TNFSF13B gene from three (cMo, PMN, and pDC) and the
IL1RN gene from two different myeloid cell types (cMo and
PMN) are also part of the black module showing coexpression
with IFN-related genes across different immune cell types
(Supplemental Fig. S7B). The blackmodule also harbors four genes
coming from all six cell types, including three that are IFN-related
(IFI6, IFIT3, and RSAD2) and ODF3B,which is also likely regulated
by IRF3 (Rouillard et al. 2016), a member of the interferon regula-
tory transcription factor (IRF) family. These results suggest that IFN
response leads to coordination of gene expression changes across

different cell types leading to a tightly connectedmWGCNAmod-
ule. Two other modules mentioned above (blue and dark olive
green) (Fig. 4B) show enrichment in harboring DEGs from two dif-
ferent cell types (IFNpos-vs.-IFNneg comparison), but they lack
clear functional enrichments for at least one of these two cell types
(Supplemental Fig. S7C,D; Supplemental Table S7).

mWGCNA reveals IFN-driven cross-correlation between

T cells and B cells

The fourthmodule (light yellow)mentioned above (Fig. 4B) shows
a significant enrichment for both B cell and T cell DEGs. This is
particularly striking given that most B cell genes are readily clus-
tered into one large module (turquoise) as discussed (Fig. 4A;
Supplemental Fig. S6A). Because the natural connection between
T and B cells is the T cell help for B cell function, and B cells are crit-
ical targets for SLE, we further looked into specific T helper sub-
types that may correlate with enriched B cell function. The
follicular helper T cells (TFHs) are known to provide help and to
play a central role in germinal center (GC) formation and develop-
ment of high-affinity antibodies and memory B cells (Crotty
2014). A connection between follicular TFHs and IFN-γ response
was established previously (Lee et al. 2012), and the expansion
of circulating T cells resembling TFHs also has been shown in
mouse models of SLE as well as a subgroup of patients with SLE
(Simpson et al. 2010). TFH cells in the germinal centers as well as
in circulation (cTFHs) (Locci et al. 2013) are known to promote B
cell class-switching and help the development of high-affinity an-
tibodies (Crotty 2014). More recently, a study described an ex-
panded population of CD4+ helper T cells in SLE patient blood
that are distinct from TFHs but still help activate B cells, further
confirming heightened cross-correlation between circulating B
cells and T cells in SLE (Caielli et al. 2019).

Another T cell subset known as regulatory T cells (TREGs) also
have been shown to directly suppress B cells in SLE (Iikuni et al.
2009) and in vitro in a TGFB1-dependent fashion (Xu et al.
2016). Therefore, we computed the enrichment of published
gene sets for TFH (Locci et al. 2013) and TREG (Schmiedel et al.
2018) cells for each module identified from our mWGCNA. To ac-
count for overlap among TFH, TREG, and IFN response signatures,
we removed genes from both the TFH and the TREG sets that over-
lap with any of the other two sets (Supplemental Fig. S7E). Using
the remaining 265 TFH and 300 TREG signature genes, we identi-
fied a total of four modules with significant overlap with at least
one of these gene sets (Fig. 4E), including the light yellowmodule
we identified earlier (Fig. 4B). The functional annotation of this
light yellowmodule showed a significant enrichment of B cell pro-
liferation-related genes (CD38 and CD79A) expressed by T cells
(Fig. 4F; Supplemental Table S7). Even though these genes are
mainly expressed by B cells, they also have considerable transcrip-
tion in other circulating immune cells including T cells (Schmiedel
et al. 2018). The expression of these genes in T cells also showed
correlation with TFH and cell cycle–related genes from T cells.
Most of their coexpressed/connected genes from B cells are IFN
response-related but includemembers of the tumor necrosis factor
(TNF) and TNF receptor (TNFR) superfamilies’ (TNFSF8,TNFRSF18,
and TNFRSF21) as well as galectins (LGALS9 and LGALS3BP),
which are also well-connected in the light yellow module
(Fig. 4G). We then revisited the DEGs from IFNpos-vs.-IFNneg
comparisons and found that many genes that are characteristic
of TFH cells (e.g., TIGIT, STMN1, TYMS, FABP5, LAG3, CCNA2,
CDKN3, CDCA7, and KPNA2), and TREG cells (e.g., FOXP3 and
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HAVCR2/TIM3) are uniquely differentially expressed in T cells (Fig.
3F; Supplemental Table S4). Another module that emerged from
the overlap analysis for TFH and TREG signatures was the sky
blue module (Fig. 4E). Even though this module was not enriched
in DEGs for any cell type, it harbored two genes (FADD and CRK)
from cDCs that are involved in the regulation of T cell migration as
well as T cell activation genes such as (CCL5, BATF, and RUNX3)
from T cells, suggesting a potential connection to inflammatory
response (Supplemental Fig. S7E).

