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Zhen-Lin Xu1, Bruce D. Hammock1, and Shirley J. Gee1,*

1Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University 
of California Davis, Davis, CA 95616

2Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of 
New York, Buffalo, NY, 14214

Abstract

A VHH antibody (or nanobody) is the antigen binding fragment of heavy chain only antibodies. 

Discovered nearly 25 years ago, they have been investigated for their use in clinical therapeutics 

and immunodiagnostics, and more recently for environmental monitoring applications. A new and 

valuable immunoreagent for the analysis of small molecular weight environmental chemicals, 

VHH will overcome many pitfalls encountered with conventional reagents. In the work so far, 

VHH antibodies often perform comparably to conventional antibodies for small molecule analysis, 

are amenable to numerous genetic engineering techniques, and show ease of adaption to other 

immunodiagnostic platforms for use in environmental monitoring. Recent reviews cover the 

structure and production of VHH antibodies as well as their use in clinical settings. However, no 

report focuses on the use of these VHH antibodies to small environmental chemicals (MW <1,500 

Da). This review article summarizes the efforts made to produce VHHs to various environmental 

targets, compares the VHH-based assays with conventional antibody assays, and discusses the 

advantages and limitations in developing these new antibody reagents particularly to small 

molecule targets.

Keywords
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Introduction

Single variable domain on a heavy chain (VHH) antibodies, also referred to as Nanobodies®, 

were discovered nearly 25 years ago. Heavy chain only antibodies (HcAb) are naturally 

produced by camelids and sharks. The antigen binding portion of the HcAb is comprised of 
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the VHH fragment (Figure 1 adapted from Vincke and Muyldermans [1]). Overall, we feel 

the VHH technology will surpass many of the conventional antibody reagents. It utilizes key 

features of conventional antibody production, such as affinity maturation, however offers 

greatly improved screening and isolation techniques. An overview of the process for 

obtaining VHH is briefly diagramed in Figure 2. In addition, no animal sacrifice is needed. 

VHH technology also utilizes the abundant advancements in genetic engineering, such that 

genes are routinely spliced together and rearranged to provide a tool with superior binding 

that is easily purified while also containing labeling tags. Our assessment is that the VHH 

technology is among the most exciting developments in the antibody field in decades. For 

many applications in immunodiagnostics, VHH technology will be faster, cheaper and better 

than earlier procedures. Maybe of greater importance, VHH technology allows and will 

allow us to accomplish previously impossible goals.

Recent reviews have described the material [2], as well as their use in clinical and 

therapeutic applications [3–5], however none of these reviews focused on the application of 

VHH for small molecule analysis. In this paper, we describe all of the studies, to date, that 

have developed VHHs to small molecules (MW <1,500 Da) wherein the target is most likely 

relevant for environmental monitoring. We identify the methods used and critically evaluate 

features of each investigation and how those studies contribute to the broader understanding 

of the utility of nanobodies for environmental monitoring. Whenever possible, we compare 

the VHH-based assay to conventional antibody-based assays.

Furthermore, we addressed a variety of advantages and disadvantages of producing and 

using VHHs compared to poly- and monoclonal antibodies as well as other recombinant 

techniques for obtaining antibody fragments. The most notable advantage is that VHHs can 

be produced economically in unlimited amounts, are more stable when exposed to heat and 

solvents, and are amenable to genetic manipulations for a myriad of uses, including 

scaffolding, labeling, and altering specific amino acids. VHHs are 1/10th the size of 

conventional antibodies. Thus far, VHHs have proven to be adaptable to commonly used 

platforms that use conventional antibodies, such as microtiter plates, electrochemical 

biosensors, and lateral flow devices. With their smaller size, we surmise that the higher 

density of binding domains will provide an outstanding advantage in terms of increased 

signal and therefore higher sensitivities. A summary of characteristics associated with 

conventional (polyclonal, pAb and monoclonal, mAb) antibodies, as well as with VHH and 

another source of recombinant antibodies (scFvs, single-chain variable fragment) is provided 

to demonstrate that the disadvantages of using larger animals and requiring the biohazardous 

bacteriophage for selection is substantially outweighed by the ability to rapidly and reliably 

screen for, produce, and manipulate the resulting VHHs (Table 1). Ultimately, this review 

serves to explain what has been done and what is needed to advance the field in developing 

new immunoreagents and particularly VHH for environmental monitoring.

Summary of VHH assays to environmental chemicals

Each summary provided in this section highlights a small molecular weight environmental 

chemical to which VHHs have been produced. They are presented in chronological order 

with regard to publication date. Each summary begins with a brief description of the 
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chemical and where it is expected to be found. For the production of VHHs, panning and 

screening details are identified, with particular focus on elution conditions, homo- or 

heterogeneity of the screening antigen, and assay buffer conditions. Key characterization 

information, such as cross-reactivity, assay sensitivity or limit of detection, and thermal 

stability of the reagent is provided, where applicable. Table 2 provides VHH assay 

sensitivities and, when possible, provides polyclonal antibody (pAb) or monoclonal antibody 

(mAb)-based assay sensitivities to the equivalent target. Table 3 summarizes other 

parameters beyond assay sensitivity, such as species of animal, method of elution, and other 

unique observations of each study.

The reactive red azo dyes, RR-6 and RR-120 are among a group of reactive dyes that are 

used to color fabric. As such, they are found in the wastewater effluent of textile factories. 

RR-120 has been found to be harmful to duck weed and rainbow trout and toxic to the water 

flea [6]. Wastewater treatment processes to degrade these chemicals such as filtration [7], 

UV light [8] or bioremediation are under development [9]. The body of work describing the 

VHH derived from llamas against the azo dyes RR-6, andRR-120 was the first 

demonstration of the development of a VHH for a small molecule or hapten. The 

compounds were coupled to bovine serum albumin (BSA) through the triazinyl group of the 

dyes and used as immunogens. A response to antigen was found for all three 

immunoglobulin (IgG) isotypes (i.e., IgG1, IgG2, and IgG3). A Ficoll discontinuous 

gradient was used to isolate peripheral blood cells from whole blood. The libraries were 

constructed in phagemid vectors for expression in either E. coli or yeast. The libraries were 

not biopanned to enrich for specific antigen binders. Instead, E. coli or yeast were infected 

and allowed to grow. At least 200 random colonies were picked and were grown up. The 

supernatants were then tested for binding to the haptens covalently linked to a polystyrene 

plate. Selected VHH had affinities between 18 and 85 nM, similar to the 8.4 nM affinity of 

the earlier developed mAb. No cross reactivity for RR-120 by VHH selected on RR-6 and 

vice versa was found [10]. In addition, their work was the first to describe a high yield of 

VHH from a yeast expression system where anti-hapten VHH were from 0.1 to 3.0 mg/L 

and anti-protein VHH were from 1.9 to 9.3 mg/L [11]. VHH had superior temperature 

stability and could bind antigen well at elevated temperature and higher concentrations of 

the chaotrope ammonium thiocyanate compared to mAbs. Both mAbs and VHHs showed no 

change in binding in the presence of up to 50% ethanol [10]. Further examination of the 

crystal structure of a VHH revealed that although VHH lack the hydrophobic cleft typically 

formed by VL and VH chains, the CDRs of VHH are adaptable and binding may occur in 

any number of ways. Both pi stacking and charge-charge interactions occur with molecules 

that have both aromatic and hydrophilic properties [12, 13]. Interestingly, unlike VHH 

previously reported for protein antigens, the VHH against reactive red dyes did not have the 

additional disulfide bond between CDR1 and CDR3 that has been attributed to high thermal 

stability. The authors proposed then that the stability could be attributed to successful 

refolding of the protein after heat challenge [14, 10]. To improve production, affinity and 

temperature stability DNA shuffling was also used with success [15].

Picloram is an auxinic herbicide that mimics the plant-growth hormone indole-3-acetic acid 

(IAA) and is widely used to control woody species and broadleaf weeds in non-crop areas. It 

Bever et al. Page 3

Anal Bioanal Chem. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is the most persistent member of its family of herbicides with a half-life of 90 days. 

