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Protein aggregation is broadly important in diseases and in
formulations of biological drugs. Here, we develop a theoretical
model for reversible protein–protein aggregation in salt solutions.
We treat proteins as hard spheres having square-well-energy bind-
ing sites, using Wertheim’s thermodynamic perturbation theory.
The necessary condition required for such modeling to be realistic
is that proteins in solution during the experiment remain in their
compact form. Within this limitation our model gives accurate liq-
uid–liquid coexistence curves for lysozyme and γ IIIa-crystallin so-
lutions in respective buffers. It provides good fits to the cloud-
point curves of lysozyme in buffer–salt mixtures as a function of
the type and concentration of salt. It than predicts full coexis-
tence curves, osmotic compressibilities, and second virial coeffic-
ients under such conditions. This treatment may also be relevant
to protein crystallization.

phase separation | protein aggregation | Hofmeister series

Protein molecules can aggregate with each other. This process
is important in many ways (1). First, a key step in developing

biotech drugs—which are mostly mABs—is to formulate pro-
teins so that they do not aggregate. This is because good shelf-
life requires long-term solution stability, and because patient
compliance requires liquids having low viscosities. The impor-
tance of such formulations comes from the fact that the world
market for protein biologicals is about the same size as for
smartphones. Second, protein aggregation in the cell plays a
key role in protein condensation diseases, such as Alzheimer’s,
Parkinson’s, Huntington’s, and others. Third, much of structural
biology derives from the 100,000 protein structures in the Protein
Data Bank, a resource that would not have been possible without
protein crystals, a particular state of protein aggregation. Also, it
is not yet possible to rationally design the conditions for proteins
to crystallize.
However, protein aggregation is poorly understood. Atomis-

tic-level molecular simulations are not practical for studying
multiprotein interactions as a function of concentration, and in
liquid solutions that are themselves fairly complicated—that
account for salts of different types and concentrations as well as
other ligands, excipients, stabilizers, or metabolites. So, a traditional
approach is to adapt colloid theories, such as the Derjaguin–
Landau–Verwey–Overbeek (DLVO) (2) theory. In those treat-
ments, proteins are represented as spheres that interact through
spherically symmetric van der Waals and electrostatic interactions
in salt water, using a continuum representation of solvent and a
Debye–Hückel screening for salts. DLVO often gives correct
trends for the pH and salt concentration dependencies. However,
DLVO does not readily account for protein sequence-structure
properties, salt bridges (which are commonly the ‟glue” holding
protein crystals together), explicit waters in general, or Hofmeister
effects, where different salts have widely different powers of
protein precipitation (3–5). A more subtle treatment is required
for these effects (6–8).
Coarse-grained statistical mechanics is essential for describing

the properties of complex solutions. For proteins, such modeling
needs to go beyond central-force approximations because it is
generally noted that ‟the isotropic models fail to describe the
phase diagram of protein solutions quantitatively and cannot

address phenomena such as protein aggregation and self-
assembly” (9, 10), typically yielding coexistence curves that are
too narrow and/or overestimating the critical temperature of
the phase diagram. Accounting for the discreteness of protein
charges (11, 12) leads to better predictions, for example of small-
angle neutron scattering (13). Another approach for treating the
potential asymmetries is to assume heterogeneously charged
surfaces, in the so-called patchy models (9, 14–17). Recent re-
sults for the gas–liquid and fluid–solid coexistence equilibria for
this type of model are in good agreement with experiments on
lysozyme solutions, but it requires the assumption of a temper-
ature-dependent pseudo-potential (16). However, another ap-
proach is to assume the range and directionality of attractive
interactions varies around the protein (9, 12, 18). A key con-
clusion from these works is that to properly capture protein
liquid-phase equilibria seems to require that the range of in-
teractions between proteins be short (18–22).
Modeling proteins as rigid bodies has severe limitations, as

pointed out in the recent paper of Sarangapani et al. (23) and
highlighted by Prausnitz (24). When analyzing protein aggregation
by such models, these studies indicate the importance of knowing
that during the experiment the native structure is preserved. It is
recommended to use CD as a tool for verifying that no changes in
protein conformation take place during experiments.
The cloud-point temperature measurements modeled here

