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Abstract

Category learning is an essential cognitive mechanism for
making sense of the world. Many existing computational cat-
egory learning models focus on categories that can be repre-
sented as feature vectors, and yet a substantial part of the cat-
egories we encounter have members with inner structure and
inner relationships. We present a novel computational model
that perceives and learns structured concepts from physical
scenes. The perception and learning processes happen simul-
taneously and interact with each other. We apply the model
to a set of physical categorization tasks and promote specific
types of comparisons by manipulating presentation order of
examples. We find that these manipulations affect the algo-
rithm similarly to human participants that worked on the same
task. Both benefit from juxtaposing examples of different cat-
egories – especially ones that are similar to each other. When
juxtaposing examples from the same category they do better if
the examples are dissimilar to each other.
Keywords: computational modeling; category learning; order
effects; similarity

Introduction
Inductive learning of categories from a given set of examples
is an essential ability for making sense of the world. Existing
theories and models of concept learning have largely focused
on categories where the category members can be described
using feature vectors (Love, Medin, & Gureckis, 2004; Kr-
uschke, 1992; Anderson, 1991; Nosofsky, 1986). Yet the
ability to learn concepts that take the inner structure and in-
ner relationships of members into account is essential for un-
derstanding human cognition. With the increased availability
of large structured datasets like medical data, social network
data or images and videos, there has been a growing inter-
est in the machine learning community in statistical learn-
ing techniques on relational data (Getoor & Taskar, 2007).
Within cognitive science, the application of Bayesian infer-
ence over grammatically structured hypotheses spaces pro-
vides the potential for modeling learning of relational con-
cepts (Goodman, Tenenbaum, Feldman, & Griffiths, 2008).

The analogy-making community has made many con-
tributions to algorithmically relating structured representa-
tions (Falkenhainer, Forbus, & Gentner, 1989; Hummel &
Holyoak, 1996). Hofstadter (1996) and his group have put the
focus of their fluid analogy models on the interesting interac-
tion of perception and structure mapping, which is something
that isn’t central to any of the other models mentioned here.

We introduce a novel computational model that is inspired
from the model of Goodman et al. (2008) and the fluid anal-

ogy algorithms of Hofstadter’s group, including Phaeaco by
Foundalis (2006). The computational model learns struc-
tured concepts in the domain of Physical Bongard Problems
(PBPs), which are rule-based categorization tasks with a set
of physical scenes that belong to two mutually-exclusive cat-
egories. PBPs are an interesting and challenging domain,
since the physical scenes from which the categories have to
be induced typically have a rich inner structure including re-
lationships between the parts of each scene. Additionally, the
feature-space of potential categories is large and initially un-
known to the learner.

Our model uses basic physical feature-detectors to perceive
the features of the objects in each scene. Based on these per-
ceptions, the model constructs structured rule-based interpre-
tations of the scenes, gradually focusing on the most promis-
ing ones. The perception process and the process of hypoth-
esizing about the correct categorization rule interact with and
constrain each other.

In previous work (Weitnauer, Carvalho, Goldstone, & Rit-
ter, 2014), we already used PBPs to look into the benefits
different types of comparisons between members of the same
or different categories have on learning performance. Dur-
ing training, we presented the PBP scenes in pairs and ma-
nipulated whether the scenes within each pair were from the
same or from different categories, as well as whether they
were similar or dissimilar to each other.

There is a strong body of evidence in psychology litera-
ture that these different kinds of comparisons provide differ-
ent amounts of information. Typically, more variance in the
irrelevant features possessed by examples within one cate-
gory will make the task of telling them apart from the rel-
atively stable, defining features of the category easier, lead-
ing to better learning (Medin & Ross, 1989; Rost & McMur-
ray, 2009). When comparing instances from different cat-
egories, typically the opposite is true. Comparing relatively
similar instances from two categories has the advantage of de-
creasing the likelihood of spurious differences being chosen
as the basis for discriminating the categories and it addition-
ally increases between-category contrast and discriminability
(Carvalho & Goldstone, 2013; Birnbaum, Kornell, Bjork, &
Bjork, 2012; Kang & Pashler, 2012).

In this paper, we first describe the problem domain and de-
sign of our computational model and then report results from
applying the model to the same tasks we gave human partici-
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pants in our earlier studies.

