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Abstract 

A simple car-following rule was verified by studying vehicles discharging from long 

queues at signalized intersections.  These observations indicated that the time-space 

trajectory of a jth vehicle discharging on a homogeneous intersection approach was 

essentially the same as the j−1th vehicle except for a translation in space and time.  This is 

in agreement with a simplified theory proposed by G.F. Newell.  The finding indicates 

that the congested branch of a density-flow curve is linear in form. 

 

 

1. Introduction 

The literature on car-following theories is extensive.  One of the earliest and perhaps best 

known of these models was proposed by Chandler, et.al. (1958). According to this model, 

a driver accelerates (or decelerates) in response to the velocity changes of the vehicle 

immediately downstream.  Each such acceleration of the driver occurs following a time 

lag.  Much of the work related to this theory was concerned with how the values of the 

time lag affect stability; i.e., early research sought to identify whether the car-following 

process is marked by disturbances that amplify or decay as they propagate through traffic.    

In later work by Kometani and Sasaki (1961), a model was proposed whereby a 

driver chooses a velocity as a function of her spacing.  The time lag preceding the 

driver’s changes in velocity was interpreted as a reaction time. 
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The present study supports a car-following theory proposed by Newell (2002) that 

is less elaborate than its predecessors in that it uses fewer parameters as well as a 

different logic.  According to this simple theory, a driver selects her preferred spacings 

for given velocities in such way(s) that a vehicle’s trajectory looks like that of its leader, 

but with a translation in time and space.  Disturbances therefore neither amplify nor 

decay.  Rather, they propagate as waves through traffic at an average speed independent 

of the vehicle velocity.  This means the congested branch of the density-flow curve is 

linear in form. 

The logic behind Newell’s simplified model is described more completely in the 

following section.  Our methods of extracting and analyzing traffic data followed directly 

from this logic, as described in section 3.  Namely, we recorded on video the motions of 

queued vehicles as they discharged into signalized intersections during initial periods of 

the green.  From these videos, we measured vehicle trajectories.  The temporal and 

spatial translations between consecutive trajectories were found to come from a common 

joint probability distribution, just as described in Newell’s theory.  The statistical tests 

used for this verification, along with the outcomes of these tests, are described in section 

4.  Certain implications of our findings are noted in the conclusions.  Some limitations of 

Newell’s theory and areas of future work are discussed there as well.                              

 

2. Background 

The vehicle trajectories in Fig. 1(a) are used to explain Newell’s very simple car-

following model and to clarify its differences from other theories on the subject.  The 

j−1th vehicle shown here initially travels at a constant velocity, v.  Newell conjectures 

that vehicle j will follow at the same velocity, assuming v is less than j’s desired velocity, 

Vj.  In this way, driver j maintains her desired spacing with j−1.  Since vehicles are 

traveling on a homogeneous road segment, this spacing will remain the same so long as 

the velocity of j−1 is unchanged. 

If, however, j−1 alters its velocity, say from v to v′, and then remains at this new 

velocity v′ for some time, its actual trajectory can be approximated by piece-wise linear 

extrapolations.  (Such extrapolations are used for the trajectories in Fig. 1(a)).  If v′ < Vj, 

vehicle j will, according to the model, change velocity in a manner like that of j−1.  The 
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point marking j’s velocity change is displaced from that of its leader by a distance dj and 

a time τj, as shown in the figure.  In short, if a j−1th vehicle maintains a new speed (e.g. 

v′) for a sufficient duration, the jth vehicle changes its velocity upon reaching the spacing 

that driver j chooses for the new velocity (v′).  This spacing is designated sj′ in Fig. 1(a) 

and the time required for j to reach this spacing is τj.  The τj and the dj are assumed to be 

independent of j’s velocity.  Moreover, these translations are assumed to vary with each 

jth driver as if they were sampled independently from a joint probability distribution. 

The wave connecting the changes from one (piece-wise linear) trajectory to the 

next therefore propagates as a random walk.  The mean wave speed is d/τ, where d is the 

arithmetic average of the spatial translations taken across drivers and τ is the analogous 

average of the temporal translations. 

The model can be iterated over many vehicles, such that the location of any jth 

vehicle at some time is a suitable translation of a (perhaps arbitrary) lead vehicle.  The 

leader may be separated from j by many vehicles. 

 The reader should appreciate that τj is not a reaction time.  (As noted above, it is 

instead the time needed for driver j to reach her preferred spacing for a new velocity).  

