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TIME CONSTRAINED EXPLORATION USING TOPOSEMANTIC 
SPATIAL MODELS:  A REPRODUCIBLE APPROACH 
 
Jose Luis Susa Rincon, Stefano Carpin 
Department of Computer Science and Engineering 
University of California, Merced 
 
As robots become ubiquitous in our everyday lives, they are more and more often assigned 
complex tasks involving multiple objectives at once. Moreover, efficiency, here intended as the 
ability to complete more tasks in a given amount of time, is becoming increasingly important. At 
the same time, spurred by progress in machine learning, there is a tendency to explore novel 
designs in which robots rely more on visual sensors and less on traditional sensors like range 
finders. Starting from these premises, the objective of this paper is twofold. First, we revisit the 
classic exploration problem introducing temporal constraints in the task and embracing a 
toposemantic spatial representation that does not include any metric attribute. To assess strengths 
and weaknesses of the various exploration methods abstracting from the underlying technical 
implementation, we perform a set of massive simulations in ROS using its Gazebo simulation 
environment. The simulation-based approach leads to the second objective of this contribution, 
namely, presenting a set of findings that are reproducible by a third party. As measurable 
robotics gains more attention, this work represents a first attempt to present a reproducible study 
based on Gazebo. 

1. MOTIVATION 
 Consider a service robot that must deliver an item in an unknown environment, say an 
office floor it never entered before, and for which it has no prior knowledge other than the fact 
that it is an office environment. For example, the robot may have to deliver an envelope in the 
copy room, or put a package on the desk in Mr. Chairman's office. Not having preliminary 
knowledge about where these places are located, the robot should then explore the environment 
until it recognizes it has reached the desired place. Then, it shall deposit the goods it is supposed 
to deliver, travel its way back to the entrance, and leave. Exploration is an integral component of 
this task, and if the robot is doing this job as part of a series of deliveries, it is important to 
complete the task quickly to increase the number of tasks completed in a set amount of time. 
 
 Exploration is one of the fundamental abilities for an autonomous robot operating in an 
unknown environment. In its most studied form, this means building a spatial model of the 
environment, and central to the task is the decision process determining “where to move next.’’ 
A classic early solution to this problem is frontier-based exploration [1], an approach inherently 
tied to using occupancy grid maps to represent space. In this case, a frontier is defined as the 
boundary between explored and unexplored space, and the rationale is that by moving towards 
large frontiers, a robot will be quicker in discovering more unknown areas. Other possible 
approaches are based on random exploration, or variations of the frontier based approach. For 
example, distance to frontiers may be considered to break ties between equally large frontiers. In 
many of these approaches the temporal dimension is not explicitly considered. That is to say, that 
while heuristics are introduced to expedite the exploration process, time is most often not an 
explicit metric or constraint. 



 In this work, we deviate from existing literature by considering three modifications to the 
basic setting. First, we assume the robot does not build a metric model of the environment, like 
an occupancy grid map, but rather a topological model with semantic annotations. This is called 
toposemantic model and will be further expanded later. Second, the objective of the robot is not 
to build a spatial model per se, but rather to explore the unknown environment until a target 
location is discovered. The model is functional to this objective, e.g., to avoid revisiting areas 
already explored. To this end, we assume that the target location is provided in a format 
compatible with the sensorial capabilities of the robot, so that it can detect when the desired 
place has been reached. Finally, we introduce a temporal constraint, i.e., a time 𝒯 such that the 
exploration task is considered not solved if after time 𝒯 the robot has still not reached the 
location it is looking for. 

 
Exploration is a fundamental ability in mobile robotics that has been extensively studied 

in the last three decades. With the current explosive growth in robotics applications, the area 
continues to grow, particularly in considering extensions and special cases of exploration not 
studied in the past. In this paper we consider the topic of efficient exploration using a semantic 
topological oriented map. Efficient, in this case, means that a robot is expected to complete its 
assigned task within a given temporal deadline. To accomplish this task, the robot does not build 
a metric map, but rather incrementally builds a topological model where the environment is 
represented by a graph. We opt for topological models for various reasons. First, it is known that 
humans make use of topological models for spatial awareness and navigation [2]. Second, there  
is an interest in moving away from representations such as occupancy grid maps that are tightly 
integrated with range finders. Finally, topological maps are more compact and use less memory. 
To handle temporal deadlines, there exist at least two approaches. First, one could combine 
multiple objectives (e.g., time, safety, explored area) into a single objective function, for 
example with a linear combination, and then plan using standard methods like Markov Decision 
Processes. Instead, we rely on our recent planning algorithms using constrained Markov decision 
processes (CMPDs). This approach allows optimizing with respect to one objective (say reaching 
a goal), while satisfying one or more constraints, like time to completion and probability of 
collision. This approach has the advantage of not requiring a combination of intrinsically 
heterogeneous quantities. 