Physical Bongard Problems

We use Physical Bongard Problems (PBPs, see Weitnauer &
Ritter, 2012) as our problem domain, a variation of the classi-
cal Bongard problems described by Hofstadter (1979). Each
PBP consists of two sets of 2D physical scenes represent-
ing mutually-exclusive concepts that must be identified. The
scenes of the first concept are on the left, the scenes of the sec-
ond concept on the right side. Figure 1 shows two example
problems. What makes PBPs particularly interesting as a do-
main for concept learning is the inner structure in the scenes
and their open-ended feature space. People do not know in
advance which features a solution might be based on (or in-
deed what the features are), and while some of the problems
rely on features that are readily available such as shape or
stability, others rely on relationships between the objects or
require the construction of features as a difficult part of the
solution (e.g., the direction a particular object in the scene is
moving in).

We grouped the 16 scenes of each PBP into 4 similarity
groups, such that scenes within a group are on average more
similar to each other than to scenes of other groups. Figure 3a
shows PBP 24 with the similarity groups arranged in rows.
Both the participants from the previous study and the model
were only allowed to see two scenes at a time while solving a
PBP, as shown in Figure 4.

(a) PBP 08 - stability (b) PBP 20 - square support

Figure 1: The task in Physical Bongard Problems is to identify the
two concepts A and B. The concepts labels are not shown during a
study.

Computational Model

Each scene in a PBP can, by itself, be interpreted in many
different ways. The upper left scene in Figure 1b could be
described as “two objects in the middle of the scene”, as “a
triangle on top of a square”, as “a square supporting another
object”, etc. Which of these interpretations constitutes a so-
lution to the PBP depends on the context set by all the scenes
in the problem. In our model, we will refer to these interpre-
tations as hypotheses. A hypothesis that matches all scenes
from one side of a PBP and matches none of the scenes from
the other side is a solution.

Figure 2: Our computational model including its source code is pub-
licly available at http://graspablemath.com/pbp-model. It can
be run interactively inside the Chrome browser.

Model Design Decisions
1. Conjunctive hypothesis space. We restrict hypotheses to
conjunctions of object attributes, group attributes and object
relationships. This means that extending a hypothesis always
makes it more specific.

2. Perception-driven. The processes of perceiving fea-
tures on objects and constructing and refining of hypotheses
happen at the same time and influence each other. Initially,
the algorithm does not know anything about the objects in
the scenes except their positions and geometrical outlines. It
perceives features step by step and builds scene descriptions
based on those perceptions.

3. Probability-based decisions. The algorithm uses the
information from previous hypothesis-scene matches to es-
timate how probable it is for hypotheses, features and objects
in the current scene to be part of a solution. Based on those
estimates, it makes a stochastic decision on what to perceive
or check next.

4. Local actions. The algorithm can only perceive fea-
tures and check hypotheses on the currently visible scene pair.
Therefore, estimating the probability of a hypothesis needs
to take into account that different hypotheses will have been
checked on a different number of scenes. Although the al-
gorithm keeps track of all hypotheses that are created, typi-
cally just a few hypotheses are actively explored. Only when
a promising hypothesis turns out to be wrong, attention is
shifted to others.

Model Behavior
We’ll give a brief description one run of the model here. See
Figure 2 for a screen shot of the model in action.

When the model starts working on a PBP, the first step is
to load all the scenes which are provided as SVG images into
memory. The objects and the ground in each scene are rep-
resented as polygons that describe their outline, which act as
the basis for a physics engine that is used both to simulate
how the scenes will unfold and to perceive physical object
features like stability.

Initially however, the model knows nothing about the ob-
jects beside their existence and starts gathering information
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about the objects in the first visible scene pair. It selects fea-
tures, like large or stable, and objects to perceive the features
on. After a new perception was made, a corresponding scene
description, a selector, is created (e.g., “large objects”). This
selector is then applied to both scenes in the currently visible
scene pair, potentially resulting in a number of objects in both
scenes that match. The match results and the selector are both
captured in a hypothesis, which represents a potential solution
or potential part of a solution.

After some perception steps, the model switches to the next
scene pair. It can now continue to perceive features on the
new objects or check existing hypotheses on the new scenes
to gather additional evidence about their likelihood. The third
available type of action is to combine existing hypotheses to
build more complex ones. For example, “large objects” and
“small objects on top of any object” can be combined into
“small objects on top of large objects”.

The model stops as soon as a hypothesis was checked on all
scenes and is a solution, in fact matches all scenes from one
side and none of the scenes from the other side. The search
is aborted after a fixed number of actions if no solution was
found until then.