Having discovered several multi–cell type modules with po-
tential biological relevance through the mWGCNA approach
and DEG enrichment, we then asked whether similar findings
could have been possible by a post hoc integration of cell type–spe-
cificWGCNAmodules. Our originalmWGCNA approach has gen-
erated 78 modules, among which we have selected four modules
based on the significant enrichment of DEGs (IFNpos-vs.-
IFNneg) in more than one cell type. When we performed standard
WGCNA for each cell type andused a similarDEGenrichment test,
we found 15 modules total with a significant DEG enrichment
across all six cell types, but none of them were from B cells
(Supplemental Fig. S6F). This suggests that a post hoc integration
of cell type–specificWGCNAmodules would havemissed the con-
nection between T and B cells, which we discussed above.
Furthermore, matching modules from one cell type to those
from another is not a trivial task andwill further complicate the ef-
fort to performan integrative analysis. These highlight the value of
mWGCNA in identifying biologically relevant cross-correlations
(such as black and light yellow modules) through a unified
framework.

IFNpos patients have higher expression levels of genes related

to TFH and TREG subsets

In order to better understand the influence of IFN response on the
composition of different T cell subsets, we use signature gene sets
of TH1 (Arlehamn et al. 2014), TH2 (Arlehamn et al. 2014), TH17
(Arlehamn et al. 2014; Hu et al. 2017), TFH (Locci et al. 2013), and
TREG (Schmiedel et al. 2018) from published studies (Supplemen-
tal Table S8). As before, we remove the IFN response-related genes
(IFN-363 set) (Supplemental Fig. S7E) from each T helper signature
subset first. We then perform Gene Set Enrichment Analysis be-
tween IFNpos and IFNneg patients for each gene set. Whereas
TFH (NES=1.77, q =0.006) and TREG (NES=1.68, q =0.009)
gene sets show significant enrichment in IFNpos-vs.-IFNneg com-
parison (Fig. 5A), the other three subsets, TH1 (NES=0.83, q=
0.694), TH2 (NES= 1.17, q =0.326), and TH17 (NES=1.47, q=
0.077), show no such enrichment (Supplemental Fig. S8A). In a
confirmatory analysis, we used flow cytometry and found that
there is a significant difference between IFNpos and IFNneg/HC
patients in terms of their proportion of activated TFH cells and
TREG but not for overall TFH cells in their blood (upper panel of
Fig. 5B; Supplemental Fig. S9A).

We then investigated the top TFH-related genes and found
that most have higher expression in the IFNpos group compared
to no or very little expression in both the IFNneg and HC groups
(Fig. 5C). Many important TFH-related genes (CD38, TIGIT,
LAG3, FABP5, CCNA2, TYMS, and CDKN3) are significantly differ-
entially expressed between T cells from IFNpos-vs.-IFNneg patients
(Fig. 5D; Supplemental Table S4). In general, expression levels of
these genes are elevated in higher disease activity groups (DA2
and DA3) within IFNpos patients. Similarly, TREG-related genes,
including FOXP3 and HAVCR2/TIM3, also have higher expression

in the IFNpos group (Supplemental Fig. S8B). These analyses show
that both TFH-like and TREG-likemolecular programs are enriched
in IFNpos patients, though it is not clear whether the TREG-like
signature is simply a response marker or plays a nontrivial role in
SLE pathogenesis. Another important signature previously report-
ed in SLE patient blood was the plasmablast activity (Banchereau
et al. 2016). Even though we did not have DEG enrichment sup-
porting this observation, which may be masked owing to a low
proportion in plasmablasts in the total B cell compartment, we ob-
served a significant difference between IFNpos and IFNneg/HC pa-
tients in the proportions of plasmablasts in their blood (lower
panel of Fig. 5B; Supplemental Fig. S9B).

TNFSF13B expression from multiple cell types correlates

with expression of TFH-related genes

An important factor in the context of B cell help is TNFSF13B,
which promotes B cell survival and controls their maturation
(Mackay and Browning 2002) while also regulating IFNG produc-
tion by TFH cells in lupus-prone mice (Coquery et al. 2015).
Increased expression of TNFSF13B induces expansion of activated
B cells that produce autoantibodies and cause autoimmunity and
is dependent, at least in part, on TFH (Chen et al. 2014). In our
data, higher expression of TNFSF13B from all myeloid cells shows
a strong correlationwith the enrichment of the TFHgene signature
in T cells, which itself is elevated in IFNpos SLE patients. Our iden-
tification of TNFSF13B from the combined DEGs and DCGs anal-
ysis of classical monocytes (Fig. 2D), together with the significant
enrichment of TFH-related gene expression in T cells from IFNpos
SLE patients, suggest that there could be a potential connection be-
tween TNFSF13B expression and TFH-like features in the SLE pa-
tient blood. Because multiple immune cells, mainly of myeloid
lineage, produce TNFSF13B (Fig. 3D), it is also important to under-
stand which cell types significantly contribute to the induction of
TFH-like programs in T cells through the TNFSF13B axis.

