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Abstract: We employ a 77–81 GHz frequency-modulated continuous-wave (FMCW) millimeter-wave
radar to sense anomalous vibrations during vehicle transport at highway speeds for the first time.
Secure metallic containers can be breached during transport by means of drilling into their sidewalls
but detecting a drilling signature is difficult because the large vibrations of transport drown out the
small vibrations of drilling. For the first time, we demonstrate that it is possible to use a non-contact
millimeter-wave radar sensor to detect this micron-scale intrusive drilling while highway-speed
vehicle movement shakes the container. With the millimeter-wave radar monitoring the microdoppler
signature of the container’s vibrating walls, we create a novel signal-processing pipeline consisting of
range–angle tracking, time–frequency analysis, horizontal stripe image convolution, and principal
component analysis to create a robust and powerful detection statistic to alarm if drilling is present.
To support this pipeline, we develop a statistical model combining the vibrating container and the
random vibrations induced by vehicle movement to explore the robustness of the sensor’s detection
capabilities. The presented results strongly support the inclusion of a millimeter-wave radar vibration
sensor into a transport security system.

Keywords: millimeter-wave radar; non-destructive sensing; security

1. Introduction

Both government and industry have a growing need to develop contactless au-
tonomous observation systems for the security of transport containers. Transport containers
often carry sensitive material. A common method of attack is a drill attack—intruders drill
into the containers either to insert an endoscope to view the inside or to obtain the secured
material. To further complicate detection, the drill attack may happen while the container
is in transport. Several methods in the literature address the problem of container intrusion.
For example, Ref. [1] uses vibro-converts to force vibrations in order to create a unique
acoustic fingerprint for each container, which shows significant changes if any physical
alteration occurs. Moreover, Ref. [2] employs a three-axis acceleration sensor mounted on
the container to observe intrusions using a microcontroller and a communication module.
An approach based on microphones and neural networks was shown in [3] to detect the
sound profile generated while attempting to cut open the containers. However, all pro-
posed methods may either not be sensitive enough for weak drilling during transport or
require contact with the container, which is undesirable from a security point of view. To
solve the problems in current literature solutions, we propose using a millimeter-wave
radar to monitor the vibration of a transport container.

In this work, we applied a commercially available millimeter-wave frequency-modulated
continuous-wave (FMCW) radar system to the problem of detecting intrusive drilling
during transport. The millimeter-wave automotive radar is a good choice for this sensing
application because the automotive radar revolution has resulted in low-cost and widely
available commercial options. The millimeter-wave radar has a small enough wavelength
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to measure down to micron-level vibration at a stand-off distance, can monitor wide spatial
areas using multiple receive and transmit antennas, and can achieve high reliability. The
FMCW radar technique is used in place of other techniques such as continuous-wave
(CW), stepped-frequency continuous-wave (SFCW), or impulse because FMCW allows for
excellent range discrimination due to bandwidth, chirp acquisition time, and an acceptable
signal-to-noise ratio (SNR). FMCW radars have been previously used to address problems
related to vibration and small range variation estimation, including the non-contact range
tracking of vital signs [4], wide area surveillance for perimeter protection [5], and observing
the vibration in infrastructure such as bridges or buildings [6]. Another option to measure
vibration is a laser Doppler vibrometer (LDV), which is also used in this work to verify
spectra. The LDV requires line-of-sight to the container and cannot automatically track a
wide area if the container is moved or is misplaced. In addition to being inexpensive, a
millimeter-wave radar’s antennas can penetrate light cover and monitor a sizeable swath of
space, making the millimeter-wave FMCW radar’s operation more robust than an LDV’s.

In this work, we present a radar-based surveillance system with the primary advantage
of being autonomous, contactless, and having a wide field of view and long range. The
system is able to detect intrusive drilling in transit scenarios at highway speeds of 112 kph.
First, we provide a brief theoretical background on the operation of the FMCW radar with
respect to vibration detection and describe the required application. Next, we describe
the processing pipeline and detail the detection statistics used to determine the presence
of drilling vibrations. Multiple experiments at road and highway speeds show that the
radar-based drilling detection system is able to raise an alarm based on drilling even
when attempting to detect weak drilling vibrations in a vehicle going 112 kph. This work
marks the first time that the millimeter-wave FMCW radar has been used for the alarming
of intrusive drilling vibrations while in transport and shows promise to be included in
multi-sensor security systems.