Picloram is mainly degraded by microbes that are present in soil or water. In the paper [16], 

the authors hypothesize “that VHHs specific for small molecules (i.e. MW <500 Da) can be 

isolated and affinity-matured efficiently by ribosome display technology and envisage that 

these unique VHHs will be valuable diagnostics in agriculture and the food industry.” 

Previously, panning of a rather rich VHH-phage library (of size 5.4×108), constructed from a 

non-immunized llama, failed to give any picloram selective binders. In the present work, the 

authors reported successful selection of picloram selective VHH binders out of the same 

VHH mRNA pool they used for construction of the phage library. In comparison to the 

phage-display, the ribosome-display procedure did not involve any cloning and 

transformation steps, and could handle a VHH DNA library of a much larger size. The 

panning procedure was performed using a subtractive format and the hapten carrier proteins 

were switched at each round (Pic-OVA for rounds 1,3,5; and Pic-BSA for rounds 2,4,6). 

After six rounds of panning, two clones were obtained with Kd values of 3 and 256 µM as 

determined by surface plasmon resonance (SPR) analysis. Interestingly, the CDR3 region of 

both VHHs consists of only five amino acids. Sequence analysis of the selected clones 

revealed four unique residues Pro50, Gly66, Leu87 and Met105 that are not commonly 

found in llama VHH antibodies. The authors speculated that separate point mutations which 

may have been introduced during PCR amplification steps of the ribosome display 

procedure could be the origin of these residues.

Indole-3-acetic acid (IAA), also called auxin, is the most potent and abundant member of 

auxins, a class of plant hormones involved in regulation of many growth processes. 

Exogenous application of high concentrations of auxin leads to the symptoms of “auxin 

overdose” and eventually plant death due to growth abnormalities. This effect lies at the 

basis of the mode of action of synthetic auxins or auxinic herbicides. Several proteins have 

been found to bind auxin amongst which is the relatively poorly studied Auxin Binding 

Protein (ABP). Authors hypothesized “that antibodies that bind to IAA may be used as 

surrogate ABPs to study the structure-activity relationships of IAA and the auxinic 

herbicides binding to their putative receptor.” In this work [17], authors isolated five 

different sdAbs from a naïve llama library with relatively low affinity for the IAA-BSA 

conjugate (Kd ≥ 5 µM) as determined by SPR (surface plasmon resonance). Inhibition 

experiments with sdAb CSF2A (Kd = 5 µM) revealed broad cross-reactivity with all auxinic 

herbicides with IC50 values > 200 µM for herbicides and 800 µM for IAA. Pentamerized 

VHH, obtained by VHH fusion to the verotoxin B subunit, was used for stable 

immobilization in an oriented manner on the SPR sensor chip, which allowed for direct SPR 

study of VHH-hapten interactions and determining Kd values. Interestingly SPR 

measurements of the Kd values of pentamerized sdAb CSF2A for free IAA was 20 µM 

whereas the Kd value for synthetic auxins was one-two orders of magnitude higher. CDR 

shuffling of all five sdAbs by StEP PCR resulted in a sdAb library with 46, 35, 10 and 10 % 

of the clones derived from one, two, or three parents or having point mutations respectively. 

Although the shuffled library did not result in sdAbs with improved affinities, affinity 

measurement of individual clones suggested that CDR2 of sdAb CSF2A was involved in 

auxin binding and CDR3 was responsible for the broad cross-reactivity for auxinic 

herbicides. The authors speculated that sdAb CSF2A that can discriminate between non-
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active and active auxin analogues could be used for high throughput screening for new 

synthetic auxins.

Monitoring of nutrition and limiting consumption of unwanted components in food is of 

growing interest within the general population. As a potent central nervous system 

stimulator, caffeine is frequently avoided or is desired and the development of tools that 

would allow caffeine monitoring in food and particularly in hot beverages is desired. 

Caffeine-selective VHHs were panned from libraries based on immunizing 2 camels and 3 

llamas, using triethylamine for elution of VHH-phage fusions bound to immobilized 

caffeine/BSA antigen [18]. Four out of five camelids gave positive clones after two rounds 

of panning. Interestingly, one llama library produced no caffeine-selective clones, even 

though the pre-panning showed positive signal to the target. The most successful clone 

demonstrated a cross-reactivity pattern comparable to that of mAbs. The VHH proved to be 

thermally stable recovering more than 90% of its activity after incubation at temperatures up 

to 90 °C, while the mAb lost binding activity after incubation at 70 °C. Using the developed 

VHH, authors demonstrated the feasibility of the enzyme linked immunosorbent assay 

(ELISA) at elevated temperatures. The IC50 remained unchanged when competition was 

performed at 70°C, indicating that binding was not affected dramatically by temperature. 

The accuracy of the assay was demonstrated by detection of caffeine in the range of 

beverages available on the market, where caffeine was not intentionally spiked, and the 

values obtained had good correlation with data from high performance liquid 

chromatography (HPLC) and data from the literature. A patent was issued on these 

thermostable caffeine-selective VHHs and their application to a disposable lateral flow 

device for caffeine monitoring in beverages at home and in restaurants [19]. In addition, the 

CDRs of these anti-caffeine VHHs were grafted onto an anti-RNase A antibody scaffold to 

produce a solid phase for immunoaffinity chromatographic separation and detection of 

caffeine [20].

Methotrexate (MTX, 4-amino-10-methylpteroylglutamic acid) is a folic acid analog that is 

used to treat cancer. By inhibiting dihydrofolate reductase, an enzyme responsible for the 

formation of one of the major cofactors in the synthesis of purines and thymidine necessary 

for DNA replication, it slows the growth of cancer cells [21]. A VHH against methotrexate 

(MTX) was generated and used as a model hapten to study how the antigen-binding 

mechanisms for low molecular weight antigens could result in high affinity binding 

considering the absence of a variable light chain (VL) [22]. Methotrexate was coupled to a 

commercial carrier protein, blue carrier immunogenic protein™ (Pierce Chemicals, 

Rockford, IL), via carbodiimide coupling. In this case, either carboxylic acid residue of 

MTX may have reacted to link to the carrier protein. IgG1 and IgG2/3 fractions of serum 

from the immunized llama were compared for binding to MTX-BSA, a homologous antigen. 

Both fractions had titers to MTX-BSA, with the titer of IgG1 somewhat higher. The VHH 

were screened from a library using three rounds of panning. Phage particles bound to the 

solid phase coated with MTX-BSA, were eluted with 0.1 M triethylamine, pH 11.0. Phages 

from the third round were then tested on MTX-BSA coated plates. Positive clones were 

subject to large scale production of soluble VHH that were subsequently tested for affinity 

using SPR. Selected VHH displayed nM binding affinities for the MTX-BSA antigen as well 
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as for free MTX using SPR. IC50 data were not reported, but interpolation of the inhibition 

graph indicates an IC50 of about 10 µM. Analysis of structural features revealed that like 

other VHHs, the CDR3 loop is longer than that found in IgG1. The CDR1–3 loops are 

typically credited with the high affinity binding of VHH. Using a CDR ‘grafting’ technique, 

MTX was found to ‘tunnel’ under the CDR1 and come in contact with a cryptic binding site 

in a nonhypervariable loop (CDR4). This resulted in a 1000× increase in binding of MTX. It 

is not known whether this tunnel effect will be universal for binding of small molecular 

weight compounds but it points to strategies for creating synthetic libraries or attempting in 
vitro affinity maturation [23].

15-Acetyl-deoxynivalenol (15-AcDON) is an acetylated metabolite of the trichothecene 

mycotoxin deoxynivalenol (DON). DON and its metabolites are ubiquitously found in food 

and feed [24]. Besides inhibiting protein synthesis, DON and 15-AcDON may also cause 

toxicity through dysregulation of cell signaling and changes to gene expression. Thus, their 

presence in the food supply is strictly regulated. The titer of the serum of a llama immunized 

with DON conjugated to BSA at the 15 position (15-DON-BSA) was excellent [25]. A 

competitive fluorescence polarization assay was developed using a homologous 15-DON-

fluorescein conjugate. The resulting IC50 for DON was 1.42 µM. The IgG in the serum was 

fractionated and the authors report that most binding was by what they term complete IgG. 