To this end, we employed gene set variation analysis, which
estimates variation of enrichment of a particular gene set over a
sample population (Hänzelmann et al. 2013). GSVA provides en-
richment scores for each sample for a given gene set, which can
then be correlated with sample-specific features such as a gene ex-
pression measurement or another GSVA enrichment score. First,
we found a strong positive correlation (r= 0.637; P<0.0001) be-
tween GSVA scores from IFN-signature genes (IFN-20) and from
TFH-related genes using expression profiles from T cells (Fig. 5E).
Next, we computed the correlation between TNFSF13B expression
from different immune cells and GSVA enrichment of TFH-related
genes in T cells resulting in significant correlations for all cells, ex-
cept B cells, with specifically strong correlations for PMNs (r=
0.589; P=0.0001) and cMos (r=0.4725; P=0.004) (Fig. 5E;
Supplemental Fig. S8C). Similar analysis for TREG-related genes
also highlighted some statistically significant correlations, though
to a lesser extent compared to TFH-related genes (Fig. 5F;
Supplemental Fig. S8C). Although only correlative, these results
suggest that TNFSF13B production from PMN and cMo cells, con-
cordant with an increase in IFN response-related gene expression,
may induce an extrafollicular T cell help program, akin to follicular
B cell help by TFH cells, in IFNpos SLE patients. This in turn may
lead to a robust autoantibody production by B cells leading to for-
mation of immune complexes and SLE manifestations. Further
mechanistic studies are needed to completely characterize this in-
terplay among IFN response by all immune cells, TNFSF13B
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Figure 5. Enrichment of TFH and TREG signatures in IFNpos patients in correlation with TNFSF13B expression frommyeloid cells. (A) Gene set enrichment
analysis (GSEA) of TFH (top) andTREG (bottom) gene sets in the transcriptomeof IFNpos versus IFNneg inT cells, presentedas running enrichment score (RES)
for the gene set, frommost overrepresented genes on the left to themost underrepresented on the right. The values above the plot represent the normalized
enrichment score (NES) andmultiple testing-corrected significance value (Kolmogorov–Smirnov test). The source of the gene set is also provided. (B) Scatter
dot-plots show the percentages of circulating TFH inCD3+CD4+ T cells (top left), activated TFH inCD3+, CD4+, CXCR5+, CD45RO+ cTFH (top center), TREG in
CD3+,CD4+ T cells (top right), plasmablasts (bottom left), andplasmacells inCD19+B cells (bottom right) in healthy donor, IFNneg, and IFNpos patientblood.
Data fromall patient visits are included. Sampleswith <50 cells in thegateof interestwere excluded.Differences between IFNpos and IFNnegwere calculated
using an unpaired t-test, and statistical significance (P-value) levels are shown in each plot. (ns) Not significant, (∗∗) <0.005, (∗∗∗) <0.0005, (∗∗∗∗) <0.0001.
The detailed gating strategies are provided in Supplemental Figure S9. (C) Expression of top 30 TFH-related geneswithin the total CD3+ T cell transcriptome,
where each gene is presented as row-wise z-scores of TPM values in IFNpos (red), IFNneg (blue), and HC (green); each column represents an individual pa-
tient. (D) Individual expression plots for known TFH-related genes divided by IFN response status as well as SLEDAI categories. The provided P-values are
based on an unpaired t-test (two-tailed). (E) The top left plot shows Spearman’s correlation between GSVA scores derived either from IFN-20 genes (x-
axis) or from theTFHgene set (y-axis) for T cell gene expressiondata. The rest of theplots showTFHgene setGSVA score versusTNFSF13B (BAFF) expression in
five cell types with a significant correlation between the two axes. (F ) Similar plots to those in E using GSVA scores from the TREG gene set.
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expression by myeloid cells, and the enrichment of B cell activa-
tion by turning on specific T cell help programs.