were described in refs. 25 and 26. In experiments the tempera-
ture was first decreased until the transmitted beam would dis-
appear and then raised until the original scattering intensity was
restored. Reversible opacification was indicative that protein
remained in the compact state. The transition between the sin-
gle-phase and the two-phase region is reversible and without
hysteresis also for other proteins (see ref. 1, p. 165). Further
evidence on stability of the lysozyme, which is the central mol-
ecule of our analysis, is provided in ref. 27, figure 6. The CD
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spectra of the lysozyme remain unchanged during the solubility
studies performed at protein concentrations similar to (or even
higher than) those modeled here.
The perturbed hard-sphere models, similar to the one pro-

posed below, have been successfully used before (see, e.g., refs.
19, 22, 25, 28, and 29). In these and other similar models the
perturbation part of potential was assumed to be isotropic. In
contrast to this we treat the protein–protein interaction as di-
rectional. We model proteins as hard spheres, with a number of
square-well attractive sites located on the surface, which we call
the ‟binding sites.” In this aspect our approach resembles some
simple water models (30, 31). The modification seems to have
significant consequences for the shape of the liquid–liquid co-
existence curve. We treat the solution physics through the ther-
modynamic perturbation theory that was developed by Wertheim
for liquids that are strongly associating (32, 33). The model is used
to analyze various experimental data.

Methods
We model the protein solution as a one-component system of N protein
molecules with number density ρ=N=V at temperature T and volume V.
The protein molecules are represented as spheres of diameter σ embedded
in the solvent composed of water, buffer, and various simple salts. The
solvent is simply treated as an effective modifier of the protein–
protein interactions.

We assume that the protein–protein pair potential is composed of
(i ) the hard-sphere part uRðrÞ and (ii ) attractive contributions, uAB, caused
by the (short-range) square-well sites localized on the surface of the
protein (32):

uðrÞ=uRðrÞ+
X
AeΓ

X
BeΓ

uABðxABÞ. [1]

Here, r ðr = jrjÞ is the vector between the centers of molecules, xAB is the
vector connecting sites A and B on two different molecules, and Γ denotes
the set of sites (Fig. 1). We examine a special case, where M sites are ran-
domly distributed over the surface of the spherical protein. Note that
d= 0.5σ. The identical binding potential uAB acts among all sites. The pair-
wise additive potential is then written as

uRðrÞ=
�
∞ for  r < σ,
0 for  r ≥ σ,

[2]

uABðxABÞ=
�
−«W for  jxABj< aW,
0 for  jxABj≥ aW.

[3]

Here «W (>0) is the square-well depth of the binding potential and aW is
its range. The interaction acts only when the site–site distance jxABj is smaller
than aW, the square-well width. We avoid nonphysical multisite bonding by
applying the following restriction (32, 34):

0< aW < σ −
ffiffiffi
3

p
d. [4]

Next, we assume that the free energy A of the solution is additive:

A=Aid +Ahs +Aass, [5]

where Aid is the ideal free energy, Ahs is the hard sphere, and Aass the site–
site association contribution to the free energy. This latter term is adopted
from Wertheim’s thermodynamic perturbation theory (32, 33, 35):

βAass

N
=M

�
lnX −

X
2
+
1
2

�
, [6]

where β= ðkBTÞ−1 and kB is Boltzmann’s constant. The association parameter
X defines the average fraction of molecules not bonded to any site and is
determined by the mass-action law (35):

X =
1

1+MXρΔAB
. [7]

The term ΔAB is defined by the expression (34)

ΔAB = 4πghsðσÞ
Z2d+aW
σ

fassðrÞr2dr, [8]

where fassðrÞ is the angular average of the Mayer function, obtained as
described in ref. 34 (see also Eqs. S9 and S10). The radial distribution func-
tion ghsðrÞ is obtained from the analytical solution of the Ornstein–Zernike
integral equation within the Percus–Yevick (PY) approximation (36).

Once the free energy A of the solution is known, we compute the pressure
P (effectively, the osmotic pressure) and chemical potential μ of the proteins
using the standard equations (36):

μ=
�
∂ðA=VÞ

∂ρ

�
T ,V

, [9]

P = ρμ−
A
V
. [10]

Fig. 1. Proteins interact as two spheres. They interact at M ×M pairs of
binding sites on the surfaces, one pair of which (A and B) is indicated here.