2. Background Information
2.1. Container Vibrational Model

Figure 1 shows the concept of the studied problem. Previous works have shown
that it is possible to detect the vibration of a stationary container due to drilling using
millimeter-wave radar. On a stationary container, Ref. [7] showed that drilling creates a
micron-scale sinusoidal vibration in the container walls.
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If the drill rotates in the metal container at a frequency fdrill , then the drill will excite
vibrations at the fundamental and harmonic frequencies of k fdrill/N f lutes, k ∈ Z+, as
indicated in Figure 1b and visible in the blue line of Figure 2a. N f lutes is the number of
sharp cutting flutes in the drill bit, typically two. The largest power is contained in the
k = 1 peak. The vibration influence of the drill on the container is denoted as vcd(t). The
container used in experiments in this paper is a cylindrical steel container with dimensions
labelled in Figure 1b.
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Figure 2. (a) Measured time-domain vibration waveform vr(t) with (blue) and without (black) drilling
measured at 112 km/h on a highway. (b) Power spectral density of (a). Measurement duration is
approximately 6 s, zoomed in.

As it moves along the road, the transport vehicle creates vibrations in both the con-
tainer and radar sensor. These vibrations are problematic because they are anywhere from
the millimeter to centimeter range in amplitude and easily drown out the micron-scale
drilling vibrations. It is critical that we develop a statistical model for transport vibrations
to gain a physical understanding of the detection problem and its limits. The transport
vibrations are modeled as slow impulsive vibrations, denoted as vct(t) as the influence
of the transport on the container. The analogous vibration measured on the radar due
to the transport is denoted as vrt(t). The physical meaning behind this choice is that the
largest vibrations are from the transport vehicle encountering a discontinuity in the road
construction and they experimentally show up as a sharp spike in the vibrational profile of
the container, as measured by the sensor.

From experiments, we have discovered that the impulsive transport vibration vt(t)
tends to be of lower magnitude when the drilling vd(t) is present compared to when the
drilling vd(t) is not present. This modulation is indicated in the mathematical model (1)
as the indicator variable α1d (α ∈ [0, 1]) and the arrow between Drill and Transport in
Figure 1b. The physical meaning behind α is that, in order to drill through a thick container,
the drill must impart a significant radial force into the container’s walls. This force is a
restoring force, which somewhat stabilizes the container against impulsive vibrations.

vr(t) = vrt(t) + (1− 1dα)vct(t) + vcd(t) (1)

In (1), vr(t) is the total radial vibration as seen by the radar. The problem of detecting
the drilling vibration is equivalent to isolating vcd(t) given vr(t). Immediately, we may
choose the radar sensor’s position such that vrt(t) has a relatively low magnitude. As (1)
is only concerned with radial vibrations, the choice to mount the radar on a plane with
strength in the radial direction (as in Figure 1a) can drastically reduce vrt(t). Inserting the
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mathematical models for vrt, vct, and vcd into (1), we can transform (1) into a statistical
model of the total vibration vr(ts) (2):

v̂r(ts) = ∑
i
(1− 1dα)mi p[ai(ts − τi)] + ∑

k
Ak sin

(
2πk fdrillts

N f lutes

)
+ n(ts) (2)

Using the statistical model in (2), we perform Monte Carlo simulations to fit all
parameters to approximate experimental data with and without drilling, as seen in Figure 2.
These results are shown in Table 1.

Table 1. Random variables and parameters in the statistical model of (2) with maximum likelihood
estimators (MLEs) indicated, calculated from experimental conditions.

Parameter Significance 112 km/h Experimental Estimate Method of Determination

mi
Magnitude of radar vibration due

to transport (mm)
mi ∼ N

(
µ, σ2)

µ̂ = −0.3, σ̂ = 0.9
Monitor impulsive peaks from

experimental data

p(t) Base vibration impulse waveform p(t) = exp
(
− t

Tp

)
cos(2π frt)u(t)

Tp ≈ 220 ms, fr ≈ 5 Hz
Fit waveform shape and spectrum

to experimental data

τi Time of the i vibration impulse (s) (τi − τi−1) ∼ N
(
µ, σ2)

µ̂ = 0.24, σ̂ = 0.12
Monitor impulsive peaks from

experimental data

α
Magnitude dampening from

presence of drilling (0–1) α̂ = 0.377 Monitor average PSD with and
without drilling