2. RELATED WORK 

Exploration is one of the main challenges for robots facing a new environment and there 
is no consensus on the best strategy and representation. Ultimately, these are application specific, 
and are still an active research topic, as witnessed by continued publications in this area. Vidal et 
al. recently studied robotic underwater exploration [3] while Tung et al. propose a method using 
the visual saliency of objects and the environment to drive the robot towards salient objects using 
a 3D occupancy map [4]. Other authors have recently proposed to use a deep reinforcement 
learning and included topological and structural information about a building to improve 
exploration [5]. While metric maps and occupancy grid maps have been common in multiple 
applications, new approaches have been developed, and topological and semantic maps have 
shown the potential to be used in complex applications (see [6] for a relatively recent survey). 
Multiple labeling methods and scene recognition [7] have been proposed, with the main goal of 
getting a good understanding of the objects and their relationships [8] [9]. For indoor 
environments, Quattrini et al. use semantic information combined with geometric information to 



improve the exploration of a map with privileged areas that are defined by humans as first goals 
for the robots [10].  Temporal deadlines in robotics have been extensively studied for scheduling 
and coordination tasks, for example, when multiple robots must coordinate their actions so that 
the relative temporal ordering becomes relevant [11] [12]. We recently studied a class of multi-
objective planning problems where the temporal deadline becomes an additional constraint to be 
met while optimizing some other objective function, like for example, the probability of 
successfully reaching a location or gathering some data [13] [14] [15].  These methods are the 
foundation of the planning method we consider. 

3. BACKGROUND ON SPATIAL REPRESENTATION AND PLANNING 
UNDER TEMPORAL CONSTRAINTS	
Semantic Topological Oriented Maps 

In this subsection we define semantic topological oriented maps (or toposematic maps, 
for brevity) as an extension to the classic definition of topological maps. Topological maps 
model space as a graph 𝐺 = (𝑉,𝐸) with vertices representing places and edges modeling the 
ability to move between the places represented by vertices. Our model builds upon two 
assumptions. First, indoor environments are normally subdivided into corridors and rooms 
arranged along orthogonal directions. This observation was already made and exploited in [10]. 
Second, we assume that the robot is equipped with a device providing absolute orientation 
(compass). Starting from these two hypotheses, without loss of generality, we assume that the 
walls and corridors of the building are arranged along the four cardinal directions that will be in 
the following abbreviated as N (north), S (south), E (east), and W (west). An oriented topological 
map exploits these assumptions to define the relations “to the right of” and “to the left of” 
between vertices in the graph. Vertices in a graph may have degree one (rooms, or corridor dead 
ends), two (corridors), three (T junction), or four (four way intersection). Thanks to the compass, 
each edge can then be labeled as E-W or N-S according to its direction. Accordingly, two 
adjacent vertices are said to be along the N-S (north-south) direction if the edge connecting them 
has the N-S label and we similarly define adjacent vertices along the E-W direction. To define 
the relationships “to the right/left of” for elements aligned along the N-S direction, we assume 
that the robot faces W, whereas for elements along the E-W direction we assume the robot faces 
N. Figure 1 illustrates this approach. The three vertices on the left are along the E-W direction. 
Based on our assumption that the robot points north to define left/right relationships, vertex 𝑐1𝑎 
is to the left of 𝑐1𝑏 and 𝑐1𝑏 is to the right of 𝑐1𝑎. On the right, 𝑐2𝑏 is on the right of 𝑐2𝑐 and on 
the left of 𝑐2𝑎. The following definition formalizes the structure of a map. 
Definition 1 A semantic topological oriented map is defined as ℳ = (𝑉,𝐸,ℒ,𝒟,𝒮) where:   

• (𝑉,𝐸) are the vertices and edges of a directed graph.  
    • ℒ:𝑉 → 𝜆 assigns a unique semantic label to each vertex, with 𝜆 being a finite set.  
    • 𝒟:𝐸 → {𝐸 −𝑊,𝑁 − 𝑆} is a function assigning a direction to each edge.  
    • 𝒮:𝐸 → {𝐿,𝑅} is a function assigning a label 𝐿 (to the left of) or 𝑅 (to the right of) to each 
edge. The meaning is that the oriented edge is to the left/right of the vertex it originates from (see 
also Figure 2 for examples). 
    • If 𝑒 = (𝑣! , 𝑣!) ∈ 𝐸 is an edge from 𝑣! to 𝑣! and 𝒮(𝑒) = 𝐿, then 𝑒′ = (𝑣! , 𝑣!) ∈ 𝐸 and 
𝒮(𝑒′) = 𝑅. Likewise, 𝑒(𝑣! , 𝑣!) ∈ 𝐸 ∧ 𝒮(𝑒) = 𝑅 ⇒ 𝑒′ = (𝑣! , 𝑣!) ∈ 𝐸 ∧ 𝒮(𝑒′) = 𝐿.  
    • For each couple of adjacent vertices, 𝒟(𝑣! , 𝑣!) = 𝒟(𝑣! , 𝑣!).  
 



