
UC Merced
UC Merced Previously Published Works

Title
Time-Constrained Exploration Using Toposemantic Spatial Models

Permalink
https://escholarship.org/uc/item/86b3z7fc

Journal
IEEE Robotics & Automation Magazine, 26(3)

ISSN
1070-9932

Authors
Rincon, Jose Luis Susa
Carpin, Stefano

Publication Date
2019-09-01

DOI
10.1109/mra.2019.2923452

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/86b3z7fc
https://escholarship.org
http://www.cdlib.org/

TIME CONSTRAINED EXPLORATION USING TOPOSEMANTIC
SPATIAL MODELS: A REPRODUCIBLE APPROACH

Jose Luis Susa Rincon, Stefano Carpin
Department of Computer Science and Engineering
University of California, Merced

As robots become ubiquitous in our everyday lives, they are more and more often assigned
complex tasks involving multiple objectives at once. Moreover, efficiency, here intended as the
ability to complete more tasks in a given amount of time, is becoming increasingly important. At
the same time, spurred by progress in machine learning, there is a tendency to explore novel
designs in which robots rely more on visual sensors and less on traditional sensors like range
finders. Starting from these premises, the objective of this paper is twofold. First, we revisit the
classic exploration problem introducing temporal constraints in the task and embracing a
toposemantic spatial representation that does not include any metric attribute. To assess strengths
and weaknesses of the various exploration methods abstracting from the underlying technical
implementation, we perform a set of massive simulations in ROS using its Gazebo simulation
environment. The simulation-based approach leads to the second objective of this contribution,
namely, presenting a set of findings that are reproducible by a third party. As measurable
robotics gains more attention, this work represents a first attempt to present a reproducible study
based on Gazebo.

1. MOTIVATION
 Consider a service robot that must deliver an item in an unknown environment, say an
office floor it never entered before, and for which it has no prior knowledge other than the fact
that it is an office environment. For example, the robot may have to deliver an envelope in the
copy room, or put a package on the desk in Mr. Chairman's office. Not having preliminary
knowledge about where these places are located, the robot should then explore the environment
until it recognizes it has reached the desired place. Then, it shall deposit the goods it is supposed
to deliver, travel its way back to the entrance, and leave. Exploration is an integral component of
this task, and if the robot is doing this job as part of a series of deliveries, it is important to
complete the task quickly to increase the number of tasks completed in a set amount of time.

 Exploration is one of the fundamental abilities for an autonomous robot operating in an
unknown environment. In its most studied form, this means building a spatial model of the
environment, and central to the task is the decision process determining “where to move next.’’
A classic early solution to this problem is frontier-based exploration [1], an approach inherently
tied to using occupancy grid maps to represent space. In this case, a frontier is defined as the
boundary between explored and unexplored space, and the rationale is that by moving towards
large frontiers, a robot will be quicker in discovering more unknown areas. Other possible
approaches are based on random exploration, or variations of the frontier based approach. For
example, distance to frontiers may be considered to break ties between equally large frontiers. In
many of these approaches the temporal dimension is not explicitly considered. That is to say, that
while heuristics are introduced to expedite the exploration process, time is most often not an
explicit metric or constraint.

 In this work, we deviate from existing literature by considering three modifications to the
basic setting. First, we assume the robot does not build a metric model of the environment, like
an occupancy grid map, but rather a topological model with semantic annotations. This is called
toposemantic model and will be further expanded later. Second, the objective of the robot is not
to build a spatial model per se, but rather to explore the unknown environment until a target
location is discovered. The model is functional to this objective, e.g., to avoid revisiting areas
already explored. To this end, we assume that the target location is provided in a format
compatible with the sensorial capabilities of the robot, so that it can detect when the desired
place has been reached. Finally, we introduce a temporal constraint, i.e., a time 𝒯 such that the
exploration task is considered not solved if after time 𝒯 the robot has still not reached the
location it is looking for.

Exploration is a fundamental ability in mobile robotics that has been extensively studied

in the last three decades. With the current explosive growth in robotics applications, the area
continues to grow, particularly in considering extensions and special cases of exploration not
studied in the past. In this paper we consider the topic of efficient exploration using a semantic
topological oriented map. Efficient, in this case, means that a robot is expected to complete its
assigned task within a given temporal deadline. To accomplish this task, the robot does not build
a metric map, but rather incrementally builds a topological model where the environment is
represented by a graph. We opt for topological models for various reasons. First, it is known that
humans make use of topological models for spatial awareness and navigation [2]. Second, there
is an interest in moving away from representations such as occupancy grid maps that are tightly
integrated with range finders. Finally, topological maps are more compact and use less memory.
To handle temporal deadlines, there exist at least two approaches. First, one could combine
multiple objectives (e.g., time, safety, explored area) into a single objective function, for
example with a linear combination, and then plan using standard methods like Markov Decision
Processes. Instead, we rely on our recent planning algorithms using constrained Markov decision
processes (CMPDs). This approach allows optimizing with respect to one objective (say reaching
a goal), while satisfying one or more constraints, like time to completion and probability of
collision. This approach has the advantage of not requiring a combination of intrinsically
heterogeneous quantities.

