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3D Nanoimaging and Detection of Molecular Flow using the 
nSPIRO Method 

Michelle A. Digman1 and Chi-Li Chiu2 
1University of California, Irvine, Department of Biomedical Engineering, 3103 Nat Sci II, Irvine CA 92617and Centre for Bioactive Discovery in 
Health and Ageing, School of Sci & Tech, University of New England, Armidale, Australia; 2University of Southern California, Health Sciences 

Campus, 2001 N. Soto St.Bldg. #235Los Angeles, California 90033 
mdigman@uci.edu  

Abstract: Detecting proteins dynamics within cells grown in 3D micro-environments is 
challenging. We developed a 3D nano-imaging technique to uniquely probes proteins in cells 
grown on collagen. Results show paxillin and actin diffusion rates are unique.  
OCIS codes: 170.0170  Medical optics and biotechnology; 180.0180   Microscopy; 170.2520 Fluorescence Microscopy 

 
1. Introduction  

Cells sense their microenvironment by using a rich range of sensory mechanisms that allows them to 
change behavior, morphology and fate.  It is well known that cells can reorganize their cytoskeletal structure 
depending on the surrounding extra cellular matrix (ECM) depending on the composition, topology, anisotropy, 
rigidity and pliability [1-5].  Limited imaging technologies capable of measuring protein interactions in real time and 
space for cells grown in 3D is a major impediment in understanding how proteins function under different 
environmental cues.  To achieve this goal we have developed a nano-imaging technique capable of detecting 
molecular flows based on the orbital tracking method that can produce orbits modulated into a specific pattern. We 
have modified the original nano-scale precise imaging by rapid beam oscillation (nSPIRO) method to guide the laser 
beam orbit into a four leaf patterned shape [6, 7].  By multiplexing the pair correlation fluorescence (pCF) and the 
raster image correlation spectroscopy (RICS) methods with the 3D scanning, we can obtain information regarding 
protein binding, diffusion and aggregation in real-time and space.    

Studying focal adhesion assembly and disassembly in 3D space will allow the understanding of tumor cell 
invasion in a more complex relevant environment. In this report we investigate paxillin and actin dynamics inside 
cells grown in the 3D microenviroment. Using orbital scanning FCS we found higher percentage of slow diffusing 
proteins at focal spots, suggesting assembling/disassembling processes.  In addition, the RICS analysis shows 
paxillin aggregated predominantly at these focal contacts which are next to collagen fibers. At those sites, actin 
showed slower apparent diffusion rate, which indicated that actin is either polymerizing or binding to the scaffolds 
in these sites.  Our findings demonstrate that by multiplexing these techniques we have the ability to spatially and 
temporally quantify focal adhesion assembly and disassembly in 3D space and allow the understanding tumor cell 
invasion in a more complex relevant environment. 

2.  Results 
The nSPIRO method was set up on a commercial confocal, the Olympus FV1000 (Fig. 1). The internal 

galvano scanning mirrors were directly driven by an IOtech card (Measurement Computing, Norton, MA) with the 
pattern shaped algorithm to drive the laser beam into a modulated, circular or four-leaf pattern. Two-photon 
(880nm) or one-photon lasers (488nm) were coupled into the microscope either with a fiber or directly with optical 
mirrors mounted on an air table. The eGFP emission was collected using a 40x air 0.8 NA objective and with a 
bandpass filter between 505-605nm. To move the scanner in the z-axis, a piezo z-scanner (Phisik Instrumente, 
Auburn, MA) were driven by the IOtech axis card with nano-meter precision.  Data were acquired and processed by 
the SIMFCS software (www.lfd.uci.edu, UCI, Irvine). 

Stage nano-positioner or objective piezo

40x water objective

Two-photon microscope
or

One-photon microscope

IOtech card
Computer

 
Figure 1. Microscope setup and image of a cell grown in 3D collage matrix. One-photon or two-photon excitation was used to excite actin-eGFP 
(488nm) and collagen (900nm).   
 

Air objective 
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Fig. 2 shows the raster scanned four leaf pattern of a cell protrusion with 128 pixels along the orbit. Four four-leafed 
orbits are scanned sequentially with a period of 8.2ms with distance or 0.5µm.  From temporal cross-correlation of a 
pair of points at a given distance from each other, the pair-correlation function (pCF) analysis can define the 
diffusive route taken by molecules over many pixels (microns) along the line measured. When the distance between 
the two points is small, points are in within the PSF(Point Spread Function). This produces a correlation of the 
intensity fluctuations at very short time which is just the autocorrelation function (Fig. 2D, bottom). When the 
molecules diffuse further in space and time, the pCF will give rise to positive amplitude with a given time delay 
(Fig.2E).  If there is a positive molecular flow, the amplitude will lower and the width of the Gaussian curve will 
narrow revealing fast fluid motion. Direction of the flow will be determined by calculating the pCF in the forward or 
backward directions (Fig. 2F). 