 
 

        
       a           b               c            

Figure 1: a: three adjacent vertices along the E-W direction. c1a is on the left of c1b, and c1c is 
on the right of c1b. b: three vertices along the N-S direction with c2a on the right of c2b and c2c 
on the left of c2b. c: two adjacent vertices along the E-W direction, c1a is on the left of c1b. One 
room 1 on the left of c1b. Two adjacent vertices along N-S with c2a on the right of c2b, and 
room 1 to the left of c2b.  
	

The last two conditions establish two consistency constraints. If it is possible to go from 
𝑣! to 𝑣! along one direction (say N-S), then it is possible to go from 𝑣! to 𝑣! along the same 
direction but opposite orientation (say S-N). Second, if there is an edge from 𝑣! to 𝑣! indicating 
that 𝑣! is to the left of 𝑣!, then there must also exist the opposite edge from 𝑣! to 𝑣! indicating 
that 𝑣! is to the right of 𝑣!. 

Collectively, the algorithms providing ℒ,𝒮 and 𝒟 will be in the following indicated as 
Intersection Detection System (IDS). Thanks to recent advances in perception [16], we assume 
that the IDS system can recognize if a detected intersection or corridor is new or revisited.  
Figure 2 shows how a toposemantic map can be used to represent the interior of a building.  
Planning Under Temporal Constraints 

We shortly recap our planning approach based on CMDPs, but due to space limitations 
we refer to [17] [13] for more details. We assume that the reader is familiar with MDPs (Markov 
Decision Processes) and related terminology [18]. A finite, stationary, discrete time CMDP is 
defined as (𝐗,𝐴,𝛽, 𝑐, {𝑐!}!!!! ,𝒫, {𝐷!}!!!! ) where: 𝐗 is a discrete set of states; 𝐴 is a finite set of 
actions; 𝛽 is the probability distribution of the initial state; 𝑐:𝐗×𝐴 → ℝ!! is a primary non-
negative cost function with 𝑐(𝑥,𝑎) being the cost of executing action 𝑎 in state 𝑥; 𝑐!:𝐗×𝐴 →
ℝ!! are 𝐿 secondary cost functions with 𝑐!(𝑥,𝑎) being the 𝑖-th cost incurred when executing 
action 𝑎 in state 𝑥; 𝒫(𝑥,𝑎,𝑦) is the transition probability, i.e., the probability of transitioning 
from state 𝑥 to state 𝑦 when action 𝑎 is executed; and 𝐷! are 𝐿 non-negative constants. A policy 
𝜋(𝑥) defines with which probability each action should be taken when in state 𝑥. Let 𝑐(𝜋) be the 
overall primary cost incurred when following policy 𝜋, and 𝑐!(𝜋) be the overall 𝐿 additional 
costs. The CMDP problem is therefore defined as follows  

 



 
Figure 2: Toposemantic map: vertices with a label Rx are rooms, while corridors have labels of 
the type Cx. Edges with a R label are purple, while edges with a L label are green.	

 
𝜋∗ = arg!min 𝑐(𝜋) 

𝑠. 𝑡.    𝑐!(𝜋) ≤ 𝐷!     1 ≤ 𝑖 ≤ 𝐿 
 
i.e., we aim at following a policy 𝜋∗ that minimizes the primary cost subject to bounds on the 𝐿 
secondary costs. The primary and secondary costs are defined as: 

𝑐 𝜋 = 𝔼  
!

!!!

𝑐 𝑋! ,𝜋 𝑋!                           𝑐!(𝜋) = 𝔼 	

!

!!!

𝑐!(𝑋! ,𝜋(𝑋!))  

 
To fulfill a navigation task with temporal deadlines, we use one primary cost and two secondary 
costs. The primary cost is set to 0 in the goal state and to 1 elsewhere. The two secondary costs 
are the global failure probability and the cumulative time to reach the target vertex. Accordingly, 
the problem is then to compute a policy reaching the goal state while limiting the time spent and 
the failure probability. To apply the CMDP planner to the exploration task, the state set 𝑋 will be 
the set of vertices 𝑉, such that the policy can be used to navigate the robot to a vertex. The set of 
actions 𝐴 is instead a finite set of maneuvers representing basic motion abilities. Each maneuver 
is characterized by an expected time spent to execute it, and a failure probability. In section 6 we 
describe the maneuvers and the associated parameters. 