2. RELATED WORK

Exploration is one of the main challenges for robots facing a new environment and there
is no consensus on the best strategy and representation. Ultimately, these are application specific,
and are still an active research topic, as witnessed by continued publications in this area. Vidal et
al. recently studied robotic underwater exploration [3] while Tung et al. propose a method using
the visual saliency of objects and the environment to drive the robot towards salient objects using
a 3D occupancy map [4]. Other authors have recently proposed to use a deep reinforcement
learning and included topological and structural information about a building to improve
exploration [5]. While metric maps and occupancy grid maps have been common in multiple
applications, new approaches have been developed, and topological and semantic maps have
shown the potential to be used in complex applications (see [6] for a relatively recent survey).
Multiple labeling methods and scene recognition [7] have been proposed, with the main goal of
getting a good understanding of the objects and their relationships [8] [9]. For indoor
environments, Quattrini et al. use semantic information combined with geometric information to

improve the exploration of a map with privileged areas that are defined by humans as first goals
for the robots [10]. Temporal deadlines in robotics have been extensively studied for scheduling
and coordination tasks, for example, when multiple robots must coordinate their actions so that
the relative temporal ordering becomes relevant [11] [12]. We recently studied a class of multi-
objective planning problems where the temporal deadline becomes an additional constraint to be
met while optimizing some other objective function, like for example, the probability of
successfully reaching a location or gathering some data [13] [14] [15]. These methods are the
foundation of the planning method we consider.

3. BACKGROUND ON SPATIAL REPRESENTATION AND PLANNING
UNDER TEMPORAL CONSTRAINTS	
Semantic Topological Oriented Maps

In this subsection we define semantic topological oriented maps (or toposematic maps,
for brevity) as an extension to the classic definition of topological maps. Topological maps
model space as a graph 𝐺 = (𝑉,𝐸) with vertices representing places and edges modeling the
ability to move between the places represented by vertices. Our model builds upon two
assumptions. First, indoor environments are normally subdivided into corridors and rooms
arranged along orthogonal directions. This observation was already made and exploited in [10].
Second, we assume that the robot is equipped with a device providing absolute orientation
(compass). Starting from these two hypotheses, without loss of generality, we assume that the
walls and corridors of the building are arranged along the four cardinal directions that will be in
the following abbreviated as N (north), S (south), E (east), and W (west). An oriented topological
map exploits these assumptions to define the relations “to the right of” and “to the left of”
between vertices in the graph. Vertices in a graph may have degree one (rooms, or corridor dead
ends), two (corridors), three (T junction), or four (four way intersection). Thanks to the compass,
each edge can then be labeled as E-W or N-S according to its direction. Accordingly, two
adjacent vertices are said to be along the N-S (north-south) direction if the edge connecting them
has the N-S label and we similarly define adjacent vertices along the E-W direction. To define
the relationships “to the right/left of” for elements aligned along the N-S direction, we assume
that the robot faces W, whereas for elements along the E-W direction we assume the robot faces
N. Figure 1 illustrates this approach. The three vertices on the left are along the E-W direction.
Based on our assumption that the robot points north to define left/right relationships, vertex 𝑐1𝑎
is to the left of 𝑐1𝑏 and 𝑐1𝑏 is to the right of 𝑐1𝑎. On the right, 𝑐2𝑏 is on the right of 𝑐2𝑐 and on
the left of 𝑐2𝑎. The following definition formalizes the structure of a map.
Definition 1 A semantic topological oriented map is defined as ℳ = (𝑉,𝐸,ℒ,𝒟,𝒮) where:

• (𝑉,𝐸) are the vertices and edges of a directed graph.
 • ℒ:𝑉 → 𝜆 assigns a unique semantic label to each vertex, with 𝜆 being a finite set.
 • 𝒟:𝐸 → {𝐸 −𝑊,𝑁 − 𝑆} is a function assigning a direction to each edge.
 • 𝒮:𝐸 → {𝐿,𝑅} is a function assigning a label 𝐿 (to the left of) or 𝑅 (to the right of) to each
edge. The meaning is that the oriented edge is to the left/right of the vertex it originates from (see
also Figure 2 for examples).
 • If 𝑒 = (𝑣! , 𝑣!) ∈ 𝐸 is an edge from 𝑣! to 𝑣! and 𝒮(𝑒) = 𝐿, then 𝑒′ = (𝑣! , 𝑣!) ∈ 𝐸 and
𝒮(𝑒′) = 𝑅. Likewise, 𝑒(𝑣! , 𝑣!) ∈ 𝐸 ∧ 𝒮(𝑒) = 𝑅 ⇒ 𝑒′ = (𝑣! , 𝑣!) ∈ 𝐸 ∧ 𝒮(𝑒′) = 𝐿.
 • For each couple of adjacent vertices, 𝒟(𝑣! , 𝑣!) = 𝒟(𝑣! , 𝑣!).

 a b c

Figure 1: a: three adjacent vertices along the E-W direction. c1a is on the left of c1b, and c1c is
on the right of c1b. b: three vertices along the N-S direction with c2a on the right of c2b and c2c
on the left of c2b. c: two adjacent vertices along the E-W direction, c1a is on the left of c1b. One
room 1 on the left of c1b. Two adjacent vertices along N-S with c2a on the right of c2b, and
room 1 to the left of c2b.
	

The last two conditions establish two consistency constraints. If it is possible to go from
𝑣! to 𝑣! along one direction (say N-S), then it is possible to go from 𝑣! to 𝑣! along the same
direction but opposite orientation (say S-N). Second, if there is an edge from 𝑣! to 𝑣! indicating
that 𝑣! is to the left of 𝑣!, then there must also exist the opposite edge from 𝑣! to 𝑣! indicating
that 𝑣! is to the right of 𝑣!.