Discussion

The diagnostic complexity and heterogeneous nature of SLE dis-
ease require stratification of patients with the goal of correlating
clinical features with molecular subgroups. Although we have
used a variety of available clinical and demographic information
(e.g., age, ethnicity, flare, severity, SLEDAI, and different treat-
ments), IFN response status consistently provided the most strik-
ing relationships with gene expression differences and with gene
coexpression modules (Fig. 2A,B). With this in mind, we analyzed
SLE patients in two distinct groups, namely IFNpos and IFNneg,
throughout this work. The joint analysis of DEGs and DCGs be-
tween IFNpos and IFNneg in classical monocytes (Fig. 2C) reveals
two known immune modulators (TNFSF13B and IL1RN) within a
small group of prioritized genes, as well as several other genes of
interest that could be further explored as therapeutic targets or bio-
markers for SLE (Fig. 2D). Although IFN response statuswasmainly
stable across different visits of the same patient, our cohort had
one patient whose IFN response status changed between visits,
and this change was accompanied by changes in the serum levels
and mRNA levels of pro-inflammatory cytokines (IL6, CXCL10,
IFNG) (Fig. 1E). The expression and coexpression profiles of
TNFSF13B and IL1RN also changed with IFN response status in
this longitudinal data (Fig. 2H; Supplemental Fig. S4C). Recently,
a phase III clinical trial (TULIP 2, NCT02446899) in SLE patients
with a human monoclonal antibody (anifrolumab) that specifi-
cally blocks IFNAR1 (interferon alpha and beta receptor subunit
1) was completed (Morand et al. 2020). The trial results also sug-
gested that knowing patients’ IFN response status before prescrib-
ing targeted therapy will be helpful in the clinical setting and in
designing further targeted therapies for specific patient groups.

Here, we systematically analyzed the transcriptomeprofiles of
multiple circulating immune cell types and found that IFN signa-
ture-based classification of SLE patients into two groups is very
consistent across different immune cell types (Fig. 3C). The large
and clear-cut transcriptional differences between gene expression
profiles of IFNpos and IFNneg patient groups across different
immune cell types (Fig. 3F), without such clear differences in IFN
levels in the serum from the two groups, suggest that the cells
might be pre-exposed to IFN signals prior to migrating into the
blood. Beyond the shared IFN response signature, it has been chal-
lenging to infer biological functions of these cell-specific DEGs
because GO-based functional annotations are generic and only
provide information about canonical functions regardless of cell
type. Recently, an integrated and multicohort analysis also has
published a unified SLE MetaSignature of 93 genes in the
blood, and most of these genes (85%) were IFN-related (Haynes
et al. 2020). When these genes were compared to our work, we
found that, out of the total 125 DEGs (SLE-vs.-HC) we report for
classical monocytes, 44 are present in the SLE MetaSignature of
93 genes.

Another challenge was the involvement of multiple different
immune cell types, each of which added another layer of complex-
ity. Here, we proposed and demonstrated the use of a novel bioin-
formatics approach we named mWGCNA in exploring the cross-
correlation among different immune cell types using coexpression
relationships of gene pairs across different cell types. We then re-
visited the large number of DEGs identified from one-by-one

DEG analysis of IFNpos versus IFNneg patients (Fig. 3F) using
mWGCNA to explore potentially linked functional enrichments
involving at least two different cell types. Out of four modules,
which we narrowed down from a total of 78, one module
correspondedmainly to the IFN response signaturewith an enrich-
ment of IFNpos versus IFNnegDEGs fromall six different cell types
(Fig. 4B,C). Another module was significantly enriched for both T
cell and B cell DEGs (Fig. 4B,G) and suggested that extrafollicular T
cell help to B cells, that is, gene signatures in the blood that are
reminiscent of TFH cells, could play an important role in height-
ened disease activity in the IFNpos patient group (Figs. 4E, 5A).
Recently, multiple lines of evidence have accumulated that circu-
lating follicular helper-like T cells are present in SLE blood and
their expansion is associated with disease activity (Choi et al.
2015; Xu et al. 2015; Zhang et al. 2015b). Another recent work
also identified a T helper subset that is distinct from TFHs but
still promotes B cell activation and differentiation into plasma-
blasts extrafollicularly in SLE blood (Caielli et al. 2019). It has
been also shown that T peripheral helper (Tph) cells (PD-
1hiCXCR5−CD4+) stimulate B cell responses in lupus via MAF
and IL21 (Bocharnikov et al. 2019). New evidence is also accumu-
lating that T cell metabolism (Sharabi and Tsokos 2020) and epige-
netics (Su et al. 2020) also regulate the TFH cell in SLE. Our results
do not exclude either possibility but highlight that such B cell
help-related T cell programs are likely more relevant targets for
the treatment of IFNpos SLE patients and not for IFNneg SLE pa-
tients. In the present study, the systematic attempt to explore
the connection between TFH cells and the interferon signature us-
ing SLE transcriptome profiles is a new discovery to the best of our
knowledge. Furthermore, our finding that TNFSF13B from three
different myeloid cell types come together in the black module
with significant coexpression to IFN-related genes (Supplemental
Fig. S7B) suggests that the effectiveness of a belimumab-based
treatment could be impacted by the IFN response status of the
patient.

In conclusion, we have found an IFN-basedmolecular hetero-
geneity in transcriptome profiles of SLE patients that is consistent
across different immune cell types. We developed a novel compu-
tational approach (mWGCNA) to understand how this IFN-signal
could affect the cross-correlation among different immune cells.
We anticipate that the data source generated here will be very use-
ful for further characterization of immune cell type–specific roles
in SLE progression. We also believe that our data-driven bioinfor-
matics approach to jointly analyze gene expression profiles from
multiple immune cell types from the same tissue (i.e., blood) will
be broadly applicable to studies of other heterogeneous autoim-
mune diseases where multiple cell types are implicated in disease
pathogenesis.