During a run of the model, it determines the type of the
next action by randomly drawing from a fixed multinomial
distribution. The elements the chosen action is acting on are
determined stochastically based on the information from all
hypothesis–scene matches done so far. More promising hy-
potheses will be checked first; objects and features that play
a role in promising hypotheses will be picked with a higher
probability for perceiving further features.

Implementation Details
Scenes hold physical representations of their objects. A
physics engine is used to both predict how the scene unfolds
over time and to perceive physical features on objects. Sta-
bility, for example, is perceived by observing how much an
object moves after poking it.

Objects keeps track of all perceptions that were made on
them. Groups are sets of objects and contain all matching ob-
jects of one or several selectors like “square” or “any object”.

Selectors represent a specific, structured interpretation of
a scene by describing what to look for. When applied to a
scene they select a subset of the scene’s objects. If the sub-
set contains at least one element, the selector and the scene
‘match’. Selectors are conjunctions of percepts, like “small ∧
hits (big ∧ rectangular)” or “square ∧ count = 2”. Hypotheses
keep track of which scenes matched or mismatched a specific
selector.

Features and Percepts. The model currently has 33 inbuilt
feature-detectors, including detectors for static object proper-
ties like size and shape, physical properties like stability and
movement, spatial relationships like ‘left-of’ or ‘close’ and
group attributes like object count. Each feature-detector can
perceive its feature on any object or object group and the re-
sulting percept stores the perceived value of the feature as a
membership degree between 0 and 1 (e.g., A is almost left-of

B). Currently, the algorithm uses a fixed threshold of 0.5 to
decide whether a feature is considered active or not (e.g, A is
left-of B or not).

Actions. At each step, the model chooses one of three ac-
tions by sampling from a multinomial distribution. It per-
ceives a feature on an object with p = 0.6, it checks an exist-
ing hypothesis with p = 0.3 and it combines two hypotheses
with p = 0.1.

In the perceive feature action the algorithm does one of two
things with equal probability. It either first selects an object or
group from one of the current scenes and then selects which
new feature it should perceive on the object or group. Or, it
first selects a feature and then selects a new target to perceive
the feature on. In case a relationship is perceived, a target ob-
ject for the relationship is chosen, too. If the action results in
a new percept, it schedules a create hypothesis action, which
turns the percept into a corresponding hypothesis that is then
checked in the next step.

The check hypothesis action selects one of the hypotheses
that was not checked on the current scenes yet and checks it.
Finally, the combine hypotheses action selects an object and
merges two hypotheses that include that object into a new
hypothesis that is then checked in the next step.

The timing of when to switch to the next scene pair is based
on how promising the current hypotheses are. If one is likely
to be the solution, the algorithm moves to the next scenes ear-
lier so that hypothesis can be checked against the remaining
scenes. If none of the hypotheses is particularly promising, it
keeps perceiving the current scenes longer.

Probability Estimation
Whenever the model is selecting a hypotheses to check or
combine, or an object and feature to perceive, the choice is
made stochastically based on previous results of matching hy-
potheses against scenes. While seeing, e.g., a lot of circles is
not very telling in itself, if a “circle objects” hypothesis cap-
tures that those circles are only found in scenes on one side,
it should give some credibility to circles playing a role in a
solution to the problem.

We represent all hypothesis–scene matching results in a
match matrix M. The columns correspond to hypotheses, the
rows to the scenes of the PBP and each element mi, j is set to
1 if hypothesis h j matched scene si, to 0 if it didn’t match and
is blank if it was not tested on the scene, yet.

Hypotheses We estimate the probability of an hypotheses
being the solution or part of a solution using the following
heuristic. In case hi can be a solution given all match results
so far (all tested scenes that matched were from one side and
all that didn’t match from the other), we set

P(hi|M) = 0.5blankP0(hi),

where blank is the number of scenes on that hi was not tested
on so far and P0(hi) is a measure of complexity for hi and
acts as a prior. In practice, this heuristic ensures that the more
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scenes an hypothesis is successfully checked on, the higher
the estimated probability of it being a solution gets.

In case hi can’t be a solution but still might be part of a
combined, conjunctive solution (it only mismatches scenes
of one side), we set

P(hi|M) = 0.5blank+S/2+incompP0(hi),

where S/2 is a fixed penalty set to half the total scene count
and incomp is the number of scene matches / mismatches that
are incompatible with hi being a solution by itself. In the
special case of a hypothesis matching all scenes on both sides
and containing base-level-features only (shape and size in our
case), we set incomp = 0. In practice, this makes hypotheses
that are close to being a solution more probable than ones that
are farther off, while accounting for the special situation in
which the “same” object is showing up in each scene. Finally,
in case a hypothesis can’t be part of a solution (it mismatches
scenes from both sides), its probability is set to 0.

