
UC San Diego
Technical Reports

Title
MPI Process Swapping: Architecture and Experimental Verification

Permalink
https://escholarship.org/uc/item/86b6d4gf

Authors
Sievert, Otto
Casanova, Henri

Publication Date
2003-01-29

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/86b6d4gf
https://escholarship.org
http://www.cdlib.org/

MPI Process Swapping:

Architecture and Experimental Verification

Otto Sievert* Henri Casanova*†

*Department of Computer Science and Engineering

University of California at San Diego

†San Diego Supercomputer Center

University of California at San Diego

otto@cs.ucsd.edu, casanova@sdsc.edu

Abstract—

Parallel computing is now popular and mainstream,

but performance and ease-of-use remain elusive to many

end-users. There exists a need for performance improve-

ments that can be easily retrofitted to existing paral-

lel applications. In this paper we present MPI process

swapping, a simple performance enhancing add-on to

the MPI programming paradigm. MPI process swap-

ping improves performance by dynamically choosing the

best available resources throughout application execu-

tion, using MPI process over-allocation and real-time

performance measurement. Swapping provides fully au-

tomated performance monitoring and process manage-

ment, and a rich set of primitives to control execution

behavior manually or through an external tool. Swap-

ping, as defined in this implementation, can be added to

iterative MPI applications and requires as few as three

lines of source code change. We verify our design for a

particle dynamics application in a commercial produc-

tion computing environment.

1. INTRODUCTION

While parallel computing has been an active

area of research and development for several

decades, it is still a daunting proposition for many

programmers and end-users. In order to allevi-

ate the burden for the developer, a number of pro-

gramming models have been proposed. Perhaps

the most popular such model is the message pass-

This material is based upon work supported by the National Sci-
ence Foundation under Grant #9975020.

ing paradigm, which provides low-level abstrac-

tions for process communication and synchro-

nization. The Message Passing Interface (MPI)

standard [7] has been embraced by the parallel

computing community and a large number of MPI

applications have been developed in many fields

of science and engineering. While MPI provides

the necessary abstractions for writing parallel ap-

plications and harnessing multiple processors, the

primary parallel computing challenges of appli-

cation scalability and performance remain. These

challenges can be addressed via intensive perfor-

mance engineering and tuning by parallel com-

puting experts for particular applications and plat-

forms, but typical end-users (e.g. disciplinary sci-

entists) often lack the time and expertise required.

As a result, many end-users sacrifice performance

in exchange for ease-of-use.

Parallel computing generally enjoys ease-of-

use or high performance, but rarely both at the

same time. Applications that provide easy access

to parallel execution environments, by hiding or

abstracting parallel computing details, often fail

to yield high performance because such details

are hidden. Intelligent infrastructure is one way

to break this tension between ease-of-use and per-

formance. One challenge here is to make such in-

frastructure seamlessly accessible to application

1

developers, and thus directly applicable to exist-

ing applications. A simple technique or tool that

provides a sub-optimal (but still beneficial) im-

provement can be more appealing in practice than

an optimal solution that requires substantial effort

to implement.

We primarily focus on the impact of fluctuat-

ing resource availabilities on application perfor-

mance. While this issue is not directly relevant

for space-shared resources (e.g. batch-scheduled

MPPs and clusters), it is critical for time-shared

environments, such as Networks of Workstations

(NOWs) and ensembles of desktop resources.

This latter type of platform is cost-effective and

commonplace, having steadily gained in popu-

larity and performance in arenas such as enter-

prise computing. We target heterogeneous exe-

cution environments in which the available com-

puting power of each processor varies throughout

time due to external load (e.g. CPU load gener-

ated by other users and applications). In this pa-

per we propose a framework that makes it sim-

ple to dynamically assign application computa-

tion to MPI processes based on performance fluc-

tuations of the resources. An important point is

that our work focuses on improving overall ap-

plication performance (as opposed to addressing

fundamental issues of fault-tolerance, for exam-

ple). We demonstrate our approach for the broad

class of iterative applications. For these applica-

tions, our processor swapping enhancement can

be included with only a few simple modifications

to the source code of existing MPI applications.

As a result, potential performance benefits come

at virtually no cost for the developer and end-user.

We present experimental results obtained with our

system in a production commercial environment.