Collectively, the algorithms providing ℒ,𝒮 and 𝒟 will be in the following indicated as
Intersection Detection System (IDS). Thanks to recent advances in perception [16], we assume
that the IDS system can recognize if a detected intersection or corridor is new or revisited.
Figure 2 shows how a toposemantic map can be used to represent the interior of a building.
Planning Under Temporal Constraints

We shortly recap our planning approach based on CMDPs, but due to space limitations
we refer to [17] [13] for more details. We assume that the reader is familiar with MDPs (Markov
Decision Processes) and related terminology [18]. A finite, stationary, discrete time CMDP is
defined as (𝐗,𝐴,𝛽, 𝑐, {𝑐!}!!!! ,𝒫, {𝐷!}!!!!) where: 𝐗 is a discrete set of states; 𝐴 is a finite set of
actions; 𝛽 is the probability distribution of the initial state; 𝑐:𝐗×𝐴 → ℝ!! is a primary non-
negative cost function with 𝑐(𝑥,𝑎) being the cost of executing action 𝑎 in state 𝑥; 𝑐!:𝐗×𝐴 →
ℝ!! are 𝐿 secondary cost functions with 𝑐!(𝑥,𝑎) being the 𝑖-th cost incurred when executing
action 𝑎 in state 𝑥; 𝒫(𝑥,𝑎,𝑦) is the transition probability, i.e., the probability of transitioning
from state 𝑥 to state 𝑦 when action 𝑎 is executed; and 𝐷! are 𝐿 non-negative constants. A policy
𝜋(𝑥) defines with which probability each action should be taken when in state 𝑥. Let 𝑐(𝜋) be the
overall primary cost incurred when following policy 𝜋, and 𝑐!(𝜋) be the overall 𝐿 additional
costs. The CMDP problem is therefore defined as follows

Figure 2: Toposemantic map: vertices with a label Rx are rooms, while corridors have labels of
the type Cx. Edges with a R label are purple, while edges with a L label are green.	

𝜋∗ = arg!min 𝑐(𝜋)

𝑠. 𝑡. 𝑐!(𝜋) ≤ 𝐷! 1 ≤ 𝑖 ≤ 𝐿

i.e., we aim at following a policy 𝜋∗ that minimizes the primary cost subject to bounds on the 𝐿
secondary costs. The primary and secondary costs are defined as:

𝑐 𝜋 = 𝔼
!

!!!

𝑐 𝑋! ,𝜋 𝑋! 𝑐!(𝜋) = 𝔼 	

!

!!!

𝑐!(𝑋! ,𝜋(𝑋!))

To fulfill a navigation task with temporal deadlines, we use one primary cost and two secondary
costs. The primary cost is set to 0 in the goal state and to 1 elsewhere. The two secondary costs
are the global failure probability and the cumulative time to reach the target vertex. Accordingly,
the problem is then to compute a policy reaching the goal state while limiting the time spent and
the failure probability. To apply the CMDP planner to the exploration task, the state set 𝑋 will be
the set of vertices 𝑉, such that the policy can be used to navigate the robot to a vertex. The set of
actions 𝐴 is instead a finite set of maneuvers representing basic motion abilities. Each maneuver
is characterized by an expected time spent to execute it, and a failure probability. In section 6 we
describe the maneuvers and the associated parameters.

4. INCREMENTAL MAP CONSTRUCTION, NAVIGATION, AND
EXPLORATION

We now describe how a toposemantic map ℳ can be incrementally built and used for
navigation by a robot exploring an unknown indoor environment while attempting to reach a
destination by a given deadline. The IDS module determines when a robot has reached a vertex
(either new or formerly visited) and how many outgoing edges are emanating from the vertex.
The 𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝑁𝑜𝑑𝑒 (sketched in Algorithm 1) is called every time IDS identifies a corridor
intersection or a room that was not formerly visited. The function takes as parameters the new
vertex 𝑣′ to be added and the set of edges emanating from it, and it updates the set of vertices and
edges assigning labels. Unvisited edges, i.e., edges towards parts of the graph still to be explored,

are of the type (𝑣′, 𝑣∅), to indicate they lead to unexplored areas (𝑣∅ is used to model unexplored
space). In the function, labels are set to satisfy the constraints listed in definition 1.

1. Algorithm 𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝑁𝑜𝑑𝑒(𝑣′, 𝑒𝑑𝑔𝑒𝑠)
2. Let 𝑣 be the vertex the robot came from
3. 𝑉 ← 𝑉 ∪ {𝑣′}
4. 𝐸 ← 𝐸 ∪ {(𝑣, 𝑣′), (𝑣′, 𝑣)}
5. Set ℒ(𝑣′) as per IDS (room or corridor)
6. Set 𝒟(𝑣′, 𝑣) and 𝒟(𝑣′, 𝑣) as per compass
7. Set 𝒮(𝑣′, 𝑣) and 𝒮(𝑣′, 𝑣) as per compass
8. for all unvisited outgoing edges from 𝑣′ do
9. Add edges of type (𝑣′, 𝑣∅) and set labels 𝒮,𝒟

Algorithm 1: adding a new node to the map

 The algorithm to navigate from the current vertex 𝑣! to a desired target vertex 𝑣 is
sketched in Algorithm 2. The algorithm takes two parameters, i.e., 𝑣 and a temporal deadline 𝑡!.
Later on we discuss how these are selected as part of the exploration module. To navigate to the
vertex, a CMDP is built considering the given temporal deadline and a probability of failure 𝑃!
(for simplicity assumed constant in the following). At each step, the policy 𝜋∗ is used to
determine the primitive 𝑎 to be executed from the current vertex. Termination may happen
because the robot reaches the desired local target 𝑣 or the global target 𝒢, but also if the global
temporal deadline expires. In this case the robot returns failure.