4. INCREMENTAL MAP CONSTRUCTION, NAVIGATION, AND 
EXPLORATION 

We now describe how a toposemantic map ℳ can be incrementally built and used for 
navigation by a robot exploring an unknown indoor environment while attempting to reach a 
destination by a given deadline. The IDS module determines when a robot has reached a vertex 
(either new or formerly visited) and how many outgoing edges are emanating from the vertex. 
The 𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝑁𝑜𝑑𝑒 (sketched in Algorithm 1) is called every time IDS identifies a corridor 
intersection or a room that was not formerly visited. The function takes as parameters the new 
vertex 𝑣′ to be added and the set of edges emanating from it, and it updates the set of vertices and 
edges assigning labels. Unvisited edges, i.e., edges towards parts of the graph still to be explored, 



are of the type (𝑣′, 𝑣∅), to indicate they lead to unexplored areas (𝑣∅ is used to model unexplored 
space). In the function, labels are set to satisfy the constraints listed in definition 1. 

  
1. Algorithm 𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝑁𝑜𝑑𝑒(𝑣′, 𝑒𝑑𝑔𝑒𝑠)  
2. Let 𝑣 be the vertex the robot came from  
3. 𝑉 ← 𝑉 ∪ {𝑣′}  
4. 𝐸 ← 𝐸 ∪ {(𝑣, 𝑣′), (𝑣′, 𝑣)}   
5. Set ℒ(𝑣′) as per IDS (room or corridor)  
6. Set 𝒟(𝑣′, 𝑣) and 𝒟(𝑣′, 𝑣) as per compass 
7. Set 𝒮(𝑣′, 𝑣) and 𝒮(𝑣′, 𝑣) as per compass 
8. for all unvisited outgoing edges from 𝑣′ do 
9.        Add edges of type (𝑣′, 𝑣∅) and set labels 𝒮,𝒟 

Algorithm 1: adding a new node to the map 

 The algorithm to navigate from the current vertex 𝑣! to a desired target vertex 𝑣 is 
sketched in Algorithm 2. The algorithm takes two parameters, i.e., 𝑣 and a temporal deadline 𝑡!. 
Later on we discuss how these are selected as part of the exploration module. To navigate to the 
vertex, a CMDP is built considering the given temporal deadline and a probability of failure 𝑃! 
(for simplicity assumed constant in the following). At each step, the policy 𝜋∗ is used to 
determine the primitive 𝑎 to be executed from the current vertex. Termination may happen 
because the robot reaches the desired local target 𝑣 or the global target 𝒢, but also if the global 
temporal deadline expires. In this case the robot returns failure.  

 
1. Algorithm 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑒𝑇𝑜𝑉𝑒𝑟𝑡𝑒𝑥(𝑣, 𝑡!)  
2. 𝐶𝑀𝐷𝑃 ← 𝐵𝑢𝑖𝑙𝑑𝐶𝑀𝐷𝑃(ℳ, 𝑣, 𝑡! ,𝑃!)  
3. 𝜋∗ ← 𝑆𝑜𝑙𝑣𝑒(𝐶𝑀𝐷𝑃)  
4. while 𝑡𝑖𝑚𝑒 < 𝒯 
5.      𝑣! ← current vertex 
6.      if  𝑣! = 𝒢 then 
7.          return Global Success  
8.      if 𝑣! = 𝑣  then  
9.          return Local Success   
10.      𝑎 ← 𝜋∗(𝑣!)  
11.      execute 𝑎 
12. return  Failure   

Algorithm 2: navigation algorithm	

Since the robot starts with an empty map, it initially randomly moves around until it has 
𝐾 vertices in the graph. In all our experiments described in the following, 𝐾 is fixed to 3. Finally, 
in Algorithm 3 we show how the overall exploration task is solved. After creating the initial map 
ℳ, the robot enters a loop that continues until either the global temporal deadline 𝒯 expires, or 
the robot succeeds in reaching 𝒢. At every iteration, the function 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑒𝑥𝑡 returns the 
vertex 𝑣 to move to and a temporal deadline 𝑡!, i.e., how much time the robot should spend to 
reach 𝑣. To determine these two quantities, 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑒𝑥𝑡 uses the current map, as well as 
the variable 𝑡𝑖𝑚𝑒, indicating how much time passed since the task started. As 𝑡𝑖𝑚𝑒 grows, more 



stringent temporal deadlines 𝑡! will be returned. The robot then attempts to navigate to the 
assigned vertex 𝑣 and once there, it randomly picks an outgoing edge and follows it until IDS 
indicates that a new vertex has been reached.  