The remainder of this paper is organized as fol-

lows. Section 2 discusses related work and, in

particular, puts this work in perspective with ef-

forts in the area of process migration and fault-

tolerance. Section 3 introduces the concept of

MPI process swapping and Section 4 describes

the run-time swap architecture and the swapping

source code architecture. In Section 5 experimen-

tal results are presented. Future directions of this

work are described in Section 6. Finally, Section 7

concludes the paper.

2. RELATED WORK

Our implementation of MPI process swapping

is a sleight-of-hand played in MPI user space,

rather than a true infrastructure feature. A check-

pointing facility such as that provided by the re-

cent MPICH-V [2] or by Co-Check [14] would

improve the capabilities of this system. These

checkpointing/migration mechanisms could be

combined with the process swapping services and

policies, improving the robustness and generality

over the current process swapping solution. In

particular, a checkpointing facility would allow a

better process swapping implementation by (a) re-

moving the restriction of working only with iter-

ative applications; (b) further reducing the source

code invasiveness (there would be no need to reg-

ister iteration and other critical variables, or to ex-

plicitly make a function call to determine whether

to swap or not); and (c) reducing or removing the

need to over-allocate MPI processes at the begin-

ning of execution.

If MPI process swapping were to be combined

with the cycle-stealing facilities of Condor [11], a

more powerful system would result. Condor uses

migration primarily to allow the capture of spare

CPU cycles on idle personal workstations; when

a resource owner starts to use their machine, Con-

dor evicts the process. By combining swapping

policies with Condor’s eviction mechanism, a

process might also be evicted and migrated for ap-

plication performance reasons. Such a combined

system would not only provide high throughput,

but individual application performance as well.

One difficulty would be to allow network connec-

tions to survive process migration. An approach

like the one in MPICH-V (discussed above) could

be used.

MPI process swapping shares performance

ideas and methodologies with traditional applica-

2

tion schedulers such as those found in the Ap-

pLeS [1] and GrADS [10] projects. These sys-

tems are also concerned with achieving high per-

formance in the face of dynamic parallel execu-

tion environments. Additionally, they strive for

ease-of-use, knowing that common users such as

disciplinary scientists are often not parallel com-

puting experts. The performance measurement

and prediction techniques used in process swap-

ping share much with these projects; all use appli-

cation and environmental measurements to deter-

mine future execution characteristics that improve

application performance (e.g. via the NWS [15]

or MDS [6]).

3. MPI PROCESS SWAPPING

MPI process swapping is a simple performance-

enhancing add-on to standard MPI 1.1. It works

with new and existing MPI programs, providing

an intelligent infrastructure that increases perfor-

mance in shared computing environments. Pro-

cess swapping automatically determines the best

processors to use when running an MPI applica-

tion. During execution, the system periodically

checks the performance of the machines in its

pool, and swaps the application processes from

slow processors to fast processors. Because MPI

process swapping improves performance by se-

lecting the best performing processors, it is use-

ful in environments where the processor pool is

shared. Typical examples of such environments

are networks of workstations, workstation clus-

ters, and computational grids. Such environments

are common in enterprise computing and produc-

tion environments such as those found in aca-

demic and commercial research and development

facilities. Process swapping is not useful in space-

shared parallel environments such as those typ-

ically found in MPP and other supercomputing

environments, where a processor is dedicated to

an application for the lifetime of that application,

and the pool of processors is accessed via a batch

scheduler.

MPI process swapping is neither a sophisti-

cated nor an elegant methodology. It is not

a universally optimal performance methodology

for pristine parallel execution situations. It is a

practical solution for practical situations. Other

techniques, such as checkpoint/restart and dy-

namic load balancing, provide elegance and per-

formance. However, techniques like these require

substantial application support or restricted exe-

cution environments. By comparison, the very

simple process swapping often provides a better

price/performance ratio.

Dynamic load balancing is one of the best

known methods to fully utilize heterogenous pro-

cessing power [3, 4, 5]. Its performance over-

head can be tuned by altering the granularity of

the work, and is often very low. By its very na-

ture it efficiently uses processors of widely dis-

parate computing power by redistributing load

(unlike MPI process swapping, which can swap

processors but is constrained to use the initial

data partitioning). In short, dynamic load balanc-

ing is a very good performance enhancing tech-

nique. Load balancing is not without its limita-

tions, however. First, dynamic load balancing re-

quires an application (algorithm) that is amenable,

in the limit, to arbitrary data partitioning. Some

algorithms demand fundamentally rigid data par-

titioning. The second limitation of dynamic load

balancing is the development effort required to

support it. Support for uneven, dynamic data par-

titioning adds complexity to an application, and

complexity takes time to develop and effort to

maintain. Lastly, the performance of an applica-

tion that supports dynamic load balancing is lim-

ited by the achievable performance on the proces-

sors that are used. A well-balanced execution can

still run slowly if all the processors used operate

at a fraction of their peak performance.