1. Algorithm 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑒𝑇𝑜𝑉𝑒𝑟𝑡𝑒𝑥(𝑣, 𝑡!)
2. 𝐶𝑀𝐷𝑃 ← 𝐵𝑢𝑖𝑙𝑑𝐶𝑀𝐷𝑃(ℳ, 𝑣, 𝑡! ,𝑃!)
3. 𝜋∗ ← 𝑆𝑜𝑙𝑣𝑒(𝐶𝑀𝐷𝑃)
4. while 𝑡𝑖𝑚𝑒 < 𝒯
5. 𝑣! ← current vertex
6. if 𝑣! = 𝒢 then
7. return Global Success
8. if 𝑣! = 𝑣 then
9. return Local Success
10. 𝑎 ← 𝜋∗(𝑣!)
11. execute 𝑎
12. return Failure

Algorithm 2: navigation algorithm	

Since the robot starts with an empty map, it initially randomly moves around until it has
𝐾 vertices in the graph. In all our experiments described in the following, 𝐾 is fixed to 3. Finally,
in Algorithm 3 we show how the overall exploration task is solved. After creating the initial map
ℳ, the robot enters a loop that continues until either the global temporal deadline 𝒯 expires, or
the robot succeeds in reaching 𝒢. At every iteration, the function 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑒𝑥𝑡 returns the
vertex 𝑣 to move to and a temporal deadline 𝑡!, i.e., how much time the robot should spend to
reach 𝑣. To determine these two quantities, 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑒𝑥𝑡 uses the current map, as well as
the variable 𝑡𝑖𝑚𝑒, indicating how much time passed since the task started. As 𝑡𝑖𝑚𝑒 grows, more

stringent temporal deadlines 𝑡! will be returned. The robot then attempts to navigate to the
assigned vertex 𝑣 and once there, it randomly picks an outgoing edge and follows it until IDS
indicates that a new vertex has been reached.

1. Algorithm 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑎𝑠𝑘(𝒯,𝒢)
2. ℳ ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝐺𝑟𝑎𝑝ℎ()
3. while 𝑡𝑖𝑚𝑒 < 𝒯 do
4. 𝑣, 𝑡! ← 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑒𝑥𝑡(ℳ, 𝑡𝑖𝑚𝑒)
5. 𝑓𝑙𝑎𝑔 ← 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑒𝑇𝑜𝑉𝑒𝑟𝑡𝑒𝑥(𝑣, 𝑡!)
6. if 𝑓𝑙𝑎𝑔 = Local Success then
7. Pick random edge of type (𝑣, 𝑣∅) out of 𝑣
8. Follow edge 𝑒 of type (𝑣, 𝑣∅) and find new node 𝑣′
9. 𝐶𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝑁𝑜𝑑𝑒(𝑣′, 𝑒𝑑𝑔𝑒𝑠)
10. else
11. return 𝑓𝑙𝑎𝑔
12. return 𝐹𝑎𝑖𝑙𝑢𝑟𝑒

Algorithm 3: global exploration algorithm	

5. EXPLORATION ALGORITHMS
 We discuss five different strategies that can be used to guide the robot through its

exploration task. Each of these strategies represents a different way to select the vertex 𝑣
returned by the function 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑒𝑥𝑡 used in Algorithm 3. At the end of the section we
also discuss how we set the temporal deadline 𝑡!.
Random Strategy Exploration

The random exploration strategy is our baseline approach. It returns a random vertex
among all vertices with one or more outgoing unvisited edges, i.e., edges towards 𝑣∅. If there is
more than one vertex with unvisited edges, a uniform probability distribution is used to make a
choice. It is easy to prove that this strategy will eventually explore the whole environment, but it
is likely to be inefficient.

Topological Frontier
Topological frontier is the analogue of the well-known frontier based exploration

algorithm. In frontier-based exploration, frontiers are defined as the regions on the boundary
between explored and unexplored space, and the robot then moves to frontier to expand the
explored space. In our topological domain, the boundary between known and unknown parts of
the environment is identified by unexplored edges. Accordingly, the topological frontier
algorithm sorts all nodes by the number of outgoing unexplored edges, and it randomly selects
one among those with the highest number of outgoing edges. In this latter case a uniform
distribution among all candidates is used.
Topological Frontier with Normalized Distances

In the topological case the cost to move to a vertex in the graph is set to the number of
edges in the path connecting the current vertex to a target location. To consider distances in the
topological frontier algorithm, we choose a closer vertex when one or more equivalent ones are
present. To combine heterogeneous quantities (number of outgoing unexplored edges and

distances), we use a linear combination of normalized quantities (see e.g., [19]) to assign a value
to each vertex in the map. We then select the vertex maximizing this metric. To be specific, let
𝒱 ⊂ 𝑉 be the set of vertices with one or more outgoing unexplored edge. For each vertex 𝑣 ∈ 𝒱
we compute the following quantity

 𝑆 𝑣 = 𝛾 !"# !
!"#
!!∈𝒱

!"# !!
− 1− 𝛾 !(!)

