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ABSTRACT OF THE DISSERTATION

Scalable Inference in Bayesian Phylogenetics

by

Alexander A. Fisher

Doctor of Philosophy in Biomathematics

University of California, Los Angeles, 2021

Professor Marc A. Suchard, Chair

Phylogenetic models with lineage-specific parameter characterizations provide a flexible

framework to model ancestral changes in diffusion and evolution processes. However, in-

creased taxonomic sampling challenges inference under these models as the number of un-

known parameters grows with the number of taxa. To solve this problem, I develop scalable

inference machinery as well as scalable models to permit the study of increasingly massive

trees within a Bayesian phylogenetic framework. First, I introduce a method to compute

the gradient of the trait data log-likelihood of the popular relaxed random walk model of

trait diffusion with computational complexity that is linear with the number of tips in the

tree. I use this gradient to build an efficient Hamiltonian Monte Carlo (HMC) sampler that

simultaneously samples all branch-specific model parameters with high acceptance probabil-

ity. Next, I propose a new, auto-correlated molecular clock rate model together with scalable

inference methods. My approach permits estimating both the presence and location of local

clocks without a priori knowledge of their placement and avoids inordinately shrinking clock-

rates. Finally, I develop a shrinkage-based adaptive shift model that automatically detect

the number and placement of shifts in adaptive trait optima along a tree. Leveraging recent

fast closed-form gradient calculations, I build an efficient HMC sampler that scales inference

under this new model. I demonstrate the speed and utility of each method via a range of

applications, including the study of viral evolution and phenotypic trait data.
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CHAPTER 1

Introduction

Phylogenetic methods offer a powerful framework to reconstruct evolutionary histories, order

sequences of past events, or learn about trait dispersion whilst controlling for evolutionary

history. Fundamentally, phylogenetic methods are a tool to understand the past. Phyloge-

netic models exhibit such utility in this domain that they are employed to study everything

from the emergence and spread of infectious diseases (Pybus et al., 2012) to the history of

our cosmos (Jofré et al., 2017). Not only is the scope of phylogenetic models quickly growing

but also the complexity. Phylogenetic models with lineage-specific parameter characteriza-

tions are increasingly used to describe dynamic evolutionary processes that unfold along a

tree. Two popular phylogenetic models of this flavor are the relaxed random walk (RRW)

of trait data diffusion (Lemey et al., 2010) and the relaxed local clock model of molecular

sequence substitution (Drummond et al., 2006). Each model describes a data generative

process for separate types of data, however they both employ branch-specific parameters

to capture the effects of ancestral biological or environmental changes that influence the

generative processes. I revisit both of these models later in this work.

While increasingly complex phylogenetic models often generate increasingly closer ap-

proximations to the observed world, they almost always come at the cost of slowed inference.

Inference speed may be explicitly hindered by model complexity or, in many cases, by the

size of the data. This is particularly true of models with parameter space that grows with

the number of taxa under study. The burden of large data sets is compounded by recent

advances in portable genome sequencing (Quick et al., 2016) that make data collection more

affordable and practical than ever before.

In this dissertation, I present methods to scale complex, biologically informed statistical
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models to the study massive phylogenetic data sets. I begin Chapter 2 with motivation for

studying phylogenetics. I continue in Chapter 2 to develop the basic phylogenetic framework

used throughout this dissertation and discuss previously developed models and methods that

comprise the bedrock upon which I build my contributions. Followed is a brief discussion

of the Bayesian approach to statistical phylogenetics. I complete the chapter with proofs

of two simple statistical results that are crucial to the mathematical developments of later

chapters.

Chapters 3, 4, 5 stand as independent projects and can be read as such. In Chapter 3,

I introduce the relaxed random walk model (RRW) of trait evolution developed by Lemey

et al. (2010). The RRW is a phylogenetic Brownian diffusion model where traits at each

node are multivariate normally distributed about their parent’s value with branch-specific

variance. Since branch-specific parameters grow with the number of tips in the tree, increased

sampling challenges inference under the RRW. I address this challenge by developing a

scalable method to efficiently fit RRWs and infer branch-specific variations in a Bayesian

framework. I demonstrate the speed and scalability of my approach in studies of West Nile

virus phylogeography and the evolution of mammalian life history traits.

In Chapter (4) I present a new autocorrelated molecular clock rate model together with

scalable inference machinery to estimate the number, magnitude, and location of heritable lo-

cal clock rate changes on an unknown phylogenetic tree. Previous state-of-the-art approaches

assume the location of local clocks a priori (Worobey et al., 2014) or search through exhaus-

tively large parameter space to determine whether each discrete branch starts a local clock

(Drummond and Suchard, 2010). I leverage recent efficient gradient computation on the

clock rate space (Ji et al., 2019) to implement an efficient Hamiltonian Monte Carlo sampler

that scales my model to large trees. I test the speed of my model on a simulated dataset and

further apply it to study local clocks in interspecies influenza strains as well as the adaptive

radiation of rodents and other placental mammals.

In Chapter (5) I introduce the phylogenetic Ornstein-Uhlenbeck (OU) model of adaptive

evolution towards an optimal trait value (Hansen, 1997). When an organism’s environment

dynamically shifts, the fitness landscape can shift as well. Optimal trait values are not fixed

2



in time. Previous approaches to detecting shifts are challenged by the combinatorial nature

of their model induced parameter space (Bastide, 2017), ignore trait covariation (Khabbazian

et al., 2016) or assume no convergent evolution (Uyeda and Harmon, 2014). To better model

this phenomena, I propose a branch-specific optima OU, where each branch of the tree has its

own optimal trait vector. Building off the developments of Chapters 2 and 3, I additionally

develop an efficient Hamiltonian Monte Carlo sampler to learn about branch-specific optima

at scale. I demonstrate the efficacy of my method by estimating the number and magnitude

of shifts in 4-dimensional trait optima present in the ancestry of 100 Anolis lizard species.

Finally, Chapter (6) explores future directions and extensions to the models of the pre-

vious three chapters. I outline a general approach to incorporate traditional epidemiological

data such as case counts within a phylogenetic framework. Furthermore, I propose a path

towards implementing efficient inference under grouped shrinkage priors within the context

of detecting shifts under a phylogenetic OU.

3



CHAPTER 2

Background

2.1 Why study trees?

In some cases, the utility of examining evolutionary trees is obvious. If you wish to learn

about the relatedness of a set of species or date a viral spill-over event from an animal reser-

voir, constructing an evolutionary tree or finding the height of a rooted time tree undoubtedly

undergirds the question of interest. In other cases, the utility of a phylogeny is more subtle.

For example, one may wish to learn how fast a viral pathogen is diffusing across a geographic

landscape or learn about correlation structure between a set of phenotypic traits. For the

first case, suppose SARS-CoV-2 is sampled in Los Angeles and subsequently in New York

City, it may only be concluded that the virus traveled the distance between the two cities

(as opposed to there being a novel introduction) if the two samples are genetically corre-

lated. Ignoring evolutionary history can lead to erroneous claims about speed of geographic

diffusion. For the second case, consider two phenotypic traits, Felsenstein (1985) offers the

example of brain size and body size. The topology of phylogenetic history informs us the

degree to which the taxa under study have evolved as the same organism. This is important

because we expect traits of recently diverged species to bear correlation that is an artifact

of their evolutionary history. Thus phylogenetic trees offer insight into the effective sam-

ple size of our taxonomic observations and it may be fatal to ignore this possible source of

confounding.

In summary, each of the seemingly disparate examples above benefits from what is broadly

referred to as the phylogenetic comparative method. The phylogenetic comparative method,

introduced by Cavalli-Sforza and Edwards (1967) and formalized and popularized by Felsen-

4



stein (1985) enables the study of trait data covariance whilst controlling for shared evolu-

tionary history; see Paradis (2014); Cornwell and Nakagawa (2017) for an expository intro-

duction. Here “trait data” describes any quantitative measurement associated with the taxa

under study. Under this definition, “trait” is a broad term and may include, as previously

noted, heritable morphological features and geographic coordinates of viral isolates, among

others.

2.2 Phylogenetic framework

2.2.1 Notation

Consistent with the notation of the sequel, let F represent the topological structure of a

rooted, bifurcating tree that describes the evolutionary history of N biological entities i.e.

“taxa”. Thus, F contains 2N − 1 nodes in total: a root node, together with N tips and

N−2 internal nodes (see Figure 2.1). Throughout this work, tips number {1, . . . , N}, I index

internal nodes {N + 1, . . . 2N − 2} and 2N − 1 is reserved for the root. Let branch length ti

connects node i ∈ {1, . . . , 2N − 2} with its parent node pa(i). Note, multifurcations may be

cast into this framework via 0-length branches. Here, branch length ti denotes actual time

node i evolves independently.

1 2

5

4

3

Figure 2.1: Example rooted bifurcating tree with N = 3 tips (blue). Internal (ancestral)

nodes are green. Branch lengths ti (units time) connect nodes.
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2.2.2 Two data generative models

Within the setting of phylogenetic comparative methods, there are, broadly, two data gener-

ative processes at play. The first is concerned with the evolution of molecular sequence data

S = {S1, . . . ,SN} while the second describes the diffusion of trait data Y = {Y1, . . . ,YN}.

Continuous time Markov chains (CTMCs) with finite state space (e.g. nucleotide charac-

ters, amino acids or codons) underlie most modern models of molecular evolution (O’Meara,

2012). CTMCs offer a flexible framework to model realistic biological processes such as

multiple substitutions at a site, adjusted rates of silent mutations and site specific mutation

speeds (Yang, 2014). Lange (2003) provides a concise review of CTMCs in the context of

phylogenetic reconstruction. Drummond et al. (2006) introduce a popular model of molec-

ular evolution, that I revisit in Chapter (4), the relaxed local clock (RLC). Under the RLC,

sites evolve independently according to a CTMC defined by infinitesimal rate matrix Q and

branch-specific clock rates r = {r1, . . . , r2N−2} that represent the expected number of substi-

tutions per unit time on each branch i in F . The RLC is “relaxed” in the sense that variable

mutation rates are allowed on each branch of the phylogeny. Q may be a 4× 4, 20× 20 or

61×61 matrix that describes the substitution process of nucleotides, amino acids, or codons

respectively (Yang, 2014). The RLC accommodates possible site specific rate heterogeneity,

such as the gamma distributed “hot spot” identifier of Yang (1996). All together, at site k,

on branch i, the transition probability Pik unwinds via the matrix exponential,

Pik = exp {ritiskQ} . (2.1)

where sk denotes rate variation specific to site k. See table (2.1) to quickly reference relevant

notation. At the heart of both likelihood-based and Bayesian phylogenetics, computing the

likelihood of the observed sequence data p(S) is an important task. To compute the full

likelihood of observed data S, we must marginalize over the latent sequence data at each

internal node i ∈ {N + 1, . . . , 2N − 1} and root node 2N − 1,

p(S) =
∑
SN+1

. . .
∑

S2N−1

p(S,SN+1, . . . ,S2N−1), (2.2)
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where

p(S,SN+1, . . . ,S2N−1) = p(S2N−1)
2N−2∏
i=1

p(Si |Spa(i)). (2.3)

A major theme of this dissertation is that direct computation of phylogenetic likelihoods,

as well as other mathematical quantities of interest, are inefficient and greatly benefit from

careful study. In equation (2.2) above, at each site, there are `N−1 possible states (one for each

of the N−1 internal nodes) where ` ∈ {4, 20, 61} for nucleotide, amino acid and codon models

respectively. Thus, the possible combinations of ancestral states grows exponentially with the

number of tips in the tree. Felsenstein (1973, 1981) introduces the tree-pruning algorithm,

also known as the “peeling” algorithm that achieves O(N) computational complexity by

grouping the sums. For example, in the three-tipped tree given by figure (2.1), the grouping

unwinds,

p(S) =
∑
S5

p(S5)

[∑
S4

p(S4 |S5)p(S1 |S4)p(S2 |S4)

]
p(S3 |S5), (2.4)

so that all computations concerning node i are collected together and each node need be

visited only once. For trees of arbitrary size, we begin at the tips and work our way up the tree

by grouping sums according to parent-child node triples,
∑

Sk
p(Sk |Spa(k))p(Si |Sk)p(Sj |Sk)

where i and j are sister daughters of k.

Equation (2.4) is but one example of simplifying cumbersome computation by exploiting

the structure of the phylogenetic topology that the data generative process unfolds upon.

Similar peeling-style algorithms greatly improve the computation of trait data likelihoods on

trees as well. One such example is the popular Brownian diffusion model of trait evolution.

Under the simple Brownian diffusion model, P -dimensional trait vector Yi evolves according

to a multivariate normal diffusion process,

p(Yi |Ypa(i)) = MVN
(
Yi; Ypa(i), tiΣ

)
p(Y2N−1) = MVN

(
Y2N−1; µ, κ−10 Σ

) (2.5)

where Σ is a P × P matrix that describes covariance between traits, µ is the prior mean

at the root and κ0 reflects prior sample size. See figure (2.2) for a 2-dimensional diffusion

example. I note here that covariance between traits is distinct from covariance induced by

the tree, Ψ. Ψ is an N×N matrix with tip-to-root distance on its diagonals and the amount
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Table 2.1: Glossary of phylogenetic notation.

Symbol Meaning Sequence model Trait model

S, (Si) molecular sequence data (at node i) X

Y, (Yi) trait data (at node i) X

ti length of branch i in units time X X

ri clock rate on branch i X

sk
among site rate variation

at site k
X

Q infinitesimal rate matrix X

Σ trait covariance X

F
phylogenetic topology,

often includes branch lengths
X X

Ψ tree variance, determined by topology X X

of time i and j evolved as one unitary entity (i.e. their tree-induced covariance) on its

off-diagonals. For example, the tree covariance of figure (2.1),

Ψ =


t1 + t4 t4 0

t4 t2 + t4 0

0 0 t3

 . (2.6)

Since the trait data evolves in a multivariate normal fashion, one can write the full joint

distribution of likelihood p(Y) by stacking the observed trait vectors Yi into one long NP

vector with stacked µ mean,

vec(Y) =


Y1

...

YN

 ∼ MVN



µ
...

µ

 ,Ψ⊗Σ

 , (2.7)

where ⊗ denotes the Kronecker product. Naive evaluation of this full likelihood requires

finding the determinant of (Ψ⊗Σ)−1, an O(N3P 3) task. Pybus et al. (2012) develop an
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approach to compute p(Y) with O(NP 3) complexity, an immense speed-up considering

P << N .

1

2

3

4

Trait 1

Tr
a

it 
2

root

1

4

3

2

Figure 2.2: Four tipped tree (right). Example of simple Brownian diffusion (random walk)

of two independent traits unfolding on a tree with four tips (left). Diffusion colors match

branches. Colored circles indicate trait values at tips i ∈ {1, 2, 3, 4} and receive corresponding

labels.

Here I detail the fast trait data likelihood computation of Pybus et al. (2012) since I

revisit and extend their technique in subsequent Chapters. To begin, let Ybic be the set of

observed trait data descendent from node i. For example in figure (2.1), Yb4c = {Y1,Y2}.

At the tips, Ybic = Yi while at the root, p(Yb2N−1c) = p(Y). Just like in the sequence data

likelihood, the trait data likelihood requires integration over latent internal node states,

p(Y) =

∫
YN+1

· · ·
∫
Y2N−1

p(Y,YN+1, . . . ,Y2N−1), (2.8)

where

p(Y,YN+1, . . . ,Y2N−1) = p(Y2N−1)
2N−2∏
i=1

p(Yi |Ypa(i)). (2.9)

We group terms under the integrals in the spirit of pruning and notice each integrand sim-
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plifies to contain three terms under our data subset notation,∫
Yk

p(Ybic |Yk)p(Ybjc |Yk)p(Yk |Ypa(k)) (2.10)

where again, i and j are sister daughters of k.

Therefore, to compute likelihood, we must unwind the recursively defined conditional

partial likelihood

p(Ybkc |Ypa(k)) =

∫
Yk

p(Ybic |Yk)︸ ︷︷ ︸
1

p(Ybjc |Yk)︸ ︷︷ ︸
2

p(Yk |Ypa(k))︸ ︷︷ ︸
3

, (2.11)

by noting that when i and j are tip nodes, each term of the integrand in (2.11) is multivariate

normal due to our Brownian diffusion modeling assumption (see (2.5)). Since terms 1 and

2 share the same mean, namely Yk, their product is proportional to a Gaussian of equal

dimension (see section (2.4.1)). Furthermore, the resulting Gaussian convolves with term 3

so that p(Ybkc |Ypa(k)) is also proportional to a Gaussian, see section (2.4.2) for a general

proof. To compute the likelihood p(Y), we integrate over the latent state at the root,

p(Y) = p(Yb2N−1c)

=

∫
Y2N−1

p(Yb2N−1c |Y2N−1)p(Y2N−1)
(2.12)

where, for any node k in F , it follows from careful bookkeeping that

p(Ybkc |Yk) ∝ MVN
(
Yk; mk,P

−1
k

)
, (2.13)

where inverse-precision

P−1k =


0× I if k is a tip

(P∗i + P∗j)
−1 otherwise,

(2.14)

and

P∗i =
(
P−1i + tiΣ

)−1
for all i, (2.15)

and mean

mk =


Yk if k is a tip

P−1k (P∗imi + P∗jmj) otherwise.

(2.16)
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To complete the likelihood calculation, we plug conditional partial likelihood (2.13) and root

prior (2.5) into likelihood (2.12) and perform the convolution to find

p(Y) ∝ MVN
(
m2N−1; µ, κ−10 Σ + P−12N−1

)
. (2.17)

2.3 Bayesian approach

Throughout this dissertation, I take a Bayesian approach to inference where the primary

focus is to learn about the posterior distribution of model parameters θ, given all relevant

sequence data S and trait data Y. Bayesian statistical modeling provides a rich unified

theory to approach inference problems where uncertainty in parameter estimates can be

readily quantified and interpreted. Bayes theorem states the posterior

p(θ |S,Y) ∝ p(S,Y |θ)︸ ︷︷ ︸
likelihood

· p(θ)︸︷︷︸
prior

(2.18)

with proportionality constant
1∫

p(S,Y |θ)p(θ) dθ
. (2.19)

In Bayesian phylogenetic studies, model parameter space is often very large. For example,

one might wish to learn about the tree topology and its corresponding branch lengths,

parameters that characterize the molecular substitution model, including possibly branch-

specific clock-rates, covariance between traits, branch-specific diffusion scalars and more.

Therefore it is not surprising that computing the marginal likelihood (2.19) is unfeasible. For

this reason, standard practice in Bayesian inference is to approximate the posterior, typically

via Markov chain Monte Carlo (MCMC) sampling (Metropolis et al., 1953; Hastings, 1970);

see Brooks et al. (2011) for an excellent review of several modern approaches. While MCMC

is undoubtedly the most ubiquitous method to approximate Bayesian phylogenetic posteriors,

other techniques, such as variational inference (Blei et al., 2017), are gaining popularity

(Zhang and Matsen IV, 2018).

In each of the following Chapters, I study and develop phylogenetic models with branch-

specific parameters. While branch-specific parameters often allow a flexible framework to
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model increasingly realistic biological processes on trees, the number of parameters grows

with the number of taxa under study. Therefore, increased taxonomic sampling slows in-

ference, especially when using traditional inference methods. For this reason, I develop

efficient Hamiltonian Monte Carlo (HMC) samplers that generate proposals in all parameter

dimensions simultaneously and with high acceptance probability. To achieve this feat, HMC

uses gradient information about the target density to generate proposals. Proposals are

subsequently accepted or rejected with a traditional Metropolis-Hastings step (Neal, 2011;

Betancourt, 2017).

2.4 Statistical background

Herein, I present statistical results that recur several times throughout this dissertation.

For this reason, I report and sketch derivations of these basic results to add clarity and

completeness.

2.4.1 Product of Gaussian densities

Claim: Let X be a random vector of arbitrary dimension. The product of two Gaussian

probability density functions with shared mean (or identically, shared random variable) is

proportional to a Gaussian density. More precisely,

MVN(X; µ1,Σ1) ·MVN(X; µ2,Σ2) ∝ MVN(X;µ,Σ) , (2.20)

where

Σ =
(
Σ−11 + Σ−12

)−1
µ = Σ

(
Σ−11 µ1 + Σ−12 µ2

) (2.21)

Proof: The proof of (2.20) follows by writing out the product of two Gaussians and com-
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pleting the square. Key algebraic steps are detailed below.

MVN(X; µ1,Σ1) ·MVN(X; µ2,Σ2)

∝ exp

{
−1

2

[
(X − µ1)

tΣ−11 (X − µ1) + (X − µ2)
tΣ−12 (X − µ2)

]}
∝ exp

{
−1

2

[
X t
(
Σ−11 + Σ−12

)
X − 2

(
µt

1Σ
−1
1 + µt

2Σ
−1
2

)
X
]}

∝ exp

{
−1

2

[
(X − µ)t Σ−1(X − µ)

]}
.

(2.22)

2.4.2 Convolution of Gaussians

Claim: A convolution of independent, equal dimension Gaussians is Gaussian, i.e. let X

and Y be of equal dimension,∫
MVN(X; µ1,Σ1) ·MVN(Y ; µ2,Σ2) dX = MVN(Z; µ3,Σ3) (2.23)

where Z = X+Y and µ3 = µ1+µ2 and Σ3 = Σ1+Σ2. Equivalently, the sum of independent

Gaussian random variables is a convolution of Gaussians.