 
Figure 2. Patterned orbital scan and depiction of the pCF analysis. A) The circular scan is done with a four leafed shape. In position 48 along the 
scanned line a red object is detected. B) The fluorescence intensity along the line as a function of time is plotted on an intensity carpet and the red 
fluorescence is observed in position 48. D-F)  Depiction of the pairwise correlation amplitude for each possible condition: no molecular motion or 
autocorrelation (D), pCF forward or backward normal diffusion with a given time delay (E), and forward or backward flow with a positive 
amplitude for direction of flow.  

 

 
Figure 3. Actin Flow Measurement in 3D. pCF analysis was applied to orbits 1 and 3 of the four-leaf pattern. The pixel dwell time was set to 128 
us with an orbit radius of 1 um.  The Actin flow rate was calculated to be equaled to 1.5 µm/ min. 

Figure 3 captures the positive molecular flow of actin molecules. Two orbits were used to calculate the 
actin flow rate of the distal tip of the cell protrusion.  
 Figure 4 shows the RICS analysis from the nSPIRO data set. In this case the orbit is scanned along one 
position on the cell protrusion. If the molecules diffuse fast, the correlation will be positive among adjacent lines 
along the x-axis. The correlation will thus shorten long the y-axis. If the diffusion rate is slow, the correlation will 
dominate along the y-axis.   

 
Figure 4. RICS along a line from the nSPIRO method.  The orbit in this example is not smooth and only along one position along the cell 
protrusion. The intensity is plotted as a function of time and the time segments are cut into short time intervals or frames. The fluorescence 
intensities are correlated along the x and y axis as a function of time and space.  
 
Table 1 shows the data obtained with the RICS along the nSPIRO line.  Actin diffuses much slower than paxillin.  
Bound actin diffuses at a much slower rate of 0.21µm2/s. Focal adhesions are much more difficult to detect in 3D. In 
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order to select region of positive focal adhesion contact with the ECM, the nSPIRO method was used to image at the 
nano-meter scale the position of the FAs. In table 1 there were not FA detected. Only fast diffusing paxillin was 
detected. However, actin will still polymerize to form the stress fibers required for cell motion. Together this data 
indicate that FA exsist but assemble and disassemble a much faster time than seen on 2D cell cultures 

 
Protein Moving 

Average (S) 
G(0)1 D1 

(µm2/s) 
G(0)2 D2 (µm2/s) 

Actin-eGFP 10 0.00084 13  ±1.2 0.0002 0.21 ±0.02 

 50  0.000024 13 ±2.7 0.0002 0.12 ±0.06 

Paxillin-
mcherry 

10 0.0004 17 ±5.3  NA 

 
Table1. Diffusion rates of paxillin and actin labeled eGFP. Cells on 3D collagen were selected and nSPIRO was performed on a selected spot 
along the cell. For each data set a high pass filter subtracting out the immobile fraction and slow moving features of the cells were subtracted with 
either a 10s or 50s time scale.  A total of 5 cells were measured for each experiment.  

3.  Equations 

The pixel coordinate of the orbit is determined by Eq. 1 and 2. The radius r is the acquisition radius, and θ spans 
from 0 to 360°. Given that radius alternates four times during an orbital period the resulting shape is a four-leaf 
clover. 

x=(r+r * sin(4θ))*cos(θ)                                   (1) 

z=(r+r * sin(4θ) )* sin(θ)                                  (2) 

To calculate the pCF of molecular flows long two adjacent lines of the four-leaf clover shaped orbit we used Eq. 3 
where Fa and Fb indicate the intensity in the upper and lower orbits, respectively. x is the pixel position, and τ is the 
correlation time: 
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< > >
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Given that each pixel along the nSPIRO line has intensity fluctuation information, rows and columns along the 
intensity carpet can be correlated as a function or time and space. Each column (i axis) is the intensity along the 
circular orbit, and each row (j axis) represents an orbit taken at different time points. The spatial correlation function 
is given by Eq. 4 where ξ and ψ are the spatial increments in the i and j directions, respectively, and the angle 
bracket indicates average over all the spatial locations in both i and j directions. 

 

Gs(ξ,ψ) =
< I(i, j)I(i + ξ,y +ψ) >i, j

< I(i, j) >i, j
2 −1 (4) 
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