!"#
!!∈𝒱

!(!!)

 where 𝑑𝑒𝑔(𝑣) is the number of outgoing, unexplored edges and 𝑑(𝑣) is the distance in the
topological map, defined as the number of edges in the shortest path in the graph. The function
then returns the node in 𝒱 with the highest value for 𝑆(𝑣). In the experiments presented in the
following section we set 𝛾 = 0.5. This approach then tries to drive the robot to frontiers that are
large and near.
Semantic: Explore Corridors First

The first semantic exploration strategy relies on the labels attributed to vertices in the
graph. In particular, it exploits the assumption that we can distinguish between rooms and
corridors. Inspired by the work by Quattrini et al. , the robot prioritizes corridors when selecting
where to go next [10]. That is to say that if among the vertices with unexplored outgoing edges
there are both corridors and rooms, the robot always selects corridors first. Rooms are selected
only when no corridor vertices can be selected.

Semantic Complete Corridors First
Finally in our second semantic strategy, before moving to a different corridor the robot

finishes exploring the corridor it is located in. This is complementary to the previous one. To
accomplish this, the semantic label ℒ of a vertex and the directions of its adjacent edges are
considered. Here, a corridor is defined as a path along the graph 𝐺 = (𝑉,𝐸) such that all vertices
are labeled as corridor vertices by the function ℒ, and all edges connecting the vertices have the
same label 𝒟, i.e., they are all along the N-S or E-W direction. For example, in figure 2
𝑐1𝑎 − 𝑐1𝑏 − 𝑐1𝑐 − 𝑐1𝑑 is a corridor along the E-W direction that cannot be further extended
because other vertices of type corridor can only be reached traversing edges along the N-S
direction. The robot enters a new corridor only once the previous corridor can no longer be
extended. This approach further capitalizes one aspect in Algorithm 3, i.e., once a vertex is
reached a random outgoing edge is picked and traversed, too. This has the effect of exploring
rooms connected to the corridor while this is being explored.

Temporal Deadline
 Finally, in this subsection we describe one possible way to pick the temporal deadline

assigned to reach a given vertex. The rationale is that as the global deadline 𝒯 is approaching,
the robot should speedup. To this end, we opt for a very simple schedule. Once a vertex 𝑣 is
selected, we define a preliminary deadline 𝐵 equal to the number of edges between the current
vertex 𝑣! and 𝑣 multiplied by a constant. Then, if the time available to complete the task is larger
than 0.8𝒯, we set 𝑡! = 𝐵. If instead the time to complete the task is between 0.5𝒯 and 0.8𝒯 we
set 𝑡! = 0.5𝐵. Finally, if the time to complete the task is less than 0.5𝒯, we set 𝑡! = 0.3𝐵. The
objective of this simple approach is to exemplify the effectiveness of our temporal aware
planning strategy, and we leave to future work the study of how to implement more sophisticated
approaches.

6. EXPERIMENTAL VALIDATION
Setup

As a preliminary step towards evaluating strengths and weaknesses of the proposed
approach, we perform an extensive set of tests using ROS and Gazebo. The simulated
environment is a faithful replica of one of the engineering buildings of the University of
California, Merced, and its model in Gazebo was built from its architectural CAD design (see
Figure 3).

Figure 3: Three starting points (A, B, C) and one target (star).

The simulated robot is a Pioneer 3AT with limited sensing capabilities compatible with

our former assumptions. In particular, the robot is equipped only with a compass, a laser range
finder to avoid obstacles, and a logical camera to detect features in the environment. The logical
camera is a ROS plugin that returns the position and orientation of any object in its cone of
vision with respect to the robot.1 The logical camera abstracts the implementation of the IDS
system based on computer vision. This is obtained by embedding unique features in the
environment that can be detected by the camera (these are displayed as green and blue tags in
Fig. 3). It shall be noted that even though the simulated robot is equipped with a laser range
finder, it is only used for obstacle avoidance when moving along corridors or entering doors. To
test our navigation system under realistic conditions, a 25% error is added to linear and angular
velocity commands, and a 5% error is added to orientation readings. In all our tests the robot
starts without any preliminary information about the environment it is exploring.
Maneuvers

To navigate the environment, the action set 𝐴 for the CMPD includes six maneuvers.
Specifically, there are three elementary motions, and each can be executed fast or slow. The first
maneuver is go through a corridor. This maneuver moves the robot forward (i.e., keeping the
same orientation) while trying to keep an equal distance from the walls on either side. The
second maneuver is go through door on the right. This will turn the robot to its right (relative to
its current location and orientation) and move through a door, as identified by the IDS system.
The third maneuver is the symmetric go thorough door on the left.

																																																								
1 http://wiki.ros.org/ariac/Tutorials/SensorInterface

Results

Here we compare the five exploration strategies on an exploration task where we vary the
complexity of the navigation task, defined as the distance between the robot start location and the
target location, and the assigned temporal deadline. The environment is shown in Figure 3,
where the goal location 𝒢 is the room marked with the green star, whereas the three different
places marked 𝐴, 𝐵 and 𝐶 identify the different start points considered. Throughout the
simulation, the probability of failure 𝑃! used when computing the CMDP policy was set to 0.99.
For each starting point we consider four different temporal deadlines, and we then execute 50
trials. A trial is considered a failure if the robot has not reached the target location by the given
deadline, or collides with the environment while navigating. Overall, 3000 independent tests
were executed to evaluate the five exploration strategies. Table 1 summarizes the performance
for the five exploration methods we propose. The columns give the starting location, temporal
deadline expressed in seconds, Time Spent (s), Success (%) for each type of exploration:
Random (Ra), Frontier (Fr), Normalized Frontier (NF), Semantic Explore Corridors First (S1),
and Semantic Complete Corridors First (S2). For each combination of start location and temporal
deadline, we provide the success rate, the average time spent to reach the target. Note that the
average time is given for successful runs only, because unsuccessful runs may result from
exceeding the temporal deadline or because of collisions with the environment and therefore it
would not be meaningful to average over unsuccessful runs, too. Table 2, instead, analyzes in
greater detail the causes of the failures for each strategy.