Methods

Patient samples

Recruitment of subjects included in this study followed
Institutional Review Boards’ La Jolla Institute for Immunology,
University of California San Diego, The Scripps Research
Institute, and Quorum Review approvals, and study participants
gave written informed consent. SLE patients were previously diag-
nosed by a clinician according to the ACR SLE criteria (Petri et al.
2012) and classified as active if they had a SLEDAI score of at least
four as well as a BILAG score of A or B at each study visit. A subset of
patient samples (n=10) were collected by Sanguine Bioscience and
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confirmed via their medical records to have a diagnosis of SLE by
meeting the ACR SLE criteria. A modified SLEDAI score was deter-
mined based onpatient self-reporting of active symptoms.Healthy
volunteers were recruited by the Normal Donor Blood programs at
La Jolla Institute for Immunology and The Scripps Research
Institute. All demographics and clinical information of the SLE co-
hort are provided (Supplemental Table S1).

Sample collection and cell isolation

After the volunteers consented to donate their blood sample,
40 mL of blood were obtained via venipuncture. Thirty-six millili-
ters were collected for cellular analysis (6 × 6 mL BD vacutainer
tubes with potassium EDTA; Becton Dickinson) and 4 mL for se-
rum analysis. Whole blood was spun at 2000 rpm for 10 min.
The plasma fraction was transferred to a fresh tube, aliquoted,
and stored at −80°C until analyzed. The cell pellets were then re-
suspended in HBSS without calcium and magnesium and under-
laid with Ficoll-Paque Plus (Sigma-Aldrich) for density gradient
centrifugation purification of the PBMCs. The tubes were centri-
fuged at 2000 rpm at room temperature for 20 min in sealed
carriers with the brake off. The top fraction (upper layer) was aspi-
rated, leaving aminimumof 5-mL volume over the interface layer,
which was collected using a sterile rubber bulb and Pasteur pipette
into a new 50-mL conical tube. The collected PBMCs were washed
in PBS by centrifuge at 1800 rpm at room temperature for 10 min.
The PBMCs were passed through a 70-µm cell strainer, washed
again, and then either frozen in 10% fetal bovine serum
(HyClone US-origin defined FBS, GE Healthcare Life Sciences) in
DMSO or processed for purification of immune cell subsets as de-
scribed below. The cell pellets from the Ficoll gradients were
used for isolation of PMNs. First, red blood cells were lysed by re-
suspending the cell pellet in Gey’s solution. Following incubation
on ice for 5 min, the solution was underlaid with 5 mL FBS and
then centrifuged at 1800 rpm for 5 min. The cells were resuspend-
ed in PBS, passed through a 70-µm cell strainer, and washed twice
with PBS by centrifugation at 1200 rpm for 5min each. PMNswere
resuspended in 30 mL HBSS without calcium or magnesium. Six
milliliters of 6% dextran were added to the cells and mixed by in-
version. Following incubation at room temperature for 30min, the
supernatant was transferred to a new tube which was spun for
5 min at 1200 rpm. The pellet was then resuspended with 5 mL
H2O andmixed for 5 sec before addition of HBSS to a final volume
of 50 mL. After a final spin at 1200 rpm for 5 min, the cells were
resuspended in 5 mL HBSS, counted, and spun again at 1200
rpm for 5 min. One milliliter of TRIzol LS (Thermo Fisher
Scientific) was added for each 5×106 cells and samples were stored
at −80°C. Subsets of immune cells were further isolated by a com-
bination of magnetic bead-based and flow cytometric-based cell
sorting methods.

Cell sorting

Total T cells were isolated fromPBMCs bymagnetic bead-based sep-
aration, specifically using CD3 DynaBeads (Thermo Fisher
Scientific) according to the manufacturer’s instructions. The puri-
fied T cells were resuspended in TRIzol LS and stored at −80°C.
The T-depleted PBMCs were resuspended in FACS buffer (PBS, 2%
FBS, 2 mM EDTA, and 25 mM HEPES) containing mouse IgG
(Jackson Immunochemicals) to block nonspecific binding.
Following incubation for 10 min on ice, the cells were stained
with a cocktail of antibodies against TCRαβ (BioLegend 306712),
CD11c (BioLegend 337220), HLA-DR (BioLegend 307636), CD16
(BioLegend 302028), CD19 (BioLegend 302238), CD14 (BD
Biosciences 555399), and CD303 (Miltenyi 130-090-511)

(Supplemental Fig. S1B). B cells, classical, nonclassical, and interme-
diatemonocytes, pDCs, and cDCswere sorted on either FACSAria or
a BD Influx (BectonDickinson). After sorting, the cells werewashed,
lysed in TRIzol LS, and frozen at −80°C immediately. Circulating
classical CD14hi CD16− monocytes were isolated from PBMCs
from 64 patients with systemic lupus erythematosus (SLE) and 24
healthy subjects (Fig. 1A). Longitudinal samples were collected
from 17 SLE patients and two healthy individuals between
September 2014 and August 2016 for one to five follow-up visits
(Fig. 1F). Five additional immune cell types (B cells, T cells, cDCs,
pDCs, and PMNs) were evaluated from a subset of the samples (24
SLE and 12 HC).