Ak
Magnitude coefficient of the kth

drilling harmonic
A0

fdrill /N f lutes(k−1) , A0 = 0.112
Fit to experimental data

( fdrill = 33.3 Hz)

n mmW-radar vibration estimation
noise (mm) n ∼ N

(
0, σ2), σ̂ = 3 · 10−3 Estimate from radar phase noise

based on stationary target

In developing (2), we combine vrt(t) and vct(t) into a single impulse generator (the
first right-hand side term) because their contributions are inseparable. The variable mi is a
normally distributed scalar corresponding to the magnitude of the i-th vibration impulse.
p(t) is the fundamental vibration waveform from a transport-induced impulse at t = 0; it
is modeled as a ringing exponential, where the mean decay parameter Tp and resonance
frequency fr are determined from fitting experimental data, and the step function u(t)
ensures that p(t) = 0 for t < 0. τi is the time of the i-th transport impulse where the
differences in adjacent pulse times are well-modeled by a normal random variable. Ak is
the magnitude of the k-th drilling harmonic, which implicitly contains the transfer function
from excitation point (Figure 1b) to the radar’s measuring point.

From Table 1, we can conclude that the most problematic statistical model parameters
are mi and fr. If mi’s values are too large (large standard deviation or mean), the vibration
impulse waveforms will drown out all vibration. If fr is too similar to fdrill/N f lutes, then
the vibration impulse spectrum will contain significant energy overlapping the main
drilling harmonic.

2.2. Millimeter-Wave Radar Operating Principle

In this section, we examine how to estimate the vibration on the container due to the
drill vcd(ts), as in (1), using a millimeter-wave radar sensor. To estimate vcd(ts), we must
first collect vr(ts), the vibration seen by the radar, from the radar raw data. The process
to recover vr(ts) is diagrammed in Figure 3. For all experiments and analysis, we employ
the commercially available AWR1642 millimeter-wave radar [8]. The AWR1642 operates
from 77 to 81 GHz with an instantaneous bandwidth of 4 GHz. The in-depth settings for
the AWR1642 are enumerated at the end of Section 4.
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Figure 3. Block diagram of processing steps required to extract a stable vibration measurement vector
from the radar. Each node is labeled with the corresponding variable and equation. ˆ̂X IF(r, ts, θ) is
padded to 32 angle bins from 4 for display purposes.

We consider a heterodyne FMCW millimeter-wave radar emitting a linearly ramped
electromagnetic chirp at a slow-time ts, as in (3) [9]:

x
(

t f , ts

)
= exp

[
j2πt f

(
fL +

B
Tc

t f

)]
(3)

where t f refers to fast time (t f = 0 at chirp start, t f = Tc at chirp end), fL is the lower
operating frequency, B is the bandwidth of the chirp such that fL + B = fu, the upper
operating frequency. Tc is the total chirp time such that B/Tc is the chirp slope in Hz/s.
The electromagnetic chirp is transmitted and reflected, undergoing a phase shift related
to the distance traveled (d) in the air. If the chirp is transmitted at a slow time of ts, this
phase shift contains the vibration information vr(ts). The received chirp is then down-
mixed with the transmitted chirp to produce an intermediate frequency (IF) waveform
named xIF

(
t f , ts, rx

)
:

xIF

(
t f , ts, rx

)
= exp

[
j2πt f

(
B
Tc

)(
2d
c

+
2vr(ts)

c

)
− 4πd

λc
− 4πvr(ts)

λc
− φrx

]
(4)

If in (4) we assume that d� vr(ts), then xIF is a sinusoid oscillating at a beat frequency
of fb = 2Bd/cTc, which corresponds to a range of d. If d is constant, then the sinusoidal
xIF has a phase (relative to a constant offset) of 4πvr(ts)/λc. By collecting many received
chirps over a slow time, we can track the phase of the fb-component of xIF to reconstruct
the vibration profile vr(ts). In (4), we simplify the angle-of-arrival phase term as φrx
for brevity, but φrx is a receiver-dependent phase term that corresponds to the angle-of-
arrival of the reflection coming from d. Note that we assume that d is constant versus
time—the container’s average position is stationary. This assumption is fair for large heavy
containers, but a robust vibration estimation method would also track the mean distance to
the container d over time.