Newell’s model is thus based upon drivers’ preferred following distances for given 

velocities in a way that distinguishes it from most other car-following theories.  It follows 

that each driver adopts her own relation between velocity and spacing and, as shown in 

Fig. 1(b), this relation is linear with slope τj.1 

Finally, Newell transformed his car-following model into a macroscopic one for 

describing average driver behavior.  In this way, he established a connection between his 

theory and fluid models.  This simple transformation leads to a linear relation between 

queued flows and densities, as shown in Fig. 1(c).2  This form indicates that in queued 

traffic, flow is a linear decreasing function of density and the relation depends upon d and 

τ.  The average wave speed, d/τ, is independent of vehicle velocities. 

 The previous paragraph is particularly relevant to PATH project T.O.  4109.  The 

objective of this work has been to identify the shape of the congested branch of density-

                                                 
1 That the slope of each j’s spacing-speed relation is τj follows from the trajectories in Fig. 1(a) showing 
that j’s spacing, sj, equals dj + v· τj.   
2 That the macroscopic relation between queued densities and flows is linear follows from the previous 
discussion, but the reader can refer to Newell (2002) for the simple analytical derivation. 
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flow curves for arterial surface streets.  By verifying Newell’s simple car-following 

model, we have shown that this branch of the curve is linear in form. 

 

3. Data and Study Scope 

The methods used in this study to verify Newell’s car-following theory followed from the 

logic just described.  We measured the trajectories of vehicles as they discharged from 

long queues on homogeneous approaches to signalized intersections.  Some of the 

temporal and spatial translations that marked velocity changes across trajectories were 

very evident, thanks to waves that arose in the queues.  These observed translations were 

found to have come from a common joint distribution, as per Newell’s simple theory. 

 The data were obtained by video-taping traffic on the arterial approaches to two 

signalized intersections, both located in Oakland, California.  These are illustrated in 

Figs. 2(a) and (b).  This data collection took place during afternoon rush periods in 2001 

and videos were taken of multiple travel lanes at each of the two intersections, as 

annotated in the figures.  The queues in each of these lanes grew to include 10 vehicles or 

more in virtually every cycle captured in our videos.  To record these long queues in their 

entirety, the videos were taken from top floors of tall buildings nearby.   

 The trajectories for many of these discharging vehicles were constructed by 

measuring (from video) the times each passed fixed reference points along the 

intersection approaches.  These reference points were separated by short distances of 3 to 

6 m (10 to 20 ft) and each vehicle’s passage times were plotted in the time-space plane.  

A polynomial trend line was then fit to each set of such points corresponding to a unique 

vehicle.  The order of a polynomial curve was determined on a case by case basis, 

depending upon the pattern of measured points that mapped the vehicle’s motion. 

 Each trajectory was then approximated using piece-wise linear interpolations to 

its smooth polynomial curve, as illustrated in Fig. 3.  These interpolations were drawn 

through the points corresponding to vehicle velocities just above 0 km/h, 6.5 km/h, 13 

km/h, and 19.5 km/h (0 mph, 4 mph, 8 mph and 12 mph), as shown in the figure.  (The 

reader will note the slopes of a polynomial curve are the instantaneous velocities 

estimated for that vehicle).  The waves emanating from the changes in these piece-wise 
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linear trajectories are shown in Fig.3 as heavy dashed lines and the slope of any such line 

is the wave’s speed. 

 Notably, these trajectories were not constructed for all the discharging vehicles 

observed on video.  Thus, measurements were not usually taken of each trajectory’s 

temporal and spatial translations along wave paths.  Instead, most of the observations 

were collected in a more aggregate fashion, as described below.  This greatly simplified 

the task of data extraction and it provided for an effective way of validating Newell’s 

model. 

 For each lane, and for each signal cycle, trajectories were constructed for the first 

several vehicles in queue as they discharged into the intersection.  In some cases, it was 

clear that the first one or two of these vehicles accelerated faster than the vehicle directly 

behind.  Since the latter did not keep up with the vehicle(s) ahead, it was taken as the 

leader of the discharging queue.  The trajectory of the last vehicle in queue was also 

constructed.   

For each cycle m, the number of queued vehicles in a given lane, nm, was noted.  

We then measured the T(nm) and D(nm), the total time and distance covered by a wave 

propagating through a queue, as illustrated in Fig. 3.  These T(nm) and D(nm) were 

separately measured for each of the four waves described by the piece-wise linear 

trajectories. 