Proof: There are many ways to prove (2.23). The most direct approach is to write out the

product of densities and again complete the square. Next, utilize the fact that the integral

of a proper density is unity and the result follows. To avoid lengthy algebraic computation,

I outline a shorter proof below. First, I equate a convolution of independent Gaussians with

the distribution of a sum of Gaussian random variables and then prove the stability of the

sum.

To begin, define Z = X + Y and expand the density p(Z = z),

p(Z = z) = p(X + Y = z)

=

∫
p(X = x, Y = z − x) dx

=

∫
p(Y = z − x |X = x, )p(X = x) dx

=

∫
p(Y )p(X) dX

(2.24)
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by independence. Recall X ∼ MVN(X; µ1,Σ1) and Y ∼ MVN(Y ; µ2,Σ2) with Σ1 ⊥ Σ2

as above. It follows that the characteristic function of Z, φZ(t) = E[exp {itZ}], is equal to

the product of characteristic functions for X and Y ,

φZ(t) = φX(t) · φY (t)

= E[exp {itX}] · E[exp {itY }]

= exp

{
itt(µ1 + µ2)−

1

2
tt(Σ1 + Σ2)t

}
.

(2.25)

Since the characteristic function uniquely defines the density, p(Z) = MVN(Z; µ3,Σ3).

Thus
∫
p(Y )p(X) dX = p(Z) = MVN(Z; µ3,Σ3).
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CHAPTER 3

Relaxed random walks at scale

3.1 Introduction

Phylogenetic comparative methods are an indispensable tool to study the evolution of biolog-

ical traits across taxa while controlling for their shared evolutionary history that confounds

the inference of trait correlation (Felsenstein, 1985). Modern comparative methods usu-

ally entertain continuous, multivariate traits, although extensions to mixed discrete and

continuous outcomes are readily available (Ives and Garland Jr, 2009; Cybis et al., 2015).

Approaches typically model trait evolution as a Brownian diffusion or “random walk” process

that acts conditionally independently along the branches of a known or random phylogeny.

Specifically, the observed or unobserved (latent) trait value of a node in a phylogeny arises

from a multivariate normal distribution centered on the latent trait value of its ancestral

node with variance proportional to the units of time between nodes. A strict Brownian dif-

fusion model, however, is unable to accommodate the overdispersion in trait data that often

emerges from real biological processes (Schluter et al., 1997). One such example arises when

examining the dispersal rate of measurably evolving viral pathogens (Biek et al., 2007). For

example, if birds serve as the viral host, migratory patterns may induce inhomogeneous dis-

persal rates over time (Pybus et al., 2012). In such cases, a strict Brownian diffusion model

fails to capture, and therefore can also fail to predict, the spatial dynamics of an emerging

epidemic.

Lemey et al. (2010) relax the strict Brownian diffusion assumption by introducing branch-

rate multipliers that scale the variance of the Brownian diffusion process along each branch

of the phylogeny. This “relaxed random walk” (RRW) model requires estimating 2N − 2
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correlated branch-rate multipliers, where N is the number of taxa in the phylogeny. Lemey

et al. (2010) take a Bayesian approach to parameter estimation where they infer the pos-

terior distribution of the branch-rate multipliers via Markov chain Monte Carlo (MCMC)

employing a simple univariable Metropolis-Hastings (UMH) proposal distribution (Hastings,

1970). Since the rates remain correlated in the posterior, a random-scan (Liu, 2008) of UMH

proposals inefficiently explores branch-rate space. Specifically, univariable samplers force ac-

cepted proposals to be very close together to avoid a large number of rejection steps in the

Markov chain simulation. This results in high correlation between MCMC samples from the

posterior, making point estimates of the branch-rate multipliers unreliable and slow to con-

verge. In our study of the West Nile virus herein, the branch-rate multipliers are the slowest

parameters to achieve sufficient effective sample sizes and therefore extend total run-time

when jointly inferring the phylogeny structure. Furthermore, in our mammalian life history

example, a UMH sampler fails to provide reasonable posterior estimates of branch-rate mul-

tipliers on a fixed phylogeny after 10 days of run-time. Despite this present drawback, RRWs

find many impactful applications, e.g., in phylodynamics and phylogeography (Bedford et al.,

2014; Faria et al., 2014).

To ameliorate the difficulties that high dimensional MCMC sampling presents, we propose

adopting a geometry-informed sampling approach using Hamiltonian Monte Carlo (HMC).

HMC equates sampling from a probability distribution with simulating the trajectory of a

puck sliding across a frictionless surface warped by the shape of the distribution (Neal, 2011).

To map from this statistical problem to the physical one, we view the MCMC samples of our

branch-rate multipliers as the “position” of the puck and, then, for each positional dimension

we introduce an associated momentum variable. In this way, we extend a D-dimensional

parameter space to 2D-dimensional phase space (Betancourt, 2017) and traverse the 2D

phase space via differentiating the Hamiltonian and using a numerical integration method

to offer proposal states for our MCMC chain. This numerical integration may introduce

small error, so we then accept or reject proposals according to the traditional Metropolis-

Hastings algorithm (Hastings, 1970) with high acceptance rates. The major limitation to

HMC is calculating the gradient of the log-posterior with respect to all position parameters
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simultaneously. Previous approaches for calculating gradients on phylogenies have employed

“pruning”-type algorithms (Felsenstein, 1981) that scale quadratically with the number of

taxa in the tree (Bryant et al., 2005). Likewise, numerical approaches also scale quadratically.

In this paper, we derive a method to calculate the gradient with computational complexity

that scales only linearly with the number of taxa. We implement our method in the BEAST

software package (Suchard et al., 2018), a popular tool for the study and reconstruction of

rooted, time-measured phylogenies. We demonstrate the speed and accuracy of our linear-

order gradient HMC versus previous best practices by examining the spread of the West Nile

virus across the Americas in the early 2000s. Finally, we use our technique to apply the RRW

model to study the sensitivity of correlation estimates to model misspecification between

mammalian adult body mass, litter size, gestation length, weaning age and litter frequency

across 3650 mammals, thereby demonstrating the scalability of our HMC implementation to

tackling a previously intractable problem.

3.2 Materials and Methods

3.2.1 Model and inference

Consider a known or random phylogeny F with N sampled tip nodes and N−1 internal and

root nodes, each with an observed or latent continuous trait value Yi ∈ RP . To traverse

the phylogeny F , let node pa(i) index the parent of node i with branch length ti connecting

the two nodes. Then under the RRW model,

Yi ∼ MVN
(
Ypa(i), tiV(φi)

)
, (3.1)

where the P ×P matrix-valued function V(φi) characterizes the branch-specific multivariate

normal (MVN) increment that defines the diffusion process. We parameterize this function

in terms of an unknown P × P positive-definite matrix Σ that describes the covariation

between trait dimensions after controlling for shared evolutionary history and an unknown
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branch-rate multiplier φi. Typical choices include

V(φi) =



φiΣ rate-scalar parameterization, φi > 0,

1
φi

Σ scale-mixture-of-normals parameterization, φi > 0,

eφiΣ unconstrained parameterization, φi ∈ R, and

Σ standard Brownian diffusion.

(3.2)

To complete the RRW model specification, we adopt a prior density on the unobserved trait

at the parentless root node,

p(Y2N−1) = MVN
(
ν0, κ

−1
0 Σ

)
(3.3)

with prior mean ν0 and sample-size κ0.

Letting φ = (φ1, . . . , φ2N−2) and the observed data Y = (Y1, . . . ,YN) at the tips, we are

interested in learning about the posterior

p(φ,Σ, s,F ,θ |Y,S) ∝ p(Y |φ,Σ,F )p(S |F ,θ)︸ ︷︷ ︸
likelihood

p(φ | s)p(s)p(Σ)p(F ,θ)︸ ︷︷ ︸
priors

, (3.4)

where s is an unknown parameter characterizing our prior on φ and θ represents parameters

of a molecular sequence substitution model for the evolution of aligned molecular sequence

data S. Note that we follow usual convention (Cybis et al., 2015) and assume that Y and

S are conditionally independent given F . We follow the example of Lemey et al. (2010)

and place a log-normal prior distribution on φ with mean 1 and standard deviation s. We

further assume an exponential prior on s with mean 1
3
. In the examples that follow, we place

one of two priors on the covariance structure Σ. In our first example, we study the West

Nile virus and follow the original modeling assumptions of Pybus et al. (2012). We assign

a Wishart conjugate prior with scale matrix IP and P degrees of freedom to Σ−1. In our

second example, we study correlation between mammalian life history traits and employ a

more general “separation strategy” whereby Σ is separated into a correlation matrix and

diagonal variance matrix (Barnard et al., 2000; Zhang et al., 2006; Caetano and Harmon,

2019). We specify the eponymous “LKJ” prior (Lewandowski et al., 2009) on the correlation

matrix and assign the diagonal of marginal variances a log-normal distribution with mean

0 and standard deviation of 4. The LKJ prior is uniform over the space of positive definite
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correlation matrices and this is favorable for our purpose of comparing correlation estimates

under contrasting models. Efficient application of the LKJ prior in phylogenetics is well

described by Zhang et al. (2019).

We use MCMC integration to approximate this posterior using a random-scan Metropolis-

within-Gibbs approach (Liu, 2008; Levine and Casella, 2006). One cycle of this scheme

consists of sampling φ,Σ, s and then (F ,θ) via

p(φ |Σ, s,F ,θ,Y,S) ∝ p(Y |φ,Σ,F )p(φ | s), (3.5a)

p(Σ |φ, s,F ,θ,Y,S) ∝ p(Y |φ,Σ,F )p(Σ), (3.5b)

p(s |φ,Σ,F ,θ,Y,S) ∝ p(φ | s)p(s), and (3.5c)

p(F ,θ |φ,Σ, s,Y,S) ∝ p(Y |φ,Σ,F )p(S |F ,θ)p(F ,θ), (3.5d)

where update (3.5d) is unnecessary when F is fixed, otherwise efficient sampling from the

density p(F ,θ |φ,Σ, s,Y,S) is well described elsewhere, see for example Suchard et al.

(2018). Updates (3.5b) and (3.5c) are straightforward due to the conjugate priors chosen in

our model. We turn our focus to the remaining component of our scheme, namely sampling

from p(φ |Σ, s,F ,θ,Y,S).

3.2.2 Hamiltonian Monte Carlo

We wish to sample φ jointly to avoid potentially high autocorrelation in the resulting MCMC

chain. To this end, we propose using HMC and begin with a brief description of how HMC

maps sampling from a probability distribution to simulating a physical system. In classical

mechanics, the Hamiltonian is the sum of the kinetic and potential energy in a closed system.

To build the connection, we introduce auxiliary momentum variable ρ = (ρ1, . . . , ρ2N−2) and

write our Hamiltonian,

H(φ,ρ) = − log p(φ |Σ, s,F ,θ,Y,S)︸ ︷︷ ︸
potential energy

+
1

2
ρtMρ︸ ︷︷ ︸

kinetic energy

, (3.6)

where the mass matrix M weights our momentum variables. The canonical distribution from

statistical mechanics relates the joint density of state variables φ and ρ to the energy in a
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system via the relationship,

p(φ,ρ |Σ, s,F ,θ,Y,S) ∝ e−H(φ,ρ). (3.7)

Substituting our Hamiltonian into (3.7), we observe that φ and ρ are independent and

recognize the marginal density of ρ to be MVN. To start the HMC algorithm, we first sample

ρ from this marginal density. Then by differentiating H(φ,ρ), we generate Hamilton’s

equations of motion,

dφi
dt

= +
∂H

∂ρi
, and

dρi
dt

= −∂H
∂φi

=
∂

∂φi
log p(φ |Σ, s,F ,θ,Y,S) for all i = 1, . . . , 2N − 2.

(3.8)

We can use the resulting vector field in conjunction with a variety of numerical integra-

tion techniques to propose new states of φ for our MCMC chain. Consistent with typical

construction (Neal, 2011), we use the leapfrog method for numerical integration, where we

follow the trajectory of ρ for a half-step before updating φ. For a full discussion of HMC,

see Neal (2011). Importantly, Hamilton’s equations elicit a need to calculate the gradient(
∂
∂φ1

, . . . , ∂
∂φ2N−2

)t

log p(φ |Σ, s,F ,θ,Y,S) at each chain step to traverse phase space and

gradient computation can be costly.

3.2.3 Gradient of trait data log-likelihood

A practical HMC sampler demands efficient calculation of ∇φ log p(φ |Σ, s,F ,θ,Y,S). Dif-

ferentiating the logarithm of (3.5a), we obtain

∂

∂φi
log p(φ |Σ, s,F ,Y,S) =

∂

∂φi
log p(Y |φ,Σ,F ) +

∂

∂φi
log p(φ | s). (3.9)

Our log-normal prior choice for φ renders evaluating the second term in Equation (3.9)

trivial. Here we develop a general recursive algorithm for calculating ∇φ log p(Y |φ,Σ,F ).

To facilitate this development, consider splitting Y into two disjoint sets relative to any node

i in F . We define Ybic as the observed data descendant of node i and Ydie as the observed

data “above” (or not descendent of) node i. For clarity, see Figure (3.1).
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<latexit sha1_base64="9NMi5Yt6EMT7K4UR24m4NfewCqs=">AAAB9HicbVC7SgNBFL0bXzG+ooKNzWAQrMKujZZBG8sEzEOSJc5O7uqQ2dl1ZjYQlnyHjYUitn6MnY3f4mxioYkHBg7n3Ms9c4JEcG1c99MpLC2vrK4V10sbm1vbO+XdvZaOU8WwyWIRq05ANQousWm4EdhJFNIoENgOhpe53x6h0jyW12acoB/RO8lDzqixkt+LqLkPwuxm0vdK/XLFrbpTkEXi/ZBK7aDxdQsA9X75ozeIWRqhNExQrbuemxg/o8pwJnBS6qUaE8qG9A67lkoaofazaegJObbKgISxsk8aMlV/b2Q00nocBXYyD6nnvVz8z+umJjz3My6T1KBks0NhKoiJSd4AGXCFzIixJZQpbrMSdk8VZcb2lJfgzX95kbROq55b9Rq2jQuYoQiHcAQn4MEZ1OAK6tAEBg/wCM/w4oycJ+fVeZuNFpyfnX34A+f9G8Ewk5Y=</latexit><latexit sha1_base64="Wwsaevb71gOTyWV+pyCMMow/VwQ=">AAAB9HicbVDLSgMxFL3js9ZXVXDjJlgEV2XGjS5L3bhswT6kHUomzbShSWZMMoUy9DvcuFDEpX6FX+DOjd9ipu1CWw8EDufcyz05QcyZNq775aysrq1vbOa28ts7u3v7hYPDho4SRWidRDxSrQBrypmkdcMMp61YUSwCTpvB8DrzmyOqNIvkrRnH1Be4L1nICDZW8jsCm0EQpneTrpfvFopuyZ0CLRNvTorl49o3e6t8VLuFz04vIomg0hCOtW57bmz8FCvDCKeTfCfRNMZkiPu0banEgmo/nYaeoDOr9FAYKfukQVP190aKhdZjEdjJLKRe9DLxP6+dmPDKT5mME0MlmR0KE45MhLIGUI8pSgwfW4KJYjYrIgOsMDG2p6wEb/HLy6RxUfLcklezbVRghhycwCmcgweXUIYbqEIdCNzDAzzBszNyHp0X53U2uuLMd47gD5z3HxKAlVI=</latexit><latexit sha1_base64="Wwsaevb71gOTyWV+pyCMMow/VwQ=">AAAB9HicbVDLSgMxFL3js9ZXVXDjJlgEV2XGjS5L3bhswT6kHUomzbShSWZMMoUy9DvcuFDEpX6FX+DOjd9ipu1CWw8EDufcyz05QcyZNq775aysrq1vbOa28ts7u3v7hYPDho4SRWidRDxSrQBrypmkdcMMp61YUSwCTpvB8DrzmyOqNIvkrRnH1Be4L1nICDZW8jsCm0EQpneTrpfvFopuyZ0CLRNvTorl49o3e6t8VLuFz04vIomg0hCOtW57bmz8FCvDCKeTfCfRNMZkiPu0banEgmo/nYaeoDOr9FAYKfukQVP190aKhdZjEdjJLKRe9DLxP6+dmPDKT5mME0MlmR0KE45MhLIGUI8pSgwfW4KJYjYrIgOsMDG2p6wEb/HLy6RxUfLcklezbVRghhycwCmcgweXUIYbqEIdCNzDAzzBszNyHp0X53U2uuLMd47gD5z3HxKAlVI=</latexit><latexit sha1_base64="FCFcyny6QhsYOQYg4d/FeHYBd50=">AAAB9HicbVC7TsMwFL3hWcqrwMhiUSExVQkLjBUsjEWiD9RGlePetFYdJ9hOpSrqd7AwgBArH8PG3+C0GaDlSJaOzrlX9/gEieDauO63s7a+sbm1Xdop7+7tHxxWjo5bOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjf5n57gkrzWD6YaYJ+RIeSh5xRYyW/F1EzCsLscdb3yv1K1a25c5BV4hWkCgUa/cpXbxCzNEJpmKBadz03MX5GleFM4KzcSzUmlI3pELuWShqh9rN56Bk5t8qAhLGyTxoyV39vZDTSehoFdjIPqZe9XPzP66YmvPYzLpPUoGSLQ2EqiIlJ3gAZcIXMiKkllClusxI2oooyY3vKS/CWv7xKWpc1z6159261flPUUYJTOIML8OAK6nAHDWgCgyd4hld4cybOi/PufCxG15xi5wT+wPn8ATKYkbE=</latexit>

Y2
<latexit sha1_base64="+v94tNNogMIZJ8e9/cjbK/qqh1Y=">AAAB9HicbVDLTgIxFL2DL8QXauLGTSMxcUVm2OiS6MYlJPIwMMFO6UBDpx3bDgmZ8B1uXGiMWz/GnRu/xQ6wUPAkTU7OuTf39AQxZ9q47peTW1vf2NzKbxd2dvf2D4qHR00tE0Vog0guVTvAmnImaMMww2k7VhRHAaetYHST+a0xVZpJcWcmMfUjPBAsZAQbK/ndCJthEKb3016l0CuW3LI7A1ol3oKUqif17wcAqPWKn92+JElEhSEca93x3Nj4KVaGEU6nhW6iaYzJCA9ox1KBI6r9dBZ6is6t0kehVPYJg2bq740UR1pPosBOZiH1speJ/3mdxIRXfspEnBgqyPxQmHBkJMoaQH2mKDF8YgkmitmsiAyxwsTYnrISvOUvr5Jmpey5Za9u27iGOfJwCmdwAR5cQhVuoQYNIPAIT/ACr87YeXbenPf5aM5Z7BzDHzgfP8K1k5c=</latexit><latexit sha1_base64="whB8a4lNUFMe2UA1ZtsQ++RqCX8=">AAAB9HicbVC7TsMwFL0pr1JeBSQWFosKialKusBYlYWxlegDtVHluE5r1XGC7VSqon4HCwMIMcJX8AVsLHwLTtoBWo5k6eice3WPjxdxprRtf1m5tfWNza38dmFnd2//oHh41FJhLAltkpCHsuNhRTkTtKmZ5rQTSYoDj9O2N75O/faESsVCcaunEXUDPBTMZwRrI7m9AOuR5yd3s36l0C+W7LKdAa0SZ0FK1ZPGN3urfdT7xc/eICRxQIUmHCvVdexIuwmWmhFOZ4VerGiEyRgPaddQgQOq3CQLPUPnRhkgP5TmCY0y9fdGggOlpoFnJtOQatlLxf+8bqz9KzdhIoo1FWR+yI850iFKG0ADJinRfGoIJpKZrIiMsMREm57SEpzlL6+SVqXs2GWnYdqowRx5OIUzuAAHLqEKN1CHJhC4hwd4gmdrYj1aL9brfDRnLXaO4Q+s9x8UBZVT</latexit><latexit sha1_base64="whB8a4lNUFMe2UA1ZtsQ++RqCX8=">AAAB9HicbVC7TsMwFL0pr1JeBSQWFosKialKusBYlYWxlegDtVHluE5r1XGC7VSqon4HCwMIMcJX8AVsLHwLTtoBWo5k6eice3WPjxdxprRtf1m5tfWNza38dmFnd2//oHh41FJhLAltkpCHsuNhRTkTtKmZ5rQTSYoDj9O2N75O/faESsVCcaunEXUDPBTMZwRrI7m9AOuR5yd3s36l0C+W7LKdAa0SZ0FK1ZPGN3urfdT7xc/eICRxQIUmHCvVdexIuwmWmhFOZ4VerGiEyRgPaddQgQOq3CQLPUPnRhkgP5TmCY0y9fdGggOlpoFnJtOQatlLxf+8bqz9KzdhIoo1FWR+yI850iFKG0ADJinRfGoIJpKZrIiMsMREm57SEpzlL6+SVqXs2GWnYdqowRx5OIUzuAAHLqEKN1CHJhC4hwd4gmdrYj1aL9brfDRnLXaO4Q+s9x8UBZVT</latexit><latexit sha1_base64="U+f2yO6TPf3eApV1PKNCOGPdNoU=">AAAB9HicbVC7TgJBFL2LL8QXamkzkZhYkV0aLYk2lpjIw8CGzA6zMGF2dp25S0I2fIeNhcbY+jF2/o2zQKHgSSY5Oefe3DMnSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj29xvT7g2IlYPOE24H9GhEqFgFK3k9yKKoyDMHmf9WqlfrrhVdw6yTrwlqcASjX75qzeIWRpxhUxSY7qem6CfUY2CST4r9VLDE8rGdMi7lioaceNn89AzcmGVAQljbZ9CMld/b2Q0MmYaBXYyD2lWvVz8z+umGF77mVBJilyxxaEwlQRjkjdABkJzhnJqCWVa2KyEjaimDG1PeQne6pfXSatW9dyqd+9W6jfLOopwBudwCR5cQR3uoAFNYPAEz/AKb87EeXHenY/FaMFZ7pzCHzifPzQdkbI=</latexit>