Table 1. Model parameters used in the lysozyme and γ IIIa–
crystallin calculations

Parameter Lysozyme γ IIIa-crystallin

σ, nm 3.43 3.78
M2, g·mol−1 14,300 20,700
M 10 14
eW=kB, K 2,360 2,490
aW, nm 0.18 0.18

M2 is the molar mass of the protein.

Fig. 2. Liquid–liquid phase separation, two-phase region is indicated by
shaded area: lysozyme ð▲Þ (pH 6.0, phosphate buffer of ionic strength
0.6 mol·dm−3) (25) and γ IIIa-crystallin ð•Þ (pH 7.1, phosphate buffer,
0.24 mol·dm−3) (26) solutions. Solid curves are calculated from our model,
based on the parameters in Table 1. The critical temperatures above which
we have one-phase regions are estimated to be 274 ± 2 K for lysozyme and
312 ± 2 K for γ IIIa-crystallin.
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These quantities are critical for the calculation later of the coexistence
curve. An additional quantity of practical interest is the second virial co-
efficient B2, which is defined through the relation

βP = ρ+B2ρ
2 + . . . . [11]

It is useful (37) to give this quantity as a dimensionless parameter
B2
*=B2=B

ðhsÞ
2 , where BðhsÞ

2 is the hard-sphere contribution to the second virial
coefficient, equal to 2πσ3=3 (36). Another interesting measurable
quantity, obtained by scattering techniques, is the osmotic compress-
ibility χosm = βð∂P=∂ρÞN,T . For more details of the actual computation see
Supporting Information.

Numerical Results and Comparison with Experimental Data
Besides the diameter of the protein σ, parameters of the model
are the number M of attractive square-well sites and the depth
eW and range aW of the square-well potential. We obtain them as
follows. First, we choose the number of attractive sites M; nu-
merical studies indicate that the critical density on the co-
existence curve depends mainly on this quantity (14). Two other
parameters that influence the shape of coexistence curves are the
square-well depth eW and its range aW. eW affects the critical
temperature, and aW determines the breadth of the coexistence
curve. Notice that the range of the potential is restricted by Eq. 4
to be smaller than 0.134 σ. We fix aW = 0.18 nm to be equal to the
length of a hydrogen bond (38). Finally, we set eW to get the
correct critical temperature. We find best fits of eW = 19.6 kJ/mol
for lysozyme and 20.7 kJ/mol for γ IIIa-crystallin (see also Table
1). Both values are in the range of the hydrogen-bond strengths
(38) and are consistent with experiments on hydrogen bonds and
salt bridges across protein–protein interfaces (4).

Liquid–Liquid Coexistence Curves and Cloud-Point Temperatures.
Many liquid–liquid phase separation curves have been pub-
lished (e.g., refs. 25, 26, 39, and 40)—more than we can refer-
ence here. In Fig. 2 we fit our calculations to the experimental
liquid–liquid phase diagrams of lysozyme and γ IIIa-crystallin
published in refs. 25 and 26. In these graphs γ is the mass con-
centration of protein, equal to ρM2=NA, where NA is Avogadro’s
number. The best-fit parameters are given in Table 1. The

maximum peak-point temperature on such curves is the critical
temperature above which there is no two-phase region.
Protein aggregation has also been studied as a function of the

types and concentrations of added salt in the surrounding solu-
tion. What is commonly studied is the cloud-point temperature,
Tcloud (25, 40). This is the temperature at which the cloudiness in
the solution signals the onset of protein aggregation. In impor-
tant work, Taratuta et al. (25) determined cloud-point temper-
atures for lysozyme–phosphate buffer mixtures. At buffer ionic
strengths ranging from 0.3 to 0.6 mol·dm−3 (at pH 6.8), Taratuta
et al. (25) found no change in the cloud-point temperature. This
can be attributed to the strong electrostatic screening of the
protein–protein charge interactions at high buffer concentration.
Taratuta et al. (25) also studied the effects of added alkali-