To ease the comparison, the results are also visually compared in Figures 4 and 5.

Unsurprisingly, the random strategy is the most effective when starting from location A, except
when the shortest deadline is enforced. This is somewhat expected, given that other strategies
tend instead to expand the map in a principled way that may push them far from the target
location that is relatively close to A. Moving farther from the target increases the time to
complete the mission, and ultimately the failure rate, as this translates increased chances to miss
the temporal deadline or to collide with the environment. However, in the other cases this
strategy is less effective, and performs very poorly for the most challenging case C. All things
considered, the topological frontier with normalized distances appears to be most effective when
the temporal deadline is not too demanding. However, as the deadline becomes more stringent its
advantage seems to vanish and it becomes more or less comparable to the topological frontier.
The semantic strategies, on the contrary, appear to have a performance that is less dependent on
the start location. One final comment should be made regarding the success rates, as they may
appear to be on the low end. This is due to the fact that the temporal deadlines are strict, and this
boosts failure rates for all algorithms. A strict temporal deadline is not only harder to meet, but it
also forces the CMDP planner to utilize more aggressive maneuvers, thus possibly also
increasing the number of failures due to collisions with the environment.

7. REPRODUCING OUR RESEARCH
The final contribution of this submission is in ensuring that our research can be reproduced, as
this is a topic of increasing importance in robotics. In [20], we find that "A study is reproducible
if you can take the original data and the computer code used to analyze the data and reproduce

		 Time	Spent	(Seconds)	 Success	Rate	%	

S	 TD	 Rand	 Frontier	 Norm.	
Frontier	

Sem	
1	

Sem	
2	 Rand	 Frontier	 Norm.	

Frontier	
Sem			
1	

Sem			
2	

A	 680	 146.542	 199.429	 47.45	 246	 71.9	 96	 56	 40	 40	 40	
A	 477	 139.106	 54.9333	 76.087	 53.9	 48.4	 94	 30	 46	 30	 34	
A	 272	 99.825	 31.125	 39.1	 35.1	 75.8	 80	 32	 40	 36	 36	
A	 68	 42.5385	 35.6471	 34.6	 31.2	 48.4	 26	 34	 30	 26	 30	
B	 2899	 1006.36	 345.3	 883.607	 347	 656	 50	 60	 56	 54	 58	
B	 2030	 1026.9	 373.923	 522	 361	 543	 42	 52	 56	 60	 54	
B	 1160	 681.148	 391.581	 373.412	 342	 580	 54	 62	 34	 58	 46	
B	 290	 0	 218.824	 199.1	 222	 219	 0	 34	 20	 22	 24	
C	 5628	 1495	 336.926	 648.71	 295	 336	 8	 54	 62	 50	 46	
C	 3940	 1810.43	 363.448	 599.25	 322	 347	 14	 58	 48	 54	 76	
C	 2251	 1363.33	 364.607	 507.552	 331	 548	 6	 56	 58	 56	 48	
C	 563	 0	 330.72	 368.353	 265	 396	 0	 50	 34	 46	 20	

Table 1: Performance of the 5 exploration strategies.

		 Fails	because	of	Collision	%	 Fails	because	of	DL	not	met	%	

S	 TD	 Rand	 Frontier	 Norm.	
Frontier	

Sem	
1	

Sem	
2	 Rand	 Frontier	

Norm.	
Frontie

r	

Sem			
1	

Sem			
2	

A	 680	 4	 36	 24	 40	 28	 0	 8	 36	 20	 32	
A	 477	 4	 36	 12	 36	 16	 2	 34	 42	 34	 50	
A	 272	 2	 24	 10	 16	 2	 18	 44	 50	 48	 62	
A	 68	 8	 2	 8	 10	 2	 66	 64	 62	 64	 68	
B	 2899	 50	 38	 32	 30	 34	 0	 2	 12	 14	 8	
B	 2030	 58	 48	 36	 36	 28	 0	 0	 8	 4	 18	
B	 1160	 46	 38	 44	 28	 44	 0	 0	 22	 14	 10	
B	 290	 16	 16	 44	 18	 24	 84	 50	 36	 60	 52	
C	 5628	 92	 46	 28	 38	 50	 0	 0	 10	 12	 4	
C	 3940	 86	 40	 36	 36	 20	 0	 2	 16	 10	 4	
C	 2251	 94	 40	 36	 42	 36	 0	 4	 6	 2	 16	
C	 563	 100	 40	 30	 40	 40	 0	 10	 36	 14	 40	

Table 2: Analysis of failures for the 5 exploration strategies.

	
	
	

	

		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 4: Percentage of Success for all the exploration strategies.

Figure 5: Time spent for all the exploration strategies.