Checkpointing is not limited to the processors

on which execution is started, so it does not have

to remain running on a set of slow processors. It

also does not require a sophisticated data parti-

tioning algorithm, and can thus be used with a

wider variety of applications/algorithms. Unfor-

3

tunately, parallel heterogenous checkpoint/restart

is a difficult task; it remains the subject of several

active research projects.

By hijacking common MPI functions we can

offer sustained execution efficiency in dynamic

environments, with very small effort. Relative to

these other techniques the potential performance

improvement is similar, depending on the execu-

tion environment characteristics. Figure 1 illus-

trates the relative performance potential and im-

plementation effort of process swapping versus

dynamic load balancing and checkpoint/restart.

Implementation Difficulty

Execution
Performance

checkpoint/
restart

dynamic
load

balancing

MPI
Swap

default
app

Fig. 1. Swapping brings potential performance benefits

with relatively low effort.

MPI 1.1 does not support the adding and re-

moving of processors to the global communi-

cator, so MPI process swapping relies on over-

allocation of processes at the beginning of exe-

cution to get a pool of possible processors. Swap-

ping chooses the best subset to actively participate

in the application execution; the rest remain inac-

tive. MPI 2 has support for adding and remov-

ing processors to a communicator [12]. However,

MPI 2 it is not widely supported, and the com-

municator modification functionality is not trans-

parent, requiring significant source code modifi-

cation for existing MPI 1.1 applications.

Swapping does not increase or decrease the to-

tal number of active processes used to execute a

program — parallel applications generally have

a parabolic speedup curve and operate most ef-

ficiently on a particular number of processors.

Swapping simply chooses the best processors to

use.

Because it intelligently decides which proces-

sors actively participate in program execution,

process swapping is better than simply replicat-

ing work. The simplest work replication option

is to execute the application twice. In a dynamic

environment, however, it is likely that at least one

processor used by each replicated run will have

decreased performance, causing both applications

to execute slowly. In this case, performance will

suffer even though twice as many resources are

used. Doubling work units within the application,

using the first available results, and abandoning

the other results, can also in general be hindered

by slow processors. This method also requires

significant modification to the application itself.

Swapping automatically determines the best

processors to use for a run of an MPI application.

During execution, the swapping run-time services

periodically check the performance of the ma-

chines in its pool, and swap the application to run

on the fastest available machines. Inactive MPI

processes utilize very little computational power;

aside from periodic active performance measure-

ment, they block on I/O calls and wait to become

active.

4. SWAPPING ARCHITECTURE

MPI process swapping is implemented as a set

of run-time services that interact with a modified

MPI library interface. The run-time architecture

for a swappable application comprises five main

components: the swap-enabled MPI application

itself, swap handlers, a swap manager, a swap dis-

patcher, and the swap tools.

4.1. Process Swapping Run-time Architecture

Figure 2 shows the swap run-time architec-

ture, and describes the communication patterns

between the swap components. The swap han-

dler modules are transient network services; a

4

proc N

application
MPI rank N

proc 1

application
MPI rank 1

proc 0

application
MPI rank 0

...

proc d

swap
dispatcher

proc m

swap
manager

swap
handler

swap
handler

swap
handler

proc x

visualization,
logging,

external control,
etc.

Fig. 2. Swap run-time architecture.

swap handler module is started for each MPI

process (active and inactive) in an MPI applica-

tion. It lives only as long as the MPI application

lives. The swap handler module is the main com-

munication link between the application and the

other swap components. Because it resides on the

same host as the MPI process that it shepherds,

swapping-related communication delays are min-

imized. In addition to being the communication

portal between the application and the swap ser-

vices, the swap handler also contains performance

measurement capabilities.

Each application is associated with one swap

manager. The swap manager is the intelligence of

the swapping operation. Information from each

MPI process and each processor is sent to the

swap manager. Using its swap policy, the man-

ager analyzes this information and determines

when and where to swap processes.

The swap dispatcher is an always-on re-

mote service at a well-known location (network

host/port). The dispatcher fields requests for

swapping services and launches a swap manager

for each application. Additional services may

contact the dispatcher in order to establish com-

munication with existing swap managers.