Objects The probability that any particular object plays a
role in a solution is estimated based on the probabilities of all
current hyptheses that select that object.

P(o|M) = P0(o)Z ∑
h∈Ho

1
No(h)

P(h|M),

where o is an object, Ho is the subset of hypotheses that are
know to select o, P(h|M) is the estimated probability of hy-
pothesis h and No(h) is the number of objects that h selects
in the scene o belongs to. P0(o) is the prior probability of the
object and Z is a normalization factor that ensures the activi-
ties of all objects in a scene add up to 1. The relative priors for
objects depend on the attributes that were perceived on each
object so far and give more probability to objects that are ini-
tially moving or top-most in a scene. This heuristic estimates
the probability of an object by equally distributing the proba-
bility of all hypotheses to the objects they are known to select.
The algorithm will by design always consider an “any object”
hypothesis, which ensures that each object in the scene is se-
lected by at least one hypothesis.

Features The estimation of the probability that a feature is
used in the solution is identical to the object formula above,
with one difference. We add a small fixed term to the sum
such that features that are not used in any of the current hy-
potheses still have a chance of being selected for perception.
This accounts for the case that the solution is not among the
current hypotheses. The relative priors for features are 3.0 for
shape and size attributes, 2.0 for movement and stability and
1.0 for all others – reflecting that humans are more readily
perceiving and encoding some features than others, as well as
the expectation that PBP solutions will more often use such
features.

Experiment
In the original study with human subjects on PBPs, the par-
ticipants were presented a sequence of scene pairs, so that ex-

(a) similar within pairs (b) dissimilar within pairs

Figure 3: Two scene arrangements of PBP 24 for the blocked sched-
ule. The arrangements vary in the similarity of the scenes within the
shown scene pairs, here marked by gray rectangles.

Figure 4: Presentation schedules. Above are the position and se-
quence in which the scenes are shown during blocked (top) and in-
terleaved (bottom) presentation. Both the algorithm and the partici-
pants could proceed through the eight states as often as they wanted
using their own pace. White squares represent visible, gray squares
represent hidden scenes.

actly two scenes were visible at any time. In half of the condi-
tions, the scenes within the pairs were chosen from the same
category, promoting within-category comparisons (blocked
schedule). In the other half, the scenes in the pairs were from
different categories, promoting across-category comparisons
(interleaved schedule), see Figure 4. We additionally manip-
ulated the similarity of scenes within and between pairs, as
shown in Figure 1b. We exactly replicated these conditions
for the model.

The participants worked on 22 PBPs, each of which re-
quires knowledge of a set of basic features like relative spatial
positions or physical properties like stability to solve them.
Based on the basic feature-detectors we equipped our model
with, it can in principle solve 12 of the original 22 PBPs. We
ran the model 100 times for each condition for each of the 12
problems. For each run, we recorded whether a solution was
found in less than 2500 actions and if so, how many actions
were performed.

Results
Figure 5 shows the model’s success rate and how many ac-
tions it used in average. The model’s performance is at ceil-
ing for most of the problems and we will therefore focus on
the number of actions in our subsequent analysis.

In an analysis of the data generated by the runs of the
model, there are two valid ways of mapping the eight con-
ditions onto three 2-level factors. First, we can look at the
presentation schedule (blocked vs interleaved), the between-
category similarity (high vs low), and within-category simi-
larity (high vs low) of scenes in the same or adjacent pairs,
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Figure 5: (a) The model’s rate of finding a solution to each of the
12 problems with a fixed cut-off at 2500. (b) The average number
actions taken by the model until a solution was found or the search
was stopped. Error bars represent standard errors. The x-axes show
the problem numbers.

which is the type of analysis we used in our previous study.
The respective 2 × 2 × 2 repeated measures ANOVA with
the number of actions taken by the model as the dependent
variable gives the following results. There is a significant ef-
fect of presentation schedule, F(1,99) = 255, p < .001, of
within-category similarity, F(1,99) = 6.92, p = .01 and of
between-category similarity, F(1,99) = 11.1, p = .001. Ad-
ditionally, both of the similarity conditions interacted with
the presentation schedule with F(1,99) = 13.1, p < .001
and F(1,99) = 4.6, p = .034, for within-category similarity
and between-category similarity, respectively. There were no
other significant effects (p > .05).