 
1. Algorithm 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑎𝑠𝑘(𝒯,𝒢)  
2. ℳ ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝐺𝑟𝑎𝑝ℎ() 
3. while  𝑡𝑖𝑚𝑒 < 𝒯 do 
4.      𝑣, 𝑡! ← 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑒𝑥𝑡(ℳ, 𝑡𝑖𝑚𝑒) 
5.      𝑓𝑙𝑎𝑔 ← 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑒𝑇𝑜𝑉𝑒𝑟𝑡𝑒𝑥(𝑣, 𝑡!)  
6.      if 𝑓𝑙𝑎𝑔 = Local Success then 
7.             Pick random edge of type (𝑣, 𝑣∅)  out of 𝑣   
8.             Follow edge 𝑒 of type (𝑣, 𝑣∅)  and find new node 𝑣′ 
9.              𝐶𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝑁𝑜𝑑𝑒(𝑣′, 𝑒𝑑𝑔𝑒𝑠) 
10.      else 
11.             return 𝑓𝑙𝑎𝑔  
12. return  𝐹𝑎𝑖𝑙𝑢𝑟𝑒   

Algorithm 3: global exploration algorithm	

5. EXPLORATION ALGORITHMS 
 We discuss five different strategies that can be used to guide the robot through its 

exploration task. Each of these strategies represents a different way to select the vertex 𝑣 
returned by the function 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑒𝑥𝑡 used in Algorithm 3. At the end of the section we 
also discuss how we set the temporal deadline 𝑡!. 
Random Strategy Exploration 

The random exploration strategy is our baseline approach. It returns a random vertex 
among all vertices with one or more outgoing unvisited edges, i.e., edges towards 𝑣∅. If there is 
more than one vertex with unvisited edges, a uniform probability distribution is used to make a 
choice. It is easy to prove that this strategy will eventually explore the whole environment, but it 
is likely to be inefficient. 

Topological Frontier 
Topological frontier is the analogue of the well-known frontier based exploration 

algorithm. In frontier-based exploration, frontiers are defined as the regions on the boundary 
between explored and unexplored space, and the robot then moves to frontier to expand the 
explored space. In our topological domain, the boundary between known and unknown parts of 
the environment is identified by unexplored edges. Accordingly, the topological frontier 
algorithm sorts all nodes by the number of outgoing unexplored edges, and it randomly selects 
one among those with the highest number of outgoing edges. In this latter case a uniform 
distribution among all candidates is used.  
Topological Frontier with Normalized Distances 

In the topological case the cost to move to a vertex in the graph is set to the number of 
edges in the path connecting the current vertex to a target location. To consider distances in the 
topological frontier algorithm, we choose a closer vertex when one or more equivalent ones are 
present. To combine heterogeneous quantities (number of outgoing unexplored edges and 



distances), we use a linear combination of normalized quantities (see e.g., [19]) to assign a value 
to each vertex in the map. We then select the vertex maximizing this metric. To be specific, let 
𝒱 ⊂ 𝑉 be the set of vertices with one or more outgoing unexplored edge. For each vertex 𝑣 ∈ 𝒱 
we compute the following quantity  

 𝑆 𝑣 = 𝛾 !"# !
!"#
!!∈𝒱

!"# !!
− 1− 𝛾 !(!)

!"#
!!∈𝒱

!(!!)
 

 where 𝑑𝑒𝑔(𝑣) is the number of outgoing, unexplored edges and 𝑑(𝑣) is the distance in the 
topological map, defined as the number of edges in the shortest path in the graph. The function 
then returns the node in 𝒱 with the highest value for 𝑆(𝑣). In the experiments presented in the 
following section we set 𝛾 = 0.5. This approach then tries to drive the robot to frontiers that are 
large and near. 
Semantic: Explore Corridors First 

The first semantic exploration strategy relies on the labels attributed to vertices in the 
graph. In particular, it exploits the assumption that we can distinguish between rooms and 
corridors. Inspired by the work by Quattrini et al. , the robot prioritizes corridors when selecting 
where to go next [10]. That is to say that if among the vertices with unexplored outgoing edges 
there are both corridors and rooms, the robot always selects corridors first. Rooms are selected 
only when no corridor vertices can be selected. 