Flow cytometry

Cell staining of whole blood was performed for 25 min on ice
in the dark in staining buffer composed of PBS, 0.5% BSA,
and 0.05% sodium azide. Red blood cells were lysed by addition
of 1× BD Pharm Lyse Buffer (BD Biosciences) and incubation in
the dark at room temperature for 15min. Following onewash, cells
were fixed in 2% paraformaldehyde for 15 min at room tempera-
ture, washed again, and resuspended in staining buffer. A mini-
mum of 300,000 total events were collected on a FACS Calibur
using Cell Quest and analyzed with FlowJo software (TreeStar).
Anti-human CD20 (clone 2H7, catalog #302304), CD19 (clone
HIB19, catalog #302234), CD38 (clone HB7, catalog #356608),
CD3 (cloneUCHT1, catalog #300426), CD4 (clone RPA-T3, catalog
#300506), CD25 (clone BC96, catalog #302632), CD127 (clone
A019D5, catalog #351325), CCR4 (clone TG6, catalog #335405),
CXCR5 (clone TG2, catalog #335001), CD45RO (clone UCHL1,
catalog #304218), and PD-1 (clone EH12.2.H7, catalog #329907)
antibodies were purchased from BioLegend, anti-human CD27
(clone O323, catalog #12-0279-42) from eBioscience, and anti-hu-
man ICOS antibody (clone DX29, catalog #557802) from BD
Biosciences.

Cytokine profiling of plasma

Plasmawas collected frompatients as described above. Frozen plas-
ma was shipped to Affymetrix and analyzed in a 34-protein ven-
dor-defined multiplex Procarta Plex-2panel (Thermo Fisher
Scientific) to profile differential plasma protein expression from
healthy volunteers and patients with SLE. Analytes measured in-
cluded soluble CD40 ligand, CXCL5, IFNA2, IFNB1, IFNG, IL10,
IL23, IL12p70, IL15, IL17A, IL17F, IL18, IL1A, IL1B, IL1RA, IL2,
IL21, IL4, IL6, CXCL10, CXCL11, CCL2, CCL5, TGFB1, TNF,
VEGFA, IL13, leptin, PAI1, Resistin, Fas ligand, SDF1, IL22, and
CSF2. GraphPad Prism8 was used to generate scatterplots and to
perform statistical analyses of these data.

Bulk RNA sequencing

Total RNA was isolated from sorted cell populations using an
miRNeasy Micro kit (Qiagen) and quantified. Three nanograms
of total RNA were used to generate cDNA following the Smart-
seq2 protocol. cDNA was purified using AMPure XP beads (0.8×,
Beckman Coulter). Next, 1 ng of cDNA from each sample was
used to generate a sequencing library (Nextera XT DNA sample
preparation kit and index kit, Illumina). The libraries were pooled
and sequenced on a HiSeq 2500 (Illumina) to obtain 50-bp single-
end reads. Both full-transcriptome amplification and sequencing
library preparations were performed in a 96-well format to reduce
assay-to-assay variability. Quality control steps were included after
each step to eliminate samples with low quality from the down-
stream process. A detailed protocol has been previously published
(Rosales et al. 2018). Libraries were sequenced on a HiSeq 2500
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Illumina to obtain a minimum of 10 million 50-bp single-end
reads (HiSeq SR Cluster kit v4 cBot, HiSeq SBS kit v4).

Single-cell sequencing

Cells from three SLE (IFNpos) patients were sorted into plates to
generate sequencing libraries following the Smart-seq2 protocol.
cDNAs were purified twice with AmPure XT beads (0.8×). From
each sample, 0.4 ng of cDNAwas used to generate a sequencing li-
brary using the Nextera XT DNA sample preparation kit and index
kit from Illumina. Quality control steps were included after each
step to eliminate samples with low quality from the downstream
process. A total of 156 single-cell libraries passed all quality control
criteria. The libraries were pooled, then sequenced on aHiSeq 2500
to obtain a minimum of 50,000 50-bp single-end reads. A detailed
protocol has been previously published (Rosales et al. 2018).