Y3
<latexit sha1_base64="hDzUCZzVbUZ9DRl5iCp28JD0bjQ=">AAAB9HicbVDLTgIxFL3FF+ILNXHjppGYuCIzutAl0Y1LSORhYIKd0oGGTmdsOyRkwne4caExbv0Yd278FjvAQsGTNDk5597c0+PHgmvjOF8ot7K6tr6R3yxsbe/s7hX3Dxo6ShRldRqJSLV8opngktUNN4K1YsVI6AvW9Ic3md8cMaV5JO/MOGZeSPqSB5wSYyWvExIz8IP0ftK9KHSLJafsTIGXiTsnpcpR7fsBAKrd4menF9EkZNJQQbRuu05svJQow6lgk0In0SwmdEj6rG2pJCHTXjoNPcGnVunhIFL2SYOn6u+NlIRaj0PfTmYh9aKXif957cQEV17KZZwYJunsUJAIbCKcNYB7XDFqxNgSQhW3WTEdEEWosT1lJbiLX14mjfOy65Tdmm3jGmbIwzGcwBm4cAkVuIUq1IHCIzzBC7yiEXpGb+h9NppD851D+AP08QPEOpOY</latexit><latexit sha1_base64="98sA7as+oXSFapfFA8yv6mvQ9Js=">AAAB9HicbVC7TsMwFL0pr1JeBSQWFosKialKYICxKgtjK9EHaqPKcZ3WquME26lURf0OFgYQYoSv4AvYWPgWnLQDtBzJ0tE59+oeHy/iTGnb/rJyK6tr6xv5zcLW9s7uXnH/oKnCWBLaICEPZdvDinImaEMzzWk7khQHHqctb3Sd+q0xlYqF4lZPIuoGeCCYzwjWRnK7AdZDz0/upr2LQq9Ysst2BrRMnDkpVY7q3+yt+lHrFT+7/ZDEARWacKxUx7Ej7SZYakY4nRa6saIRJiM8oB1DBQ6ocpMs9BSdGqWP/FCaJzTK1N8bCQ6UmgSemUxDqkUvFf/zOrH2r9yEiSjWVJDZIT/mSIcobQD1maRE84khmEhmsiIyxBITbXpKS3AWv7xMmudlxy47ddNGFWbIwzGcwBk4cAkVuIEaNIDAPTzAEzxbY+vRerFeZ6M5a75zCH9gvf8AFYqVVA==</latexit><latexit sha1_base64="98sA7as+oXSFapfFA8yv6mvQ9Js=">AAAB9HicbVC7TsMwFL0pr1JeBSQWFosKialKYICxKgtjK9EHaqPKcZ3WquME26lURf0OFgYQYoSv4AvYWPgWnLQDtBzJ0tE59+oeHy/iTGnb/rJyK6tr6xv5zcLW9s7uXnH/oKnCWBLaICEPZdvDinImaEMzzWk7khQHHqctb3Sd+q0xlYqF4lZPIuoGeCCYzwjWRnK7AdZDz0/upr2LQq9Ysst2BrRMnDkpVY7q3+yt+lHrFT+7/ZDEARWacKxUx7Ej7SZYakY4nRa6saIRJiM8oB1DBQ6ocpMs9BSdGqWP/FCaJzTK1N8bCQ6UmgSemUxDqkUvFf/zOrH2r9yEiSjWVJDZIT/mSIcobQD1maRE84khmEhmsiIyxBITbXpKS3AWv7xMmudlxy47ddNGFWbIwzGcwBk4cAkVuIEaNIDAPTzAEzxbY+vRerFeZ6M5a75zCH9gvf8AFYqVVA==</latexit><latexit sha1_base64="EaRWyz7R0LljPKe8bRIrBmTHyBM=">AAAB9HicbVC7TsMwFL0pr1JeBUYWiwqJqUpggLGChbFI9IHaqHLcm9aq4wTbqVRF/Q4WBhBi5WPY+BuctgO0HMnS0Tn36h6fIBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRbe63xqg0j+WDmSToR3QgecgZNVbyuxE1wyDMHqe9y1KvXHGr7gxklXgLUoEF6r3yV7cfszRCaZigWnc8NzF+RpXhTOC01E01JpSN6AA7lkoaofazWegpObNKn4Sxsk8aMlN/b2Q00noSBXYyD6mXvVz8z+ukJrz2My6T1KBk80NhKoiJSd4A6XOFzIiJJZQpbrMSNqSKMmN7ykvwlr+8SpoXVc+tevdupXazqKMIJ3AK5+DBFdTgDurQAAZP8Ayv8OaMnRfn3fmYjxacxc4x/IHz+QM1opGz</latexit>

Y4
<latexit sha1_base64="UVBCOKuwM/O8QJtapPHHXDkMakw=">AAAB9HicbVDLSgMxFL2pr1pfVcGNm2ARXJUZEXRZdOOyBfuQdqiZNNOGZjJjkimUod/hxoUibv0Yd278FjNtF9p6IHA4517uyfFjwbVxnC+UW1ldW9/Ibxa2tnd294r7Bw0dJYqyOo1EpFo+0UxwyeqGG8FasWIk9AVr+sObzG+OmNI8kndmHDMvJH3JA06JsZLXCYkZ+EF6P+leFLrFklN2psDLxJ2TUuWo9v0AANVu8bPTi2gSMmmoIFq3XSc2XkqU4VSwSaGTaBYTOiR91rZUkpBpL52GnuBTq/RwECn7pMFT9fdGSkKtx6FvJ7OQetHLxP+8dmKCKy/lMk4Mk3R2KEgENhHOGsA9rhg1YmwJoYrbrJgOiCLU2J6yEtzFLy+TxnnZdcpuzbZxDTPk4RhO4AxcuIQK3EIV6kDhEZ7gBV7RCD2jN/Q+G82h+c4h/AH6+AHFv5OZ</latexit><latexit sha1_base64="vv0t/n2BMYuwmJONP9fcyjf0sCo=">AAAB9HicbVDLSgMxFL1TX7W+qoIbN8EiuCozIuiy1I3LFuxD2qFk0kwbmsmMSaZQhn6HGxeKuNSv8AvcufFbzEy70NYDgcM593JPjhdxprRtf1m5ldW19Y38ZmFre2d3r7h/0FRhLAltkJCHsu1hRTkTtKGZ5rQdSYoDj9OWN7pO/daYSsVCcasnEXUDPBDMZwRrI7ndAOuh5yd3095FoVcs2WU7A1omzpyUKkf1b/ZW/aj1ip/dfkjigApNOFaq49iRdhMsNSOcTgvdWNEIkxEe0I6hAgdUuUkWeopOjdJHfijNExpl6u+NBAdKTQLPTKYh1aKXiv95nVj7V27CRBRrKsjskB9zpEOUNoD6TFKi+cQQTCQzWREZYomJNj2lJTiLX14mzfOyY5edummjCjPk4RhO4AwcuIQK3EANGkDgHh7gCZ6tsfVovVivs9GcNd85hD+w3n8AFw+VVQ==</latexit><latexit sha1_base64="vv0t/n2BMYuwmJONP9fcyjf0sCo=">AAAB9HicbVDLSgMxFL1TX7W+qoIbN8EiuCozIuiy1I3LFuxD2qFk0kwbmsmMSaZQhn6HGxeKuNSv8AvcufFbzEy70NYDgcM593JPjhdxprRtf1m5ldW19Y38ZmFre2d3r7h/0FRhLAltkJCHsu1hRTkTtKGZ5rQdSYoDj9OWN7pO/daYSsVCcasnEXUDPBDMZwRrI7ndAOuh5yd3095FoVcs2WU7A1omzpyUKkf1b/ZW/aj1ip/dfkjigApNOFaq49iRdhMsNSOcTgvdWNEIkxEe0I6hAgdUuUkWeopOjdJHfijNExpl6u+NBAdKTQLPTKYh1aKXiv95nVj7V27CRBRrKsjskB9zpEOUNoD6TFKi+cQQTCQzWREZYomJNj2lJTiLX14mzfOyY5edummjCjPk4RhO4AwcuIQK3EANGkDgHh7gCZ6tsfVovVivs9GcNd85hD+w3n8AFw+VVQ==</latexit><latexit sha1_base64="FXU8xMMtyE+YTu3OYpbrsylisgk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG5cV7EPaoWTSO21oJjMmmUIZ+h1uXCji1o9x59+YabvQ1gOBwzn3ck9OkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoNvdbY1Sax/LBTBL0IzqQPOSMGiv53YiaYRBmj9PeZalXrrhVdwaySrwFqcAC9V75q9uPWRqhNExQrTuemxg/o8pwJnBa6qYaE8pGdIAdSyWNUPvZLPSUnFmlT8JY2ScNmam/NzIaaT2JAjuZh9TLXi7+53VSE177GZdJalCy+aEwFcTEJG+A9LlCZsTEEsoUt1kJG1JFmbE95SV4y19eJc2LqudWvXu3UrtZ1FGEEziFc/DgCmpwB3VoAIMneIZXeHPGzovz7nzMRwvOYucY/sD5/AE3J5G0</latexit>

Y5
<latexit sha1_base64="7lRaKG2RrochizAlrUUzAwO5TRE=">AAAB9HicbVDLSgMxFL2pr1pfVcGNm2ARXJUZQXRZdOOyBfuQdqiZNNOGZjJjkimUod/hxoUibv0Yd278FjNtF9p6IHA4517uyfFjwbVxnC+UW1ldW9/Ibxa2tnd294r7Bw0dJYqyOo1EpFo+0UxwyeqGG8FasWIk9AVr+sObzG+OmNI8kndmHDMvJH3JA06JsZLXCYkZ+EF6P+leFLrFklN2psDLxJ2TUuWo9v0AANVu8bPTi2gSMmmoIFq3XSc2XkqU4VSwSaGTaBYTOiR91rZUkpBpL52GnuBTq/RwECn7pMFT9fdGSkKtx6FvJ7OQetHLxP+8dmKCKy/lMk4Mk3R2KEgENhHOGsA9rhg1YmwJoYrbrJgOiCLU2J6yEtzFLy+TxnnZdcpuzbZxDTPk4RhO4AxcuIQK3EIV6kDhEZ7gBV7RCD2jN/Q+G82h+c4h/AH6+AHHRJOa</latexit><latexit sha1_base64="trIyWIbEn+BgdtdAs2Sb/xCy2uM=">AAAB9HicbVDLSgMxFL1TX7W+qoIbN8EiuCozguiy1I3LFuxD2qFk0kwbmsmMSaZQhn6HGxeKuNSv8AvcufFbzEy70NYDgcM593JPjhdxprRtf1m5ldW19Y38ZmFre2d3r7h/0FRhLAltkJCHsu1hRTkTtKGZ5rQdSYoDj9OWN7pO/daYSsVCcasnEXUDPBDMZwRrI7ndAOuh5yd3095FoVcs2WU7A1omzpyUKkf1b/ZW/aj1ip/dfkjigApNOFaq49iRdhMsNSOcTgvdWNEIkxEe0I6hAgdUuUkWeopOjdJHfijNExpl6u+NBAdKTQLPTKYh1aKXiv95nVj7V27CRBRrKsjskB9zpEOUNoD6TFKi+cQQTCQzWREZYomJNj2lJTiLX14mzfOyY5edummjCjPk4RhO4AwcuIQK3EANGkDgHh7gCZ6tsfVovVivs9GcNd85hD+w3n8AGJSVVg==</latexit><latexit sha1_base64="trIyWIbEn+BgdtdAs2Sb/xCy2uM=">AAAB9HicbVDLSgMxFL1TX7W+qoIbN8EiuCozguiy1I3LFuxD2qFk0kwbmsmMSaZQhn6HGxeKuNSv8AvcufFbzEy70NYDgcM593JPjhdxprRtf1m5ldW19Y38ZmFre2d3r7h/0FRhLAltkJCHsu1hRTkTtKGZ5rQdSYoDj9OWN7pO/daYSsVCcasnEXUDPBDMZwRrI7ndAOuh5yd3095FoVcs2WU7A1omzpyUKkf1b/ZW/aj1ip/dfkjigApNOFaq49iRdhMsNSOcTgvdWNEIkxEe0I6hAgdUuUkWeopOjdJHfijNExpl6u+NBAdKTQLPTKYh1aKXiv95nVj7V27CRBRrKsjskB9zpEOUNoD6TFKi+cQQTCQzWREZYomJNj2lJTiLX14mzfOyY5edummjCjPk4RhO4AwcuIQK3EANGkDgHh7gCZ6tsfVovVivs9GcNd85hD+w3n8AGJSVVg==</latexit><latexit sha1_base64="KJhChWkhUQnKprwv18yN7pOVNZ0=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswIosuiG5cV7EPaoWTSO21oJjMmmUIZ+h1uXCji1o9x59+YabvQ1gOBwzn3ck9OkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoNvdbY1Sax/LBTBL0IzqQPOSMGiv53YiaYRBmj9PeZalXrrhVdwaySrwFqcAC9V75q9uPWRqhNExQrTuemxg/o8pwJnBa6qYaE8pGdIAdSyWNUPvZLPSUnFmlT8JY2ScNmam/NzIaaT2JAjuZh9TLXi7+53VSE177GZdJalCy+aEwFcTEJG+A9LlCZsTEEsoUt1kJG1JFmbE95SV4y19eJc2LqudWvXu3UrtZ1FGEEziFc/DgCmpwB3VoAIMneIZXeHPGzovz7nzMRwvOYucY/sD5/AE4rJG1</latexit>

�1
<latexit sha1_base64="6Cw1W7DRxION6H9L8drbzj9BkK0=">AAAB73icbVA9SwNBEJ3zM8avqKUWi0GwCnc2WgZtLBMwH5AcYW+zlyzZ2zt354Rw5E/YWChi6z/wd9jZ+VPcS1Jo4oOBx3szzMwLEikMuu6Xs7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRTe63Hrg2IlZ3OE64H9GBEqFgFK3U7iZD0fOKxV6p7FbcKcgy8eakXD35qH8DQK1X+uz2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42fTeCTmzSp+EsbalkEzV3xMZjYwZR4HtjCgOzaKXi/95nRTDKz8TKkmRKzZbFKaSYEzy50lfaM5Qji2hTAt7K2FDqilDG1Eegrf48jJpXlQ8t+LVbRrXMEMBjuEUzsGDS6jCLdSgAQwkPMIzvDj3zpPz6rzNWlec+cwR/IHz/gO2kpFM</latexit><latexit sha1_base64="jLGefU2fhkVdqqMsOolK9diSUm0=">AAAB73icbVDLSsNAFL2prxpfVZeKDBbBVUnc6LLoxmUL9gFtKJPppB06mcSZiRBCl/6AGxeKuPUP+h3u/AZ/wknbhbYeuHA4517uvcePOVPacb6swsrq2vpGcdPe2t7Z3SvtHzRVlEhCGyTikWz7WFHOBG1opjltx5Li0Oe05Y9ucr/1QKVikbjTaUy9EA8ECxjB2kjtbjxkPde2e6WyU3GmQMvEnZNy9XhS/348mdR6pc9uPyJJSIUmHCvVcZ1YexmWmhFOx3Y3UTTGZIQHtGOowCFVXja9d4zOjNJHQSRNCY2m6u+JDIdKpaFvOkOsh2rRy8X/vE6igysvYyJONBVktihIONIRyp9HfSYp0Tw1BBPJzK2IDLHERJuI8hDcxZeXSfOi4joVt27SuIYZinAEp3AOLlxCFW6hBg0gwOEJXuDVureerTfrfdZasOYzh/AH1scPlNeSsg==</latexit><latexit sha1_base64="jLGefU2fhkVdqqMsOolK9diSUm0=">AAAB73icbVDLSsNAFL2prxpfVZeKDBbBVUnc6LLoxmUL9gFtKJPppB06mcSZiRBCl/6AGxeKuPUP+h3u/AZ/wknbhbYeuHA4517uvcePOVPacb6swsrq2vpGcdPe2t7Z3SvtHzRVlEhCGyTikWz7WFHOBG1opjltx5Li0Oe05Y9ucr/1QKVikbjTaUy9EA8ECxjB2kjtbjxkPde2e6WyU3GmQMvEnZNy9XhS/348mdR6pc9uPyJJSIUmHCvVcZ1YexmWmhFOx3Y3UTTGZIQHtGOowCFVXja9d4zOjNJHQSRNCY2m6u+JDIdKpaFvOkOsh2rRy8X/vE6igysvYyJONBVktihIONIRyp9HfSYp0Tw1BBPJzK2IDLHERJuI8hDcxZeXSfOi4joVt27SuIYZinAEp3AOLlxCFW6hBg0gwOEJXuDVureerTfrfdZasOYzh/AH1scPlNeSsg==</latexit><latexit sha1_base64="nkB3sb7H3PoWSqi3WzhvkeINPng=">AAAB73icbVBNS8NAEJ34WeNX1aOXxSJ4KokXPRa9eKxgP6ANZbOdtEs3m7i7EUron/DiQRGv/h1v/hs3bQ7a+mDg8d4MM/PCVHBtPO/bWVvf2Nzaruy4u3v7B4fVo+O2TjLFsMUSkahuSDUKLrFluBHYTRXSOBTYCSe3hd95QqV5Ih/MNMUgpiPJI86osVK3n475wHfdQbXm1b05yCrxS1KDEs1B9as/TFgWozRMUK17vpeaIKfKcCZw5vYzjSllEzrCnqWSxqiDfH7vjJxbZUiiRNmShszV3xM5jbWexqHtjKkZ62WvEP/zepmJroOcyzQzKNliUZQJYhJSPE+GXCEzYmoJZYrbWwkbU0WZsREVIfjLL6+S9mXd9+r+vVdr3JRxVOAUzuACfLiCBtxBE1rAQMAzvMKb8+i8OO/Ox6J1zSlnTuAPnM8fppiPBw==</latexit>

�2
<latexit sha1_base64="EyzrY9cqeFjkHNIHKM961bwWcSw=">AAAB73icbVC7SgNBFL0bX3F9RS21GAyCVdhNo2XQxjIB84BkCbOT2WTIzOw6MyuEJT9hY6GIrX/gd9jZ+SnOJik08cCFwzn3cu89YcKZNp735RTW1jc2t4rb7s7u3v5B6fCopeNUEdokMY9VJ8SaciZp0zDDaSdRFIuQ03Y4vsn99gNVmsXyzkwSGgg8lCxiBBsrdXrJiPWrrtsvlb2KNwNaJf6ClGunH41vAKj3S5+9QUxSQaUhHGvd9b3EBBlWhhFOp24v1TTBZIyHtGupxILqIJvdO0XnVhmgKFa2pEEz9fdEhoXWExHaToHNSC97ufif101NdBVkTCapoZLMF0UpRyZG+fNowBQlhk8swUQxeysiI6wwMTaiPAR/+eVV0qpWfK/iN2wa1zBHEU7gDC7Ah0uowS3UoQkEODzCM7w4986T8+q8zVsLzmLmGP7Aef8BuBiRTQ==</latexit><latexit sha1_base64="EOPnt4fFpPbpd9LTIB+qIYO582o=">AAAB73icbVDLSsNAFL2prxpfVZeKDBbBVUm60WXRjcsW7APaUCbTSTt0MklnJkIJXfoDblwo4tY/6He48xv8CSdtF9p64MLhnHu59x4/5kxpx/mycmvrG5tb+W17Z3dv/6BweNRQUSIJrZOIR7LlY0U5E7Sumea0FUuKQ5/Tpj+8zfzmA5WKReJej2PqhbgvWMAI1kZqdeIB65Ztu1soOiVnBrRK3AUpVk6nte/Hs2m1W/js9CKShFRowrFSbdeJtZdiqRnhdGJ3EkVjTIa4T9uGChxS5aWzeyfowig9FETSlNBopv6eSHGo1Dj0TWeI9UAte5n4n9dOdHDtpUzEiaaCzBcFCUc6QtnzqMckJZqPDcFEMnMrIgMsMdEmoiwEd/nlVdIol1yn5NZMGjcwRx5O4BwuwYUrqMAdVKEOBDg8wQu8WiPr2Xqz3uetOWsxcwx/YH38AJZdkrM=</latexit><latexit sha1_base64="EOPnt4fFpPbpd9LTIB+qIYO582o=">AAAB73icbVDLSsNAFL2prxpfVZeKDBbBVUm60WXRjcsW7APaUCbTSTt0MklnJkIJXfoDblwo4tY/6He48xv8CSdtF9p64MLhnHu59x4/5kxpx/mycmvrG5tb+W17Z3dv/6BweNRQUSIJrZOIR7LlY0U5E7Sumea0FUuKQ5/Tpj+8zfzmA5WKReJej2PqhbgvWMAI1kZqdeIB65Ztu1soOiVnBrRK3AUpVk6nte/Hs2m1W/js9CKShFRowrFSbdeJtZdiqRnhdGJ3EkVjTIa4T9uGChxS5aWzeyfowig9FETSlNBopv6eSHGo1Dj0TWeI9UAte5n4n9dOdHDtpUzEiaaCzBcFCUc6QtnzqMckJZqPDcFEMnMrIgMsMdEmoiwEd/nlVdIol1yn5NZMGjcwRx5O4BwuwYUrqMAdVKEOBDg8wQu8WiPr2Xqz3uetOWsxcwx/YH38AJZdkrM=</latexit><latexit sha1_base64="tH7H0XQuN4rQuS9rKkzmdxcakxo=">AAAB73icbVBNS8NAEJ3Urxq/qh69LBbBU0l60WPRi8cK9gPaUDbbTbt0s4m7E6GU/gkvHhTx6t/x5r9x0+agrQ8GHu/NMDMvTKUw6HnfTmljc2t7p7zr7u0fHB5Vjk/aJsk04y2WyER3Q2q4FIq3UKDk3VRzGoeSd8LJbe53nrg2IlEPOE15ENOREpFgFK3U7adjMai77qBS9WreAmSd+AWpQoHmoPLVHyYsi7lCJqkxPd9LMZhRjYJJPnf7meEpZRM64j1LFY25CWaLe+fkwipDEiXalkKyUH9PzGhszDQObWdMcWxWvVz8z+tlGF0HM6HSDLliy0VRJgkmJH+eDIXmDOXUEsq0sLcSNqaaMrQR5SH4qy+vk3a95ns1/96rNm6KOMpwBudwCT5cQQPuoAktYCDhGV7hzXl0Xpx352PZWnKKmVP4A+fzB6gejwg=</latexit>