Heavy chain only antibodies apparently had significant binding but the data were not shown. 

VHH were selected with a panning strategy that used decreasing coating antigen (15-DON-

OVA) concentration (20 to 10 µg/well), switching blocking agents for rounds 3 and 4, 

increasing the number of washes and eluting bound phage with triethylamine. The DNA of 

selected positive clones was sequenced and one containing the dominant sequence was 

further expressed as a pentamer by gene fusion to verotoxin B subunit. Signal for the 

pentamer was always higher than monomer given equivalent conditions. Thus, the authors 

conclude that this increased avidity is a result of panning with phage that displays VHH 

multi-valently and to obtain monomeric VHH that bind with high avidity may require a 

different display system. In competitive inhibition studies using fluorescence polarization, 

both the monomer and pentamer were selective for 15-AcDON in contrast to the serum 

antibodies that cross reacted nearly equally with DON, 3-AcDON and 15-AcDON. The 

IC50s for 15-AcDON were similar, 1.24 vs 0.5 µM, for the monomer and pentamer, 

respectively. Surprisingly, when 15-DON-OVA was used in a competitive immunoassay on a 

microtiter plate the authors noted consistent inhibition by 15-AcDON, but could not obtain a 

complete binding curve at concentrations above 10 µM. They postulate this was due to a fast 

off rate of the VHH and subsequent loss of VHH during wash steps. There was no inhibition 

by free DON or 3-AcDON. Binding kinetics were determined by SPR. The Kd for the 

monomer was reported at 5 µM for binding to 15-DON-HRP immobilized on the sensor 

chip. No binding was found for free DON. 15-AcDON and 3-AcDON were not tested for 

affinity binding due to solubility issues and the incompatibility of organic solvents and the 

sensor chip surface. Analysis of the amino acid sequence of the VHH showed no cysteines 

in CDR1 or CDR3 indicating that an interloop cysteine bridge, earlier postulated to be 

important for binding of large molecular weight antigens may not be important for small 

molecular weight antigens [25].
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Ochratoxin A (OTA), a secondary metabolite of several Aspergillus and Penicillium fungal 

species, is a common food contaminant that can produce nephrotoxic, teratogenic, 

carcinogenic, neurotoxic, and immunosuppressive activity. OTA contamination occurs 

worldwide, which seriously threatens public health. The OTA VHH antibodies were first 

cloned from an immunized alpaca by van Houwelingen’s group [26]. In this case, a 

homologous hapten was used for both immunizing and panning. The selection of VHH 

antibodies was performed by panning twice against an OTA-OVA conjugate and once 

against an OTA-KLH conjugate. It is worth noting that the performance of one VHH in food 

matrices (white wine, red wine and instant coffee) was comparable to the performance in 

buffer. In this study, a flow-through membrane-based enzyme immunoassay was also 

developed. In the assay, they did not directly spot the VHH on the membrane, but instead 

used secondary antibodies to capture the VHH that may have enhanced the binding 

capability of the VHH by leaving the binding pocket exposed. Subsequently, Liu’s group 

obtained four VHHs against OTA, and used OTA as a model to study the feasibility of phage 

display-mediated immuno-polymerase chain reaction (PD-IPCR) in the detection of toxic 

small molecular weight compounds [27]. The VHH phages were selected using gradually 

decreasing concentrations of OTA−OVA conjugate. The bound VHH phages were eluted 

with 0.2 M glycine HCl (pH 2.2) in first and second round, and OTA in the third and fourth 

round of panning. The detection limit of the developed VHH phage-based PD-IPCR was 3.7 

pg/L, with a linear range of 0.01−1000 pg/mL. This is the most sensitive assay reported to 

date for the detection of OTA. In the solvent effect study, although 2.5% methanol exhibited 

the widest linear range and lowest LOD, there were slight differences among 5%, 10% and 

20% methanol treatment groups. In Liu’s second paper, the VHH was genetically fused to 

alkaline phosphatase to serve as the probe, and a direct competitive fluorescence enzyme 

immunoassay (dc-FEIA) for OTA was developed [28]. The IC50 and the detection limit of 

the dc-FEIA were 0.13 and 0.04 ng/mL, respectively, with a linear range of 0.06−0.43 

ng/mL. Along with speeding up the assay procedure and reducing variability by removing a 

step, the VHH fusion technique with the alkaline phosphatase dimer increases the avidity 

and thus the sensitivity of the procedure. In the methanol, ionic strength and pH effect study, 

the sensitivity of the dc-FEIA was affected by methanol and ionic strength. The dc-FEIA 

was more likely to be influenced at low pH (≤6.0), which may be due to the denaturation of 

the fusion protein caused by protein protonation at low pH. In the matrix effect study, the 

fusion protein was resistant to the matrix effects. In the validation study, cereal samples both 

spiked and naturally contaminated with OTA were analyzed. The results obtained from dc-

FEIA and LC-MS/MS showed good agreement.

Triclocarban (3,4,4’-trichlorocarbanilide, TCC) is a broad-spectrum bactericide that is 

widely used in soaps, disinfectants, and other household products. TCC may cause adverse 

biological and toxicological effects on humans and the environment. In this work [29], TCC 

was used as a model hapten to study the practical aspects of producing VHH against small 

molecules. The titer and overall affinity of the IgG1 (conventional) subclass was relatively 

higher (IC50 = 51 ng/mL) than that of IgG2 and IgG3 (monodomain). The authors 

demonstrated that affinity of the IgG1 to TCC was 10 times higher compared to IgG2 and 

IgG3. Interestingly, the panning experiments from the TCC-VHH library using classical 

acidic elution did not allow the selection of positive clones that could be inhibited with free 
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TCC. Thus, a new panning strategy was used where decreasing concentration of the free 

analyte was used to elute phage in the successive rounds of panning. This approach 

successfully gave five positive clones with the best IC50 for TCC of 3.5 ng/mL. This was 

100-fold sensitivity improvement compared to IC50 values of other reported anti-hapten 

VHHs of the time. Here, only a homologous format of competitive ELISA was studied. The 

technique of SPR was used to measure the Kd of the VHH with coating antigen and free 

analyte giving values of 1 and 11 ng/mL, respectively. Interestingly, the Kd of the VHH-free 

analyte interaction was similar to IC50 of the competitive ELISA. The VHH from selected 

clones showed somewhat higher reactivity to compounds structurally similar to TCC 

compared to the pAb [30]. The VHH demonstrated an outstanding thermostability compared 

to the conventional antibody. It is worth noting that not all VHHs withstand heat in the same 

way with some being inactivated at 85 °C and others remained active even after 1 h at 

100 °C. Interestingly, opposite to what could be expected, the VHH that had additional 

disulfide bonds was not the most thermally stable.

Pyrethroids are a class of broad spectrum insecticides with extensive agricultural, forestry, 

horticulture, public health, and residential uses. Though these compounds are selectively 

toxic to insects and have relatively low toxicity to mammals there is still potential risk of 

human exposure, notably paresthesia from dermal exposure or irritation of mucous 

membranes. 3-Phenoxybenzoic acid (3-PBA) is a common urinary metabolite of most 

pyrethroid insecticides that could be used as a biomarker of human or environmental 

exposure to these pesticides. In this work [31], 3-PBA was used as a model system to study 

the practical aspects of producing VHH against small molecules. The VHHs were selected 

using gradually decreasing concentrations of 3-PBA-BSA conjugate and free 3-PBA and 

more stringent washing. The homologous assay with the best VHH gave 100-fold higher 

sensitivity compared to the homologous pAb-based ELISA, and similar sensitivity to the 

heterologous pAb-based ELISA. Interestingly, this VHH did not recognize the heterologous 

hapten used in the ELISA with the pAb. The assay sensitivity achieved using a VHH against 

this small molecule (1.4 ng/mL) was better than those reported from most other camelid 

VHH-based ELISAs. Additionally, the assay sensitivity was improved 10-fold when the 

VHH was attached to the phage particle. This study was also the first to report the high 

tolerance of VHHs to organic solvents (methanol and dimethyl sulfoxide) compared to the 

corresponding pAb. In an effort to demonstrate the usefulness for human monitoring, this 

VHH assay was performed in a urine matrix with recovery values of spiked 3-PBA in the 

range of 80–100% and good correlation with GC-MS data.