The swap tools are a collection of utilities de-

signed to improve the usability of the swap envi-

ronment. Facilities such as swap information log-

ging and swap visualization connect to the swap

manager (possibly through the swap dispatcher),

and track an application’s progress. The swap

actuator provides a simple interface to manually

force a swap to occur.

The swap services interact with the MPI appli-

cation and with each other in a straightforward

asynchronous manner, as illustrated in Figure 3.

Walking through an example application execu-

tion will further describe these interactions. First,

from machine u a user launches an MPI applica-

tion that uses N total processes, a subset of which

will be active at any given time. The root process

(the process with MPI rank zero) on machine 0

contacts the always-on swap dispatcher (running

on machine d) during initialization, and requests

swap services. The swap dispatcher launches a

swap manager on machine m. The swap dis-

patcher waits for the swap manager to initialize,

then tells the root process how to contact this per-

sonalized swap manager. The root process passes

5

processor Nprocessor 1processor 0processor mprocessor dprocessor u

create

start

no

init

create
create

create

...

info

swap?

create

swap
manager

user

vis

MPI
app

rank N

swap 0&1

yes

swap?

swap data

finalize finalize finalize

finalize

no

swap?

swap 1&N

yes

swap?

swap data

info

init

finalize

finalize
finalize
finalize

quit

MPI
app

rank 0

MPI
app

rank 1

start start

info

info

info

perf

perf

swap
handler swap

handler swap
handler

swap
dispatcher

Fig. 3. Interaction diagram of a swappable MPI application.

this information to all MPI processes in the ap-

plication. From this point onward, the swap dis-

patcher plays a minimal role; the swap manager

becomes the focal point.

For each MPI process, the swap manager starts

a swap handler on the same machine. Once the

swap handlers are initialized, the application be-

gins execution. While the application is execut-

ing, the swap handlers are gathering application

and environment (machine) performance infor-

mation and feeding it to the swap manager. Some

of this information is passive, like the CPU load

or the amount of computation, communication,

and barrier wait time of the application. Other

times the performance information is gathered via

active probing, which uses significant computa-

tional resources for a short period of time but pro-

vides more accurate information. The swap man-

ager analyzes all of this information and deter-

mines whether or not to initiate a process swap.

The active root process, the MPI process that is

the root process in the group of active processes,

contacts its swap handler periodically (at an inter-

val of some number of iterations, during the call to

MPI Swap()). In this case, the active root starts

out as the process on machine 0. The first time

this process asks if a swap is needed, the swap

handler replies “no”. The application continues

6

to execute, and information continues to be fed

to the swap manager. Eventually, the swap man-

ager decides that process 0 and 1 should swap,

so it sends a message to the swap handler that co-

habitates with the active root process. The next

time the application asks if it should swap, the

swap handler answers “yes”. Processes 2 through

N continue to execute the application while pro-

cesses 0 and 1 exchange information and data.

The process on machine 0 will become inactive,

while the process on machine 1 becomes active.

When the swap is complete, process 1 is now

the active root process, so the next swap message

from the swap manager is sent to the process on

machine 1. This time, process 1 and process N

swap. The execution continues in this fashion un-

til it completes. As the MPI application shuts

down, each MPI process sends finalization mes-

sages to its swap handler before quitting. The

swap handler in turn registers a finalization mes-

sage with the swap manager, then quits. Once

all the swap handlers have unregistered with the

swap manager, it sends a quit message to the swap

dispatcher, and shuts down.

In this case, all during the application execu-

tion the user monitored the progress of the ap-

plication. Shortly after the application began to

execute, the user started the swap visualization

tool.The visualization tool contacted the swap dis-

patcher, which told it where the swap manager

lived. The visualization tool registered itself with

the swap manager, and from that time forward

the swap manager kept the visualization tool in-

formed directly. After the application shut down,

and the swap manager also shut down, the user

closed the visualization tool.

This example illustrates the distributed nature

of the swap services. However, all of these swap

services could have been running on one machine,

if the user had all of her MPI processes on that

machine, had an interactive console on that ma-

chine, and the swap dispatcher and swap manager

were launched on that machine.