To calculate the radar-seen vibration vr(ts), the simplest method is to collect a number
of chirps along slow time into a matrix frame. First, a range-FFT is performed (5); this
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transforms the fast-time axis (t f ) into its frequency counterpart, which is linearly related to
the target range r:

X̂IF(r, ts, rx) = Ft f

{
xIF

(
t f , ts, rx

)}
(5)

Then, an angle-FFT is performed in (6) over the receiver dimension in order to spa-
tially locate the target. The angle-FFT converts the receiver dimension (rx) to the angle
dimension (θ). The AWR1642 radar only has an aperture along the azimuth plane, so the
angle-FFT only resolves targets in azimuth, not elevation.

ˆ̂X IF(r, ts, θ) = Frx
{

X̂IF(r, ts, rx)
}

(6)

From ˆ̂X IF(r, ts, θ), we must decide the range-and-angle (rangle) bins to track with
the sensor. The tracking algorithm is implemented by first finding the rangle bin with
a maximum energy at ts = 0 [10]. Then, the rangle bin is updated for each new ts after
passing through a stability filter. The stability filter is a simple method that limits the
maximum Cartesian distance that the chosen rangle bin can move between consecutive
ts samples. The inclusion of the stability filter reduces the number of glitches that the
millimeter-wave radar sensor sees during heavy vibrations. The chosen rangle bin is
termed (rm, θm).

vr(ts) =
λc

4π
tan−1

 Im
[

ˆ̂X IF(rm, θm)
]

Re
[

ˆ̂X IF(rm, θm)
]
 (7)

The collection of vr(ts) for many ts constructs the vibration profile. In practice, we
drop the constant in front of (7) and unwrap the phase to allow for a larger measurement
range, assuming that ts is fine-grained enough to capture all major vibration behavior. An
example measurement of vr(ts) and its spectrum was previously shown in Figure 2.

3. Signal-Processing Pipeline

Given the vibration vector vr(ts) measured from the millimeter-wave radar, the prob-
lem of detecting the presence of drilling is reduced to a simple hypothesis test:

• H0 : vr(ts) does not contain drilling vcd(ts);
• Ha: vr(ts) contains drilling vcd(ts)

Examining the statistical model built in (2), we decide that the best method of de-
termining the presence of drilling is to look for constant peaks in the vibration spectrum
versus time. By looking for constant peaks in the vibration spectrum, we are taking ad-
vantage of the fact that drilling will excite a small but constant frequency vibration while
the vibrations from transport are larger but do not last for a long time or contain a single
frequency. Detecting the presence of drilling by examining the PSD “baseline” in Figure 2b
was another promising idea, but the addition of potentially non-stationary phase noise and
the broadband impulsive nature of the driving-induced vibration leads this approach to
result in a non-robust detection statistic.

This section will examine in depth the signal-processing pipeline required to precondi-
tion the vibration vector vr(ts) for drilling detection. The entire pipeline from vibration to
detection is diagrammed in Figure 4.
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have the resulting spectrogram shown after the process, with labels for various stages of pre-processing.
On many images, the variable label used in this paper’s equations are included on the image itself.

3.1. Time–Frequency Conversion

The first step is to convert the millimeter-wave radar output vibration vector vr(ts) into
a time–frequency representation V̂r(ts, fs). The time–frequency representation means that
at slow time ts, the millimeter-wave sensor measured vibrational frequencies fs with mag-
nitude V̂r. To perform time–frequency conversion, we compare three different algorithms
on a dataset generated by measuring the drilling vibrations while moving: Short-Time
Fourier Transform (STFT) [11], Continuous Wavelet Transform (CWT) [12–15], and Adap-
tive Super-Resolution Wavelet Transform (ASLT) [16] below in Figure 5.