Bulk and single-cell RNA-seq analysis

Bulk RNA-seq data (FASTQ files) were mapped against the hg38 ge-
nome (GRCh38.p7) reference using TopHat (Trapnell et al. 2009)
v2.0.9 (‐‐max-multihits 1 ‐‐microexon-search ‐‐bowtie1) with
FastQC (v0.11.2), and SAMtools v0.1.19.0 (Li et al. 2009).
Trimmomatic (v0.36) was used to remove adapters (Bolger et al.
2014). We employed htseq-count -m union -s no -t exon -i gene_
name (part of the HTSeq framework, version v0.7.1 [Anders et al.
2015]) for calculating read counts. To identify differentially ex-
pressed genes between two groups, we used raw read counts and
performednegative binomial tests for unpaired comparisons using
DESeq2 (v1.14.1) with the package from Bioconductor (Love et al.
2014).We disabled the default options of DESeq2 for independent
filtering and Cooks cutoff. Nonexpressed (no reads in all samples)
genes were filtered out before running DESeq2. All genes with
Benjamini–Hochberg-adjusted P value of <0.05 (based on
DESeq2 results) were considered as differentially expressed genes
in any comparison. TheMAplot was generated by using the ggma-
plot function of the ggpubr R package. Gene expression values
were normalized as transcripts per million (TPM) and applied in
the Qlucore Omics Explorer 3.3 software package for visualization
and representation (heatmaps, principal component analysis, and
GSEA) of RNA-seq data. The top 30 TFH/TREG genes were selected
based on filtering by variance from the statistics function of
Qlucore. Different box plots and Spearman’s correlation plots
were generated by GraphPad Prism8 (v8.3.0). For the analysis of
our plate-based single-cell RNA-seq data, we used the same pipe-
line as mentioned above for bulk RNA-seq to process, map, and
quantify read counts.We used normalized TPM counts for analysis
and plotting violin plots.

Weighted gene coexpression network analysis

The R package WGCNA (v1.61) was used to generate
coexpression network from the TPM data matrix (Langfelder
and Horvath 2008). To develop a standard WGCNA network
for SLE (Fig. 2A), we used 16,444 well-expressed genes with
TPM >1 in at least 25% of the samples, and modules were
generated using the blockwiseModules function (parameters:
checkMissingData =TRUE, power= 5, TOMType=unsigned,
minModuleSize = 30, maxBlockSize = 16444, mergeCutHeight =
0.25). The pickSoftThreshold function was used to optimize soft-
thresholding power (β) by choosing the lowest power for which
the scale-free topology fit index reaches 0.90. The default ‘gray’
module was generated by WGCNA for non-coexpressed genes.
As each module by definition is comprised of highly correlated
genes, their combined expression may be usefully summarized
by eigengene profiles, effectively the first principal component

of a given module. A small number of eigengene profiles may
therefore effectively ‘summarize’ the principle patterns within
the cellular transcriptome with minimal loss of information.
This dimensionality-reduction approach also facilitates correla-
tion of ME with traits. Different clinical features (IFN-status, age,
ethnicity, flare, severity, SLEDAI score, years of disease, affected re-
nal, BILAG severity, and different treatments) were used as a trait
and correlated with MEs. Significance of correlation between
this trait and MEs was assessed using Spearman’s correlation and
P-values.

In the differential network analysis (Fig. 2C), we used a
standard WGCNA-based approach to generate coexpression net-
works for IFNpos and IFNneg separately. For each network, genes
were clustered into a dendrogram and modules were assigned
by blockwiseModules function (parameters: checkMissingData =
TRUE, power= 6, TOMType=unsigned, minModuleSize = 30,
maxBlockSize = 16444, mergeCutHeight = 0.25). In order to make
both IFNpos and IFNneg networks comparable, we used the
same soft-thresholding power (β=6). Furthermore, network con-
nectivity values using the softConnectivity function (power = 6)
have been calculated for each gene, where connectivity (also
known as degree) is defined as the sum of connection strengths
(based on coexpression) with the other genes in the network.
The difference between the connectivity (DiffK=K1 – K2) for
each gene between IFNpos (K1) and IFNneg (K2) was calculated
(as described in Fuller et al. 2007). Genes with at least ±0.25 differ-
ence (K1−K2) in connectivity (DiffK) were considered as differen-
tially connected genes.

Multi–cell type weighted gene coexpression network analysis

In themulti–cell typeWGCNA (mWGCNA) approach (Fig. 4A), we
have generated a single WGCNA network by merging transcrip-
tome profiles of six different cell types (patient-matched) together.
We used a total of 25 samples (10 HC, eight IFNneg, and seven
IFNpos) from six different cell types. Highly correlated genes
from combined transcriptomes across six immune cell types
were identified, and a total of 78 modules were generated using
blockwiseModules function (parameters: checkMissingData =
TRUE, power= 3, TOMType=unsigned, minModuleSize = 50,
maxBlockSize = 101282, mergeCutHeight = 0.25). In order to find
gene set–specific importantmodules, we havemeasured the signif-
icance of a particular gene set (e.g., DEGs between IFNpos and
IFNneg) by a hypergeometric test using phyper R function and,
further, P-values were adjusted for multiple test correction using
the p.adjust R function (method= fdr).