�3
<latexit sha1_base64="muB8A9Kd/5t07ddTVEvIv1HMV9Y=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqeyqoMeiF48V7Ae0S8mm2TY0mw1JVihLf4QXD4p49fd489+YbfegrQ8GHu/NMDMvVIIb63nfqLS2vrG5Vd6u7Ozu7R9UD4/aJkk1ZS2aiER3Q2KY4JK1LLeCdZVmJA4F64STu9zvPDFteCIf7VSxICYjySNOiXVSp6/GfHBZGVRrXt2bA68SvyA1KNAcVL/6w4SmMZOWCmJMz/eUDTKiLaeCzSr91DBF6ISMWM9RSWJmgmx+7gyfOWWIo0S7khbP1d8TGYmNmcah64yJHZtlLxf/83qpjW6CjEuVWibpYlGUCmwTnP+Oh1wzasXUEUI1d7diOiaaUOsSykPwl19eJe2Luu/V/YerWuO2iKMMJ3AK5+DDNTTgHprQAgoTeIZXeEMKvaB39LFoLaFi5hj+AH3+AHSTjvk=</latexit><latexit sha1_base64="muB8A9Kd/5t07ddTVEvIv1HMV9Y=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqeyqoMeiF48V7Ae0S8mm2TY0mw1JVihLf4QXD4p49fd489+YbfegrQ8GHu/NMDMvVIIb63nfqLS2vrG5Vd6u7Ozu7R9UD4/aJkk1ZS2aiER3Q2KY4JK1LLeCdZVmJA4F64STu9zvPDFteCIf7VSxICYjySNOiXVSp6/GfHBZGVRrXt2bA68SvyA1KNAcVL/6w4SmMZOWCmJMz/eUDTKiLaeCzSr91DBF6ISMWM9RSWJmgmx+7gyfOWWIo0S7khbP1d8TGYmNmcah64yJHZtlLxf/83qpjW6CjEuVWibpYlGUCmwTnP+Oh1wzasXUEUI1d7diOiaaUOsSykPwl19eJe2Luu/V/YerWuO2iKMMJ3AK5+DDNTTgHprQAgoTeIZXeEMKvaB39LFoLaFi5hj+AH3+AHSTjvk=</latexit><latexit sha1_base64="muB8A9Kd/5t07ddTVEvIv1HMV9Y=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqeyqoMeiF48V7Ae0S8mm2TY0mw1JVihLf4QXD4p49fd489+YbfegrQ8GHu/NMDMvVIIb63nfqLS2vrG5Vd6u7Ozu7R9UD4/aJkk1ZS2aiER3Q2KY4JK1LLeCdZVmJA4F64STu9zvPDFteCIf7VSxICYjySNOiXVSp6/GfHBZGVRrXt2bA68SvyA1KNAcVL/6w4SmMZOWCmJMz/eUDTKiLaeCzSr91DBF6ISMWM9RSWJmgmx+7gyfOWWIo0S7khbP1d8TGYmNmcah64yJHZtlLxf/83qpjW6CjEuVWibpYlGUCmwTnP+Oh1wzasXUEUI1d7diOiaaUOsSykPwl19eJe2Luu/V/YerWuO2iKMMJ3AK5+DDNTTgHprQAgoTeIZXeEMKvaB39LFoLaFi5hj+AH3+AHSTjvk=</latexit><latexit sha1_base64="muB8A9Kd/5t07ddTVEvIv1HMV9Y=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqeyqoMeiF48V7Ae0S8mm2TY0mw1JVihLf4QXD4p49fd489+YbfegrQ8GHu/NMDMvVIIb63nfqLS2vrG5Vd6u7Ozu7R9UD4/aJkk1ZS2aiER3Q2KY4JK1LLeCdZVmJA4F64STu9zvPDFteCIf7VSxICYjySNOiXVSp6/GfHBZGVRrXt2bA68SvyA1KNAcVL/6w4SmMZOWCmJMz/eUDTKiLaeCzSr91DBF6ISMWM9RSWJmgmx+7gyfOWWIo0S7khbP1d8TGYmNmcah64yJHZtlLxf/83qpjW6CjEuVWibpYlGUCmwTnP+Oh1wzasXUEUI1d7diOiaaUOsSykPwl19eJe2Luu/V/YerWuO2iKMMJ3AK5+DDNTTgHprQAgoTeIZXeEMKvaB39LFoLaFi5hj+AH3+AHSTjvk=</latexit>

�4
<latexit sha1_base64="mivoeO4gaMmFDQHZcsE+ExEXWyY=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgh6LXjxWsB/QLiWbZtvQJBuSrFCW/ggvHhTx6u/x5r8x2+5BWx8MPN6bYWZepDgz1ve/vdLG5tb2Tnm3srd/cHhUPT7pmCTVhLZJwhPdi7ChnEnatsxy2lOaYhFx2o2md7nffaLasEQ+2pmiocBjyWJGsHVSd6AmbNioDKs1v+4vgNZJUJAaFGgNq1+DUUJSQaUlHBvTD3xlwwxrywin88ogNVRhMsVj2ndUYkFNmC3OnaMLp4xQnGhX0qKF+nsiw8KYmYhcp8B2Yla9XPzP66c2vgkzJlVqqSTLRXHKkU1Q/jsaMU2J5TNHMNHM3YrIBGtMrEsoDyFYfXmddK7qgV8PHhq15m0RRxnO4BwuIYBraMI9tKANBKbwDK/w5invxXv3PpatJa+YOYU/8D5/AHYYjvo=</latexit><latexit sha1_base64="mivoeO4gaMmFDQHZcsE+ExEXWyY=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgh6LXjxWsB/QLiWbZtvQJBuSrFCW/ggvHhTx6u/x5r8x2+5BWx8MPN6bYWZepDgz1ve/vdLG5tb2Tnm3srd/cHhUPT7pmCTVhLZJwhPdi7ChnEnatsxy2lOaYhFx2o2md7nffaLasEQ+2pmiocBjyWJGsHVSd6AmbNioDKs1v+4vgNZJUJAaFGgNq1+DUUJSQaUlHBvTD3xlwwxrywin88ogNVRhMsVj2ndUYkFNmC3OnaMLp4xQnGhX0qKF+nsiw8KYmYhcp8B2Yla9XPzP66c2vgkzJlVqqSTLRXHKkU1Q/jsaMU2J5TNHMNHM3YrIBGtMrEsoDyFYfXmddK7qgV8PHhq15m0RRxnO4BwuIYBraMI9tKANBKbwDK/w5invxXv3PpatJa+YOYU/8D5/AHYYjvo=</latexit><latexit sha1_base64="mivoeO4gaMmFDQHZcsE+ExEXWyY=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgh6LXjxWsB/QLiWbZtvQJBuSrFCW/ggvHhTx6u/x5r8x2+5BWx8MPN6bYWZepDgz1ve/vdLG5tb2Tnm3srd/cHhUPT7pmCTVhLZJwhPdi7ChnEnatsxy2lOaYhFx2o2md7nffaLasEQ+2pmiocBjyWJGsHVSd6AmbNioDKs1v+4vgNZJUJAaFGgNq1+DUUJSQaUlHBvTD3xlwwxrywin88ogNVRhMsVj2ndUYkFNmC3OnaMLp4xQnGhX0qKF+nsiw8KYmYhcp8B2Yla9XPzP66c2vgkzJlVqqSTLRXHKkU1Q/jsaMU2J5TNHMNHM3YrIBGtMrEsoDyFYfXmddK7qgV8PHhq15m0RRxnO4BwuIYBraMI9tKANBKbwDK/w5invxXv3PpatJa+YOYU/8D5/AHYYjvo=</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="8Z68kTpX5plyuTl98b6hEQunAFI=">AAAB43icbZDNSgMxFIXv1L9aq1a3boJFcFVmRNCl4MZlBacttEPJpJk2NJMJyR2hDH0INy4U8Z3c+TZm2i609UDg45yE3HtiLYVF3//2KlvbO7t71f3aQf3w6LhxUu/YLDeMhyyTmenF1HIpFA9RoOQ9bThNY8m78fS+zLvP3FiRqSecaR6ldKxEIhhFZ3UHeiKG17Vho+m3/IXIJgQraMJK7WHjazDKWJ5yhUxSa/uBrzEqqEHBJJ/XBrnlmrIpHfO+Q0VTbqNiMe6cXDhnRJLMuKOQLNzfLwqaWjtLY3czpTix61lp/pf1c0xuo0IonSNXbPlRkkuCGSl3JyNhOEM5c0CZEW5WwibUUIauobKEYH3lTehctQK/FTz6UIUzOIdLCOAG7uAB2hACgym8wBu8e9p79T6WdVW8VW+n8Efe5w9MnI2h</latexit><latexit sha1_base64="8Z68kTpX5plyuTl98b6hEQunAFI=">AAAB43icbZDNSgMxFIXv1L9aq1a3boJFcFVmRNCl4MZlBacttEPJpJk2NJMJyR2hDH0INy4U8Z3c+TZm2i609UDg45yE3HtiLYVF3//2KlvbO7t71f3aQf3w6LhxUu/YLDeMhyyTmenF1HIpFA9RoOQ9bThNY8m78fS+zLvP3FiRqSecaR6ldKxEIhhFZ3UHeiKG17Vho+m3/IXIJgQraMJK7WHjazDKWJ5yhUxSa/uBrzEqqEHBJJ/XBrnlmrIpHfO+Q0VTbqNiMe6cXDhnRJLMuKOQLNzfLwqaWjtLY3czpTix61lp/pf1c0xuo0IonSNXbPlRkkuCGSl3JyNhOEM5c0CZEW5WwibUUIauobKEYH3lTehctQK/FTz6UIUzOIdLCOAG7uAB2hACgym8wBu8e9p79T6WdVW8VW+n8Efe5w9MnI2h</latexit><latexit sha1_base64="CIxpGflfx0MnKI3EQrj0A5OFL9g=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJkdnaYmRVCyEd48aCIV7/Hm3/jbLIHTSxoKKq66e6KlODG+v63t7a+sbm1Xdop7+7tHxxWjo5bJs00wyZLRao7ETUouMSm5VZgR2mkSSSwHY3vcr/9hNrwVD7aicIwoUPJY86odVK7p0a8f1XuV6p+zZ+DrJKgIFUo0OhXvnqDlGUJSssENaYb+MqGU6otZwJn5V5mUFE2pkPsOippgiaczs+dkXOnDEicalfSkrn6e2JKE2MmSeQ6E2pHZtnLxf+8bmbjm3DKpcosSrZYFGeC2JTkv5MB18ismDhCmebuVsJGVFNmXUJ5CMHyy6ukdVkL/Frw4Ffrt0UcJTiFM7iAAK6hDvfQgCYwGMMzvMKbp7wX7937WLSuecXMCfyB9/kDdNiO9g==</latexit><latexit sha1_base64="mivoeO4gaMmFDQHZcsE+ExEXWyY=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgh6LXjxWsB/QLiWbZtvQJBuSrFCW/ggvHhTx6u/x5r8x2+5BWx8MPN6bYWZepDgz1ve/vdLG5tb2Tnm3srd/cHhUPT7pmCTVhLZJwhPdi7ChnEnatsxy2lOaYhFx2o2md7nffaLasEQ+2pmiocBjyWJGsHVSd6AmbNioDKs1v+4vgNZJUJAaFGgNq1+DUUJSQaUlHBvTD3xlwwxrywin88ogNVRhMsVj2ndUYkFNmC3OnaMLp4xQnGhX0qKF+nsiw8KYmYhcp8B2Yla9XPzP66c2vgkzJlVqqSTLRXHKkU1Q/jsaMU2J5TNHMNHM3YrIBGtMrEsoDyFYfXmddK7qgV8PHhq15m0RRxnO4BwuIYBraMI9tKANBKbwDK/w5invxXv3PpatJa+YOYU/8D5/AHYYjvo=</latexit><latexit sha1_base64="mivoeO4gaMmFDQHZcsE+ExEXWyY=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgh6LXjxWsB/QLiWbZtvQJBuSrFCW/ggvHhTx6u/x5r8x2+5BWx8MPN6bYWZepDgz1ve/vdLG5tb2Tnm3srd/cHhUPT7pmCTVhLZJwhPdi7ChnEnatsxy2lOaYhFx2o2md7nffaLasEQ+2pmiocBjyWJGsHVSd6AmbNioDKs1v+4vgNZJUJAaFGgNq1+DUUJSQaUlHBvTD3xlwwxrywin88ogNVRhMsVj2ndUYkFNmC3OnaMLp4xQnGhX0qKF+nsiw8KYmYhcp8B2Yla9XPzP66c2vgkzJlVqqSTLRXHKkU1Q/jsaMU2J5TNHMNHM3YrIBGtMrEsoDyFYfXmddK7qgV8PHhq15m0RRxnO4BwuIYBraMI9tKANBKbwDK/w5invxXv3PpatJa+YOYU/8D5/AHYYjvo=</latexit><latexit sha1_base64="mivoeO4gaMmFDQHZcsE+ExEXWyY=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgh6LXjxWsB/QLiWbZtvQJBuSrFCW/ggvHhTx6u/x5r8x2+5BWx8MPN6bYWZepDgz1ve/vdLG5tb2Tnm3srd/cHhUPT7pmCTVhLZJwhPdi7ChnEnatsxy2lOaYhFx2o2md7nffaLasEQ+2pmiocBjyWJGsHVSd6AmbNioDKs1v+4vgNZJUJAaFGgNq1+DUUJSQaUlHBvTD3xlwwxrywin88ogNVRhMsVj2ndUYkFNmC3OnaMLp4xQnGhX0qKF+nsiw8KYmYhcp8B2Yla9XPzP66c2vgkzJlVqqSTLRXHKkU1Q/jsaMU2J5TNHMNHM3YrIBGtMrEsoDyFYfXmddK7qgV8PHhq15m0RRxnO4BwuIYBraMI9tKANBKbwDK/w5invxXv3PpatJa+YOYU/8D5/AHYYjvo=</latexit><latexit sha1_base64="mivoeO4gaMmFDQHZcsE+ExEXWyY=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgh6LXjxWsB/QLiWbZtvQJBuSrFCW/ggvHhTx6u/x5r8x2+5BWx8MPN6bYWZepDgz1ve/vdLG5tb2Tnm3srd/cHhUPT7pmCTVhLZJwhPdi7ChnEnatsxy2lOaYhFx2o2md7nffaLasEQ+2pmiocBjyWJGsHVSd6AmbNioDKs1v+4vgNZJUJAaFGgNq1+DUUJSQaUlHBvTD3xlwwxrywin88ogNVRhMsVj2ndUYkFNmC3OnaMLp4xQnGhX0qKF+nsiw8KYmYhcp8B2Yla9XPzP66c2vgkzJlVqqSTLRXHKkU1Q/jsaMU2J5TNHMNHM3YrIBGtMrEsoDyFYfXmddK7qgV8PHhq15m0RRxnO4BwuIYBraMI9tKANBKbwDK/w5invxXv3PpatJa+YOYU/8D5/AHYYjvo=</latexit><latexit sha1_base64="mivoeO4gaMmFDQHZcsE+ExEXWyY=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgh6LXjxWsB/QLiWbZtvQJBuSrFCW/ggvHhTx6u/x5r8x2+5BWx8MPN6bYWZepDgz1ve/vdLG5tb2Tnm3srd/cHhUPT7pmCTVhLZJwhPdi7ChnEnatsxy2lOaYhFx2o2md7nffaLasEQ+2pmiocBjyWJGsHVSd6AmbNioDKs1v+4vgNZJUJAaFGgNq1+DUUJSQaUlHBvTD3xlwwxrywin88ogNVRhMsVj2ndUYkFNmC3OnaMLp4xQnGhX0qKF+nsiw8KYmYhcp8B2Yla9XPzP66c2vgkzJlVqqSTLRXHKkU1Q/jsaMU2J5TNHMNHM3YrIBGtMrEsoDyFYfXmddK7qgV8PHhq15m0RRxnO4BwuIYBraMI9tKANBKbwDK/w5invxXv3PpatJa+YOYU/8D5/AHYYjvo=</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="8Z68kTpX5plyuTl98b6hEQunAFI=">AAAB43icbZDNSgMxFIXv1L9aq1a3boJFcFVmRNCl4MZlBacttEPJpJk2NJMJyR2hDH0INy4U8Z3c+TZm2i609UDg45yE3HtiLYVF3//2KlvbO7t71f3aQf3w6LhxUu/YLDeMhyyTmenF1HIpFA9RoOQ9bThNY8m78fS+zLvP3FiRqSecaR6ldKxEIhhFZ3UHeiKG17Vho+m3/IXIJgQraMJK7WHjazDKWJ5yhUxSa/uBrzEqqEHBJJ/XBrnlmrIpHfO+Q0VTbqNiMe6cXDhnRJLMuKOQLNzfLwqaWjtLY3czpTix61lp/pf1c0xuo0IonSNXbPlRkkuCGSl3JyNhOEM5c0CZEW5WwibUUIauobKEYH3lTehctQK/FTz6UIUzOIdLCOAG7uAB2hACgym8wBu8e9p79T6WdVW8VW+n8Efe5w9MnI2h</latexit><latexit sha1_base64="8Z68kTpX5plyuTl98b6hEQunAFI=">AAAB43icbZDNSgMxFIXv1L9aq1a3boJFcFVmRNCl4MZlBacttEPJpJk2NJMJyR2hDH0INy4U8Z3c+TZm2i609UDg45yE3HtiLYVF3//2KlvbO7t71f3aQf3w6LhxUu/YLDeMhyyTmenF1HIpFA9RoOQ9bThNY8m78fS+zLvP3FiRqSecaR6ldKxEIhhFZ3UHeiKG17Vho+m3/IXIJgQraMJK7WHjazDKWJ5yhUxSa/uBrzEqqEHBJJ/XBrnlmrIpHfO+Q0VTbqNiMe6cXDhnRJLMuKOQLNzfLwqaWjtLY3czpTix61lp/pf1c0xuo0IonSNXbPlRkkuCGSl3JyNhOEM5c0CZEW5WwibUUIauobKEYH3lTehctQK/FTz6UIUzOIdLCOAG7uAB2hACgym8wBu8e9p79T6WdVW8VW+n8Efe5w9MnI2h</latexit><latexit sha1_base64="CIxpGflfx0MnKI3EQrj0A5OFL9g=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJkdnaYmRVCyEd48aCIV7/Hm3/jbLIHTSxoKKq66e6KlODG+v63t7a+sbm1Xdop7+7tHxxWjo5bJs00wyZLRao7ETUouMSm5VZgR2mkSSSwHY3vcr/9hNrwVD7aicIwoUPJY86odVK7p0a8f1XuV6p+zZ+DrJKgIFUo0OhXvnqDlGUJSssENaYb+MqGU6otZwJn5V5mUFE2pkPsOippgiaczs+dkXOnDEicalfSkrn6e2JKE2MmSeQ6E2pHZtnLxf+8bmbjm3DKpcosSrZYFGeC2JTkv5MB18ismDhCmebuVsJGVFNmXUJ5CMHyy6ukdVkL/Frw4Ffrt0UcJTiFM7iAAK6hDvfQgCYwGMMzvMKbp7wX7937WLSuecXMCfyB9/kDdNiO9g==</latexit><latexit sha1_base64="mivoeO4gaMmFDQHZcsE+ExEXWyY=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgh6LXjxWsB/QLiWbZtvQJBuSrFCW/ggvHhTx6u/x5r8x2+5BWx8MPN6bYWZepDgz1ve/vdLG5tb2Tnm3srd/cHhUPT7pmCTVhLZJwhPdi7ChnEnatsxy2lOaYhFx2o2md7nffaLasEQ+2pmiocBjyWJGsHVSd6AmbNioDKs1v+4vgNZJUJAaFGgNq1+DUUJSQaUlHBvTD3xlwwxrywin88ogNVRhMsVj2ndUYkFNmC3OnaMLp4xQnGhX0qKF+nsiw8KYmYhcp8B2Yla9XPzP66c2vgkzJlVqqSTLRXHKkU1Q/jsaMU2J5TNHMNHM3YrIBGtMrEsoDyFYfXmddK7qgV8PHhq15m0RRxnO4BwuIYBraMI9tKANBKbwDK/w5invxXv3PpatJa+YOYU/8D5/AHYYjvo=</latexit><latexit sha1_base64="mivoeO4gaMmFDQHZcsE+ExEXWyY=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgh6LXjxWsB/QLiWbZtvQJBuSrFCW/ggvHhTx6u/x5r8x2+5BWx8MPN6bYWZepDgz1ve/vdLG5tb2Tnm3srd/cHhUPT7pmCTVhLZJwhPdi7ChnEnatsxy2lOaYhFx2o2md7nffaLasEQ+2pmiocBjyWJGsHVSd6AmbNioDKs1v+4vgNZJUJAaFGgNq1+DUUJSQaUlHBvTD3xlwwxrywin88ogNVRhMsVj2ndUYkFNmC3OnaMLp4xQnGhX0qKF+nsiw8KYmYhcp8B2Yla9XPzP66c2vgkzJlVqqSTLRXHKkU1Q/jsaMU2J5TNHMNHM3YrIBGtMrEsoDyFYfXmddK7qgV8PHhq15m0RRxnO4BwuIYBraMI9tKANBKbwDK/w5invxXv3PpatJa+YOYU/8D5/AHYYjvo=</latexit><latexit sha1_base64="mivoeO4gaMmFDQHZcsE+ExEXWyY=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgh6LXjxWsB/QLiWbZtvQJBuSrFCW/ggvHhTx6u/x5r8x2+5BWx8MPN6bYWZepDgz1ve/vdLG5tb2Tnm3srd/cHhUPT7pmCTVhLZJwhPdi7ChnEnatsxy2lOaYhFx2o2md7nffaLasEQ+2pmiocBjyWJGsHVSd6AmbNioDKs1v+4vgNZJUJAaFGgNq1+DUUJSQaUlHBvTD3xlwwxrywin88ogNVRhMsVj2ndUYkFNmC3OnaMLp4xQnGhX0qKF+nsiw8KYmYhcp8B2Yla9XPzP66c2vgkzJlVqqSTLRXHKkU1Q/jsaMU2J5TNHMNHM3YrIBGtMrEsoDyFYfXmddK7qgV8PHhq15m0RRxnO4BwuIYBraMI9tKANBKbwDK/w5invxXv3PpatJa+YOYU/8D5/AHYYjvo=</latexit><latexit sha1_base64="mivoeO4gaMmFDQHZcsE+ExEXWyY=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgh6LXjxWsB/QLiWbZtvQJBuSrFCW/ggvHhTx6u/x5r8x2+5BWx8MPN6bYWZepDgz1ve/vdLG5tb2Tnm3srd/cHhUPT7pmCTVhLZJwhPdi7ChnEnatsxy2lOaYhFx2o2md7nffaLasEQ+2pmiocBjyWJGsHVSd6AmbNioDKs1v+4vgNZJUJAaFGgNq1+DUUJSQaUlHBvTD3xlwwxrywin88ogNVRhMsVj2ndUYkFNmC3OnaMLp4xQnGhX0qKF+nsiw8KYmYhcp8B2Yla9XPzP66c2vgkzJlVqqSTLRXHKkU1Q/jsaMU2J5TNHMNHM3YrIBGtMrEsoDyFYfXmddK7qgV8PHhq15m0RRxnO4BwuIYBraMI9tKANBKbwDK/w5invxXv3PpatJa+YOYU/8D5/AHYYjvo=</latexit><latexit sha1_base64="mivoeO4gaMmFDQHZcsE+ExEXWyY=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgh6LXjxWsB/QLiWbZtvQJBuSrFCW/ggvHhTx6u/x5r8x2+5BWx8MPN6bYWZepDgz1ve/vdLG5tb2Tnm3srd/cHhUPT7pmCTVhLZJwhPdi7ChnEnatsxy2lOaYhFx2o2md7nffaLasEQ+2pmiocBjyWJGsHVSd6AmbNioDKs1v+4vgNZJUJAaFGgNq1+DUUJSQaUlHBvTD3xlwwxrywin88ogNVRhMsVj2ndUYkFNmC3OnaMLp4xQnGhX0qKF+nsiw8KYmYhcp8B2Yla9XPzP66c2vgkzJlVqqSTLRXHKkU1Q/jsaMU2J5TNHMNHM3YrIBGtMrEsoDyFYfXmddK7qgV8PHhq15m0RRxnO4BwuIYBraMI9tKANBKbwDK/w5invxXv3PpatJa+YOYU/8D5/AHYYjvo=</latexit><latexit sha1_base64="mivoeO4gaMmFDQHZcsE+ExEXWyY=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgh6LXjxWsB/QLiWbZtvQJBuSrFCW/ggvHhTx6u/x5r8x2+5BWx8MPN6bYWZepDgz1ve/vdLG5tb2Tnm3srd/cHhUPT7pmCTVhLZJwhPdi7ChnEnatsxy2lOaYhFx2o2md7nffaLasEQ+2pmiocBjyWJGsHVSd6AmbNioDKs1v+4vgNZJUJAaFGgNq1+DUUJSQaUlHBvTD3xlwwxrywin88ogNVRhMsVj2ndUYkFNmC3OnaMLp4xQnGhX0qKF+nsiw8KYmYhcp8B2Yla9XPzP66c2vgkzJlVqqSTLRXHKkU1Q/jsaMU2J5TNHMNHM3YrIBGtMrEsoDyFYfXmddK7qgV8PHhq15m0RRxnO4BwuIYBraMI9tKANBKbwDK/w5invxXv3PpatJa+YOYU/8D5/AHYYjvo=</latexit>