In Figure 5, we examine the time–frequency conversion of a measured vibration vector
from an experiment that begins with drilling-while-driving for a duration of 6.5 s. The drill
used is rated for 2000 rpm, which converts to 33.3 Hz. The drill-bit is a two-flute 6.35 mm-
diameter titanium drill-bit, which leads us to expect a fundamental vibration frequency of
16.7 Hz. In Figure 5b–d, this harmonic is clearly visible as the horizontal line extending
from 0 to approximately 6 s. The STFT, CWT, and ASLT algorithms all correctly identify the
major harmonic from which we perform the detection. The ASLT-generated spectrogram in
Figure 5d shows a major reduction in spectral noise compared to the STFT, and especially
the CWT. However, detection performance for the ASLT-generated spectrogram is poor due
to the low magnitude of the 16.7 Hz harmonic relative to the non-drilling noise (−15 dB
relative maxima). Additionally, ASLT is computationally expensive compared to both
STFT and CWT. The STFT suffers from the same magnitude issue, where even though the
STFT-generated spectrogram (Figure 5b) has a large, consistent time–frequency drilling
harmonic, the peak magnitude of the 16.7 Hz horizontal bar relative to the non-drilling
noise (−14.6 dB max) affected detection performance. The CWT-generated spectrogram
(Figure 5c), though it appears the noisiest, results in the highest magnitude ratio of all three
algorithms tested (−6.7 dB), which implies the best detection performance.

Therefore, we chose to convert vr(ts) into its time–frequency conversion using the
Continuous Wavelet Transform (CWT) as in (8):

V̂r(ts, fs) = C{vr(ts)} (8)

where C{. . .} refers to the CWT operator. To implement the CWT, we utilized MATLAB’s
wavelet toolbox [15]. We optimized the CWT parameters for detection by using a bump
wavelet and 48 voices per octave.
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Figure 5. Comparison of time–frequency conversion algorithm performance when analyzing drilling-
while-driving data. All spectrograms are magnitude-only in dB scale. (a) An example-measured
vibration vector vr(t) measured in radians with drilling present up to 6.5 s. (b) Short-Time Fourier
Transform (STFT) spectrogram (window length of 2048 chirps). (c) Continuous 1-D Wavelet Transform
(CWT) spectrogram (bump wavelet, 48 voices/octave). (d) Adaptive Super-Resolution Wavelet
Transform (ASLT) generated using reference code in [16] (Morlet, Ncyc = 6).

3.2. De-Cluttering

After the vibration’s time–frequency representation is obtained using (8), the spectro-
gram must still be de-cluttered because it contains the clutter from impulsive vibrations
and sensor artifacts. The first step is to first divide each chirp by its total energy (9):

V̂r,n(ts, fs) =
V̂r(ts, fs)∫ fhi

flo

∣∣V̂r(ts, fs)
∣∣2d fs

(9)

where, now, the subscript n indicates energy normalization. In this work, flo = 1 Hz and
fhi = 50 Hz. This major step ensures that the high-energy impulsive behavior as modeled
in (2) is penalized. The rationale behind this is that, because drilling both excites a weak
oscillation and dampens the high-energy impulsive driving-induced strikes, a chirp that
experiences a high-energy impulse is likely to be a non-drilling chirp. By penalizing the
total energy of a chirp, these high-energy impulses cease to dominate the image (as in
Figures 5c and 6a).
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Next, we perform a 2-D median absolute deviation (MAD) detection to enhance the
peaks in the spectrogram [17,18]. First, a local 2-D image median is calculated and then
used to calculate the local 2-D MAD. In (10), we describe this process using the median
filter operatorMab{. . .}. Mab{A} will take a matrix A and replace each A(i, j) pixel by
the median of a local area centered around the (i, j) pixel in the shape of a rectangle of size
a× b.

V̂r,n,m(ts, fs) = 1.4826·Mab
{

V̂r,n −Mab
{

V̂r,n
}}

(10)

where, now, the subscript m indicates that the vibration spectrogram has been median-
filtered. In (10), MAD is used in place of a typical Z-score because V̂r,n still contains peaks
large enough to self-bias the resulting value of V̂r,n,m. Using MAD instead allows the
horizontal peaks to be properly adjusted. We find a value of a = 32, b = 32 to obtain
acceptable results. This results in the 2-D MAD being calculated over a local region of
approximately 3.3 Hz and 8.6 ms of slow time. The operatorMab{. . .} is implemented
using MATLAB’s medfilt2 function.

The effect of 2-D MAD filtering on the resulting image is more subtle (as in Figure 6b)
than energy normalization but similarly important. By calculating the relative importance
of each pixel, V̂r,n,m has emphasized consistent peaks in the image and de-emphasized
noise, which increases the detection capability of the processing pipeline. In terms of
computation time, the implementation of (9) takes the longest of all steps. For this reason, b
can be tuned downwards to decrease computation time.