Semantic Complete Corridors First 
Finally in our second semantic strategy, before moving to a different corridor the robot 

finishes exploring the corridor it is located in. This is complementary to the previous one. To 
accomplish this, the semantic label ℒ of a vertex and the directions of its adjacent edges are 
considered. Here, a corridor is defined as a path along the graph 𝐺 = (𝑉,𝐸) such that all vertices 
are labeled as corridor vertices by the function ℒ, and all edges connecting the vertices have the 
same label 𝒟, i.e., they are all along the N-S or E-W direction. For example, in figure 2 
𝑐1𝑎 − 𝑐1𝑏 − 𝑐1𝑐 − 𝑐1𝑑 is a corridor along the E-W direction that cannot be further extended 
because other vertices of type corridor can only be reached traversing edges along the N-S 
direction. The robot enters a new corridor only once the previous corridor can no longer be 
extended. This approach further capitalizes one aspect in Algorithm 3, i.e., once a vertex is 
reached a random outgoing edge is picked and traversed, too. This has the effect of exploring 
rooms connected to the corridor while this is being explored. 

Temporal Deadline 
 Finally, in this subsection we describe one possible way to pick the temporal deadline 

assigned to reach a given vertex. The rationale is that as the global deadline 𝒯 is approaching, 
the robot should speedup. To this end, we opt for a very simple schedule. Once a vertex 𝑣 is 
selected, we define a preliminary deadline 𝐵 equal to the number of edges between the current 
vertex 𝑣! and 𝑣 multiplied by a constant. Then, if the time available to complete the task is larger 
than 0.8𝒯, we set 𝑡! = 𝐵. If instead the time to complete the task is between 0.5𝒯 and 0.8𝒯 we 
set 𝑡! = 0.5𝐵. Finally, if the time to complete the task is less than 0.5𝒯, we set 𝑡! = 0.3𝐵. The 
objective of this simple approach is to exemplify the effectiveness of our temporal aware 
planning strategy, and we leave to future work the study of how to implement more sophisticated 
approaches. 



6. EXPERIMENTAL VALIDATION 
Setup  

As a preliminary step towards evaluating strengths and weaknesses of the proposed 
approach, we perform an extensive set of tests using ROS and Gazebo. The simulated 
environment is a faithful replica of one of the engineering buildings of the University of 
California, Merced, and its model in Gazebo was built from its architectural CAD design (see 
Figure 3). 

 

 
Figure 3: Three starting points (A, B, C) and one target (star). 

  
The simulated robot is a Pioneer 3AT with limited sensing capabilities compatible with 

our former assumptions. In particular, the robot is equipped only with a compass, a laser range 
finder to avoid obstacles, and a logical camera to detect features in the environment. The logical 
camera is a ROS plugin that returns the position and orientation of any object in its cone of 
vision with respect to the robot.1 The logical camera abstracts the implementation of the IDS 
system based on computer vision. This is obtained by embedding unique features in the 
environment that can be detected by the camera (these are displayed as green and blue tags in 
Fig. 3). It shall be noted that even though the simulated robot is equipped with a laser range 
finder, it is only used for obstacle avoidance when moving along corridors or entering doors. To 
test our navigation system under realistic conditions, a 25% error is added to linear and angular 
velocity commands, and a 5% error is added to orientation readings. In all our tests the robot 
starts without any preliminary information about the environment it is exploring. 
Maneuvers 

To navigate the environment, the action set 𝐴 for the CMPD includes six maneuvers. 
Specifically, there are three elementary motions, and each can be executed fast or slow. The first 
maneuver is go through a corridor. This maneuver moves the robot forward (i.e., keeping the 
same orientation) while trying to keep an equal distance from the walls on either side. The 
second maneuver is go through door on the right. This will turn the robot to its right (relative to 
its current location and orientation) and move through a door, as identified by the IDS system. 
The third maneuver is the symmetric go thorough door on the left. 

 

																																																								
1 http://wiki.ros.org/ariac/Tutorials/SensorInterface 



 
Results 

Here we compare the five exploration strategies on an exploration task where we vary the 
complexity of the navigation task, defined as the distance between the robot start location and the 
target location, and the assigned temporal deadline. The environment is shown in Figure 3, 
where the goal location 𝒢 is the room marked with the green star, whereas the three different 
places marked 𝐴, 𝐵 and 𝐶 identify the different start points considered. Throughout the 
simulation, the probability of failure 𝑃! used when computing the CMDP policy was set to 0.99. 
For each starting point we consider four different temporal deadlines, and we then execute 50 
trials. A trial is considered a failure if the robot has not reached the target location by the given 
deadline, or collides with the environment while navigating. Overall, 3000 independent tests 
were executed to evaluate the five exploration strategies. Table 1 summarizes the performance 
for the five exploration methods we propose. The columns give the starting location, temporal 
deadline expressed in seconds, Time Spent (s), Success (%) for each type of exploration: 
Random (Ra), Frontier (Fr), Normalized Frontier (NF), Semantic Explore Corridors First (S1), 
and Semantic Complete Corridors First (S2). For each combination of start location and temporal 
deadline, we provide the success rate, the average time spent to reach the target. Note that the 
average time is given for successful runs only, because unsuccessful runs may result from 
exceeding the temporal deadline or because of collisions with the environment and therefore it 
would not be meaningful to average over unsuccessful runs, too. Table 2, instead, analyzes in 
greater detail the causes of the failures for each strategy.  