Figure 3.1: Example tree with N = 3 tips. Assume trait data Yi are fully observed

for i = {1, 2, 3}. We write Yb4c and Yd4e to denote the observed data below and above

node 4 respectively. Specifically, Yb4c = {Y1,Y2} while Yd4e = {Y3}. Partial likelihoods

p(Yb4c |Y4) = p(Y1,Y2 |Y4) and p(Y4 |Yd4e) = p(Y4 |Y3).

In the following, we drop the dependence of the log-likelihood on φ, Σ and F for nota-

tional convenience. To begin,

∂

∂φi
[log p(Y)] =

∂

∂φi
[p(Y)]

/
p(Y)

=
∂

∂φi

[∫
p(Ybic |Yi)p(Yi |Ydie)p(Ydie)dYi

]/
p(Y)

=

∫
∂

∂φi

[
p(Ybic |Yi)p(Yi |Ydie)p(Ydie)

]
dYi

/
p(Y)

=

∫
p(Ybic |Yi)

∂

∂φi

[
p(Yi |Ydie)

]
p(Ydie)dYi

/
p(Y).

(3.10)

The last equality above follows from the fact that φi is associated only with the branch

above node i. Therefore when we condition on Yi, Ybic is independent of φi. Similarly,

Ydie evolves independent of φi. To proceed with the differential above, we use the fact that

p(Yi |Ydie) follows a MVN distribution with as of yet undetermined mean ni and precision

Qi (see section (3.5.1) for a detailed derivation). We extract the middle term from Equation
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(3.10) and find

∂

∂φi

[
p(Yi |Ydie)

]
=

1

2

{
(Yi − ni)

t Qi ti
∂

∂φi
[V(φi)]Qi (Yi − ni)

−tr

[
Qi ti

∂

∂φi
[V(φi)]

]}
p(Yi |Ydie),

(3.11)

using the differential properties

dQi = −Qi

(
dQ−1i

)
Qi and

d
∣∣Q−1i ∣∣ =

∣∣Q−1i ∣∣tr[QidQ−1i
]
,

(3.12)

found in, e.g., Petersen et al. (2008).

To simplify notation, we let function

F(Yi) =
1

2

{
(Yi − ni)

t Υi (Yi − ni)− tr[χi]
}
, (3.13)

where Υi = Qi ti
∂
∂φi

[V(φi)]Qi and χi = Qi ti
∂
∂φi

[V(φi)]. Substituting Equation (3.13) back

into Equation (3.10), we observe that

∂

∂φi
[log p(Y)] =

∫
F(Yi) p(Ybic |Yi)p(Yi |Ydie)p(Ydie)dYi

/
p(Y)

=

∫
F(Yi) p(Yi |Y)dYi

= E[F(Yi) | Y] .

(3.14)

When Yi is fully observed (typically i ≤ N), this expectation collapses to the direct evalua-

tion of F(Yi). When i = N+1, . . . , 2N−2 or if Yi is partially observed for i = 1, . . . , N , we

require p(Yi |Y). From Bayes’ theorem, p(Yi |Y) ∝ p(Ybic |Yi)p(Yi |Ydie). Partial likeli-

hood p(Ybic |Yi) is proportional to a MVN density characterized by computable mean mi

and precision Pi (Pybus et al., 2012). Using this fact, p(Yi |Y) becomes MVN with mean

µi = Zi (Pimi + Qini) and variance Zi = [Pi + Qi]
−1 . When tip i is partially observed, we

partition Yi = (Yu
i , Yo

i )
t into its unobserved and observed entries. Using properties of the

conditional MVN, p(Yi |Y) becomes degenerate with mean

µi =

nu
i − (Qu

i )
−1 Quo

i (Yo
i − no

i )

Yo
i

 (3.15)
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and variance

Zi =

(Qu
i )
−1 0

0 0

 . (3.16)

Finally, for both partially and completely unobserved cases above,

E[F(Yi) | Y] =
1

2

{
tr[ZiΥi] + (µi − ni)

t Υi (µi − ni)− tr[χi]
}
. (3.17)

Equation (3.17) provides a recipe to compute ∇φ log p(Y |φ,Σ,F ) using the means and

precisions that characterize partial data likelihoods p(Yi |Ydie) and p(Ybic |Yi).

3.2.4 Tree Traversals

We introduce post- and pre-order tree traversals to recursively calculate all partial data

likelihood means and precisions in computational complexity O(N) that scales linearly with

N . To begin, let nodes i and j be daughters of node k. Following Hassler et al. (2020), let

δk = diag(δk1, . . . δkP ) for k = 1, . . . , N be a diagonal matrix with indicator elements δkp that

take value 1 if Ykp is observed and 0 if not. For the post-order traversal,

p(Ybic |Yi) ∝ MVN(Yi; mi,Pi) , (3.18)

with post-order mean mi and precision Pi. For k = 1, . . . , 2N − 1 in post-order, we build

the precision via

Pk =


∞× δk if k is a tip

(P∗i + P∗j) otherwise,

(3.19)

with the definition that ∞× 0 = 0 and

P∗i =
(
P−i + tiδiV(φi) δi

)−
and P∗j =

(
P−j + tjδjV(φj) δj

)−
, (3.20)

where the pseudo-inverse, defined and developed by Hassler et al. (2020); Bastide et al.

(2018), is described in Appendix (3.5.2). At the tips, we build the mean mk = δk � Yk

where � is the elementwise dot product, and for the internal nodes, mk is a solution to

Pkmk = (P∗imi + P∗jmj). (3.21)
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For a proof of these post-order updates, see Hassler et al. (2020) (Supplemental Material).

To compute p(Yi |Ydie), we traverse the tree in pre-order fashion according to our gener-

alized version of the recursive algorithm proposed by Cybis et al. (2015). See section (3.5.1)

for a derivation of our generalized pre-order update. For the pre-order traversal,

p(Yi |Ydie) = MVN(Yi; ni,Qi) . (3.22)

For i = 2N − 1, . . . , 1 looking down the tree, we update our pre-order precision,

Qi =


κ0Σ

−1 if i is root(
(Q∗i )

−1 + tiV(φi)
)−1

otherwise

(3.23)

at each node where

Q∗i = P∗j + Qk. (3.24)

We also keep track of the pre-order mean at each node via

ni =


ν0 if i is root

(Q∗i )
−1(P∗jmj + Qknk

)
otherwise.

(3.25)

Both traversals visit each node exactly once and perform a matrix inversion as their most

costly operation, providing an O(NP 3) algorithm. However, as we observe in Equation (3.2),

generally V(φi) = g(φi) Σ. In this case, we can further reduce the computational complexity

to O(NP 2) by factoring out Σ. Instead of inverting V(φi) at each step, we only need to

invert Σ at most once per likelihood or gradient evaluation.

3.3 Results

3.3.1 West Nile Virus

West Nile virus (WNV) is responsible for more than 1,500 deaths and caused over 700,000

illnesses since first reported in North America in 1999. The virus typically spreads via

mosquito bites; however, the primary host is birds. First identified in New York City, WNV
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spread to the Pacific coast by 2003 and reached south into Argentina by 2005 (Petersen

et al., 2013). We examine whole aligned viral genomes (11,029 nt) and geographic data on

104 cases of WNV collected between 1999 and 2007 (Pybus et al., 2012). In cases where

only the year of sampling is known, we set the sampling date to the midpoint of that year.

Previous authors have recorded latitude and longitude geographic sampling information by

converting zip code locations using ZIPList5. For 27 of the specimens, only the U.S. or

Mexican state of discovery is known and so we have augmented sampling data with the

coordinates of the centroid of the state (Pybus et al., 2012).

Here we study the simultaneous evolution and dispersal of WNV as it spreads across

North America, following the modeling choices of Pybus et al. (2012). We define geographic

location as our trait of interest Y within a RRW and infer rates φ using our new HMC

method. In two separate inference scenarios, we compare the computational efficiency of

our method to the random-scan UMH approach employed by Pybus et al. (2012). The

UMH kernel proposes new branch-rate multipliers individually by randomly scaling up or

down the current φi. Under the UMH, all dimensions of φ share the same adaptable tuning

constant that controls the scaling range. Additionally, we compare our method to a less naive

univariable proposal that provides each dimension of φ its own adaptable tuning constant.

We term this transition kernel multiple Metropolis-Hastings (MMH).

To begin, we set up a RRW model with log-normal prior on rates φ with mean = 1

and standard deviation s and use a general time-reversible (GTR) + Γ substitution model

with a log-normal relaxed molecular clock. We use the UMH transition kernel to run a

250 million state MCMC chain simulation to obtain posterior mean estimates of Σ and

s. In scenario (a) we use these fixed model parameters and a topology drawn from the

posterior to strictly sample φ using HMC and univariable transition kernels. Under this fixed

analysis we run our HMC-based chain for 1 million states and UMH/MMH-based chains for

150 million states. We use effective sample size (ESS) of the posterior φi samples for all i

divided by computational runtime to evaluate the performance of each MCMC approach and

report densities of ESS/second across all branches in Figure (3.2). ESS/second is averaged

across five runs each with uniform (0-10) random initial branch-rate multipliers. The median
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Figure 3.2: Comparing computational efficiency of Hamiltonian Monte Carlo (HMC) to

univariable Metropolis-Hastings (UMH) and multiple Metropolis Hastings (MMH) transi-

tion kernels through effective sample size (ESS) per unit time in West Nile virus (WNV)

phylogeography.

ESS/second across φ is 71.0, 0.18 and 0.13 for the HMC, MMH and UMH transition kernels

respectively. This demonstrates an over 394-fold speed increase. Additionally, the minimum

ESS/second is 4.77 with HMC, 0.04 with MMH and 0.05 with UMH, exhibiting a 95-fold

speed-up for the “least well” explored φi.

In scenario (b), we use a random starting tree and jointly estimate all parameters (φ,Σ,

s, F and θ) of the full posterior (3.4). Since branch-specific φi are no longer identifiable

when F is random, we compare square jump distance across all φ between samples from

the posterior under both MCMC regimes to compare efficiency. We run HMC chains for

22.5 million states so that we are sampling from the posterior distribution of all parameters

and we save the state of BEAST. Subsequently, we run both HMC and UMH chains from

the same saved states and compute lag-7 square jump distance to adjust for the relative

weight of the transition kernel in the full analysis. Since the UMH sampler updates only one

branch-rate multiplier at a time, we compare square jump distance between samples of our

HMC chain with samples from the UMH chain that are lagged (2N−2)× (i.e. 206×) farther
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apart. We run each MCMC simulation until we obtain 5000 samples from the posterior and

report the average median across five separate runs. In this comparison, we find that the

average median square jump distances from five separate runs is 1457 and 128.2 for the HMC

and UMH chains respectively.

In Figure (3.3) we report the MCC tree, obtained from applying HMC to the RRW

model as described in scenario (b), where substitution rate variation is accounted for by

the molecular clock model. The branch with the highest posterior dispersal rate starts the

WN02 lineage identified by Gray et al. (2010). The clade of New York isolates sampled in

1999, however, maintains a much slower dispersal rate. We obtain results under this joint

inference test by running an MCMC chain until we observe ESS > 200 for all parameters of

interest, namely the height of the tree, substitution model parameters, the diffusion matrix

Σ, prior standard deviation s and 90% of the dimensions of φ. We choose only 90% because

many dimensions of φ exhibit multi-modality and therefore experience poor mixing when

the tree is random. Under the UMH transition kernel this analysis takes approximately 45.8

hours. Under HMC, this analysis completes in 7.1 hours, a 6.4-fold speed-up. We report

average times across five runs. The ESS-limiting parameters in each case are the multi-modal

branch-rate multipliers.

3.3.2 Mammalian Life History

Life history theory aims to explain how traits such as adult body mass, litter size and

lifespan evolve to optimize reproductive success (Stearns, 2000). Life history theory finds

important applications in determining a species’ fecundity and predicting extinction risk in

response to changing environmental stimuli (Pacifici et al., 2017; Fritz et al., 2009; de Silva

and Leimgruber, 2019), but due to the sparseness of much life history data, it is essential to

understand how traits covary to make meaningful predictions (Santini et al., 2016). To de-

termine which traits covary, comparative mammalian life-history studies posit a ‘fast–slow’

continuum, claiming small mammals are typically ‘fast’, characterized by early maturation,

large litters and shorter lifespans, while larger mammals are typically ‘slow’ and present
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Figure 3.3: Maximum clade credibility (MCC) tree resulting from Hamiltonian Monte Carlo

(HMC) inference under phylogeographic relaxed random walk (RRW) of West Nile virus.

We color branches by posterior mean branch-rate parameters φ. Tips are labeled according

to the US or Mexican state of origin.
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contrasting characteristics (Oli, 2004; Millar and Zammuto, 1983). Under this framework,

certain traits such as gestation length, weaning age and body mass are predicted to be posi-

tively correlated, but reported estimates of positive correlation from data may be artifacts of

the restrictive assumptions of strict Brownian diffusion modeling. Here we re-evaluate this

claim by comparing inferred trait correlation under the strict Brownian diffusion model with

estimates under the RRW of trait evolution made tractable through O(N) HMC sampling.

Under the RRW, we infer correlation between five life history traits from the PanTHERIA

data set (Jones et al., 2009), namely body mass, litter size, gestation length, weaning age

and litter frequency across 3650 mammalian species related by the fixed supertree of Fritz

et al. (2009). To obtain this subset of the supertree, we only consider taxa for which at

least one of these five traits is observed. We take the intersection of this set of taxa with

those in the fixed supertree of Fritz et al. (2009) and prune all other observations from the

tree. We log-transform and standardize the trait measurements and subsequently estimate

posterior mean correlations between each pair of traits under the RRW using an HMC-based

chain for 300 thousand states. We model diffusion using the rate-scalar parameterization of

V(φi) noted in Equation (3.2). This modeling choice assumes that all taxa share a common

correlation structure across the tree. To gauge the effect of a heterogeneous diffusion process

on the correlation between traits, we also make inference using the strict Brownian diffusion

model where the φ are all identically 1. Here we perform MCMC inference on the diffusion

matrix Σ for 50 thousand states. Under the RRW, we find the variance in body mass is

1.17 with 95% high posterior density (HPD) interval {1.02, 1.33}, gestation length is 0.73

{0.62, 0.83}, weaning age is 2.94 {2.49, 3.39}, litter frequency is 5.47 {4.62, 6.40}, and litter

size is 2.82 {2.47, 3.17}. We report posterior mean estimates of correlation between each pair

of traits under both the RRW and strict Brownian diffusion in Figure (3.4). In most cases,

the RRW reassuringly confirms analysis under the more limited model. However, in some

cases our confidence in the sign of the correlation differs between models and in one instance

the sign of the posterior mean correlation disagrees. Under the RRW, we observe positive

posterior mean correlation of 0.017 between litter frequency and litter size with posterior

odds ratio 1.96 that the correlation is positive. Under the strict Brownian diffusion model
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Figure 3.4: Posterior mean correlation between mammalian life history traits under the

RRW and strict Brownian diffusion model. Shape of ellipse indicates strength and sign of

correlation, while colors indicate the posterior probability that the correlation is positive

(red) or negative (blue).
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we observe a negative posterior mean correlation of −0.015 with posterior odds ratio 1.90

of being negative, indicating slightly weaker belief in the correlation’s sign under the strict

model.