4.2. Process Swapping Source Code Architecture

MPI process swapping is simple and minimally

invasive to existing iterative MPI applications. In

order to minimize the impact to user code, and

yet still provide automated swapping functional-

ity, MPI process swapping hijacks many of the

MPI function calls. To illustrate how this is done,

let us first examine a typical MPI application, as

shown in Figure 4. This C-like pseudo-code con-

tains the MPI calls from an actual MPI applica-

tion that computes Van der Waals forces between

particles in a two-dimensional grid [16]. In this

typical scenario, a user’s C source code includes

the mpi.h header file, and makes several MPI

function calls throughout the code. To build the

application, the user compiles their source code

and links to the MPI library, as shown in Figure 5.

Note that MPICH [9] has built-in facilities for hi-

jacking. Process swapping uses a different, but

similar, mechanism so it is portable to any MPI

implementation.

#include "mpi.h"

main()
{
MPI_Init();
MPI_Type_contiguous();
MPI_Type_commit();
MPI_Comm_size();
MPI_Comm_rank();
MPI_Bcast(); /* X 8 */

MPI_Barrier();

for (a lot of loops)
{

(MPI_Send() || MPI_Recv());
MPI_Bcast();
MPI_Allreduce();

}

MPI_Barrier();
MPI_Finalize();

}

Fig. 4. Standard portable or vendor MPI C source.

In the swapping scenario, as few as three lines

of code are changed from the previous scenario.

First, the user’s code includes the header file

7

libmpi.a

user.c
mpi.h

executable

Fig. 5. Standard portable or vendor MPI usage.

#include "mpi_swap.h" /* instead of mpi.h */

main()
{

MPI_Init();
MPI_Type_contiguous();
MPI_Type_commit();
MPI_Comm_size();
MPI_Comm_rank();
MPI_Bcast(); /* X 8 */

swap_register(iteration variable); /* new */
MPI_Barrier();

for (a lot of loops)
{

MPI_Swap(); /* new */

(MPI_Send() || MPI_Recv());
MPI_Bcast();
MPI_Allreduce();

}

MPI_Barrier();
MPI_Finalize();

}

Fig. 6. Swappable MPI C source.

mpi swap.h instead of mpi.h. Secondly, the

user must register the iteration variable using the

swap register() function call. This is nec-

essary in order for the swap code to know which

iteration a particular MPI process is executing at

any given time. Other variables may be registered,

if it is important that their contents be transferred

when swapping processors. Finally, the user must

insert a call to MPI Swap() inside the itera-

tion loop to exercise the swapping test and actua-

tion routines. Figure 6 highlights these changes.

user.c

executable

libmpi.a

libswap.a

mpi.hmpi_swap.h

Fig. 7. Swapping resides on top of portable or vendor MPI

implementations.

Figure 7 illustrates how a user would compile a

swap-enabled application. The user includes the

mpi swap.h header file provided by the swap

package, and links against both the standard MPI

library, called libmpi.a here, and the swap li-

brary libswap.a that is provided by the swap

package.

Swapping is implemented using private MPI

communicators. An active communicator con-

tains all the MPI processes that are actively par-

ticipating in the application, and an inactive com-

municator contains all the inactive processes. To

hide this complexity from the user, the swapping

library hijacks MPI function calls, as shown in

Figure 8.

libmpi.a

MPI_Send()
{
 ...
}

user.c

...
MPI_Send(); /* hijacked */
...

libswap.a

Swap_Send()
{
 ...
 MPI_Send(); /* real */
 ...
}

Fig. 8. Swapping hijacks standard MPI communications.

8

5. EXPERIMENTAL RESULTS

A set of MPI process swapping experiments

were performed on a production intranet at a

Hewlett-Packard research and development facil-

ity. This NOW comprises several hundred high

performance PA-8700 series RISC workstations

in three buildings, connected to a central data

server room via several subnets of 10-baseT and

100-baseT Ethernet. These workstations run HP-

UX 11.11i exclusively. Most of the workstations

are used as personal computers for Computer

Aided Design (CAD), digital Application Specific

Integrated Circuit (ASIC) design, embedded sys-

tem design, and other research and product devel-

opment activities. The experiments capture the

natural variation found within this environment.

In one experiment, the fish MPI program from

Fred Wong and Jim Demmel was used [16]. An

example of the type generally found in the field

of particle dynamics, this application computes

Van der Waals forces between particles in a two-

dimensional field. As the particles interact, they

move about the field. Because the amount of com-

putation depends on the location and proximity of

particles to one another, this application exhibits a

dynamic amount of work per processor even when

the data partitioning is static and the processors

are dedicated. From the original code, four source

lines were added/changed in order to add the pro-

cess swapping capability to this application.