 
To ease the comparison, the results are also visually compared in Figures 4 and 5. 

Unsurprisingly, the random strategy is the most effective when starting from location A, except 
when the shortest deadline is enforced. This is somewhat expected, given that other strategies 
tend instead to expand the map in a principled way that may push them far from the target 
location that is relatively close to A. Moving farther from the target increases the time to 
complete the mission, and ultimately the failure rate, as this translates increased chances to miss 
the temporal deadline or to collide with the environment. However, in the other cases this 
strategy is less effective, and performs very poorly for the most challenging case C. All things 
considered, the topological frontier with normalized distances appears to be most effective when 
the temporal deadline is not too demanding. However, as the deadline becomes more stringent its 
advantage seems to vanish and it becomes more or less comparable to the topological frontier. 
The semantic strategies, on the contrary, appear to have a performance that is less dependent on 
the start location. One final comment should be made regarding the success rates, as they may 
appear to be on the low end. This is due to the fact that the temporal deadlines are strict, and this 
boosts failure rates for all algorithms. A strict temporal deadline is not only harder to meet, but it 
also forces the CMDP planner to utilize more aggressive maneuvers, thus possibly also 
increasing the number of failures due to collisions with the environment. 

 

7. REPRODUCING OUR RESEARCH 
The final contribution of this submission is in ensuring that our research can be reproduced, as 
this is a topic of increasing importance in robotics. In [20], we find that "A study is reproducible 
if you can take the original data and the computer code used to analyze the data and reproduce  



 
 
		 Time	Spent	(Seconds)	 Success	Rate	%	

S	 TD	 Rand	 Frontier	 Norm.	
Frontier	

Sem	
1	

Sem	
2	 Rand	 Frontier	 Norm.	

Frontier	
Sem			
1	

Sem			
2	

A	 680	 146.542	 199.429	 47.45	 246	 71.9	 96	 56	 40	 40	 40	
A	 477	 139.106	 54.9333	 76.087	 53.9	 48.4	 94	 30	 46	 30	 34	
A	 272	 99.825	 31.125	 39.1	 35.1	 75.8	 80	 32	 40	 36	 36	
A	 68	 42.5385	 35.6471	 34.6	 31.2	 48.4	 26	 34	 30	 26	 30	
B	 2899	 1006.36	 345.3	 883.607	 347	 656	 50	 60	 56	 54	 58	
B	 2030	 1026.9	 373.923	 522	 361	 543	 42	 52	 56	 60	 54	
B	 1160	 681.148	 391.581	 373.412	 342	 580	 54	 62	 34	 58	 46	
B	 290	 0	 218.824	 199.1	 222	 219	 0	 34	 20	 22	 24	
C	 5628	 1495	 336.926	 648.71	 295	 336	 8	 54	 62	 50	 46	
C	 3940	 1810.43	 363.448	 599.25	 322	 347	 14	 58	 48	 54	 76	
C	 2251	 1363.33	 364.607	 507.552	 331	 548	 6	 56	 58	 56	 48	
C	 563	 0	 330.72	 368.353	 265	 396	 0	 50	 34	 46	 20	

 
Table 1: Performance of the 5 exploration strategies. 

 
 

		 Fails	because	of	Collision	%	 Fails	because	of	DL	not	met	%	

S	 TD	 Rand	 Frontier	 Norm.	
Frontier	

Sem	
1	

Sem	
2	 Rand	 Frontier	

Norm.	
Frontie

r	

Sem			
1	

Sem			
2	

A	 680	 4	 36	 24	 40	 28	 0	 8	 36	 20	 32	
A	 477	 4	 36	 12	 36	 16	 2	 34	 42	 34	 50	
A	 272	 2	 24	 10	 16	 2	 18	 44	 50	 48	 62	
A	 68	 8	 2	 8	 10	 2	 66	 64	 62	 64	 68	
B	 2899	 50	 38	 32	 30	 34	 0	 2	 12	 14	 8	
B	 2030	 58	 48	 36	 36	 28	 0	 0	 8	 4	 18	
B	 1160	 46	 38	 44	 28	 44	 0	 0	 22	 14	 10	
B	 290	 16	 16	 44	 18	 24	 84	 50	 36	 60	 52	
C	 5628	 92	 46	 28	 38	 50	 0	 0	 10	 12	 4	
C	 3940	 86	 40	 36	 36	 20	 0	 2	 16	 10	 4	
C	 2251	 94	 40	 36	 42	 36	 0	 4	 6	 2	 16	
C	 563	 100	 40	 30	 40	 40	 0	 10	 36	 14	 40	

 
Table 2: Analysis of failures for the 5 exploration strategies. 