3.4 Discussion

Previous MCMC techniques to investigate trait evolution under the RRW model scale poorly

with large data sets. Specifically the UMH transition kernel is ineffective for sampling

correlated, high dimensional parameter space. We provide a remedy by using an HMC

transition kernel to sample all branch-rate multipliers simultaneously. To improve the speed

of HMC we derive an algorithm for calculating the gradient of the trait data log-likelihood.

This gradient calculation achieves O(N) computational speed, a vast improvement compared

to both numerical and pruning methods for calculating the gradient that typically require

O(N2).

We observe over 300-fold speed-up when comparing, on a fixed phylogeny, our HMC

transition kernel to both MMH and UMH in the spread of the WNV across North America

in the early 2000s. Additionally, we note here that HMC on the branch-rate multipliers also

improves sampling of hyperparameter s as suggested by Equation (3.5c). HMC offers an

over 6-fold speed increase in total run-time when jointly estimating parameters of the RRW,

substitution model and phylogeny. The resulting MCC tree reveals that the largest dispersal

rate precedes the most recent common ancestor of the WN02 lineage. Subsequently, the

dispersal rates slow down through the WN02 clade. This suggests that this clade developed

after some rapid geographic displacement. Interestingly, the appearance of smaller branch-

rate multipliers within the WN02 lineage is consistent with the slowing speed of sequence

evolution as described in Snapinn et al. (2007).

As exhibited in Figure (3.2), ESS from posterior sampling accumulates at variable speed

across the branches of the tree. To further improve the sampling of our HMC algorithm,

one might use an approximation of the posterior covariance of φ for the mass matrix M

to appropriately weight momentum updates in the HMC algorithm (Neal, 2011). Possible
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approximations include the Hessian of the log-posterior (a local approximation of the cur-

vature of branch-rate multiplier space) or the sample variance across each dimension. An

important consideration in choosing an appropriate M is whether one is studying under a

fixed or random phylogeny F . Since varying F in the posterior often creates multimodal

distributions of φ, local approximations such as the Hessian may be of limited assistance in

such cases.

We show in our application to mammalian life history that our computationally efficient

HMC algorithm imbues the RRW model with the ability to handle large trees with thousands

of taxa. By applying the RRW model to this massive example we confirm that large mam-

mals have ‘slower’ life history characteristics, exhibited by the positive correlation between

body mass, gestation length and weaning age, while smaller mammals scale in the opposite

manner and tend to have high litter frequency and size, see Figure (3.4). The posterior mean

correlation between litter frequency and litter size changes sign under each model, but with

low posterior probability reflecting a lack of correlation between these traits. Note that the

diffusion variance choices listed in Equation (3.2) all assume that the branch-rate multipliers

scale each trait equally. Future modeling work could relax this assumption by letting each

element of the diffusion matrix be a function of the branch-rate multipliers. Importantly,

our method allows us to obtain posterior estimates for the correlation matrix in 32 hours

while the previous UMH method fails to estimate the correlation matrix and branch-rate

multipliers with greater than 200 ESS after 10 days.

In a time where biological data are more prolific than ever, scalable approaches to complex

models of evolution such as the RRW prove increasingly useful in a variety of applications.

From spatial epidemiology where determining the dispersal rate of an infectious disease is

crucial, to evolutionary ecology where understanding life-history can provide insight into

declining animal populations, the analysis of data is becoming a bottleneck to the scientific

process and the need for computationally faster approaches stands evident. We hope that

this work will serve to improve the speed of such analyses.
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3.5 Appendices

3.5.1 Pre-order partial likelihood

Here we derive a generalized version of the pre-order recursive algorithm proposed by Cybis

et al. (2015) to compute p(Yi |Ydie) for all i in O(N). We begin with the law of total

probability,

p(Yi |Ydie) ∝
∫
p(Yi |Yk)p(Ybjc |Yk)p(Yk |Ydke) dYk (3.26)

for node i with parent k and sibling j. Recalling that

p(Yi |Yk) = MVN(Yi; Yk, tiV(φi)) , and

p(Ybjc |Yk) ∝ MVN
(
Yk; mj, (P

∗
j)
−1) , (3.27)

we identify Equation (3.26) as a recursive expression whose solution has the form

p(Yi |Ydie) = MVN(Yi; ni,Qi) , (3.28)

with presently undetermined pre-order mean ni and pre-order precision Qi.

We unravel these quantities by first identifying that p(Y2N−1 |Yd2N−1e) = p(Y2N−1)

and set n2N−1 = ν0 and Q2N−1 = κ0Σ
−1. Then proceeding in pre-order fashion for i =

2N − 2, . . . , 1

Qi =
(

(Q∗i )
−1 + tiV(φi)

)−1
where

Q∗i = P∗j + Qk, and

ni = (Q∗i )
−1(P∗jmj + Qknk

)
.

(3.29)

3.5.2 Pseudo-inverse

The pseudo-inverse used in the post-order tree traversal and defined by Bastide et al. (2018)

and Hassler et al. (2020) is an operation for inverting precision and variance matrices with

diagonal entries that take the value∞. To invert a diagonal precision matrix, Pi with entries

∞ and 0, we define∞− = 0 and 0− =∞. To invert the variance matrix,
(
P−i + tiδiV(φi) δi

)
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we invert the block matrix of observed trait covariation and invert the remaining diagonal

elements using the convention that ∞− = 0.
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CHAPTER 4

Shrinkage-based random local clocks with scalable

inference

4.1 Introduction

Molecular clock models are ubiquitous phylogenetic instruments for divergence-time esti-

mation with applications ranging from timing placental mammal radiation (Springer et al.,

2003) to estimating influenza diversity (Davidson et al., 2014). To capture clock rate vari-

ation along the lineages of a phylogeny, Thorne et al. (1998) propose an autocorrelated, or

“heritable” rate model while others (Drummond and Suchard, 2010; Yoder and Yang, 2000)

assume there exist, at most, a small number of “local” clocks on any given tree. In each

case, closely related lineages maintain similar or even identical evolutionary rates. Auto-

correlated rate models are computationally appealing due to the induced smooth transition

in rate from parent to child node along the tree but may inappropriately shrink large rate

changes between adjacent nodes (Smith et al., 2010). On the other hand, local clock models

allow large rate changes to exist but can be computationally unpalatable on large problems

due to the combinatorial complexity of choosing (or learning) the number and location of

local clocks. When these quantities are simultaneously learned with the tree, Drummond

and Suchard (2010) call this the random local clock (RLC) model.

Due to these complications, some authors employ uncorrelated relaxed clocks such as the

uncorrelated log-normal relaxed molecular clock (Drummond et al., 2006), but this generates

excessive rate heterogeneity in cases where clock rate changes are thought to be more punc-

tuated, for example between HIV subtypes (Bletsa et al., 2019). For a more in-depth review

of various molecular clock models, see Ho and Duchêne (2014). Here we propose an auto-
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correlated clock model where we place a Bayesian bridge shrinkage prior on the increment

between parent and child log branch rates. Among various shrinkage priors in the litera-

ture, the Bayesian bridge has a unique advantage in having both a collapsed spike-and-slab

representation as well as a Gaussian scale-mixture form. The first representation intuitively

places large mass near zero reflecting our a priori belief that most increments should be zero

but has heavy tails that allow for estimating large rate changes in an approximately unbiased

manner. Like many other shrinkage priors, the Bayesian bridge includes a “global scale” nui-

sance parameter about which learning, in the absence of prior information, typically limits

the speed of inference. Polson et al. (2014) develop a framework to facilitate efficient Gibbs

sampling of this nuisance parameter in a regression context and we utilize their approach

here. On the other hand, the second representation of the Bayesian bridge as Gaussian scale-

mixture is differentiable almost everywhere. We exploit this feature and develop an efficient

Hamiltonian Monte Carlo (HMC) sampler over the space of increments that employs recent

work on closed form gradient representations (Ji et al., 2020) to make our shrinkage-clock

inference scalable to large trees. Crucial to our inference, we define recursive algorithms to

compute the requisite joint gradient of the log posterior in our transformed increment space

with computational complexity that scales only linearly with the number of tips in the tree.

We implement our method in BEAST (Suchard et al., 2018), a popular software package

for reconstructing rooted, time-measured phylogenies. Due to our efficient inference machin-

ery, our shrinkage-clock achieves the tractable benefits of the autocorrelated rate model and

simultaneously maintains the flexibility of more punctuated local clock models.

We demonstrate the inference gains of our approach versus the RLC across 20 different

simulated data sets of a 40 taxa tree. We additionally compare the accuracy of our shrinkage-

clock to the RLC by studying the adaptive radiation of rodents and other mammals, and

demonstrate utility of the heavy-tailed Bayesian bridge shrinkage prior by comparing it to

the more ubiquitous Laplace prior. Finally, we deploy our shrinkage-clock to estimate the

existence, location and magnitude of host-specific clock rates in surface glycoproteins of the

influenza A virus.
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4.2 Shrinkage-based random local clocks

4.2.1 Setup

Consider a rooted, bifurcating tree F with N tips and N − 1 internal (ancestral) nodes. We

index tips i = 1, . . . , N and internal nodes i = N + 1, . . . , 2N −2. We designate node 2N −1

to be the root of the tree. Let pa(i) denote the parent of the ith node and let branch length

ti connect node i with its parent.

4.2.2 The relaxed clock

Aligned molecular sequence data S evolve according to a continuous time Markov process

defined by infinitesimal rate matrix Q. In our examples, Q is a 4× 4 matrix that describes

the relative substitution process between nucleotides along the branches in F , but in gen-

eral, Q may be of larger dimension to accommodate alignments at the codon or amino acid

resolution, see Yang (2014) for reference. Each site k of S evolves independently and iden-

tically according to Q but may have its own site-specific rate of evolution sk. A priori we

specify that E[sk] = 1. Under the relaxed clock model, the transition probability matrix for

branch i,

Pi = exp {ρitiskQ} , (4.1)

where branch-rate multiplier ρi is the number of expected substitutions per unit time.

To resolve identifiability issues between the height of the tree and branch-rate multipliers

ρ = {ρ1, . . . , ρ2N−2}, we employ the rescaling proposed by Drummond and Suchard (2010).

Under this transform, each branch-rate multiplier is the product of clock rate ri and location

parameter γ scaled by the inverse of total expected substitutions per total tree time,

ρi = γri

∑
k tk∑
k rktk

. (4.2)

This results in one fewer degree of freedom since∑
i ρiti∑
i ti

= γ. (4.3)
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For heterochronous data, we estimate γ, but for ultrametric studies where the height of the

tree is not identifiable we fix γ = 1.

4.2.3 Autocorrelated shrinkage-clock

We assume clock rates r = {r1, . . . , r2N−2} are autocorrelated and model the incremental

difference φi between branch i’s clock rate and its parent lineage clock rate,

log ri − log rpa(i) = φi, for i ∈ {1, . . . , 2N − 2} and r2N−1 = 1. (4.4)

Under this parameterization, the increments φ = {φ1, . . . φ2N−2} ∈ R2N−2 are a linear trans-

formation of log r. To shrink the total number of rate changes along the tree, we let φi
iid∼ Pφ

such that E[φi] = 0. Typically, Pφ may follow a Gaussian (Thorne et al., 1998) or Laplace

distribution. We choose the flexible, heavy-tailed, Bayesian bridge prior (Polson et al., 2014)

on the increments,

Pφ ∝ exp

{
−
∣∣∣∣φiµ
∣∣∣∣α} , (4.5)

where µ > 0 is termed the “global scale” and α ∈ (0, 1] changes the shape of Pφ where

smaller α places more mass near zero. See Figure (4.1) for a comparison of the bridge to

common shrinkage priors. Choosing α to be close to 0 forces the Bayesian bridge prior closer

to best subset selection when used in a regression setting, while α = 1 matches the Laplace

prior. In all examples, we set α = 1
4

to enforce slightly stronger shrinkage than the default

0.5 employed by Polson et al. (2014). Since increments are independent, the joint prior is

simply the product

p(φ |µ) ∝
2N−2∏
i=1

exp

{
−
∣∣∣∣φiµ
∣∣∣∣α} . (4.6)

4.3 Inference

We follow the computationally efficient sampling approach outlined by Polson et al. (2014)

and view the prior on the increments as a scale mixture of normals (West, 1987),

p(φi |µ) =

∫
p(φi |λi, µ) dλi, (4.7)
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Figure 4.1: The Bayesian bridge prior places more mass near 0 and has heavier tails compared

to other common shrinkage priors. The Bayesian bridge reflects our a priori belief that local

clocks are rare, but may arbitrarily speed-up or slow-down the rate of molecular evolution.
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where the local scale of branch i, λi > 0 and draws from a one-sided stable distribution, see

Polson et al. (2014); Nishimura and Suchard (2019) for more details. To improve convergence

speed and maintain the benefits of our heavy-tailed prior, we employ the shrunken-shoulder

regularization of Nishimura and Suchard (2019) and augment our bridge to have light tails

past a reasonably large point. Our scale mixture prior on an increment becomes

p(φi |λi, µ) = N

(
0,

(
1

ξ2
+

1

λ2iµ
2

)−1)
, (4.8)

where slab width ξ bounds the variance of increments to ξ2. In the examples to follow,

we set ξ = 2, effecting a weakly informative, generous upper bound on clock rate changes.

Specifically, a slab width of 2 asserts that there is at most 5% probability for ri to be greater

than 50× rpa(i).

We are interested in learning about the posterior,

p(r, µ, γ,θ,F |S) ∝
∫
p(S | r, γ,θ,F )︸ ︷︷ ︸

likelihood

p(r |λ, µ)p(λ)p(µ)p(γ)p(θ,F )︸ ︷︷ ︸
priors

dλ, (4.9)

where λ = {λ1, . . . , λ2N−2}, θ represents all relevant parameters that describe the molecular

substitution model and, again, F is the phylogenetic tree. We place a relatively uninfor-

mative, Gamma prior on µ−α with shape 1 and scale 2. Additionally, we place the CTMC

conditional reference prior of Ferreira and Suchard (2008) on the location γ. We detail the

priors on θ and F in each example of the sequel.

We use Markov chain Monte Carlo (MCMC) to marginalize over local scale parameters

and approximate the posterior (4.9). Specifically, we employ a random-scan Metropolis-

within-Gibbs (Liu, 2008; Levine and Casella, 2006) sampling approach to update the full

conditional densities implicit in (4.9). Efficient sampling schemes for γ,θ,F are well de-

scribed by Suchard et al. (2018), while Polson et al. (2014) outline the efficient scale-mixture

approach we use to sample (µ,λ). Here, we turn our attention to sampling

p(r |µ, γ,θ,F ,S) ∝
∫
p(S | r, γ,θ,F )p(r |λ, µ) dλ. (4.10)

Since there are 2N − 2 correlated branch-rate multipliers, one for each branch of the tree,

univariable MCMC sampling schemes for r scale poorly to large trees. To remedy this diffi-

culty, we employ Hamiltonian Monte Carlo (HMC) to sample all r simultaneously and with
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high acceptance probability. HMC leverages the geometry of the high-dimensional branch-

rate multiplier space to propose states that are farther away than traditional proposals but

stay within regions of high posterior density. HMC escapes entrapment by local extrema

of the posterior by generating random momentum ν = {ρ1, . . . , ρ2N−2} in each dimension

where typically ν ∼ N(0,M) (Neal, 2011). Often mass matrix M = I2N−2 but HMC sam-

pling may be improved by using an alternative M, such as an approximation of the Hessian

of the log-posterior (Stan Development Team, 2017; Zhang and Sutton, 2011). For further

reading on HMC, see Neal (2011); Betancourt (2017). While HMC samplers offer more ef-

ficient posterior exploration, they require computationally expensive gradient calculations

that often diminish their usefulness. Here we exploit and extend recent work (Ji et al., 2020)

on branch-specific clock rate gradients to facilitate fast inference of r under our shrinkage

model.

4.4 Hamiltonian Monte Carlo increment sampler

We generate proposals in increment space, since φ are uncorrelated in the prior and we

transform back to rate space as described by the linear transformation in Equation (4.4).

HMC sampling of the rates requires the gradient of the rate log-posterior,

∂

∂φk
log p(r |µ, γ,θ,F ,S) =

∫
∂

∂φk
log p(S | r, γ,θ,F )︸ ︷︷ ︸

L (ρ(r))

+
∂

∂φk
log p(r |λ, µ) dλ. (4.11)

To compute the gradient of the log-likelihood with respect to the increments, we first find

the gradient with respect to clock rates r,

∂

∂rj
L (ρ (r)) = γ∇rρL (ρ (r)) T, (4.12)

where we compute all entries in ∇rρL (ρ (r)) = ( ∂
∂ρ1
, . . . , ∂

∂ρ2N−2
)L (ρ (r)) with the compu-

tational O(N) algorithm derived by Ji et al. (2020) and

Tij =


∑

k tk∑
k rktk

− riti
∑

k tk
(
∑

k rktk)
2 if i = j

−ritj
∑

k tk
(
∑

k rktk)
2 if i 6= j.

(4.13)
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We complete the gradient

∂

∂φk
L (ρ (r)) =

2N−2∑
j=1

∂

∂rj
L (ρ (r))

drj
dφk

and

drj
dφk

=


rj if i ancestral to j

0 otherwise,

(4.14)

where transformation
drj
dφk

follows directly from equation (4.4). To preserve the O(N) gra-

dient computation, we take advantage of the tree structure explicit in Equation (4.14) and

accumulate the gradient of the log-likelihood via one post-order traversal of the tree. To

begin, let i and j be both daughters of node k in F , then

∂

∂φk
L (ρ (r)) =


rk × ∂

∂rk
[L (ρ (r))] if k is a tip(

∂
∂φi

+ ∂
∂φj

+ rk × ∂
∂rk

)
L (ρ (r)) otherwise.

(4.15)

We next turn our attention to the gradient of the log-prior,

∂

∂φk
log p(r |λ, µ) =

∂

∂φk

[
log p(φ |λ, µ) + log

∣∣∣∣∣dφdr
∣∣∣∣∣
]
. (4.16)

Since p(φ |λ, µ) is Gaussian, the first term gradient unwinds,

∂

∂φk
log p(φ |λ, µ) =

∂

∂φk

2N−2∑
j=1

log p(φj |λj, µ)

=
∂

∂φk

2N−2∑
j=1

log N
(
0, σ2

j

)
= −φk

(
1

ξ2
+

1

λ2iµ
2

)
.

(4.17)

Numerical solutions to the second term in (4.11) involve the change-of-variable Jacobian

∂
∂φk

log
∣∣dφ
dr

∣∣ and appear to necessitate an O(N2) sparse determinant computation. To facili-

tate faster computation of the transform, we index nodes of the tree such that i < j =⇒ i

is not ancestral to j. Under this indexing, dφ
dr

is an upper triangular matrix with 1
ri

along its

diagonal, see Figure (4.2) for an example.
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Figure 4.2: Example tree with corresponding Jacobian matrix. Index i < j =⇒ i is not

ancestral to j thus the Jacobian is upper-triangular and the determinant is the product of

diagonal entries.

The gradient of the log determinant,

∂

∂φk
log

∣∣∣∣∣dφdr
∣∣∣∣∣ =

∂

∂φk
log

2N−2∏
j=1

1

rj

= − ∂

∂φk

2N−2∑
j=1

log rj

=
∑
j

1[rj depends on φk]︸ ︷︷ ︸
dk

,

(4.18)

where 1 is the indicator function and dk is the number of descendants of node k. All together,

∂

∂φk
log p(r |λ, µ) = −φk

(
1

ξ2
+

1

λ2kµ
2

)
− dk, (4.19)

and we accumulate dk in one recursive post-order tree traversal by observing dk = di+dj +1,

where, again, i and j are both daughters of k.

To further improve the proposals of our HMC sampler, we precondition the mass matrix
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M to be the current-state absolute value of the Hessian of the log-prior,

∣∣∣∣ ∂2∂φ2
i

φj log p(r |λ, µ)

∣∣∣∣ =


(

1
ξ2

+ 1
λ2iµ

2

)
if i = j

0 otherwise.

(4.20)

This diagonal matrix weights momentum draws by prior increment precision. Intuitively,

equation (4.20) improves HMC sampling by rescaling increment proposals by the variance

of φ, allowing larger steps to be taken in dimensions with larger variance. See Neal (2011)

for further discussion on mass matrix transformations.