To visualize coexpression networks, we used the function
exportNetworkToCytoscape at weighted= true, threshold=0.05.
A soft-thresholding powerwas chosen based on the criterion of ap-
proximate scale-free topology. Networks were generated in Gephi
(v0.9.2) (Bastian et al. 2009) using Fruchterman Reingold and
Noverlap functions (Clarke et al. 2019). The size and color were
scaled according to the average degree as calculated in Gephi,
while the edge width was scaled according to the WGCNA edge
weight value.

Gene set enrichment analysis and gene set variation analysis

GSEA determines whether an a priori defined ‘set’ of genes (such as
a signature) show significant cumulative changes in gene expres-
sion between phenotypic subgroups (Subramanian et al. 2005).
We applied GSEA using the Qlucore Omics Explorer 3.3 software
package for assessing significant enrichment of specific gene sets
(e.g., IFN signatures or T cell subtypes) in one group relative to
that in another group (e.g., IFNpos vs. IFNneg). In summary, first,
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all genes are ranked on the basis of their differential expression
(TPM-based) in one group versus their expression in another
group. Thereafter, a running enrichment score (RES) is calculated
for a provided gene set on the basis of how often its genes appear
at the top or bottomof the already ranked differential list. A default
of 1000 randompermutations of the phenotypic subgroups is used
to establish a null distribution of RES against which a normalized
running enrichment score and false-discovery-rate-corrected q val-
ues are calculated using the Kolmogorov–Smirnov statistic.We ran
GSEA with different gene sets of TH1 (Arlehamn et al. 2014), TH2
(Arlehamn et al. 2014), TH17 (Arlehamn et al. 2014; Hu et al.
2017), TFH (Locci et al. 2013), and TREG (Schmiedel et al. 2018)
from published studies (Supplemental Table S8) after removing
IFN-20- and IFN-363-related genes (Supplemental Fig. S7F) to un-
cover only T cell subtypes–specific enrichments. These gene signa-
tures were selected to test the null hypothesis that IFN-based
subgroups (IFNpos and IFNneg) did not show significant enrich-
ment for different T cell subtypes.

In order to establish correlation between two different gene
sets or groups, we need to calculate enrichment score for each sam-
ple. The GSVA (Hänzelmann et al. 2013) estimates variation of en-
richment of particular gene set over a sample population and
provides an enrichment score for each sample. GSVA was imple-
mented using the gsva function of the R package GSVA (v1.20.0)
with rnaseq=TRUE parameter, and it provided GSVA scores that
we used to correlate different gene sets with TNFSF13B expression
(Fig. 5E,F; Supplemental Fig. S5C).

Gene Ontology–based functional annotations

The biological relevance of important genes from different analy-
ses was further investigated using the clusterProfiler (Yu et al.
2012). To functionally annotate genes (e.g., DEGs or module
genes) from one cell type, we used the enrichGO function (pa-
rameters: OrgDb=org.Hs.eg.db, ont =BP). We also removed re-
dundant GO-terms (parameters: cutoff=0.40, by=p.adjust,
select_fun=min, measure =Wang) with a more than 40% similar-
ity cut-off. In the plots (Supplemental Figs. S1D, S4B), color shows
the significance (in terms of P.adj), size is gene counts in anno-
tation, and the x-axis shows gene ratio. To compare multiple
cell types, the compareCluster function (parameters: fun=
enrichGO, OrgDb=org.Hs.eg.db, ont =BP) was used to generate
Gene Ontology–based comparative functional annotations of dif-
ferent cell types. We used all available genes from different cell
types in a module to run clusterProfiler and only displayed cell
types that have significant enrichment of any GO-term. In multi-
cell plots (Figs. 3G, 4D,F), color displays the significance (in terms
of P.adj) of particular GO-terms and size shows the gene ratio of
annotations.

Quantification and statistical analysis

Statistical analyses were performed using GraphPad Prism8
(v8.3.0). The Spearman’s correlation coefficient (r value) was
used to access the significance of correlations between the levels
of any two components of interest. R packages were applied with
R version 3.3.3 (R Core Team 2020) using the x86_64-pc-linux-
gnu (64-bit) platform under CentOS Linux 7 (Core).

Data access

All raw and processed RNA sequencing data generated in
this study have been submitted to the NCBI Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under ac-
cession number GSE149050. All data and gene-specific ex-

pression patterns across different cell types are also available
online at https://ay-lab-tools.lji.org/sle. The scripts used to per-
form all the analyses can be found at GitHub (https://github
.com/ay-lab/SLE-mWGCNA) and as Supplemental Codes 1 and 2.
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