	
	
	

	



		 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 4: Percentage of Success for all the exploration strategies. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Time spent for all the exploration strategies. 
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all of the numerical findings from the study". Accordingly, the resources we provide in the 
following aim at making our study is reproducible. However, due to the stochastic nature of the 
experiments we performed, reproducing the same numerical findings is not a foregone 
conclusion, in particular if the user relies on a system less powerful than the one used for the 
experiments presented in section 6. A more realistic objective is aiming at reaching the same 
conclusions in terms of relative value of the exploration strategies we presented. In [21] a set of 
guidelines for good experimental methodologies in robotics is given. According to such 
guidelines, this work should be characterized as ``experimental’’ and shall be furthermore 
classified as research in ``Autonomy/Cognitive Tasks.’’ The experimental part of this paper is 
based on ROS/Gazebo and is therefore particularly suited for being reproduced by a third party. 
This would be much more challenging if results were obtained on a physical P3AT robot, 
because of the countless variables influencing the final results. While the robotics community is 
becoming increasingly aware of the importance of this aspect, best practices are still being 
defined, and standard tools to promote code reproducibility (e.g., Code Ocean) are not 
necessarily best suited or ready yet for all robotics research. This is in particularly relevant when 
considering an end-to-end system relying on multiple external libraries to perform heterogenous 
operations like mathematical computation, navigation, and more. Considering these challenges, 
in the supplementary materials section of this work, we have provided an image for a virtual 
Linux machine including our code, all libraries necessary to run it, and a set of scripts to re-run 
all the experiments to produce the results presented in this paper. The virtual machine image is 
based on VirtualBox, a free software available for a variety of operating systems, including 
Windows, OsX, and Linux2. In addition, we have also developed a technical document with step-
by-step instructions to download and boot the virtual image, and run all experiments described in 
this paper. It shall be noted that other approaches could be viable, too, like Docker. With these 
premises, the experimental process that led to the results presented before is reproducible by a 
third party. As mentioned above, however, a third-party will not necessarily obtain the same 
numerical outcomes because of two sources of randomness. First, the algorithms themselves 
feature various steps relying on randomized choices, e.g., to break ties. Second, the simulation 
environment is influenced by the underlying platform and will therefore not produce exactly the 
same results. Moreover, by running the code through a virtual image, an inevitable slowdown 
will affect the results, and some computer systems may be unable to run the system altogether. 
To mitigate this problem, we have also added a complete set of instructions on the various 
packages to install on a native Linux system to enable reproducibility even without the 
VirtualBox image. Nevertheless, due to continuous updates in software packages, as well as 
discontinuations, this second approach may not be stable in the long run. To the best of our 
knowledge, this is the first example of a fully reproducible study of exploration algorithms. 

8. CONCLUSIONS AND FUTURE WORK 
In this paper have studied an exploration task with temporal constraints. The objective for the 
robot is to enter an unexplored area and reach a target location within a given temporal deadline. 
Our system incrementally builds a spatial model called semantic topological oriented map. The 
model enhances classic topological maps by adding semantic labels (corridor/room) and 
																																																								
2	www.virtualbox.org	



relationships of the type to-the-right-of and to-the-left-of. Key to our approach is the assumption 
that walls in the environment are aligned along orthogonal directions. This assumption is very 
common in most buildings. The proposed spatial model has been coupled with our recently 
proposed planner based on CMDPs and on top of this we proposed and analyzed five different 
exploration techniques exploiting the proposed model. Through thousands of simulated runs, it 
appears that our method dubbed topological frontier with normalized distances works best. In 
their current formulation, methods on semantic information are slightly less competitive, 
although it ought to be acknowledged that only very limited semantic information was used. 
Finally, we have provided all resources to ensure a third party to fully reproduce our results -- a 
first in the area of reproducible robotics. With respect to this aspect, we believe it will be 
important for the robotics community to reach a consensus on the tools and infrastructure needed 
to disseminate reproducible research. 
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