4.5 Results

4.5.1 Local clocks in three nuclear genes of rodents and other mammals

To verify the accuracy of our model, we turn to a well-studied example of adaptive radiation

in mammals and rodents. Huchon et al. (2002) and Douzery et al. (2003) examine the

adaptive radiation of 21 rodents compared to 19 other placental mammals and two marsupial

outgroups using the first two codon positions for three nuclear genes: ADRA2B, IRBP

and vWF (2422 alignment sites). Douzery et al. (2003) establish the presence of clock

variability within this set of taxa and report their best fitting model contains five local

clocks. Drummond and Suchard (2010) use the RLC model to re-examine this claim and

estimate the existence of between 6 and 12 local clocks. Here we employ our shrinkage-

clock model to jointly infer the mammalian phylogeny as well as the number and location of

local clocks. Because this is an ultrametric example, γ = 1. We follow the specifications of

Drummond and Suchard (2010) and Douzery et al. (2003) and use a general time reversible

(GTR) substitution model with a 4 category discrete-Γ site rate model. We run ten separate

Markov chains of our shrinkage-clock with ten different starting trees for 30M states and

build a maximum clade credibility (MCC) tree from the combined results (Figure 4.3). We

further run 100 RLC chains with 100 different starting trees for 30M states and build a

MCC tree for comparison. Under the combinatorial parameter space of the RLC, we observe

suboptimal mixing and that some chains convergence to different modes, hence our choice
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for combining 100 independent chains; the 10 independent chains for the shrinkage-clock

simply errs on the side of caution since each independent shrinkage-clock chain converges

to the same topology. Incidentally, the shrinkage-clock MCC topology differs from the RLC

MCC in two places. First, Bradypus attaches to one of two neighbor internal branches deep

in the tree. Second, Anomalurus is more closely related to the Dipus than Castor under the

shrinkage-clock. This second difference highlights the well-known difficulty in Anomalurus

placement (Horner et al., 2007). Indeed, Blanga-Kanfi et al. (2009) find Anomalurus sits

between Dipus and Castor in an analysis of six nuclear genes. The posterior probabilities

of Bradypus and Anomalurus parent branches under the shrinkage-clock are almost equal

(0.64 and 0.49 respectively).

We estimate the existence of four local clocks where we define a local clock on branch

i if the posterior odds φi > 0 is greater than 10 or less than 1
10

. The posterior odds here

is equivalent to a Bayes factor since an increment is equally likely to be positive or nega-

tive under the prior. Furthermore, a Bayes factor greater than 10 is suggestive of “strong

evidence” against an alternative hypothesis (Kass and Raftery, 1995). In the approach, we

do not make assumptions about the magnitude of local clocks on a tree and instead use

posterior probability of increment sign to define a clock.

To illustrate the benefits of using a heavy-tailed prior on the increments, we further

compare the performance of our Bayesian bridge prior to the more usual Laplace prior for

shrinkage (see Figure 4.1). We again fit our shrinkage-clock as described above but remove

the slab and fix α = 1, thus placing a Laplace prior on each increment. We find the posterior

mean of increment variance under both the Laplace and Bridge priors is 0.057 with 95%

high posterior density (HPD) intervals (0.036, 0.089) and (0.035, 0.093) respectively. Despite

having very similar variance, we find the posterior mean of the absolute maximum increment

is 0.84 (0.57, 1.22) and 1.01 (0.70, 1.54) under the Laplace and Bridge priors respectively.

This evidences induced smoothing of the clock rates under the exponential tails of a Laplace

prior, that on average shrinks the largest increment by approximately 20%.
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Figure 4.3: Maximum clade credibility (MCC) tree under shrinkage-clock of mammalian

and rodent radiation where branches are colored by posterior mean relative clock rates r. If

branch i starts a new clock, it is labeled with the posterior probability φi > 0. For com-

parison, local clocks of the random local clock (RLC) model are depicted as black triangles.

Triangle direction indicates RLC relative-rate speed-up (right) or slow-down (left). Two

local clocks of the RLC are excluded due to topological differences between the RLC and

shrinkage-clock MCC trees.
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4.5.2 Simulation study

We compare the scalability of our shrinkage-clock to the RLC under a simulated example.

We generate 1000 character nucleotide sequences from a fixed 40 tip tree 20 times. In each

simulation, there are 4 distinct lineages (A, B, C, D) of 10 taxa each. Time to most recent

common ancestor (TMRCA) for each lineage is 40 years and tree height is 80 years. Lineages

B, C and D evolve with a relative clock rate of 1.0 while the MRCA of lineage A starts a

new clock with relative rate 2.0.

We compare the accumulation of effective sample size (ESS) per unit time of branch-

specific clock rates under both our Bayesian bridge shrinkage-clock and the RLC while si-

multaneously inferring the phylogeny. ESS approximates the number of independent samples

from a Markov chain and we use this metric to evaluate how well each inference procedure

explores clock rate space. We report the results across all 20 simulated datasets in Figure

(4.4). The median ESS/second is 0.49 and 0.13 under the shrinkage-clock and the RLC

respectively, exhibiting a 3.8-fold speed increase. Additionally, the “least well” explored

clock rate across all simulations accumulated 3.5 × 10−3 and 4.9 × 10−4 ESS/second un-

der the shrinkage-clock and RLC respectively, a 7.1-fold speed-up, for these relatively small

taxon-count examples.

We further report here that inference under the shrinkage-clock without preconditioning

the mass matrix results in a minimum and median ESS/second of 2.3× 10−4 and 1.5× 10−3

respectively. Overall, preconditioning the mass matrix improves ESS/second 15× for the

worst-explored clock rate under the shrinkage-clock.

Averaged across all twenty simulations, the Bayes factor for the true clock rate change

under our shrinkage clock is 5.25 while the second most likely clock rate has Bayes factor

support of 0.56. Comparably, averaged over all runs, the Bayes factor of the one true clock

under the RLC is 3.51. Additionally, the true relative clock-rate for the ‘A’ clade is 2.0

and we estimate 1.51 (0.90, 2.31) and 1.49 (0.98, 2.36) under the shrinkage-clock and RLC

respectively.
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Figure 4.4: Effective sample size of branch-specific clock rates per second of BEAST runtime

under the shrinkage-clock and RLC during a full joint phylogenetic analysis. Colored arrows

point to 5% (q5) and 50% (q50) quantiles under each model.

4.5.3 Influenza A virus

We further demonstrate the scalability and utility of our shrinkage-clock model by examining

the evolution of two major influenza A virus (IVA) surface glycoprotein subtypes: hemag-

glutinin (HA) H7 and neuraminidase (NA) N7. Both hemagglutinin and neuraminidase pro-

tein mutations impact IVA’s epitope and allow IVA to escape adaptive immune responses

(McAuley et al., 2019; Wilson and Cox, 1990). Worobey et al. (2014) find divergence time

estimation is sensitive to molecular clock model specification. To consistently estimate di-

vergence times, Worobey et al. (2014) allow the clock rates of various glycoprotein subtypes

to vary only between viral hosts and find H7 and N7 each evolve slower in equine hosts
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than avian hosts. We re-examine this claim with our more general shrinkage-clock model

that does not assume the existence of host-dependent clock rates. Specifically, we re-analyze

146 complete gene (1716 nt) sequences of H7 and 92 complete gene (1416 nt) sequences of

N7. In each case we follow the model specifications of Worobey et al. (2014) and employ a

GTR substitution model with 4 category discrete-Γ site rate model. We depart from their

example, however, in our use of tree prior. We employ a Bayesian skygrid prior (Gill et al.,

2013) with 50 population size bins and a cutoff of 200 years instead of using the skyride

prior (Minin et al., 2008). While the number of taxa here is only approximately double or

triple the number in the previous simulation study, the set of all possible local clocks un-

der the RLC grows exponentially with the number of taxa, (31 to 63 orders of magnitude),

challenging clock rate inference under the RLC.
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Figure 4.5: Maximum clade credibility tree for influenza A’s neuraminidase subtype N7.

Branches are colored by posterior clock rates. The most probable local clock is reported

and labeled with posterior probability that φi > 0. The second most probable clock starts a

sub-clade of the equine lineage and has a Bayes factor φi > 0 of 0.351.

We find no sharp local clocks exist with Bayes factor > 10 or < 1
10

on the NA N7 tree
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under our shrinkage-clock model but do see evidence for rate heterogeneity. Incidentally, the

most likely clock occurs on the branch that begins the Eastern avian clade of the NA N7 tree

(Figure 4.5). The second most probable clock is found in a subclade of the equine lineage.

On the other hand, we estimate the existence of seven local clocks on the HA H7 tree and

report these in Figure (4.6). Overall, the mean posterior clock rate for NA N7 is lower than

HA H7. We report the posterior mean and 95% HPD intervals of γ are 2.7 {2.1−3.3}×10−3

and 3.3 {2.8 − 3.9} × 10−3 for NA N7 and HA H7 respectively. Furthermore, under our

shrinkage-clock the posterior mean root heights and 95% HPD intervals of the N7 and H7

trees in absolute time are 1798 (1733-1855) and 1853 (1808 - 1897) respectively.
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Figure 4.6: Maximum clade credibility tree for influenza A’s hemagglutinin subtype H7.

Branches are colored by posterior clock rates. Local clocks are labeled with a star and the

posterior probability φi > 0.

4.6 Discussion

Previous heritable clock models either scale poorly to large trees or excessively shrink clock

rates. We develop a robust autocorrelated heritable clock model to overcome these challenges
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without specifying a priori the number and location of local clocks on a tree. Crucially, we

model the incremental difference between log clock rates on the tree as drawing from a

Bayesian bridge prior that shrinks most changes to approximately 0 unless the data warrant

otherwise. To facilitate scalability, we employ HMC to generate proposals in the independent

increment space and derive recursive post-order algorithms to compute the gradient and its

requisite transforms. Our recursive algorithms achieveO(N) computational speed, signifying

that they will continue to work well as N grows large. We further improve the speed of our

HMC sampler by preconditioning the mass matrix with the Hessian of the log-prior.

In our examination of the adaptive radiation of rodents and other mammals, (see section

4.5.1), our shrinkage-clock recovers the location of four local-clocks estimated under the

RLC. This finding is similar to the initial estimate of five clocks reported by Douzery et al.

(2003). We choose a Bayes factor of 10 to classify clocks, but shrinkage-clock users may

wish to adjust this threshold to increase or decrease clock rate sensitivity. Comparing the

statistical properties of different clock-classification schemes remains an important avenue

for future work.

We apply our shrinkage-clock model to re-examine the number of local clocks present in

IVA surface glycoproteins NA N7 and HA H7 across equine and avian hosts. We confirm

the equine slowdown reported by Worobey et al. (2014) but interestingly find that the N7

tree shows marked rate variation (Figure 4.5) between western and eastern hemisphere avian

influenza lineages, however, this rate variation is not supported by the Bayes factor cutoff.

Root height estimates vary from Worobey et al. (2014) but this may be in part due to the

different tree priors. Additionally, we find 7 local clocks under our shrinkage-clock across the

H7 tree. Since three of these clocks belong to edges of tip nodes, this may reflect incomplete

sampling or sequencing error. Despite inferring six more clocks than the host-specific model,

the posterior mean estimate of root height under our shrinkage-clock is within five years of

previous estimates (Worobey et al., 2014).

Our shrinkage-clock accumulates ESS/second of the worst explored clock rate 7.1× faster

than the RLC across 78 branches of 20 simulated data sets. If ESS is used as stopping criteria

for phylogenetic reconstruction, this could save users up to 85% of BEAST runtime. As the
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bridge exponent α approaches 0, the bridge prior density is more peaked near zero resulting

in sharper increment shrinkage and thus better distinguishable local clocks. Nishimura and

Suchard (2019) examine multiple α and report closer to optimal coverage for smaller α but

with increasing computational cost due to mixing. For this reason, shrinkage-clock users

may find it useful to adjust α depending on desired clock-rate coverage or to tackle even

larger tree studies. We make all BEAST XML files used in this work publicly available at

https://github.com/suchard-group/shrinking clocks.

52

https://github.com/suchard-group/shrinking_clocks


CHAPTER 5

Shrinking shifts on trees

5.1 Introduction

Phylogenetic comparative methods (PCMs) undergird a rich host of trait data studies that

describe how “traits”, i.e. quantitative measurements belonging to biological entities, change

through time. Fundamentally, PCMs are concerned with modeling the evolution of traits on

trees. In seminal work on the PCM, Felsenstein (1985) introduces a Brownian motion model

to describe phenotypic trait evolution. Consistent with phylogenetic literature, we refer to

Brownian motion on a tree as a “random walk” (RW) model (Gill et al., 2017; Pagel, 2002).

While popular for its computational simplicity, the RW imposes strong assumptions about

the evolution of traits on a tree. The RW assumes traits evolve with variance that strictly

grows with time and is unbounded as time tends towards infinity (Butler and King, 2004).

Furthermore, while RWs may combine drift with selection (Pagel, 2002), they lack the ability

to differentiate evolution towards a primary optimum (Gill et al., 2017) and instead describe

the evolution of a secondary optimum (Bastide, 2017).

To generalize the trait data generative process and introduce a stabilizing selective force

that bounds the variance, Hansen (1997) introduces the Ornstein-Uhlenbeck (OU) model

of trait evolution in a phylogenetic setting that captures adaptive trait evolution towards

an optimum. The OU maintains the drift of the RW but adds a deterministic term, often

referred to as “call-back” that pushes traits towards a central primary optimum (Hansen,

1997). In its most general, multivariate form, the OU induces variance structure on the

tips that requires computing a matrix exponential as well as a Hadamard product, making

inference under the full multivariate OU computationally expensive (Clavel et al., 2015;
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Bartoszek et al., 2012). For this reason, the foundational work of Hansen (1997) as well as

several extensions (Khabbazian et al., 2016; Uyeda and Harmon, 2014) present univariate

OU models, avoiding expensive matrix computations altogether.

When an organism’s environment dynamically shifts, the fitness landscape can shift as

well. Optimal trait values are not fixed in time. To model this phenomena, (Hansen et al.,

2008) let the optimum itself evolve according to its own stochastic process and subsequent

works try to detect shifts in the optima of multiple traits (Bastide, 2017; Bartoszek et al.,

2012). Here, a “shift” refers to a change in optimal traits and is typically posited to be the re-

sult of an underlying environment shift. Khabbazian et al. (2016) develop a likelihood-based

approach for detecting shifts in univariate (or equivalently multiple independent) traits by

setting up a linear model where each branch of a fixed tree has a shift covariate. Khab-

bazian et al. (2016) subsequently regularize shift covariates via a lasso penalty. Uniquely,

their approach allows one to detect convergent evolution. Their method scales well to large

trees, but is unable to learn about trait covariance when studying more than one trait and

assumes a fixed phylogenetic topology under the likelihood framework. Separately, Uyeda

and Harmon (2014) develop a reversible jump Markov chain Monte Carlo (rjMCMC) method

to learn about posterior magnitude, number and location of shifts along a tree in a Bayesian

setting but are limited to examining univariate traits and are unable to detect convergent

evolution. Bastide et al. (2017) develop a maximum-likelihood framework to learn about

multivariate shifts and their correlation. To find the number and location of shifts, Bastide

et al. (2017) enumerate and search through the space of possible shifts on the tree. Due to

the combinatorial complexity of this search, their method is challenged by large trees with

many shifts.

Here we propose a new scalable Bayesian framework to detect shifts. We assert each

branch of the tree has its own branch-specific optima and encode shifts as significantly non-

zero increments between parent and daughter branch optima. We place a Bayesian bridge

shrinkage prior on these increments, reflecting our a priori belief that few shifts exist on the

tree. Like other shrinkage priors, the Bayesian bridge places large mass near zero but has the

unique benefit of heavier than exponential tails that allow shifts to be arbitrarily large. We
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follow Fisher et al. (2021) and develop an efficient preconditioned Hamiltonian Monte Carlo

sampler to scale inference under our model to large trees. We combine recently developed

efficient closed-form gradient expressions for the prior (Fisher et al., 2021) and the OU likeli-

hood (Bastide et al., 2020). We implement our method and make it publicly available within

the popular open source Bayesian Evolutionary Analysis Sampling Trees (BEAST) software

package (Suchard et al., 2018) where it can be easily matched with state-of-the-art methods

to simultaneously learn about trait-specific selection strengths, trait covariance, and the phy-

logenetic topology. We demonstrate the accuracy of our method by re-examining convergent

evolution in four principle component traits that combine 11 phenotypic measurements of

Caribbean Anolis lizards (Mahler et al., 2013; Khabbazian et al., 2016).

5.2 Shrinking shifts

Consider a rooted bifurcating phylogeny, F with N tips and N − 1 internal nodes. We

designate node 2N − 1 to be the root of the tree. Let Yi be a P -dimensional vector of

latent or observed continuous traits belonging to tip node i ∈ {1, . . . , N}. For each node

j ∈ {1, . . . , 2N−1} let Xj be aD ≤ P -dimensional latent vector of continuous measurements.

See Cybis et al. (2015) and Zhang et al. (2021) for methods to map discrete traits to this

continuous framework. Further, let D × D positive definite matrix Σ describe covariance

between traits. Following Khabbazian et al. (2016), we assume there exists an optimal trait

vector υj ∈ RD for each branch j ∈ {1, . . . , 2N − 2} in F . Under the phylogenetic OU of

Bastide et al. (2020), latent trait vector Xj approaches optima vector υj independently at

a rate prescribed by the diagonal attenuation (selection strength) matrix A. Additionally,

branch length ti connects each node i with its parent node, pa(i) and describes the duration

of attenuation. All together,

Xj|Xpa(j) ∼ MVN
(
qjXpa(j) + (ID − qj)υj,Vj

)
,

Yi|Xi ∼ MVN(LXi,Ui) ,
(5.1)
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where

qj = exp {−Atj} ,

Vj = Σ− qjΣqtj,
(5.2)

and Ui characterizes the variance associated with tip observations Yi such as measurement

error. When D < P , Ui may describe the stochastic link function of the phylogenetic factor

model where L maps latent X to observed traits Y (Hassler et al., 2020). If D = P , then

L = IP and Yi|Xi is possibly degenerate. We complete model specification with prior on

the parentless root

p(X2N−1) = MVN(η,Ψ) , (5.3)

where root mean η and root variance Ψ are typically unknown.

We re-parameterize branch-specific optimal trait vectors υ = {υ1, . . . ,υ2N−2} as incre-

ments between child and parent branches,

φi = υi − υpa(i) for i ∈ {1, . . . , 2N − 2} (5.4)

with root optimum υ2N−1 = γ and set γ = 0 when each trait is independently standardized.

Under this parameterization, increment φij is more aptly termed the “shift” in the jth

optimal trait on branch i. Let φ = {φ1, . . . ,φ2N−2}. To shrink the number of shifts, we

place a Bayesian bridge prior (Polson et al., 2014) on individual shifts,

p(φij |µj) ∝ µ−1j exp

{
−
∣∣∣∣φijµj

∣∣∣∣α} , (5.5)

where µj > 0 is the “global scale” shared amongst shifts in trait j and exponent α ∈ (0, 1]

regulates the prior’s mass near zero. Intuitively, smaller α corresponds to higher prior mass

near zero whilst α = 1 yields the Laplace prior. The full joint prior

p(φ |µ1, . . . , µD) ∝
D∏
j=1

[
µj
−(2N−2)exp

{
−

2N−2∑
i

∣∣∣∣φijµj
∣∣∣∣α
}]

, (5.6)

where the product and sum arise from independence in shifts across all traits and branches.
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5.3 Inference

Often, we are interested in learning about both trait variation and the phylogenetic topology.

Let µ = {µ1, . . . , µD}, then the full joint posterior

p(υ,µ,Σ,A,F ,θ |Y,S) ∝ p(Y |υ,Σ,A,F )p(S |F ,θ)︸ ︷︷ ︸
likelihood

p(υ |µ)p(µ)p(Σ)p(A)p(F ,θ)︸ ︷︷ ︸
priors

,

(5.7)

where θ represents all parameters of a substitution model for aligned molecular sequence

data S. Notice the likelihood of sequence data S is assumed conditionally independent from

trait data Y given the phylogeny. While this assumption is false for genetically derived

traits, it is a practical simplification without prior knowledge of the genetic location of

causal genes. In the example to follow, we assume independent shifts in optima as described

in Equation (5.6). To facilitate efficient sampling under our shift prior, we work with the

Bayesian bridge’s data augmented scale mixture of normals representation, popularized by

Polson et al. (2014),

p(φij |λij, µj) = N

(
0,

(
1

ξ2
+

1

λ2ijµj
2

)−1)
, (5.8)

where λij is the “local scale” of shifts in optimal trait j on branch i and slab ξ bounds the

variance of shifts to ξ2 to improve sampling speed (Nishimura and Suchard, 2019). The

data-augmented joint prior on shifts is simply the double product,

p(φ |µ) =
D∏
j=1

2N−2∏
i=1

p(φij |λij, µj), (5.9)

where we sample λij and subsequently marginalize over these nuisance parameters as de-

scribed by Polson et al. (2014). Crucially, this data augmented bridge prior is differentiable

everywhere and thus aids fast gradient-based sampling techniques (see section (5.4)). To

complete our bridge prior specification, we follow Fisher et al. (2021) and fix ξ = 2 and

α = 1
4
. Furthermore, we place a relatively uninformative conjugate Gamma prior on each

µj
−α with shape 1 and scale 2 to Gibbs sample each µj ∈ µ (Polson et al., 2014). For the dif-

fusion variance, we place a Wishart prior with scale matrix ID and D degrees of freedom on

Σ−1 for computational simplicity but other priors such as the eponymous LKJ Lewandowski
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et al. (2009) prior may, in some instances, be favorable (Barnard et al., 2000) and recently

Zhang et al. (2021) develop efficient sampling machinery under this alternative prior. For

the positive, diagonal selection matrix A, we follow Bastide et al. (2020) and place a rel-

atively uninformative half-normal prior with standard deviation 7 corresponding to the a

priori belief that phylogenetic half-life (i.e. time for a trait to travel half way towards its

optimum) is larger than 5% of the tree height on a standardized unit height tree, 95% of the

time (Hansen, 1997).