halide salts (NaCl, KCl, NaBr, and KBr) to the solution, at the
same time decreasing the buffer content to keep the total ionic
strength, Itot, fixed at 0.6 mol·dm−3. In other words, the elec-
trolyte present in addition to the protein contains Itot − Iion of
buffer and Iion of alkali-halide salt. Fig. 3 shows that Tcloud is
linearly proportional to the ionic strength of added alkali-halide
salt Iion. Slopes of these curves are determined by the salt type
(39, 40). An increase of Tcloud can be interpreted as an increased
attraction between protein molecules at increased alkali-halide
salt ionic strength Iion. Considering that total ionic strength Itot is
constant (but not the ionic composition, because part of the
buffer content is replaced by another salt), this effect can be
ascribed to specific-salt effects occurring at the protein surface.
This assumption is supported by the observation of distinctly
different slopes for different anions. Notice that lysozyme at

Fig. 3. Tcloud for lysozyme as a function of ionic strength of the added alkali-
halide salts Iion: symbols denote experimental data (pH 6.8, Itot = 0.6mol·dm−3,
phosphate buffer and added alkali-halide salts) (25) and the lines are results of
Eq. 12. The parameters are from Table 2. From top to bottom: KBr (filled red
square), NaBr (open blue square), KCl (filled green circle), and NaCl (open pink
circle) salts.

Table 2. Parameters a (K·dm3·mol−1) and b=2,374 (K) defining
Eq. 12

Parameter KBr KCl NaBr NaCl

a 1,000 290 790 238

A

B

Fig. 4. The calculated coexistence curves for lysozyme in the buffer–salt
mixtures. Calculations are based on Eq. 12 and parameters from Table 2.
(A) KBr and (B) NaCl are added to the buffer keeping the total ionic strength
Itot = 0.6 mol·dm−3 constant. Increase of Iion (bottom to top) from 0 to
0.09 mol·dm−3 in steps of 0.03 mol·dm−3 ðpH 6.8Þ causes an increase in the
critical temperature.
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pH 6.8 has a positive net charge; this explains why the effect of
anions in Fig. 3 is stronger than that of cations.
Within our model, we capture salt effects simply by supposing

the well depth is proportional to the ionic strength, Iion, of the
added alkali-halide salt:

eWðIionÞ=kB = a · Iion + b. [12]

The best-fit slopes and intercept parameters for the different
salts are given in Table 2. Notice that for Iion = 0 we recover pure
buffer–lysozyme (no alkali-halide salts present) mixture, with
cloud-point temperature around 271 K, and eW=kB = b. In Fig. 2
we show the liquid–liquid phase diagram of lysozyme for the case
where Itot = 0.6 mol·dm−3 and Iion = 0 (measurements were not
made for Iion > 0). One practical application of our model is in
leveraging experimental cloud-point data from Fig. 3 for pre-
dicting complete liquid–liquid phase diagrams; see Fig. 4. This
figure shows the prediction that in the range of Iion ∈ ½0,0.09�, the
critical temperature for protein aggregation is increased much
more by adding KBr than by adding NaCl salt. No experiments
are yet available to test these full phase-diagram predictions.
How can we rationalize the effects of added alkali-halide salts

at constant ionic strength on cloud points? First, why should the
well depth increase with ionic strength of added alkali-halide
salts? The effect seems to be due to the adsorption of (halide)
ions to the protein–solution surface. Zhang and Cremer (40)
showed that specific-salt dependence of Tcloud can be modeled by
a modified Langmuir binding isotherm. Under conditions where
the concentration of adsorbing ions in the mixture is low, the

adsorption should be proportional to the Iion of the added salt.
This explains experimental results for Tcloud shown in Fig. 3. In
our simple model, the linearity between Tcloud and Iion translates
into the linear dependence of eW on Iion (see Eq. 12).
Second, can we rationalize the different effects of different

types of salts? Fig. 5 gives some insight. It shows that ions that
are most strongly solvated by water (which are the ions having
the smallest radii, for atomic ions) are those that have the
smallest effect (the smallest slopes a) on cloud-point tempera-
tures. The ions that most readily release hydration waters most
strongly affect the protein–protein attraction. In Fig. 5, we cor-
relate the slopes a in Eq. 12, fitting experimental data, with the
hydration Gibbs free energies ΔGhydr of anions for sodium salts.
To analyze the effects of addition of NaBr, NaCl, NaNO3, NaI,
NaSCN, and NaClO4 to lysozyme solutions in water we combine
the measurements from two sources (25, 40). The ordering of salts
follows the so-called inverse Hofmeister series (40). The findings
above are in line with our recent polyelectrolyte studies (41, 42).