 According to Newell’s theory, the [T(nm), D(nm)] is a bivariate process with 

independent increments.  This assumption of independence was verified by measuring the 

τj and dj for various vehicle j after we constructed the piece-wise linear trajectories for 

each and every vehicle discharging from a sample of the queues captured in our videos. 

Thus, the [T(nm), D(nm)] can be described by a bivariate normal distribution with 

mean and covariance matrix proportional to nm, i.e.,  
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Since the nm varied with m, samples taken in each cycle were not identically 

distributed.  The five parameters in Equation 1 (τ, d, στ2, σd
2 and στd) were therefore 

obtained using maximum likelihood estimation (Stone, 1996).  These parameters were 

separately estimated for each of the four wave types in a given lane.  They were then 

estimated again from the [T(nm), D(nm)] measured for all (four) waves in a lane. 

 These estimates were next used in a likelihood ratio test (Stone, 1996).  The 

outcome indicated that the same bivariate normal distribution can be used for describing 

[T(nm), D(nm)] for any of the four waves in a given lane.  The test thus confirmed 

Newell’s hypothesis that [τj, dj] vary as if they were sampled independently from some 

joint probability distribution. 

 It is notable that our validation methods used trajectories that were, in reality, 

continually accelerating; i.e., most vehicles videoed in the discharging queues did not 

actually maintain a fixed velocity for an extended period.  That our tests nonetheless 

support Newell’s theory attests to the robust nature of his simple model.  These tests will 

now be described in the following section. 

 

4. Verifying the Theory 

The presentations in this section show that the [τj, dj] in each lane came from a common 

joint distribution.  To this end, we first verified the assumption underlying Equation 1; 

i.e., that the [T(nm), D(nm)] has independent increments.  This was done by constructing 

the piece-wise linear trajectories for all of the discharging vehicles from a sample of the 

queues. The temporal and spatial translations between consecutive trajectories were then 

measured along the waves. 

 Some typical examples of these samples are presented as lag-one scatter-plots 

in Figs. 4(a)-(d).  The samples in each plot were taken from a single lane for one of the 

four different wave types; this information is labeled in the figure.  Each plot displays the 

measured spatial or temporal translation for a jth vehicle vs that translation observed for 

its neighbor j+1.  In every case, the pattern of data scatter reveals no trends or 

correlations.  The [τj, dj] can therefore be taken as independent across drivers. 

 Maximum likelihood estimation was next used to obtain the parameters in 

Equation 1.  Table 1 displays the τ and d estimated in this way.  These are provided for 
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each of the four wave types in each of the observed travel lanes.  Also listed in Table 1 

are the sample sizes for each estimate, ; where M is the number of cycles observed.  

These sample sizes were sufficiently large such that the coefficients of variation for all 

estimates of τ and d never exceeded 0.10.   

∑
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Table 1 
Means estimated with maximum likelihood and sample sizes 

(* v represents velocity displayed by a piece-wise linear trajectory) 
 
 

 Finally, the likelihood ratio test was used to verify that the [T(nm), D(nm)] 

measured for all waves came from the same bivariate normal distribution.  This entailed 

comparing two probability distributions.  The first was a general model obtained using 

the parameters that were separately estimated for each of the four wave types evident 

from our piece-wise linear trajectories; i.e. 
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where is the general log likelihood and the subscript k denotes wave type (of which 

there were four). 
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 The second was a restricted model whereby all observations were combined for 

estimating the mean and covariance matrix terms; i.e.,  
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where l is the restricted log likelihood. res

 The log likelihood ratio, 2×( − l ), has a Chi-Square distribution, in this case 

with degree of freedom 15; (15 is the number of parameters lost in the restricted model).  

The log likelihood ratios obtained for each travel lane are shown in Fig. 5.  In each 

instance, these are smaller than 25, the Chi-Square critical value at the 0.05 significance 

level. 

genl res

 The general and restricted models are therefore identical in a statistical sense; i.e., 

their differences are insignificant.  This means that the same bivariate normal distribution 

can be used to describe the [T(nm), D(nm)] for each of our four wave types; i.e., the 

distribution is independent of vehicle velocity.  It follows that each jth driver’s [τj, dj] 

came from some common joint probability distribution, as per Newell’s simple theory. 

 

5. Conclusions 

As platoons accelerate on homogeneous highways, a jth vehicle evidently follows the 

same trajectory as the j−1th vehicle except for a translation in time and space.  For the 

data observed in the present work, the translations [τj, dj] varied as if drawn 

independently from a joint distribution.  The finding supports Newell’s simplified car-

following theory.  This, in turn, is consistent with the macroscopic traffic theory of 

Lighthill and Whitham (1955) with a triangular shaped density-flow curve. 