We approximate (5.7) via MCMC integration and use a random-scan Metropolis-within-

Gibbs sampling approach (Levine and Casella, 2006). Four components comprise one turn

of our sampling scheme,

p(υ |µ,Σ,A,F ,θ,Y,S) ∝ p(Y |υ,Σ,A,F )p(υ |µ) (5.10a)

p(µ |υ,Σ,A,F ,θ,Y,S) ∝ p(υ |µ)p(µ) (5.10b)

p(A,Σ |µ,Σ,A,F ,θ,Y,S) ∝ p(Y |υ,Σ,A,F )p(Σ)p(A), and (5.10c)

p(F ,θ |µ,Σ,A,F ,θ,Y,S) ∝ p(Y |υ,Σ,A,F )p(S |F ,θ)p(F ,θ), (5.10d)

where update (5.10d) is unnecessary when F is fixed. When F is not fixed, Suchard

et al. (2018) offer efficient methods to update (5.10d). Bastide et al. (2020) describe efficient

sampling of OU parameters A and Σ (update (5.10c)). As we note above, p(µj
−α) ∼ Gamma

yields efficient Gibbs sampling to update the global scale (equation 5.10b). We focus on

efficient sampling of the high dimensional, highly correlated, branch-specific optima (5.10a)

using Hamiltonian Monte Carlo (HMC).

HMC is a technique to generate geometrically informed proposal steps that fit within

a traditional Metropolis update scheme (Neal, 2011; Betancourt, 2017). By leveraging the

geometry of the target distribution, HMC allows us to propose states that update all pa-

rameters, are far away from our current chain state and have high acceptance probability.

To perform this feat, HMC requires the gradient of the log-posterior. Since increments are

uncorrelated in the prior, we differentiate with respect to increments to create proposals in

increment space and then map back to trait optima by noticing the 1-1 inverse mapping of
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(5.4),

υi = φi +
∑
j∈A(i)

φj + γ, (5.11)

where j ∈ A(i) if j is ancestral to i. All together, the gradient of the log-posterior with

respect to the increments,

∂

∂φi

log p(υ |µ,Σ,A,F ,θ,Y,S) =
∂

∂φi

log p(Y |υ,Σ,A,F ) +
∂

∂φi

log p(υ |µ). (5.12)

Computing requisite gradients is often the premier computational bottleneck for HMC meth-

ods. Numerical gradient calculations that utilize efficient O(N) likelihood algorithms still

scale quadratically (O(N2)) with the number of tips in the tree since we need to evaluate

the likelihood at each of the 2N − 2 branches. To improve speed of inference, several recent

works exploit tree topology structure to develop efficient closed-form gradient solutions un-

der other phylogenetic comparative models (Zhang et al., 2019; Bastide et al., 2020; Fisher

et al., 2021; Hassler et al., 2021).

5.4 Gradients

We turn our attention to forging an efficient solution to (5.12). To begin, we unpack the

first component of (5.12), the gradient of the log-likelihood,

∂

∂φi

log p(Y |υ,Σ,A,F ) =
∑
j

dυj
t

dφi

∂

∂υj
log p(Y |υ,Σ,A,F )

=
∑
j∈A(j)

∂

∂υj
log p(Y |υ,Σ,A,F ),

(5.13)

since branch-specific Jacobian
dυj

t

dφi
unwinds by differentiating equation (5.11),

dυj
t

dφi

=


ID if i ∈ A(j)

0D otherwise

(5.14)

where 0D denotes a D-dimensional matrix of zeroes. We note the ancestral dependence of

terms in (5.13) and accumulate relevant gradient terms in one post-order traversal of the

tree. Bastide et al. (2020) provide a general recipe to compute ∂
∂υj

log p(Y |υ,Σ,A,F ) in

O(N).
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Next, we focus on the gradient of the log-prior and adapt the O(N) solution provided

by Fisher et al. (2021) to suit our purposes. We work with the scale mixture of normals

representation of the Bayesian bridge prior and let λ = {λij} for i ∈ {1, . . . , 2N − 2} and

j ∈ {1, . . . , D}. We compute the gradient of the induced log prior on υ,

∂

∂φi

log p(υ |µ,λ) =
∂

∂φi

[
log p(φ |µ,λ) + log

∣∣∣∣dφdυ
∣∣∣∣] . (5.15)

Notice that equation (5.4) defines element-wise shifts as a linear function of optima, φij =

υij − υpa(i)j so that the gradient of the Jacobian, ∂
∂φi

log
∣∣dφ
dυ

∣∣ = 0. To complete the gradient

of the prior,
∂

∂φi

log p(φ |µ,λ) = −φt
i · diag

{
1

ξ2
+

1

λ2ijµj
2

}
(5.16)

follows from (5.8), where diag{·} indicates a matrix with D diagonal entries {·} that span

j = 1, . . . D.

5.5 Results

5.5.1 Lizards

Anolis lizards are a popular example of adaptive and convergent evolution (Losos, 2007).

Losos et al. (1997) show lizards placed on islands in the Caribbean evolve directional, non-

random distribution of limb length, toe-pad width and body mass over a 10-14 year period in

response to the environment they are placed in. The various convergent forms of lizards on

these islands are termed ecomorphs (Williams, 1972, 2013). Ecomorphs serve to categorize

lizard species with shared phenotypic traits but without shared morphological characteris-

tics in their common ancestor (Williams, 2013). Because of strong evidence for adaptive

evolution, many employ an OU PCM to study Anolis lizard trait variation (Bastide, 2017;

Khabbazian et al., 2016; Butler and King, 2004; Cressler et al., 2015). Here we re-examine

the data set compiled by (Mahler et al., 2013) that contains four phylogenetic principle com-

ponent (pPC) (Revell, 2009) traits derived from eleven phenotypic measurements important

for niche adaptation (Mahler et al., 2010). The first four pPC explain 93% of the variation

observed in the eleven traits. The original eleven traits include mean body size, limb size,
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tail length and toepad number observed in between 1 to 19 lizards of each species.

Khabbazian et al. (2016) apply their lasso OU (l1OU) model to test for optimum shifts

of the four pPC traits of 100 Greater Antillean Anolis species on the fixed, ultrametric

tree of Mahler et al. (2013). Khabbazian et al. (2016) assume traits are independent and

procedurally estimate trait-specific adaptation, A and trait specific variance (diagonals of Σ)

followed by magnitude and location of shifts. Khabbazian et al. (2016) correlate shifts φi in

the prior by placing a lasso penalty on the L2 norm of branch-specific shift vectors. Here, we

re-examine shifts on this fixed tree under our shift shrinkage model. We jointly estimate Σ

and A along with shifts in optima υ. Although Khabbazian et al. (2016) assume pPC traits

are uncorrelated, Bastide et al. (2018) show that this assumption may not hold. We estimate

the off-diagonals of Σ to test our model’s ability to detect possible covariance between traits.

We place four independent Bayesian bridge priors on each trait’s vector of increments and

jointly learn about the global scale of each. We define a shift in the optimal value of trait j

on branch i when the odds of φij > 0 is greater than 10 or less than 1
10

. This corresponds

to labeling optima shifts when the sign of the shift has Bayes factor support of at least 10

(Kass and Raftery, 1995). Fisher et al. (2021) argue this classification method allows one to

categorize non-zero increments when ignorant to their expected magnitude. Under our shift

shrinkage model, we run a 3.5 million state MCMC chain in BEAST and report estimated

shift locations and magnitudes in figure (5.1). Traits 1 and 2 exhibit Bayes factor support

> 10 for eleven and four shifts respectively while traits 3 and 4 do not have strong support

for any shifts. Furthermore, we report posterior mean estimates of the diffusion variance for

the four pPC traits with 95% high posterior density intervals, in order pPC1,. . . ,pPC4, 0.17

(.13, 0.22), 0.15 (0.1, 0.22), 0.06 (0.05, 0.08) and 0.04 (0.03, 0.05) while covariance estimates

are all between two to three orders of magnitude smaller (10−4 to 10−5).

5.6 Discussion

We develop a scalable framework to learn the direction, magnitude, number and location

of multi-dimensional optimal trait shifts on a tree within a Bayesian phylogenetic setting.
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Figure 5.1: Fixed topology from Mahler et al. (2013) annotated by posterior shift estimates

under shift shrinkage model. Branches are colored by the total shift magnitude per branch

i, i.e.
∑

j

∣∣φij

∣∣. We label branches with shifts that have Bayes factor support > 10 with a

label of the principle component trait exhibiting a shift on that branch.

Previous approaches to detecting shifts iteratively mix over the number of shifts (Bastide

et al., 2018) limiting scalability, take a maximum-likelihood approach that studies adaptive

evolution on a fixed tree topology (Khabbazian et al., 2016; Bastide et al., 2017), assume
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constant selection strength across traits (Uyeda and Harmon, 2014; Bastide et al., 2017),

or only examine univariate shifts (Uyeda and Harmon, 2014). We assume each branch in

the phylogeny maintains branch-specific optima and employ a Bayesian bridge shrinkage

prior to reduce optima heterogeneity and identify the most probable shifts. Furthermore,

we develop an efficient Hamiltonian Monte Carlo sampler that leverages recent gradient ex-

pressions (Fisher et al., 2021; Bastide et al., 2020) to improve the scalability of inference

under our model as the number of tips and thus the number of parameters grows. Finally,

we estimate the number, location and magnitude of shifts in four principle component traits

of Anolis lizards (Mahler et al., 2013) and compare our findings to the l1ou of Khabbazian

et al. (2016). We identify 11 shifts in the first pPC, 4 shifts in the second and none in the

remaining two. Two of the shifts we identify are overlapping; we detect 13 shifts in total.

Comparatively, Khabbazian et al. (2016) detect 16 total shifts throughout the tree. We

expect the first two principle components to account for most shifts in the tree since they

explain the most variation in their constituent traits. Mahler et al. (2013) report pPC1 ac-

counts for 40% of the variation in the traits that compose it. One notable difference between

our approach and that of the l1ou is that we assume optimal trait shifts are independent in

the prior while Khabbazian et al. (2016) assumes shifts are coupled between traits on the

same branch. Coupling shifts in the prior remains a possible avenue to extend our model in

future work. Additionally, we estimate covariance between pPC traits, an important feature

since phylogenetic principle components may not always be uncorrelated (Bastide et al.,

2018).

In our analysis of the 100 species of Anolis lizards, we weight each of the observed

trait vectors at the tips equally to provide a fair comparison to Khabbazian et al. (2016).

However, trait measurements are sampled variably across different species of lizards in the

fixed lizard tree of Mahler et al. (2013). Some lizard species are sampled only once while

others are sampled as many as nineteen times. One could sensibly incorporate observed trait

uncertainty in our proposed framework by encoding the observed trait variance matrix Ui

to be inversely proportional to the number of lizard specimens sampled.

We hope our method will find further use enabling shift detection on large unknown
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tree topologies. To preserve shift identifiability in this setting, one could track shifts on the

branch preceding the most recent common ancestor of some subset of tips. This provides

a natural opportunity to quantify shift uncertainty by reporting posterior probabilities of

shifts across random trees.
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CHAPTER 6

Future directions

Statistical models in phylogenetics, as in most disciplines, grow increasingly complex year

by year and thus provide more detailed explanations of the natural world than ever before.

However, also like most other disciplines in the 21st century, increasingly massive data sets

challenge inference under complex models. For example, recent advances in portable genome

sequencing (Quick et al., 2016) increase the accessibility and affordability of sampling taxa,

providing unprecedented opportunities to investigate time-sensitive questions in epidemiol-

ogy, and evolutionary biology with remarkable rapidity. In Chapters 3 through 5, I scale

complex phylogenetic models to large trees. Presently, I turn my attention towards mod-

eling extensions that fit within the previously discussed scalable framework and describe

increasingly detailed biological hypotheses.

6.1 Mobile random walk

6.1.1 Introduction

Phylogenomics is one of at least two modern approaches to study outbreak dynamics. The

more traditional, and also increasingly data-rich approach, is to use epidemiological stochas-

tic compartmental models (Brauer, 2008) and, more recently, granular network-based models

(Brauer et al., 2019). The former phylogenetic approach plays a critical role in ruling out

viral transmission (Villabona-Arenas et al., 2020), timing zoonotic spillover events (see e.g.

Lemey et al. (2003)) and reconstructing the geographic path traveled by an infectious disease

(Bielejec et al., 2011). Under the latter compartmental modeling approach, time-series data

of case counts, recoveries and population size serve to inform contact rates and incidence
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rates. Unfortunately, current state-of-the-art methods are disparately developed and rarely

integrate genomic and population-level data simultaneously.

One possible and simple way to marry the two approaches is to perform post-hoc analysis

on a spatially explicit relaxed random walk (RRW) of Chapter 3 and regress a series of

possible diffusion-related covariates such as population density or human mobility against

the branch-rate multipliers of the RRW. In a similar spirit, Dellicour et al. (2020) test the

impact of environmental factors on a spatially explicit reconstruction of the West Nile virus

diffusing in North America under a RRW. If correlation exists between some covariate (e.g.

case count) and branch-rate mulitpliers of the RRW, future work could include altering the

diffusion matrix to be a function of relevant additional data. I discuss this modeling approach

further in the next section.

6.1.2 Model

Consider a phylogeographic RRW where, as in the West Nile virus example of Chapter 3,

we are interested in learning about the spread of an infectious pathogen. To this end, we

sample viral isolate i at geographic coordinates Yi ∈ R2. Under the RRW,

Yi|Ypa(i) ∼ MVN
(
Yi; Ypa(i), tiV(φi)

)
(6.1)

where branch length ti is the time node i evolves independent of parent pa(i) and diffusion

variance V(φi) is a function of branch-specific rates φi.

Various types of epidemiological data may be adapted to this framework. If V(φi) = φiΣ

as in Chapter 3, then φ effectively scale the speed of diffusion. One might posit that diffusion

speed

φi ∝ bicik (6.2)

where bi is a marker of human mobility in the region where pathogen i is diffusing, ci is

the number of case counts in said region, and k is a measure of infectivity. If one collects

local case count data at time of sampling, together with some marker of human mobility

e.g. cell-phone movement data (Gonzalez et al., 2008; Zhao et al., 2016), then this is one
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possible way to extend the RRW to the study of infectivity. Simultaneously, this framework

could help untangle possible correlation between human mobility on pathogen spread.

6.2 Shrinking together and further priors

6.2.1 Coupled shift priors

In Chapter 5, I develop a model that posits independent shifts in optimal traits across

all branches. However, when an organism’s environment suddenly changes, such as in the

placement of Anolis lizards onto various islands in the Caribbean (Mahler et al., 2010),

one may consider that several phenotypic trait optima shift together in response to the

environmental change. Here, I present an alternative prior formulation to give this scenario

more complete consideration. Recall from Chapter 5, φij is the shift in optimal trait j on

branch i. On a tree with N tips, i ∈ {1, . . . , 2N − 2} and j ∈ P , where P is the number of

traits under study.

If some subset of the optima S ⊂ {1, . . . , P} are thought to shift together, then for each

j ∈ S, the shifts on branch i, φij should each be identically zero or non-zero. To impose this

grouped shrinkage, I propose shrinking a measure of the total shift “magnitude” f(φi) on

branch i, where φi = {φi1, . . . φiP}. Two possible examples include branch-specific L2 and

L1 norms,

f(φi) =


(∑

j∈S φij
2
)1/2

∑
j∈S |φij|

(6.3)

where the first option reflects shrinking the magnitude of branch-specific vector of shifts φi,

but deflates contributions from shifts < 1. The second option is indifferent towards shift

size but is non-differentiable and may require special treatment in gradient-based inference

techniques. To shrink the number of branches with shifts but retain the ability to detect

large shifts, I place a Bayesian bridge shrinkage prior on one of the shift functions of equation

(6.3).

Without loss of generality, assume S = {1, . . . , P}. Under the scale mixture representa-
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tion of the Bayesian bridge Polson et al. (2014),

p(f(φi) |µ, λi) = N 1
2

(
f(φi); 0, µ2λ2i

)
(6.4)

where µ is the global scale, λi is the local scale on branch i and N 1
2

indicates the half-normal

distribution since the support of f(φi) is the positive real line. Plugging the L2 functional

into equation (6.4),

p(f(φi) |µ, λi) =

√
2

µλi
√
π

exp

{
−1

2

1

µ2λ2i
f(φi)

2

}
=

√
2

µλi
√
π

exp

{
−1

2

1

µ2λ2i

∑
j∈S

φij
2

}
.

(6.5)

To compute the joint density of shifts on branch i, i.e. p(φi |µ, λi) requires an invertible map

between the space of φi and the branch-specific magnitude f(φi). Intuitively, one may view

the L2 f(φi) as the radius of the sphere circumscribed by shift vector φi in P -dimensional

parameter space. To complete the spherical coordinate map when P > 1, one has a choice

of prior over the implicit angle parameters θi1, . . . , θiP−1 that fully define the transformed

space,

φi1 = ri cos θi1

φi2 = ri sin θi1 cos θi2

...

φiP−1 = ri sin θi1 . . . sin θiP−2 cos θiP−1

φiP = ri sin θi1 · · · sin θiP−2 sin θiP−1,

(6.6)

where ri =
(∑

j∈S φij
2
)1/2

. For simplicity, I specify uniform priors over the support of each

angle,

p(θij) =


U(0, π) if j ∈ {1, . . . P − 2}

U(0, 2π) if j = P − 1.

(6.7)

Under this prior specification, where each angle is independent, shifts φi are equally likely

to lie on any edge of the P -dimensional sphere defined by radius ri. The joint prior on

ηi = {ri, θ1, . . . , θiP−1} is simply the product of independent priors

p(ηi |µ, λi) = p(ri |µ, λi)
P−1∏
j=1

p(θij) (6.8)
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and since each branch is independent, the full joint prior is the product over all 2N − 2

branches. To compute the prior on shifts φi requires the Jacobian determinant
∣∣∣dφik

dηij

∣∣∣ where

j, k ∈ {1, . . . , P}.

In Chapter 5, I propose a closed-form gradient solution to perform fast Hamiltonian

Monte Carlo (HMC) sampling of all branch-specific shifts φ. In order to bring the efficient

Hamiltonian Monte Carlo sampler to the grouped shrinkage priors, I will compute the new

requisite term ∂
∂φij

log
∣∣∣dφik

dηij

∣∣∣ to complete the gradient of the log-prior

∂

∂φij
log p(φ |µ,λ) =

∂

∂φij

[
log

2N−2∏
i=1

(
p(ri |µ, λi)

P−1∏
j=1

p(θij)

∣∣∣∣dφik

dηij

∣∣∣∣
)]

=
∂

∂φij

[
2N−2∑
i=1

log p(ri |µ, λi) +
2N−2∑
i=1

log

∣∣∣∣dφik

dηij

∣∣∣∣
]

=
∂

∂φij
log p(ri |µ, λi) +

∂

∂φij
log

∣∣∣∣dφik

dηij

∣∣∣∣
= − φij

µ2λ2i
+

∂

∂φij
log

∣∣∣∣dφik

dηij

∣∣∣∣

(6.9)

where the last equality follows from equation (6.5). Additional considerations remain before

obtaining efficient sampling under this grouped prior. To facilitate fast sampling of the global

scale requires working directly with the exponential power form of the Bayesian bridge (Pol-

son et al., 2014). In future work, I will compute the joint density of the shifts, marginalizing

over local scales, to take advantage of global scale Gibbs sampling, an important source of

efficiency in Bayesian bridge inference. Xu et al. (2017) offer alternative shift prior grouping

approaches to explore. One possible future approach may consider directly utilizing a mul-

tivariate Bayesian bridge prior where variance is not independent, however a scale mixture

of covariance matrices may prove difficult to work with unless strong assumptions are made

about its structure.

6.2.2 Branch time dependent prior

More realistic models of optima shifts in Ornstein-Uhlenbeck phylogenetic comparative meth-

ods may assume a priori that shifts are more likely to occur on long branches in the tree

(Uyeda and Harmon, 2014). The key principle is that long branches offer more opportunities
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for a shift to occur. A very simple way to encode this feature into a prior on the shifts is to

make shift variance proportional to branch length. Under the scale-mixture Bayesian bridge

representation,

p(φij |µ, λi) = MVN
(
0, tiµ

2λ2i
)
, (6.10)

where branch length ti connects node i with its parent. This extension is compatible with

the branch-specific shrinkage described in the previous section. Under other phylogenetic

comparative models, such as the relaxed random walk (RRW) of Chapter 3, branch-specific

rate multipliers are identifiable even though they only enter the likelihood as a product

with branch lengths. Identifiability is maintained in the aforementioned case since strong

prior information bounds the magnitude of branch-specific rate multipliers under the RRW

and branch length estimates are influenced by the sequence data likelihood as well. In

future work, care must be taken to ensure identifiability in the branch time dependent prior

described here.
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