Brominated flame retardant (BFR) chemicals are incorporated into plastics, electronics, 

and furniture to make them less flammable. One class of BFRs called polybrominated 

diphenyl ethers (PBDEs) has been taken off the market due to their persistence in the 

environment and concerns about toxicity to human health. While PBDEs have been banned 

from use, many of the products already manufactured that contain them remain in use. 

Often, the most prevalent congener of the PBDEs found in the environment is 2,2',4,4'-

tetrabrominated diphenyl ether (BDE-47) and was the target for VHH production [32]. In 

this work, the VHH antibodies were selected using increasingly stringent phage-displayed 

VHH elution conditions: the antigen and analyte concentrations were decreased each round 
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and the free analyte was used for competitive elution. In this case, a homologous hapten was 

used for both immunizing and panning. The VHH antibody performed comparably to the 

previously described rabbit pAb for the same target [33]. The resulting detection limit was in 

the ppb level and cross-reactivity profiles are similar for both antibodies. The most sensitive 

VHH assay obtained (IC50 = 1.4 ng/mL) utilized a heterogeneous hapten, although the 

homologous hapten assay was also very sensitive (IC50 = 2.7 ng/mL). It is interesting to note 

that the VHH assay sensitivity improved ~100-fold when the VHH was isolated (i.e., not 

used while expressed on the phage particle). While not discussed in detail, the VHH assay 

was performed in a buffer containing 40% dimethyl sulfoxide (DMSO), indicating the 

ability of reagents to function in the presence of high concentrations of organic solvents. To 

test the thermostability of the VHH compared to the pAb, both were assessed for activity 

after being heated to 95 °C. The VHH retained more than 25% of its activity after being 

heated for 60 min, while the pAb retained none. As a demonstration that VHH can be 

incorporated into formats where conventional IgGs have been used, the VHH was 

incorporated into two biosensor formats. The VHH was coated on the surface of an electrode 

for electrochemical impedance detection [32] and coated onto a PDMS membrane for a lab-

on-a-chip sensor [34]. In the latter, the VHH was directly labeled with horseradish 

peroxidase to reduce the need for additional reagents used for detection, which also provides 

evidence that the VHH reagent did not lose activity/functionality after being chemically 

labeled.

Tetrabromobisphenol-A (TBBPA) leads sales of BFRs in the world. TBBPA and its 

glycidyl ether are used primarily as a reactive flame retardants covalently incorporated into 

epoxy and polycarbonate resins often used for electronic insulation. TBBPA is released into 

the environment manufacturing facilities, and when incorporated as the unreacted material, 

TBBPA can conceivably leach from products either during use or through means of 

disposing of the products. Immunoassays have been developed to detect TBBPA in soil, as 

well as human samples. The selection of VHH antibodies [35] was conducted using 

knowledge gained from prior work in isolating highly sensitive pAbs [36] and mAbs [37] to 

the same target. In addition, this work utilized the repertoire of previously synthesized 

haptens to systematically pan the phage-displayed VHH library against the homologous 

hapten and two heterologous haptens. Regardless of the screening hapten used for phage 

panning, the phage were selected and eluted by using decreasing concentrations of screening 

hapten and free analyte, respectively, with each successive round. The most sensitive assay 

identified (IC50 = 0.4 ng/mL) resulted from panning with a heterologous hapten which 

varied from the immunizing hapten by having two fewer carbons in the linking arm. Due to 

the hydrophobicity of TBBPA, both methanol and DMSO, from 5–40%, were evaluated for 

their impact on sensitivity. While sensitivity was best at 10% methanol, the VHH assay was 

viable in all tested solvent concentrations. Additionally, pH was evaluated ranging from 4.0–

11.0. The assay performed with minimal deviation between pH 7.4–11.0. These pH and 

solvent matrix results highlight the increased tolerance of VHH proteins to maintain 

function (and presumably structure) in diverse assay matrix conditions. Nonetheless, when 

matrix extracts from soil and fetal bovine serum were tested, they required a 100-fold and 

10-fold dilution, respectively, to eliminate interference, although little explanation of how 

the assay was altered was provided. It is also interesting to note that a comparison was made 
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showing that the VHH competitive ELISA was 1000-fold more sensitive than the alpaca 

pAb serum assay, thus suggesting that the preliminary screening of serum may not be 

indicative of resulting assay performance. The VHH, as well as the pAb and mAbs, to 

TBBPA are highly selective for TBBPA. All antibody types exhibit negligible cross-

reactivity to other compounds tested. The VHH was subjected to heating to 90 °C for 10 and 

90 min, and it retained 80% and 20% of its activity, respectively. To take advantage of being 

able to genetically modify a protein, this VHH was genetically fused to alkaline phosphatase 

to serve as the reporting label [38]. Because the binding protein was directly linked to the 

reporting protein, the number of incubating and washing steps in the VHH-AP assay were 

reduced, thus speeding up the analysis time. The fusion of AP to VHH did not impact assay 

sensitivity or selectivity, although an unexpected finding was that the VHH-AP fusion was 

functional after 70 days at ambient temperature, demonstrating an advantage of the inherent 

stability of VHH.

The aflatoxins are a group of naturally occurring mycotoxins, produced mainly by 

Aspergillus flavus and Aspergillus paraciticus. They can occur in a wide range of products, 

including grains, food and feedstuff. More than 20 types of aflatoxins have been identified, 

among which, four aflatoxins (B1, B2, G1 and G2) occur naturally. Aflatoxin B1 (AFB1) is 

the most toxic, and one of the most potent carcinogens in nature. In this study [39], the VHH 

antibodies were selected using gradually decreasing concentrations of AFB1−BSA conjugate 

and free AFB1 and more stringent washing. Two unique clones, named Nb26 and Nb28, 

were selected. Both VHHs showed higher resistance to temperature and solvents than the 

mAb. The mAb gradually lost binding activity with increased temperatures, while the VHHs 

could bind to the antigen after being incubated at 95 °C for 5 min. The VHHs Nb26 and 

Nb28 retained about 70% and 40% of binding activity, respectively after incubation for 1 h 

at 85 °C. However, the binding activity of the mAb was lost after 15 min of incubation at 

85 °C. Apart from temperature stability, the VHH also showed higher tolerance to methanol, 

acetone and acetonitrile compared with the mAb. The authors state that the temperature 

stability of the VHH may also be explained by their ability to properly refold after 

unfolding. The recovery of AFB1 from spiked samples of rice, corn, peanut and feedstuff 

was from 80%-115%, using the VHH Nb26-based ELISA. Interestingly, the authors report 

that using 2% BSA in the 70% methanol in phosphate buffered saline extraction buffer aids 

in eliminating matrix effects, likely by providing a stabilizing effect to the antibody protein.