Our finding does indicate that the congested branch of the density-flow curve is 

linear in form, at least for the low vehicle velocities observed here.  Wave speed was thus 

the same for different values of flow or density within the ranges observed.  In contrast to 

what is described by non-linear density-flow curves, we observed that accelerating 

vehicles did not create waves that fanned outward.  
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It is notable that the effects created by non-linear density-flow curves were not 

even observed at vehicle velocities very close to zero.  We cannot verify, however, that 

non-linear effects do not arise in queued traffic when vehicle velocities approach desired 

velocities.  These conditions were outside the range of what was studied here since many 

vehicles in the discharging queues did not reach such high velocities while on the 

homogeneous approaches to the intersections. 

As an aside, non-linear effects apparently do arise in uncongested traffic when 

flows become high.  A recent study of freeway traffic showed that the uncongested 

branches of occupancy-flow curves were not strictly linear in form (Cassidy and Anani, 

2002).3  Rather, vehicle velocities dropped slightly below desired velocities as 

uncongested flows approached freeway capacities.  So under these conditions, waves 

propagate forward at speeds slower than those of the vehicles. 

 Of further note, Newell’s theory is particularly susceptible to vehicle lane-

changing maneuvers (i.e., over-taking), as these interrupt car following.  Lane changing 

did not arise in the present study (and indeed these maneuvers are illegal near 

intersections).  But Mauch and Cassidy (2002) demonstrate that Newell’s theory fails for 

the case of queued freeway traffic when heavy lane-changing takes place.  It would seem 

that improvements in traffic flow theories will come by incorporating lane-changing 

effects. 

Improved traffic theories should also result by better understanding the influences 

of geometric inhomogeneities on driver behavior.  Of course, Newell’s simplified theory 

is not expected to hold at inhomogeneities and we have even observed an instance of this.  

In addition to the measurements already described in this manuscript, we examined 

discharging queues in the curb lane for northbound traffic at the Harrison intersection; 

see Fig. 2(b).  As shown in the figure, the lane has a noticeable inhomogeneity.  Namely, 

its width reduces upstream of the intersection.  Not surprisingly, our analyses of the data 

from this lane indicated that car-following did not occur there as per Newell’s theory. 

 Trajectories in this curb lane are currently being studied to obtain insights into 

car-following behavior at the inhomogeneity.  One cannot model driver behavior at 

inhomogeneities without first understanding what actually occurs. 

                                                 
3 Occupancy is a dimensionless measure of density. 
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Finally, the present work did not explicitly verify that a jth driver tends to maintain 

the same [τj, dj] over her trip,4 even though this driver attribute is also part of Newell’s 

theory.  But findings reported from earlier research can now be used as confirmation that 

this attribute actually occurs. 

Previous work by Cassidy and Windover (1998), for example, has shown that 

individual drivers have their own “personalities” (i.e., different drivers choose different 

spacings for a given velocity) and that drivers tend to remember their personalities.  In 

light of the present findings reported here, this earlier finding can be taken as support for 

Newell’s contention that a [τj, dj] is maintained by each driver j.    

 

References 
 
Cassidy, M.J., Anani, S.B. (2002) Stationary models of unqueued freeway traffic and some 
effects of freeway geometry. Submitted for journal publication. 
 
Cassidy, M.J., Windover, J.R. (1998) Driver memory: motorist selection and retention of 
individualized headways in highway traffic. Transpn Res.32A, 129-137. 
 
Chandler, R.E., Herman, R., Montroll, E.W. (1958) Traffic dynamics: studies in car following. 
Oper. Res. 6, 165-184. 
 
Kometani, E., Sasaki, T. (1961) Dynamic behavior of traffic with a nonlinear spacing. In: 
Herman, R. (Ed.), Theory of Traffic Flow. Elsevier, Amsterdam, pp. 105-119. 
 
Lighthill, M.J., Whitham, G.B. (1955) On kinematic waves in highway traffic. I Flood movement 
in long rivers. II A theory of traffic flow on long crowded roads. Proc. Roy. Soc. (London) A229, 
281-345. 
 
Mauch, M., Cassidy, M.J. (2002) Freeway traffic oscillations: observations and predictions. In 
press: Tailor, M.A.P. (Ed.), Traffic and Transportation Theory, Elsevier, Amsterdam.  
 