3.3. Search for Horizontal Harmonics

Now that V̂r,n,m has had its energy normalized and peaks emphasized, we further
select horizontal frequency stripes by performing two steps. First, a single-pass horizontal
line filter is performed. Second, we apply principal component analysis (PCA) to the image
to better find the horizontal stripes indicative of the presence of drilling.

The horizontal line filter is implemented by convolving V̂r,n,m with a horizontal stripe
kernel as in (11) [19,20]:

V̂r,n,m, f = V̂r,n,m ∗ Hc (11)

where, now, the subscript f means that the spectrogram has been horizontal-line-filtered,
the operator ∗ refers to 2-D convolution, and Hc is a horizontal line filter of width c, as
in (12):

Hc =


−1 −1 −1
2/c

...
2/c

2/c
...

2/c

2/c
...

2/c
−1 −1 −1

 (12)
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In (12), c refers to the number of positive elements in the row dimension. c is tuned to
be the approximate pixel width of the drilling harmonic. From measurement, we chose
c = 16. The choice of c too low can split and reduce a drilling harmonic, and the choice of
c too high can spread out the drilling harmonic over fs, leading to biased statistics once
detection is performed.

The inclusion of the horizontal line filter significantly decreases the amount of non-
horizontal clutter present in V̂r,n,m. Further, (11) decimates non-horizontal peaks empha-
sized by the 2-D MAD processing step (10). However, short-lived horizontal peaks, which
are not indicative of drilling but rather long-ringing transport vibrations, are not entirely
removed by (11). For this reason, we apply our final pre-processing step of PCA.

To perform PCA [21–23] on the spectrogram, V̂r,n,m, f is first decomposed into its
singular value decomposition (SVD) representation in (13).

UΣVT = V̂r,n,m, f (ts, fs) (13)

In (13), U is comprised by the left singular vectors, V is comprised by the right singular
vectors, and Σ is a diagonal matrix with singular values on the diagonal. The principal of
our PCA application is that the left vectors make up the eigenvectors of its autocorrelation
matrix V̂r,n,m, f V̂T

r,n,m, f . A strong horizontal stripe in V̂r,n,m, f will result in a strong eigenvalue

of V̂r,n,m, f V̂T
r,n,m, f , which is equal to the square of the corresponding singular value in Σ.

Therefore, to search for horizontal stripes in V̂r,n,m, f , we look for the largest L singular
values of its SVD and then reconstruct the spectrogram, keeping only the largest L singular
values and vectors. An example of the singular values from a decomposition of the example
data from Figure 6 after horizontal line convolution is shown in Figure 7.
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In Figure 7b–d, SI N refers to the image generated using only the N-th singular value.
The first singular image (SI 1) contains the majority of the horizontal striping, while SI 2
and SI 3 contain smaller-magnitude variations around the horizontal stripes. Therefore, the
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most aggressive reconstruction uses only the first singular image. To ensure robustness,
however, we choose the number of images L simply by thresholding the magnitude of the
singular values. From experiments, we have found that excluding all singular values with
a magnitude of less than half of the maximum singular value provides acceptable results.
In Figure 7a, this means that we take L = 1. Once L is determined via this process, the
spectrogram is reconstructed using (14):

V̂r,n,m, f ,p(ts, fs) , I(ts, fs) = ULΣLVT
L (14)

where UL, ΣL, and VL are the SVD-components of V̂r,n,m, f with only the first L singular
vectors and values. Additionally, negative values of the resulting spectrogram are set to
zero. The subscript p of V̂r,n,m, f ,p implies that the image has undergone PCA. As PCA is the
final pre-processing step, V̂r,n,m, f ,p is re-named as I for brevity. Now, I(ts, fs) is ready for a
statistical analysis.

3.4. Detection and Probability-Versus-Time

To quantify how likely it is that a given slow-time bin ts contains drilling, we must
first create a detection statistic T(ts) : RNts×N fs → RNts . As negative spectrogram values
have been zeroed out in the previous PCA step, the histogram of a linearly collapsed
I(ts, fs) resembles a one-sided heavy-tailed distribution. To quantify the significance of
a given pixel (ts, fs), we divide it by the overall standard deviation of the spectrogram.
Then, we take the column-wise maximum to collapse the Nts × N fs matrix into a vector
representing the maximum detection statistic over all frequencies for a given slow-time bin.
The detection statistic T(ts) is illustrated in (15):