0	 50	 100	 150	

680	

477	

272	

68	

A	
A	

A	
A	

Success(%)	

Rand	 Frontier	

Norm.	Frontier	 Sem	1	

Sem	2	

-50	 0	 50	 100	

2899	

2030	

1160	

290	

B	
B	

B	
B	

Success(%)	

Rand	 Frontier	

Norm.	Frontier	 Sem	1	

Sem	2	

-50	 0	 50	 100	 150	

5628	

3940	

2251	

563	

C	
C	

C	
C	

Success(%)	

Rand	 Frontier	

Norm.	Frontier	 Sem	1	

Sem	2	

0	 200	 400	 600	

680	

477	

272	

68	

A	
A	

A	
A	

Time	Spent	
(Seconds)	

Rand	 Frontier	

Norm.	Frontier	 Sem	1	

Sem	2	

0	 500	 1000	 1500	

2899	

2030	

1160	

290	

B	
B	

B	
B	

Time	Spent	
(Seconds)	

Rand	 Frontier	

Norm.	Frontier	 Sem	1	

Sem	2	

0	 1000	 2000	 3000	

5628	

3940	

2251	

563	

C	
C	

C	
C	

Time	Spent	
(Seconds)	

Rand	 Frontier	

Norm.	Frontier	 Sem	1	

Sem	2	

all of the numerical findings from the study". Accordingly, the resources we provide in the
following aim at making our study is reproducible. However, due to the stochastic nature of the
experiments we performed, reproducing the same numerical findings is not a foregone
conclusion, in particular if the user relies on a system less powerful than the one used for the
experiments presented in section 6. A more realistic objective is aiming at reaching the same
conclusions in terms of relative value of the exploration strategies we presented. In [21] a set of
guidelines for good experimental methodologies in robotics is given. According to such
guidelines, this work should be characterized as ``experimental’’ and shall be furthermore
classified as research in ``Autonomy/Cognitive Tasks.’’ The experimental part of this paper is
based on ROS/Gazebo and is therefore particularly suited for being reproduced by a third party.
This would be much more challenging if results were obtained on a physical P3AT robot,
because of the countless variables influencing the final results. While the robotics community is
becoming increasingly aware of the importance of this aspect, best practices are still being
defined, and standard tools to promote code reproducibility (e.g., Code Ocean) are not
necessarily best suited or ready yet for all robotics research. This is in particularly relevant when
considering an end-to-end system relying on multiple external libraries to perform heterogenous
operations like mathematical computation, navigation, and more. Considering these challenges,
in the supplementary materials section of this work, we have provided an image for a virtual
Linux machine including our code, all libraries necessary to run it, and a set of scripts to re-run
all the experiments to produce the results presented in this paper. The virtual machine image is
based on VirtualBox, a free software available for a variety of operating systems, including
Windows, OsX, and Linux2. In addition, we have also developed a technical document with step-
by-step instructions to download and boot the virtual image, and run all experiments described in
this paper. It shall be noted that other approaches could be viable, too, like Docker. With these
premises, the experimental process that led to the results presented before is reproducible by a
third party. As mentioned above, however, a third-party will not necessarily obtain the same
numerical outcomes because of two sources of randomness. First, the algorithms themselves
feature various steps relying on randomized choices, e.g., to break ties. Second, the simulation
environment is influenced by the underlying platform and will therefore not produce exactly the
same results. Moreover, by running the code through a virtual image, an inevitable slowdown
will affect the results, and some computer systems may be unable to run the system altogether.
To mitigate this problem, we have also added a complete set of instructions on the various
packages to install on a native Linux system to enable reproducibility even without the
VirtualBox image. Nevertheless, due to continuous updates in software packages, as well as
discontinuations, this second approach may not be stable in the long run. To the best of our
knowledge, this is the first example of a fully reproducible study of exploration algorithms.

8. CONCLUSIONS AND FUTURE WORK
In this paper have studied an exploration task with temporal constraints. The objective for the
robot is to enter an unexplored area and reach a target location within a given temporal deadline.
Our system incrementally builds a spatial model called semantic topological oriented map. The
model enhances classic topological maps by adding semantic labels (corridor/room) and
																																																								
2	www.virtualbox.org	

relationships of the type to-the-right-of and to-the-left-of. Key to our approach is the assumption
that walls in the environment are aligned along orthogonal directions. This assumption is very
common in most buildings. The proposed spatial model has been coupled with our recently
proposed planner based on CMDPs and on top of this we proposed and analyzed five different
exploration techniques exploiting the proposed model. Through thousands of simulated runs, it
appears that our method dubbed topological frontier with normalized distances works best. In
their current formulation, methods on semantic information are slightly less competitive,
although it ought to be acknowledged that only very limited semantic information was used.
Finally, we have provided all resources to ensure a third party to fully reproduce our results -- a
first in the area of reproducible robotics. With respect to this aspect, we believe it will be
important for the robotics community to reach a consensus on the tools and infrastructure needed
to disseminate reproducible research.

REFERENCES
	
[1]		 B.	Yamauchi,	"A	Frontier-Based	Approach	for	Autonomous	Exploration,"	in	Proceedings	of	

the	IEEE	International	Symposium	on	Computational	Intelligence	in	Robotics	and	
Automation,	Monterey,	1997.		

[2]		 B.	Kuipers,	"The	spatial	semantic	hierarchy,"	Artificial	Intelligence,	no.	119,	p.	191–233,	
2000.		

[3]		 E.	Vidal,	J.	D.	Hern	and	K.	Isteniˇ,	"Optimized	environment	exploration	for	autonomous	
underwater	vehicles,"	Proceedings	of	the	IEEE	International	Conference	on	Robotics	and	
Automation,	pp.	6409-6416,	2018.		