Newell, G.F. (2002) A simplified car-following theory: a lower order model. Transpn Res. 36B, 
195-205. 
 
Stone, C.J. (1996) A course in probability and statistics, Belmont: Duxbury Press     

                                                 
4 Each jth piece-wise linear trajectory revealed only four waves and therefore yielded only four joint 
observations of [τj, dj].  This would be too small a sample from which to draw conclusions.  Additional 
observations could have been obtained for each j by constructing the piece-wise linear trajectories with 
more incremental changes in velocity.  However, this would have brought higher estimation errors. 

 10



 11

List of Figures 
 

Figure 1.    (a) Piece-wise linear vehicle trajectories (adopted from Newell, 2002) 
(b) Relation between velocity and spacing for an individual driver  
     (adopted from Newell, 2002) 
(c) Density-flow curve for Newell’s theory 

 
Figure 2.    (a) McArthur site    

      (b) Harrison site 
 
Figure 3.    Construction of piece-wise trajectories and the waves they reveal. 
 
Figure 4.    (a) τj vs τj+1; curb lane of McArthur site; wave marking vehicle velocity of  

6.5 km/h   
      (b) dj vs dj+1; curb lane of McArthur site; wave marking vehicle velocity of  

6.5 km/h   
      (c) τj vs τj+1; median lane of Harrison site; wave marking vehicle velocity of  

13 km/h   
      (d) dj vs dj+1; median lane of Harrison site; wave marking vehicle velocity of  

13 km/h   
 
Figure 5.    Results of ratio tests showing [T(nm), D(nm)] is independent of vehicle  

       velocity 
 



sj

dj

τj

sj’

vehicle 
j-1

vehicle j

v

v ’

time

di
st

an
ce

τj

velocity

sp
ac

in
g,

 s
 j

Vj

dj

Figure 1

(a) Piece-wise linear vehicle trajectories (adopted from Newell, 2002)
(b) Relation between velocity and spacing for an individual driver 
     (adopted from Newell, 2002)

(a)

(b)



density

flo
w

Average Desired Velocity

d / τ

1/d

1/τ

(c)

Figure 1 (con’t)

(c) Density-flow curve for Newell’s theory



N

W. McArthur Blvd.

(H
ow

e S
t.) 

curb lane

center lane

median lane

Vantage 
point

Lanes from which data
were extracted

(a)

(W. Grand Ave.)

H
arrison S

t.

curb lane

center lane

m
edian lane

turning lane

(b)

N

Vantage 
point

Figure 2
(a) McArthur site   (b) Harrison site

(Note: Left turns from the northbound approach at the Harrison site are 
performed on a protected basis, i.e., without conflicts from the opposing 
direction.)

Lanes from 
which data
were extracted



0

6.5 
km/h

13 
km/h

19.5 
km/h

Vehicle 1

Vehicle 2

Vehicle 3

Last vehicle in 
cycle m, nm

d

τ

wave
speed

T(nm)

D(nm)

time

distance

Intersection

Stop bar

Figure 3

Construction of piece-wise trajectories and the waves they reveal.
(Note: Waves are displayed as heavy dashed lines.)

3 (13 km/h)

3 (13 km/h)



2

4

6

8

10

12

2 4 6 8 10 12
-1

0

1

2

3

-1 0 1 2 3

-1

0

1

2

3

-1 0 1 2 3 2

4

6

8

10

12

2 4 6 8 10 12

(a) (b)

(c) (d)

Figure 4. Lag-one scatter-plots

(a) τj vs τj+1; curb lane of McArthur site;
                wave marking vehicle velocity of 6.5 km/h  

(b) dj vs dj+1; curb lane of McArthur site;
               wave marking vehicle velocity of 6.5 km/h  

(c) τj vs τj+1; median lane of Harrison site;
           wave marking vehicle velocity of 13 km/h  

(d) dj vs dj+1; median lane of Harrison site;
          wave marking vehicle velocity of 13 km/h  

d 
j+

1 
(m

)

dj (m)

d 
j+

1 
(m

)

dj (m)

τ 
j+

1 
(s

ec
)

τj (sec)

τ 
j+

1 
(s

ec
)

τj (sec)



χ15
2

Harrison siteMcArthur site

23.0

16.2

22.8

11.8

Center
Lane

Curb
Lane

Center
Lane

Median
Lane

0

10

20

30

40

50

α=0.05

25

Figure 5

Results of ratio tests showing [T(nm), D(nm)] is independent of 
vehicle velocity