T(ts) = max
fs

I(ts, fs)

std{I} (15)

where std{I} refers to the standard deviation over all pixels in the spectrogram. Under the
null hypothesis, we approximate that the statistic T(ts) follows a half-normal distribution.
An example T(ts) is shown in Figure 8a. This assumption is fair because the myriad of
pre-processing steps strongly filtered out the impulsive vibrations, causing the remaining
pixels in a non-drilling scenario to be mostly noise. Then, we can quantify the probability
that T(ts) is anomalous by examining the standard normal cumulative density function
(CDF) in (16):

P̂drill(ts) = Φ[T(ts)]−Φ[−T(ts)] (16)

where Φ(z) is the standard-normal CDF evaluated at point z. An example of P̂drill(ts) is
shown in the red curve of Figure 8b.
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One last step is required before claiming that drilling is detected. As the maximum
operator in (15) is prone to quantitative errors, we must perform a stabilizing of the
probability. Stabilizing is conducted by taking the product of the previous probability,
current probability, and future probability of drilling as in (17):

Pdrill [n] =
n+1

∏
i=n−1

P̂drill [i] (17)

where the continuous subscript has been dropped for the discrete subscript [n] for the n-th
slow-time sample. The removal of the hat from P̂ symbolizes that Pdrill is now time-stable.
An example of Pdrill can be seen calculated on experimental data in the black curve of
Figure 8b.

Finally, at this point, a decision can be made about the presence of drilling or not.
Based on the duration of above-threshold probability, an alarm will sound. The method
used is whether 90% of any continuous one-second interval is alarming. This is calculated
using an integral over consecutive one-second periods and by checking whether the result
is greater (alarm) or less (no alarm) than 0.9. Once the alarm is sounded, the alarm is latched
until sensing a one-second period without over 90% probability of drilling. Naturally, the
thresholds may be adjusted up or down in order to decrease the false alarm rate.

4. Experimental Setup

To validate the millimeter-wave radar sensor’s capabilities, we drove with a cylindrical
steel transport container placed in the back of a car along a state highway in California,
indicated in Figure 9. The AWR1642 radar was pointed directly at the container from a
distance of 0.5 m. A 2000 rpm drill with a 6.35 mm diameter drill-bit was positioned on
the opposite side of the radar so that the AWR1642 would not detect the drill’s vibrations
directly. Naturally, if the drill was visible to the radar, the same processing pipeline easily
works with increased power. For rigor, we collected datasets both with and without drilling
present. Drilling-absent datasets were artificially inserted in the middle of larger drilling-
present datasets to test the responsiveness and limits of the signal-processing pipeline. The
car drove at a steady 112 kph and all datasets were saved to a laptop PC for later processing
in MATLAB.

In Figure 9, the AWR1642 is mounted securely on the side of a tripod laser Doppler
vibrometer (LDV). The LDV was used to verify that the vibration spectra seen by the
AWR1642 sensor were correct. The AWR1642 was programmed with the settings described
in Table 2.

Table 2. AWR1642 settings for vibration detection.

Parameter Value Parameter Value

Chirp time (Tc) 170 µs Center frequency (fc) 78.6 GHz
Idle time (Tidle) 100 µs Number of fast-time samples Ntf 256
Bandwidth (B) 3.23 GHz Number of receivers 4
Chirp slope (S) 19 MHz/µs Number of transmitters 1

ADC sampling rate 6.25 MS/s

The settings result in a maximum range of 24.6 m and a slow-time sampling rate of
3.7 kHz for a maximum un-aliased vibration frequency of 1.85 kHz. Although we discarded
vibrations above 50 Hz and typically operated less than a meter from the container, we
found this combination of settings to result in stable sensor behavior. A custom sensor
solution may benefit from slower slow-time sampling rates.
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5. Results

In Figure 10, we present three fully processed datasets following the format of drilling–
no drilling–drilling. The difference between drilling and no drilling data is drawn using
a vertical dashed black line. An alarm is triggered if the drilling probabilities hold above
90% total for a continuous second, as described in the previous section. Sections when the
alarm was triggered are highlighted in red, while sections when the alarm was lowered are
highlighted in green. Text indicating the alarm status is placed in each section.