The second way of looking at the data uses the presenta-
tion schedule, as well as the similarity of scenes within each
scene pair and between adjacent scene pairs as factors. A
respective 2 × 2 × 2 repeated measures ANOVA with the
number of actions as the dependent variable reveals a signifi-
cant main effect of the presentation schedule, F(1,99) = 255,
p < .001 and a significant interaction of the presentation
schedule and the similarity of scenes within the presented
scene pairs, F(1,99) = 39.3, p < .001. There were no other
significant effects (p > .05).

Discussion
Naturally, the results of both analyses are compatible. The
computational model finds solutions significantly faster for
interleaved compared to blocked presentation, an effect we
also found in our previous study with human participants.

In the interleaved condition, which promotes comparisons
across categories by composing scene pairs of scenes from
different categories, the model performed better when those
scenes were similar to each other. This is in line with our
expectations both from the reviewed literature and our previ-
ous experiments with human participants. Figure 6b shows
the result of the first study from Weitnauer et al. (2014), that
used the same setup and conditions we ran the model on. We
reanalyzed the original data using only the 12 problems that

were solved by the model.
In the blocked condition, scene pairs were composed of

scenes from the same category promoting within category
comparisons and in this case, the model performed better
when the scenes were dissimilar to each other. This result
was expected from the reviewed literature, too. Figure 6c
depicts the results of the second study from Weitnauer et al.
(2014), were participants were presented all scenes simulta-
neously. The within- and between-category similarity was
manipulated by placing similar or dissimilar scenes next to
each other. The study showed a significant benefit of plac-
ing dissimilar scenes next to each other within each category.
It is plausible to relate this result to the blocked condition
in the sequential presentation, as we know from a prelimi-
nary eye-tracking study that participants do about three times
more within-category saccades than between-category sac-
cades when being shown all scenes at once.
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Figure 6: The computational model (top) finds solutions signifi-
cantly faster for interleaved presentation, when comparing similar
versus dissimilar scenes across categories, and when comparing dis-
similar versus similar scenes within categories. The same advantage
of interleaved presentation and comparing similar scenes across cat-
egories was significant in a study with human participants using the
same setup (middle). In a study that showed all scenes simultane-
ously to human subjects (bottom), there was a significant advantage
of comparing dissimilar scenes within categories. Error bars repre-
sent standard errors.
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General Discussion
We presented a novel computational model for learning struc-
tured concepts on physical scenes. It solves a challeng-
ing problem since the Physical Bongard Problems we used
as concept learning task have an open-ended feature space
and concepts based on the inner structure of the physical
scenes. The model perceives the scenes while also building
and checking hypotheses, with both processes meaningfully
interacting with each other and constraining each other.

We applied the model on the same problems and condi-
tions we used for human participants in an earlier study and
qualitatively replicated the results. The model’s learning per-
formance is effected in the same way when manipulating
the kinds of comparisons between scenes that can be made
directly. Specifically, comparing instances between cate-
gories as well as comparing similar versus dissimilar instance
between categories and dissimilar versus similar instances
within categories improves learning performance. This is in
line the research in the category learning literature we re-
viewed in the introduction.

While Physical Bongard Problems are categorization tasks
and not the kind of situations that analogy-making literature
is typically concerned with, both are connected in that struc-
tured situations have to get related to each other. Although
our computational model never considers the mappings be-
tween individual elements of one scene to the elements of
another scene explicitly, they can easily be derived once a
common interpretation of the scenes is found. Applying, e.g.,
the interpretation “the circle ends up left of the other object”
to several scenes will identify the corresponding circle and
‘other’ elements in all situation. Cases in which no meaning-
ful 1:1 mappings between objects can be extracted are cases
where they do not exist in a straightforward way, like in “all
objects are close to each other”.

An essential part of the presented cognitive model are the
heuristics for deciding which objects, features and hypothe-
ses to look at next. Our design of the heuristics was guided
in part by what is known about limitations in human cogni-
tion, and in part by insights from introspection during solving
PBPs ourselves. The resulting model can solve many of the
original problems and the way different presentation schemes
influence its performance qualitatively resembles results from
human participants. Still, there remains much to explore in
how the current or similar heuristics lead to the learning be-
havior of the model and what makes those heuristics plausible
or not. One way of gaining further insight is to derive what
a rational decision would be, given the so-far perceived data
and a set of overt assumptions about the structure of the so-
lution space. We are currently working on such a Bayesian
derivation and several of the algorithm’s heuristics are fol-
lowing naturally from reasonable assumptions.
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