[4]		 T.	Dang,	C.	Papachristos	and	A.	Kostas,	"Visual	Saliency–aware	Receding	Horizon	
Autonomous	Exploration	with	Application	to	Aerial	Robotics,"	Proceedings	of	the	IEEE	
International	Conference	on	Robotics	and	Automation,	pp.	2526-2533,	2018.		

[5]		 D.	Zhu,	T.	Li,	D.	Ho,	C.	Wang	and	M.	Q.	Meng,	"Deep	Reinforcement	Learning	Supervised	
Autonomous	Exploration	in	Office	Environments,"	Proceedings	of	the	IEEE	International	
Conference	on	Robotics	and	Automation,	pp.	7548-7555,	2018.		

[6]		 K.	Antonios	and	G.	Ioannis,	"Semantic	mapping	for	mobile	robotics	tasks:	A	survey.,"	
Robotics	and	Autonomous	Systems,	no.	66,	p.	86–103,	2015.		

[7]		 S.	Garg,	N.	Suenderhauf	and	M.	Milford,	"Don't	Look	Back:	Robustifying	Place	
Categorization	for	Viewpoint-	and	Condition-Invariant	Place	Recognition,"	Proceedings	of	
the	IEEE	International	Conference	on	Robotics	and	Automation,	pp.	3645-3652,	2018.		

[8]		 M.	Durner,	M.	Brucker,	A.	Wendt,	P.	Jensfelt,	K.	O.	Arras	and	R.	Triebel,	"Semantic	Labeling	
of	Indoor	Environments	from	3D	RGB	Maps,"	Proceedings	of	the	IEEE	International	
Conference	on	Robotics	and	Automation,	pp.	1871-1878,	2018.		

[9]		 L.	F.	Posada,	A.	Velasquez-lopez,	F.	Hoffmann	and	T.	Bertram,	"Semantic	Mapping	with	
Omnidirectional	Vision,"	Proceedings	of	the	IEEE	International	Conference	on	Robotics	and	
Automation,	pp.	1901-1907,	2018.		

[10]		A.	Quattrini	Li,	R.	Cipolleschi,	M.	Giusto	and	F.	Amigoni,	"A	semantically-informed	

multirobot	system	for	exploration	of	relevant	areas	in	search	and	rescue	settings,"	
Autonomous	Robots,	vol.	40,	no.	4,	p.	581–597,	2016.		

[11]		M.	C.	Gombolay,	R.	J.	Wilcox	and	J.	A.	Shah,	"Fast	scheduling	of	robot	teams	performing	
tasks	with	temporospatial	constraints,"	IEEE	Transactions	on	Robotics,	vol.	1,	no.	34,	p.	
220–239,	2018.		

[12]		J.	Guerrero	and	G.	Oliver,	"Swarm-like	Methodologies	for	Executing	Tasks	with	Deadlines,"	
Journal	of	Intelligent	&	Robotic	Systems,	vol.	68,	no.	1,	pp.	3-19,	15	9	2012.		

[13]		Y.-L.	Chow,	M.	Pavone,	B.	Sadler	and	S.	Carpin,	"Trading	safety	versus	performance:	Rapid	
deployment	of	robotic	swarms	with	robust	performance	constraints,"	ASME	Journal	of	
Dynamical	Systems,	Measurements	and	Control,	vol.	3,	no.	137,	p.	031005,	2015.		

[14]		S.	Carpin	and	S.	Feyzabadi,	"Planning	using	hierarchical	constrained	markov	decision	
processes,"	Autonomous	Robots,	vol.	8,	no.	41,	p.	1589–1607,	2017.		

[15]		J.	L.	Susa	Rincon,	P.	Tokekar,	V.	Kumar	and	S.	Carpin,	"Rapid	deployment	of	mobile	robots	
under	temporal,	performance,	perception,	and	resource	constraints.,"	IEEE	Robotics	and	
Automation	Letters,	vol.	4,	no.	2,	p.	2016–2023,	2017.		

[16]		E.	Garcia-Fidalgo	and	A.	Ortiz,	"Vision-based	topological	mapping	and	localization	methods:	
A	survey,"	Robotics	and	Autonomous	Systems,	vol.	64,	pp.	1-20,	2015.		

[17]		E.	Altman,	"Constrained	Markov	decision	processes	with	total	cost	criteria:	Occupation	
measures	and	primal	LP,"	Mathematical	methods,	no.	43,	p.	45–72,	1996.		

[18]		D.	P.	Bertsekas,	"Dynamic	Programming	&	Optimal	Control,"	Athena	Scientific,,	vol.	1	and	2,	
2005.		

[19]		S.	Carpin,	N.	Basilico,	D.	Burch,	T.	Chung	and	M.	K¨olsch.,	"Variable	resolution	search	with	
quadrotors:	theory	and	practice,"	Journal	of	Field	Robotics,	vol.	5,	no.	301,	p.	685–701,	
2013.		

[20]		R.	Peng,	"A	Simple	Explanation	for	the	Replication	Crisis	in	Science	·	Simply	Statistics,"	
2016.	[Online].	Available:	https://simplystatistics.org/2016/08/24/replication-crisis/.	
[Accessed	07	05	2019].	

[21]		F.	Bonsignorio,	J.	Hallam	and	A.	del	Pobil,	"GEM	Guidelines,"	2008.	
	