Advantages of VHHs

Large quantity production of VHHs

Once the phage-displayed VHH is selected and isolated, soluble unbound VHHs are 

expressed in a bacterial culture. In culture, the bacteria cells replicate on the order of every 

20 min. A typical or expected yield of a 1-L culture allowed to grow for 15 h (a typical 

overnight expression time), is ~10 mg of protein [40]. However, the product yield is very 

variable and thus numerous studies of the relationship between the expression yield and 

expression systems, chaperones and presence of key amino acid residues in VHH framework 

have appeared [41]. When producing a conventional mAb from a mouse cell line, the animal 

must first be sacrificed to obtain the spleen cells needed for fusion with a myeloma cell line. 
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Once a cell line has been selected and isolated to monoclonality, there are two commonly 

acceptable methods to acquire antibody protein: large culture growth with media 

replacement and ascites production. Mammalian cells double daily, and the expected output 

of a 1-L culture is ~10mg, but usually requires a few days of growth [42]. Using the ascites 

method, a typical cell line will take ~5–7 days and yield 3–10 mL of fluid containing 10 

mg/mL of protein. Unfortunately, ascites is the least humane of all of these methods and is 

often only used when deemed necessary. In addition, careful mammalian cell culture 

techniques must be employed (e.g., sterile fume hood, sterile growth chamber, use of 

antibiotics if necessary) to ensure no contamination, since bacterial or yeast contamination 

will grow faster than and kill the growth of the desired cells. On the other hand, a bacterial 

culture often relies on antibiotic selection and will often out-compete other bacteria that may 

contaminate the culture.

Ultimately, larger yields of purified immunoreagents are highly desirable as a source 

material for standardized regulatory tests. Even more reagent is needed when VHH are used 

in affinity chromatography systems. Incrementally more VHH will be needed for use in food 

processing. This is illustrated by their use to remove caffeine from a sample [20]. The need 

increases yet again for therapeutic applications. Some uses likely will involve injection into 

the blood stream or peritoneal cavity. Other applications may require genetic modification of 

the VHH to allow it to penetrate membranes to neutralize toxins. Other clinical applications 

could involve hemo- or peritoneal dialysis, which has been performed with conventional 

antibodies to paraquat (MW=257), a highly toxic herbicide [43, 44]. In the case of VHH, 

their lower cost and much smaller size likely will result in higher density and a far more 

effective reagent.

In addition, the storage of source material and the transfer of reagents among researchers are 

critical for the advancement of science and ensuring commercial viability of these materials. 

One great advantage to using VHHs may be the fact that since the genetic sequence is 

known and recorded, this information can be transferred between researchers and used in 

artificial gene synthesis. In addition, VHH source material can be stored in three physical 

forms: plasmid, bacteriophage, or bacterial (e.g., transformed Top 10F') cells.

Genetic modifications

Improve characteristics—Ideally VHHs produced from immunized animals will have all 

the desired physical and antigen binding properties. Following rigorous panning and 

enrichment the VHH would be used as produced. In reality this is unlikely, and it is where 

genetic engineering may come to the aid. Although in vitro maturation approaches have 

been successfully used to improve stability or affinity of VHHs [45–48], little literature is 

available on genetic manipulations of VHHs against small molecules. Although 

unintentionally, in one example Yau et al. [16], selected two anti-picloram clones with three 

point mutations in the nucleotide sequence which most probably were introduced by 

intrinsic random mutagenesis during PCR steps. These mutants were selected and amplified 

probably because they were superior in terms of analyte binding over parent clones, but this 

theory was not tested by back mutation and comparison of mutated and parent VHH 

affinities. Authors speculated that “ribosome display technology can compensate for the 
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limited diversity of a VHH naive library and provide an unlimited source of affinity-matured 

immunoactive reagents in vitro”. Another example comes from the same group, where five 

selected anti-auxin VHH clones were shuffled by staggered extension process (StEP). 

Although none of the shuffled clones had better affinity toward auxin than the best original 

clone, the affinity toward auxinic herbicides was significantly decreased [17]. Recently an 

interesting study investigating the structure – binding relationship of an anti-methotrexate 

(anti-MTX) VHH antibody was published by Fanning and Horn [49, 23]. CDRs 1–3 from 

known anti-methotrexate VHH were grafted onto an anti-RNase A VHH framework. The 

resulting grafted VHH had 250 times lower affinity than parental VHH. Introduction of five 

amino acid residues (76–80) of the anti-MTX VHH into the grafted antibody resulted in 

1000-fold increase in affinity. Although this part of FR3 was not considered a hypervariable 

loop, it is well positioned for productive interaction with antigen as in the above example. 

Participation of this region in antigen binding was recently recognized and resulted in 

attribution of the name ‘CDR4’ [23]. These examples strongly suggest that for in vitro 

maturation techniques to be successful they should take into account the presence and 

participation of the CDR4 loop in antigen binding.

Labelling applications—An advantage of using a VHH protein is the ability to use both 

genetic and chemical engineering tools. Modifications could involve labeling with enzymes, 

fluorophores, or nanoparticles. Direct labeling of the antibody reagent often permits 

reducing the number of steps in the procedure. Chemical modification requires having a 

relatively pure protein solution. Either the protein or the label can be activated and that 

allows for covalent attachment. One advantage of using chemical labeling is the ability to 

label more than one molecule of label per target protein. In the case of colorimetric assays, 

increased labeling can increase the turnover of the substrate and for fluorometric assays the 

intensity of the signal may be increased. However, there is also the potential for the label to 

disrupt the function of the antibody protein thus interfering with the ability of the antibody 

to bind to the target. One example of a chemically labeled VHH was shown for use in a lab-

on-a-chip device using the enzyme horseradish peroxidase [34]. While the ratio was not 

optimized in this work, it appears that a ratio of 4:1 (VHH:enzyme) worked sufficiently to 

achieve results comparable to using a labeled secondary reagent. An integration of chemical 

coupling techniques and genetic modification is illustrated by the ease with which amino 

acids with desired binding properties could be engineered into the VHH at a single or 

multiple positions. For example, the codon for tyrosine could be inserted to allow diazo 

linkages to form at specific locations. With the current advances in recombinant technology, 

there are many labels available that can be spliced in frame with the VHH nanobody gene. 

The genetic splicing may change the expression yield, and there is the possibility that the 

conjugation may inhibit the proper folding of either the label or the protein. These are 

common problems in expression technology that are easily solved. Already there are two 

examples where alkaline phosphatase (AP) has been genetically linked to a VHH [28, 38]. 

The resulting assays exhibited comparable to slightly improved sensitivities, while also 

reducing the number of steps in the analytical procedure. In addition, the use of AP allows 

for either a colorimetric or fluorometric product for detection, and Liu and colleagues 

demonstrated a 10-fold improvement in IC50 using the fluorometric analysis [28]. Wang and 

colleagues also report that the fusion construct of VHH-AP is more susceptible to extreme 
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heat (90 °C), but the reagent retained excellent stability at ambient temperature for at least 

70 days [38]. Chemical fluorophores that require chemical conjugation techniques are very 

different than those can be genetically fused, such as green fluorescent protein. For instance, 

many of the chemical fluorophore dyes have been vastly improved to resist quenching, have 

high quantum yield and Stokes’ shift, and there are a wide range of possible conjugation 

methods. To date, no small molecule VHH has been labeled with a chemical fluorophore or 

fused to a protein fluorophore. Another future prospect is to utilize the Avi-Tag system for 

incorporating a biotin moiety. The Avi-Tag system has been used with VHHs to larger 

protein targets [50], and more recently the first demonstration for the analysis of a small 

molecule, methotrexate, by immunoaffinity chromatography [51]. Thus, there are a variety 

of molecular tags that open the door to coupling multiple affinity and detection reagents.

Multivalent reagents to improve affinity and avidity—It was discussed earlier that 

the small molecular size and single polypeptide chain of VHHs is one advantage over mAbs 

and other antibody fragments in terms of genetic manipulation, expression and handling. 

However, if bio-recognition reagents of higher molecular weight with better avidity are 

required VHHs can be easily expressed as multivalent reagents. Several publications have 

demonstrated dramatic increases in functional affinity for immobilized antigen. For example, 

Zhang et al. [52] reported a simple approach to produce multivalent VHHs where a sdAb is 

fused to the B-subunit of Escherichia coli verotoxin, which self-assembles to form a 

homopentamer and results in simultaneous sdAb polymerization giving pentabodies. Zhang 

et al. obtained an avidity gain of three to four orders of magnitude for pentabodies to 

parathyroid hormone [53]. They also mentioned that from their unpublished results 

pentabodies generally have observed affinities that are 1000 to 10,000-fold higher than their 

monomeric counterparts determined by SPR analysis [52]. Riazi et al. [54] reported a 400-

fold increase in functional affinity of penta-VHHs to Campylobacter jejuni, a gram negative 

bacterium, compared to the nanobody monomer. To date, only one reference could be found 

on application of pentabodies for detection of small molecules. Doyle et al. [25] compared 

VHHs and corresponding pentabodies against 15-acetyl-deoxynivalenol in a fluorescence 

polarization assay. They did not observe a dramatic difference in affinities, being only 2 

times different. Despite consistent assay inhibition in a direct competitive ELISA, authors 

were not able to precisely define the respective IC50. Therefore, exploring application of 

multivalent VHH constructs for detection of small molecules and is an interesting avenue for 

research.