The first dataset, displayed in Figure 10a, correctly identifies and alarms at the presence
of drilling during all three experimental sections. Out of all three datasets, however, this
dataset experienced a unique low probability of detection after 3.2 s. The low probability
causes the alarm to be dropped even while drilling is still known to be occurring. Given
that the alarm was raised earlier in the dataset and from examining the un-processed
spectrograms, it appears that the ts ∈ [3.2, 5.3] s time period in Figure 10a experienced
an abnormally high amount of impulsive vibration, which is consistent with driving over
a rough stretch of highway. As (9) normalizes the spectrogram with respect to column-
wise energy, the energy from drilling in this time period was drowned out. From this
phenomenon, we can conclude that the proposed signal-processing pipeline will not cause
false alarms from rough stretches of highways but will be insensitive to drilling during
those times. As long as the drilling occurs with at least one second of a relatively smooth
ride, the proposed pipeline can raise the alarm. In the statistical model (2), this phenomenon
is related to increasing the average values of the impulsive peak magnitude m.
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Figure 10. Processed and alarmed drilling datasets collected using the AWR1642 mmW radar sensor
while driving at 112 kph on a highway. Each dataset consists of two periods of drilling separated by
a period of no drilling. In each dataset, the black line represents the calculated probability of drilling
from (17). A red highlight over a time section implies that an alarm has been raised and not lowered.
A green highlight over a time section implies that the alarm has been lowered. (a) Dataset 1—total
time of 13.2 s. (b) Dataset 2—total time of 14.4 s. (c) Dataset 3—total time of 17.6 s.

The second and third datasets, Figure 10b,c both show excellent detection behavior and
quality, correctly identifying and alarming all three experimental sections. A phenomenon
that we noticed in both Figure 10b,c is the slow ramping behavior of probability from
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drilling to non-drilling sections. This behavior occurs for several reasons. First, the CWT
will spread the 16.7 Hz drilling harmonic into the non-drilling section due to a limited
time–frequency resolution. The times near where the drilling starts and stops will be
of lower magnitude compared to the center of the horizontal harmonic. The horizontal
line convolutional filter and PCA will further smear the weakened drilling harmonic into
the non-drilling section. Therefore, upon detection analysis, the borders near drilling
and non-drilling regions contain a weaker version of the 16.7 Hz harmonic, which will
result in a low probability of detection near edges, as seen in Figure 10b,c. Finally, (17)
ensures that Pdrill is correlated with its past and future states, which means that it cannot
change instantaneously.

The last phenomenon seen in the experimental data is the sizeable peak in the non-
drilling zone of Figure 10c. Examining the raw spectrogram, the region around 11 s in
the non-drilling zone contains small but visible horizontal spectral peaks at 14 Hz and
20 Hz that live for approximately 1.5 s. These peaks are close enough to the 16.7 Hz peak
that they are not entirely removed by PCA, and we see a small peak in the probability of
drilling at around 10.5 s in Figure 10c. In the time instable probability (16), the probability
of the dataset behind Figure 10c peaks at 0.64, but the stability filter (17) reduces this to
a peak of 0.27. From this phenomenon, we can conclude that the main sensitivity of the
proposed signal-processing pipeline is the presence of random harmonic vibrations that
look exactly like drilling, i.e., fr in (2) is similar to fdrill/N f lutes. The proposed algorithm is
mostly robust against this behavior, but certain conditions (such as high magnitude and
proximity to main drilling harmonic) make this difficult to remove. Luckily, a deployment
with large harmonic vibrations near the drilling frequency may deal with this problem by
simply re-structuring the mechanical layout as the vibrations are a function of the container
and its mounting.

6. Conclusions

In this paper, we proposed a millimeter-wave radar-based sensor and signal-processing
pipeline intended to alarm if drilling is sensed on a transport container. Due to its short
wavelength, a millimeter-wave radar can sense the micron-scale vibrations excited in
transport containers due to intrusive drilling. However, the container experiences high-
magnitude vibration from transport, which tends to drown out the low-magnitude vibration
from drilling. Beginning with the raw data, we described the methods used to track the
container and extract the vibration profile. From the vibration profile, we proposed a novel
pipeline to examine the spectrogram and heavily pre-process this to get rid of the extremely
intrusive, impulsive noise to create a robust detection statistic. From this detection statistic,
we described an alarm decision that performs extremely well in a test environment. In
future research, it would be interesting to quantify the sensor performance over entire
application lifetimes and for a variety of container geometries. Overall, we have found
millimeter-wave radar-based sensors to be excellent candidates for a relatively inexpensive
and scalable detection of intrusive drilling during transport.
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