Second Virial Coefficient and Osmotic Compressibility. The second
virial coefficient is a principal measure of pairwise protein–
protein interactions in solution. In recent years, the second virial
coefficient has become an important tool for understanding and
predicting protein crystallization conditions (28, 29, 44–52).
George and Wilson (44) were the first to notice that the condi-
tions that best promote protein crystallization are those that fall
within a particular “crystallization slot” of values of the second
virial coefficient, B22. The favorable range of B22 values for which
proteins should crystalize from a water–salt mixture is between
−2× 10−4 and −8× 10−4 cm3·mol·g−2 (44, 49). B22 is calculated on
the basis of the protein mass concentration γ and is related to B2
in Eq. 11 as B22 =B2NA=M2

2.
Rarely are experimental measurements made on a given type

of protein of all of the properties of aggregation together—the
cloud point, the liquid–liquid phase coexistence curves, the sec-
ond virial coefficient, and/or the osmotic compressibility. Sys-
tematic experiments could give deep insights into aggregation.
However, this is a virtue of the present model: From a single type
of experiment, such as cloud-point measurements, we can com-
pute all of the rest. For example, Fig. 6 shows our calculated B2
curves for lysozyme in buffer–salt mixtures under experimental
conditions of Fig. 3. For lysozyme the crystallization slot is ap-
proximately between B2*=−0.8 and −3.2. This means that bro-
mide salts would fall in this range at lower Iion than chloride salts
at this pH. We are not aware of experimental data for testing
this prediction.

Fig. 5. Specific ion effects in lysozyme solutions: correlation of the slope a
of Eq. 12 with the hydration Gibbs free energies ΔGhydr (43) of the corre-
sponding anions. The line is the best least-square fit through the data.

Fig. 7. Osmotic compressibility χosm for lysozyme–NaCl mixtures at pH 4.6
(symbols denote experimental data from ref. 28) and theoretical pre-
dictions (lines) for different NaCl concentrations: 0.15 (●), 0.25 (■), and
0.45 (▲) mol·dm−3. We changed the scale of the x axis from ρ (28) to γ
concentration units.

Fig. 6. Calculated B2* for lysozyme buffer – salt mixtures at T = 300 K: ex-
perimental conditions (pH 6.8, Itot = 0.6 mol·dm−3) (25); see Fig. 3. From
bottom to top: KBr, NaBr, KCl, and NaCl additions (calculations based on
Eq. 12 and parameters from Table 2) to buffer.
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The osmotic compressibility χosm = βð∂P=∂ρÞN,T data can be
obtained by scattering techniques (see, e.g., refs. 28 and 53).
Rosenbaum et al. (28) determined χosm of lysozyme in acetate
buffer–salt mixtures at pH 4.6. Fig. 7 shows our calculations of
osmotic compressibilities, with eW=kB calculated from Eq. 12
(lines), compared with the experimental data on lysozyme–NaCl
mixtures (28) (symbols). Good fits of experimental results are
obtained for a= 760 K·mol−1·dm3 and b= 2,628 K, with M = 6 at
this protein charge at this pH.

Conclusions
We have developed here a largely analytical model for protein–
protein aggregation equilibria in salt solutions. Proteins are
modeled as hard spheres having M binding sites that interact
with a square-well depth and width in the range of the hydrogen-
bond values. Unlike simpler models, the binding sites lead to

orientational interactions between the proteins. With those few
parameters and with knowledge of the cloud-point temperatures
as a function of salt concentration, we compute the range of
experimentally measurable aggregation properties—such as the
liquid–liquid coexistence curves, the second virial coefficients,
and the osmotic compressibilities. Where data are currently
available, the model captures them well. We believe this
model may be useful for developing protein formulations and
for deeper understanding of the driving forces of protein
aggregation.
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