Another interesting approach to the construction of multivalent reagents is to use multiunit 

proteins in conjugation with VHHs, for instance streptavidin (SC), avidin, or the recently 

reported rhizavidin (RZ) [55]. Unlike avidin or streptavidin, rhizavidin forms a homodimer 

instead of a tetramer. Authors reported that a VHH-rhizavidin bioconjugate was expressed at 

20 times better yield than its streptavidin core counterparts. In addition, the VHH-RZ fusion 

produced a homogeneous product, while some amount of aggregated material was observed 

from the VHH-SC. As a plus, fusing the two proteins had no impact on their individual 

thermal stability. Compared to unmodified VHH, both fusions were more sensitive at 

detecting their corresponding analyte, but VHH-RZ appeared to have a superior dynamic 

range. Authors suggested that it could be related to its small size and that the fusion did not 
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saturate the microsphere surface as quickly as the largest SC construct. These examples 

demonstrate an interesting avenue for exploring multivalent VHH constructs for detection of 

small molecules and potential methods for improving existing assays.

Resilience to organic solvents

It is common to use an organic solvent to extract lipophilic chemicals from environmental 

samples and with water miscible solvents it is often time and cost effective to add the solvent 

directly to the immunoassay. Also many small molecule targets are highly lipophilic, and 

some level of water miscible solvent can reduce binding to plastic and glass, artifacts from 

micelles and a host of other problems. The addition of co-solvents can also change the 

relative selectivity of an immunoassay. Conversely, the existence of solvent in the analytical 

buffer usually causes a matrix effect due to the adverse solvent effect on the conformation of 

the antibody. Although the matrix effect could be eliminated by dilution, this results in a 

higher limit of quantitation. Because VHH, like pAb and mAb, are each unique reagents that 

vary unpredictably, a low technology approach is to screen a series of increasing 

concentrations of all common co-solvents early in assay development. For reactive red dye 

6, both the VHH and mAb were unaffected by concentrations of ethanol up to 50% [10]. 

However, many VHHs have demonstrated superior tolerance to frequently used solvents 

compared to conventional antibodies. In the case of 3-PBA, the VHH alone, as well as the 

phage-displayed VHH and pAbs were tested with a range of concentrations of methanol 

(MeOH) and DMSO. Both the maximal signal and the sensitivity were improved for the 

VHH alone and the phage-displayed VHH based-ELISA with a concentration of MeOH up 

to 50%, but this was not observed for the pAb-based ELISA. Similar results were observed 

with DMSO. The VHHs for aflatoxin described by He et al. [39] were evaluated in the 

presence of MeOH, DMSO, dimethylformamide (DMF), acetone and acetonitrile. The data 

indicated that the VHHs and mAbs were remarkably resistant to acetone. The VHH did not 

lose any binding ability at 80% methanol, whereas the mAb lost 50% of its activity. 

However, both VHHs and mAbs were adversely affected by increasing concentrations of 

DMSO, acetonitrile and DMF. Though not discussed in detail, the anti-BDE47 VHH worked 

well in the buffer containing 40% DMSO [32], and the anti-TBBPA VHH exhibited the best 

sensitivity with 10% MeOH [35]. There is no doubt that the ability of a VHH to perform in 

the presence of organic solvents is certainly favorable for detecting lipophilic analytes from 

real samples, which often requires solvent extraction. Another advantage in the production 

of VHHs is the ability to include solvents in initial panning procedures and thus select at the 

outset for tolerance to denaturation.

Resilience to temperature

VHHs have been reported to be more stable than traditional pAbs, mAbs and engineered 

antibody fragments such as single chain fragments (scFv) and antigen biding fragments 

(Fab). The reason may be attributed to the small size and unique structure of VHH. To 

provide a sufficiently large antigen interacting surface although lacking the variable light 

chain, the CDR loops of VHH tend to be longer than in the VH domain of a conventional 

antibody. In camelid VHHs, it was originally found that the long loops were constrained 

with a disulfide bond to form the antigen binding site [56, 57], which was considered to 

contribute strongly to the stability and thermal resistance of VHHs because the removal of 
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this disulfide bond by site-directed mutagenesis resulted in a significant decrease in melting 

point and prevented refolding [58, 59]. Other researchers took a different approach and 

introduced a non-canonical disulfide bond into the hydrophobic core of llama VHHs 

between framework region 2 (FR2) and FR3, which proved to not only increase thermal 

stability at neutral pH, but also imparted resistance to proteolytic degradation and increased 

antibody stability at low pH [60, 61]. A recent thorough study of the relationship between 

number of disulfide bonds and the heat resistance of VHH concluded that while Tm 

increased with the increase in number of disulfide bonds the half-life of VHH at 90 °C 

(t1/2
90 C) decreased [62]. The researchers also showed that the thermal loss of activity of 

VHH is chemical in nature and proceeds through disulfide exchange and peptide cleavage 

near Cys and Asn amino acid residues. Moreover they demonstrated that the replacement of 

Cys by appropriate amino acids will improve the heat resistance of native VHH.

For small molecules, van der Linden et al. first mentioned that even at temperatures as high 

as 90°C, the VHH still retained binding activity to the antigen whereas mAbs did not [10]. 

Most of studies focusing on VHHs for small chemicals have investigated their 

thermostability by testing the binding ability to antigen or Tm value. These studies revealed 

that the VHHs have enhanced thermal stability as compared to the corresponding 

conventional mAbs or pAbs (Table 4). The VHH against caffeine that was reported by 

Ladenson et al. [18] presented far greater stability than the murine mAbs. Their VHH 

retained more than 90% of its activity after incubation at temperatures up to 90 °C for 20 

min. By contrast, all of the binding activity of the commercial mAb for caffeine was lost 

after incubation at 70°C and higher. However, another VHH selective for caffeine generated 

by Franco et al. [20] showed weaker temperature-tolerance, because the mid-point of the 

unfolding transition (Tm) was only 56 °C. Tabares-da Rosa et al. [29] obtained five different 

anti-TCC VHHs. All of these VHHs were more stable than rabbit pAbs at 85 °C and 100°C. 

Although one VHH lost most of its reactivity at 85 °C, the other VHHs in this study retained 

high binding ability after 1 h incubation at 85 °C and a portion of reactivity even after 1 h at 

100 °C. For the anti-BDE47 VHH, the results of thermostability indicated that the VHHs 

retained more than 50% of their activity after heating at 95 °C for 10 min compared to the 

pAbs which dropped below 6% of activity rapidly [32]. Similarly, the thermostability of 

VHHs for aflatoxin was better than conventional antibodies. After incubation for 1 h at 

85 °C, the anti-aflatoxin VHHs still had up to 70% of binding activity, yet the binding 

activity of the mAb was lost after 15 min of incubation [39]. All of these results suggest that 

VHHs are a superior reagent compared to conventional antibodies for temperature sensitive 

applications, such as on-site environmental testing at elevated ambient temperatures or 

testing of hot samples. We anticipate that this will translate into more robust assays and 

longer shelf life for kits.

Utility of VHHs in biosensor formats

As a new immunological reagent, VHHs are commonly being compared to conventional 

antibodies in terms of form, function and utility. One area of exploration is the utilization of 

VHHs in all of the same formats (e.g., plate-based assays, lateral-flow devices, 

electrochemical biosensors, etc.) where conventional antibodies have been used with high 

success. By demonstrating that formatting is not a barrier for use, VHHs will be more 
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rapidly accepted and used. One commonly employed biosensor technology is SPR. SPR is 

considered a label-free technology, wherein the signal is proportional to the change in light 

refraction due to binding. Because nanobodies are smaller molecular weight biorecognition 

molecules, the difference in size between the small molecule to be detected and the larger 

sensing molecule is less and thus a more distinct signal may be observed. SPR techniques 

were used in the study by Doyle and colleagues [25] to evaluate the binding kinetics of a 

VHH to the mycotoxin 15-acetyldeoxynivalenol (15-AcDON) in both a monomeric and 

pentameric form. VHHs against methotrexate [22], picloram [16], and auxin [17] were also 

evaluated by SPR technology. SPR was used to evaluate binding of VHHs against TCC 

towards both the coating antigen, as well as the free analyte [29]. It is reasonably anticipated 

that SPR will be a suitable platform for integrating VHHs for environmental monitoring. An 

electrochemical impedance biosensor is another label-free technology for measuring 

bimolecular interactions. Such a biosensor was used to evaluate the performance of both a 

polyclonal antibody [63] and a VHH [32] to BDE-47 and identified comparable detection 

limits of 1.3 ng/mL and 0.79 ng/L, respectively. Lateral flow devices are useful chemical 

monitoring tools relying on the movement of biorecognition molecules through a membrane 

support. A lateral flow device to detect caffeine has been developed and patented, which 

incorporates VHHs as the biorecognition molecule [19]. These avenues of biosensor 

research are areas of ongoing work, but so far the ability to demonstrate binding to and 

detection from these formats is very promising.

Pitfalls and Limitations

Functionally useful VHH were not obtained: Reflections

Studies that are published are often the ones that work and are noteworthy. However, 

recognizing that not everything works, and therefore goes unpublished, is a small reason 

why we felt this review would be very valuable. In our own work, hapten design is a critical 

aspect of assay development. Probably the greatest single reason for failure to obtain a good 

assay is a poor choice of a good hapten for panning and the failure to have an adequate 

library of competing ligands or ‘coating antigens’ for assay development. Yet, we have 

immunized alpacas with a few environmental targets that have not generated VHHs suitable 

for environmental monitoring (i.e., analyte sensitivity at environmentally relevant 

concentrations). One likely reason for this is the small sample size of animals immunized. 

When only one target is immunized into one animal and that animal fails to respond, there 

are no resulting antibodies to isolate. Another issue we have come across is the failure to 

induce the heavy chain only IgG2 or IgG3 subclass antibodies. In one example, we 

immunized an alpaca with a bisphenol-A immunogen conjugate that was previously used 

successfully to generate pAbs in rabbits (Ting Xu, China Agricultural University, Beijing, 

China personal communication). When the alpaca IgG1, IgG2 and IgG3 fractions were 

isolated, all appeared to bind to the screening antigen. However, only the binding by the 

IgG1 fraction could be inhibited by free bisphenol-A analyte (Figure 3). As a result, we 

recommend that even if screening of whole sera suggests proceeding with library 

production, an antibody purification should be performed to ensure that all subclasses are 

responding to some degree [64]. As shown in the successful experiments for generating 

VHH to TCC [29] and TBBPA [35], the isolated VHHs had improved sensitivity compared 
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to the whole sera. Another potential reason that VHH may not be successfully isolated from 

a responding immunized animal is that genes encoding for any of the responding IgG2 or 

IgG3 antibodies are not amplified (e.g., RT-PCR conditions) or isolated. This was the 

situation for the Goldman group, wherein responding HcAbs were isolated to 2,4,6-

trinitrotoluene and used to develop immunoassays [65], but no suitable VHHs were 

successfully developed (personal communication). Primer bias may be a reason. 

Nonetheless, only a small set of primers (<10) are required for construction of diverse VHH 

libraries, whereas construction of mouse or human scFv libraries requires “universal primer 

sets” containing over a hundred different oligonucleotides [16]. Another consideration, that 

can occur with conventional antibodies as well, is the possibility of eliciting VHHs with a 

strong binding affinity for the coating antigen, but with weak or no recognition for the free 

analyte. These are just a few situations that have been encountered thus far and have elicited 

further work into understanding how to selectively induce HcAbs and ensure isolation of 

those genes and their corresponding VHH antibodies.

Biohazard considerations

Development of VHHs implies use of biohazardous materials such as bacteriophages, 

plasmids, recombinant DNA, antibiotics, etc. These materials require careful manipulations 

and adequate waste disposal dedicated for hazardous materials. Biohazardous liquid waste 

should be decontaminated by treating with an appropriate disinfectant. Bleach added to 

liquid waste at 10% final concentration for 30 min is the generally preferred method. 

Biohazardous solid waste is autoclaved prior to routine solid waste disposal. With adequate 

training, dedicated equipment, and personal protective equipment, the likelihood of exposure 

to personnel is minimal. Good techniques are important for personal safety. In addition, 

phages are produced in massive numbers and lack of adequate containment can result in 

serious cross contamination and confusing results.

Animal husbandry considerations

As with rodents, rabbits, sheep and goats knowledge of animal husbandry specific to the 

species as well as the personality of the individual animal is important. A drawback of VHH 

technology is the management of large animals (Figure 4). While rabbits, rats and mice may 

be manipulated and housed in most laboratories under supervision of trained technicians, 

alpacas, llamas and other animals of the camelid family need special facilities for housing 

and a veterinarian for performing immunizations, collecting bleeds and monitoring general 

animal well-being. Contrary to small animals, camelids are not sacrificed at the end of the 

immunization round, thereby requiring their permanent housing that may not be suitable for 

all laboratories. Another difference to using small animals is that we routinely immunize 

alpacas with 2–3 immunogens at the same time. Other investigators report immunizing 

llamas with cocktails of 1–5 immunogens and reusing the animal after waiting at least 6 

months [66]. With the increased use of camelids as pack and companion animals as well as 

livestock in some locations, numerous animals are available for immunization. As an 

alternative, commercial services are available for camelid immunization and care. cDNA and 

phage libraries resulting from immunization of both camelids and sharks can now be 

ordered.

Bever et al. Page 17

Anal Bioanal Chem. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Concluding remarks

VHHs have many favorable properties compared to conventional and other recombinant 

antibody technologies, including small size, high solubility, good stability in extreme 

conditions (heat, pH, chaotropic media) and ability to be manipulated genetically. The 

assays exploiting VHHs have shown superior or comparable analytical characteristics. 

However, with few exceptions, current reports lack information about how well VHHs 

perform to detect small molecules in environmental and biological samples containing 

incurred residues. The possible significant advantage that VHHs could bring to the field of 

immunoanalysis is the possibility of their use with samples containing a high amount of 

matrix or high concentration of organic solvents, following sample preparation for instance.

VHH are comprised solely of the binding region with loss of the constant domain. Thus, 

many of the reagents designed to detect pAb or mAb conventional assays (such as goat anti-

rabbit-HRP) do not work. However, the ease of manipulation of VHH facilitates adding tags, 

labels, and scaffolds, which can be used for detection, as well as, for purification. Scaffolds 

other than classical antibody regions are being developed.

To take advantage of the exquisite in vivo antibody affinity maturation process, animals are 

often immunized prior to antibody isolation. Nonetheless, non-immunized VHH libraries as 

well as libraries based on non-antibody scaffolds have been used successfully to isolate 

VHHs selective for large protein molecules. As presented in this review, this strategy has 

worked for two low molecular weight environmental targets (e.g., picloram and auxin).

Crystallography is a powerful tool to elucidate and study protein structure. Only a few VHH 

have been crystallized. The fact that the VHH usually are easy to crystallize and their small 

size makes solving structure relatively simple, suggest many VHH structures will soon 

appear. Multidimensional nuclear magnetic resonance (NMR) technology has become a 

robust and almost routine technique and will allow to study VHH structure, dynamics and 

analyte binding on the atomic level in solution [67, 68]. These emerging structures will help 

identify possible mechanisms and patterns of how VHHs are binding to their target, what 

amino acids are responsible for selective binding, and thus what amino acids can be altered 

in site-directed mutagenesis experiments. Knowing the structure of the binding pocket will 

help to tune VHHs properties in ex vivo maturation. In turn, VHHs by themselves are tools 

of growing interest as applied for crystallization of other proteins [66]. Acting as 

crystallization chaperones, VHHs help to stabilize desired conformation of highly dynamic 

membrane proteins, or bind conformational epitopes of functional proteins, for example.

In addition to the already noted excellent properties of VHHs, they demonstrate lower 

immunogenicity, better pharmacokinetics, and better ability to pass through the renal filter 

and blood - brain barrier and faster tissue penetration than classical antibodies [69]. For 

these reasons, VHHs have great potential as therapeutic agents. Indeed, conventional 

antibodies have been routinely used in clinical applications, for venom detoxification and 

sequestration in particular. However, undesirable side effects are often reported when anti-

venom plasma or antibody from different species is used. In this regard, VHHs may provide 

an advantageous alternative for such clinical applications. A discussion of the clinical utility 
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of VHH is beyond the scope of this article, but many of the advantages VHH show in 

analytical chemistry over conventional antibodies such as small size and an ability to pan for 

the desired properties apply therapeutically as well. A basic difference in concept is that 

with classical antibodies one starts with a large protein, humanizes it and adds or removes 

functions that are not needed. With VHH one starts with a small binding unit and desired 

functions can be added. Probably the therapeutic use of VHH has been slowed by the 

uncertain intellectual property situation and major industries being in an intellectual well 

with mAb technology. This will soon change and stimulate technological advancement in 

the entire field. With small molecules the same hapten and panning strategies to obtain VHH 

for analytical chemistry can be used to obtain VHH for therapeutic applications, particularly 

with regard to sequestration or removal of toxins and other small molecules.
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Figure 1. 
Schematic representation of (a) an antibody (IgG) and (b) a camelid heavy chain antibody 

from which the VHH (nanobody) is derived. Adapted from Vincke and Muyldermans [1].
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Figure 2. 
Overview of the process to isolate VHH from camelids. Briefly, mRNA is collected from the 

animal and converted into cDNA by RT-PCR. The cDNA is amplified and digested in order 

to isolate the VHH genes that are incorporated into plasmids and expressed by 

bacteriophage, creating a library. The library is panned for desired VHH.
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Figure 3. 
Competitive inhibition profiles of subclass antibody fractions (IgG1, IgG2, and IgG3) from 

the same alpaca to bisphenol A.
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Figure 4. 
Alpaca housed at UC Davis.
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Table 2

VHH to small molecular weight compounds to date and comparison of sensitivities to polyclonal and 

monoclonal antibodies.

Structure Analyte
(MW)

Assay sensitivity, IC50
Linear range, IC20–80

LOD, IC10

Nanobody pAb mAb

Azo dyes [11, 70]
(RR6 733.38;
RR120
1469.98)

~18–85 nM (Kd) no no

Picloram
(241.46)

193 µg/mL [16] 140 ng/mL [71]
10–300 ng/mL
5 ng/mL

10 ng/mL [71]
5–50 ng/mL
1 ng/mL

Auxin
(indole-3-acetic acid)
(175.19)

140 µg/mL*
(pentabody for 
IAA)

>43 µg/mL*
(herbicides)
0.5–2 mM,
herbicides (Kd)
20 µM IAA (Kd)

1 pmol/assay [72]
0.1–10
0.08

5 pmol/assay [73]
0.8–10
0.5

Caffeine
(194.19)

~25 µg/mL [18]
10–50 µg/mL
4 µg/mL
(homologous)

200 ng/mL [74]
116–2000 ng/mL
2 ng/mL
(direct)

0.2 ng/mL [75]
0.025–1 ng/mL
0.001 ng/mL
(direct)

Methotrexate
(454.44)

4.5 µg/mL [22]
1.1–13.6 µg/mL

0.9 µg/mL*

(RIA)
100 ng/mL [76]
10–1000 ng/mL
1 ng/mL

(RIA)
10 ng/mL [77]
5–80 ng/mL
2 ng/mL
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Structure Analyte
(MW)

Assay sensitivity, IC50
Linear range, IC20–80

LOD, IC10

Nanobody pAb mAb

15-Acetyldeoxynivalenol
(338.35)

419 ng/mL
(monomer) [25]
169 ng/mL
(pentamer)
10–1000 ng/mL

1.9 ng/mL [78]
0.35–20 ng/mL
0.1 ng/mL
(direct)

1 µg/mL [79]
0.05–20 ng/mL
0.05 ng/mL
(direct)

Ochratoxin A
(403.813)

12 ng/mL [26]
8–20 ng/mL
6 ng/mL
Flow-through
membrane-
based
assay

5 ng/mL [80]
1–50 ng/mL
5 ng/mL

1.2 ng/mL
0.3–5 ng/mL
0.12 ng/mL

Triclocarban
(315.58)

3.5 ng/mL [29]
1–11 ng/mL
0.3 ng/mL
(homologous)

0.69 ng/mL [30]
0.1–36 ng/mL
0.03 ng/mL

3-Phenoxybenzoic acid
(214.22)

1.4 ng/mL [31]
0.4–8 ng/mL
0.1 ng/mL
(homologous)

1.6 ng/mL [81]
0.5–5 ng/mL
0.1 ng/mL

0.6 ng/mL [82]
0.2–2.0 ng/mL
0.1 ng/mL

BDE-47
(485.79)

1.4 ng/mL [32]
0.5–10 ng/mL
0.1 ng/mL

1.75 ng/mL [33]
0.35–8.5 ng/mL
0.2 ng/mL

22 ng/mL or in 
direct ELISA:
1.4 ng/mL [83]
0.3–6.5 ng/mL
0.1 ng/mL

TBBPA
(543.9)

0.4 ng/mL [35]
0.06–2.53 
ng/mL
0.02 ng/mL

0.87 ng/mL [36]
0.2–6 ng/mL
0.05 ng/mL

3.87 ng/mL [37]
0.8–20.7 ng/mL
0.3 ng/mL

Aflatoxin B1

(312.27)
0.754 ng/mL 
[39]
0.117–5.676 
ng/mL
0.05 ng/mL

2 ng/mL [84]
0.4–11 ng/mL
0.3 ng/mL

0.001–6 ng/mL 
[85]
6–400 ng/mL
0.001 ng/mL

Abbreviations used: MW, molecular weight; IC50, IC20–80, IC10 concentrations resulting in 50, 20–80 or 10% decrease in maximum signal; 

pAb, polyclonal antibody; mAb, monoclonal antibody; Kd, dissociation constant; IAA, indole-3-acetic acid; RIA, radioimmunoassay; IgG2, 
immunoglobulin G fraction 2; IgG3, immunoglobulin G fraction 3; SPR, surface plasmon resonance; ELISA, enzyme linked immunosorbent assay; 
TBBPA, tetrabromobisphenol A,

*
units converted to ng/mL from initial publication.
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Table 4

Summary of cysteine residues and locations within VHH gene sequences.

Target analyte Total # of
cysteines

Location of cysteines VHH more stable
than IgG?

RR6 dye [14, 10] 2 FR1, FR3 Yes

Picloram [16] 2 FR1, FR3 Not tested

Auxin [17] 2 FR1, FR3 Not tested

Caffeine [18] 2 FR1, FR3 Yes

Methotrexate [22] 2 FR1, FR3 Not tested

15-AcDON [25] 2 FR1, FR3 Not tested

Ochratoxin A [28] 2 FR1, FR3 Yes

TCC [29] 2 FR1, FR3 Yes

4 FR1, FR2, FR3,CDR3 Yes

3-PBA [31] 4 FR1, FR2, FR3, CDR3 Not tested

BDE-47 [32] 2 FR1, FR3 Yes

TBBPA [35] 2 FR1, FR3 Not tested

Aflatoxin B1 [39] 2 FR1, FR3 Yes
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