Four processors were used in the experiment

(two of them active). The application execution

eclipsed thirty minutes. Figure 9 shows the rele-

vant execution behavior from this run. There are

four charts in this figure; each chart contains in-

formation about one processor. The vertical axis

of these charts is a measure of processor perfor-

mance. Process swapping supports several active

and passive performance measures; the simplest

of these, the inverse of the CPU load (as mea-

sured by the uptime facility), was used for these

experiments. The horizontal axis of the charts

is time. The broken line plots the instantaneous

processor 1

processor 2

processor 3

processor 4

time

p
ro

c
e

s
s

o
r

p
e

rf
o

rm
a

n
c

e

Fig. 9. Behavior of a swapping-enabled particle physics ap-

plication. The y-axes are processor performance (higher

is better); the x-axes are time. Broken lines show pro-

cessor performance; the bars below show when proces-

sors were active.

computational performance as measured by the

swap services, over the duration of the applica-

tion (the higher the better). The solid black bars

below the performance measurements indicate ac-

tive/inactive status. At any given time, the pres-

ence of a black bar indicates the processor was

active.

At the beginning of execution, processors 1 and

2 were active. Shortly after, however, proces-

sor 3 began a long duration of activity because

its performance was very good. Thus the ini-

tial schedule, as computed by the off-line pre-

execution scheduler, was quickly modified due to

observed performance. During the first half of

the execution, processors 1 and 2 shared an MPI

process and processor 3 hosted the second active

MPI process. In the later half of the execution, the

performance of processor 3 continued to decline,

and processor 4 became more desirable. Approx-

imately forty swaps occurred during execution of

the application.

Another experiment, illustrated in Figure 10,

used a toy MPI application that was designed to

9

quickly and simply evaluate the implementation

robustness of the process swapping services. Us-

ing eight active (out of sixteen total) MPI pro-

cesses, this application run lasted thirty minutes.

In addition to generally illustrating how swapping

gravitates toward the machines with the highest

performance, this run also shows the natural dy-

namism of a typical production environment.

For both of these experiments, a very simple

swapping policy was used. Each time a new piece

of information was delivered to the swap man-

ager, it computed whether to swap or not based

on only the most recent information. No hystere-

sis was applied. No knowledge of the volatility

of a particular processor was taken into account.

In fact, in this policy only environmental informa-

tion (the computational performance of each pro-

cessor) was used; no application information, e.g.,

barrier wait time, computation time, communica-

tion time, was used.

The swapping policy is a critical, but delicate,

part of the process swapping system. Because

optimal scheduling is typically NP-hard, many

schedulers are laden with heuristics; the process

swapping policy is no different. It is clear from

the figures that swapping is occurring too often

in these experiments. The hot-potato exchange

between processors 1 and 2 in the fish run (Fig-

ure 9) was unnecessary given how similarly these

two processors were performing.

One reason for this hot-potato activity could be

the use of the (admittedly naı̈ve) cpuload-based

performance measure. This measure is funda-

mentally unable to separate load due to the swap

application from load due to another source. For

two otherwise evenly loaded processors, this will

cause the kind of swap bouncing seen between

processors 1 and 2. While running on processor

1, the observed load increases, causing a swap to

processor 2. But when executing on processor 2,

the load increases, so we swap back to the proces-

sor 1. And so on. Other performance measures

employed by the swap handler are not susceptible

to this kind of influence.

6. FUTURE WORK

In the near future additional work will be done

to develop a set of general purpose swapping poli-

cies. Critical to this development is a thorough

analysis of the performance of process swapping.

Especially in a dynamic environment such as

the one used in the experiments described in this

paper, real application runs are insufficient to

prove anything about the efficacy of a swapping

policy. Changes in the environment from one run

to the next could have more effect on the results

than a swapping policy change. In order to de-

velop and evaluate swapping policies, a swapping

simulation environment has been built. Using this

environment, several swapping policies will be

developed and cost/benefit models will be eval-

uated. Some of the resulting policies will then

be introduced to the actual swap implementation,

where they will be tested for general applicability

in real world environments. These findings will

be reported in an upcoming paper.

Another interesting future direction, that inci-

dentally is not currently planned, would be to

merge the swapping run-time services with a

different swapping mechanism, for example the

MPICH-V checkpointing facility described ear-

lier.

Finally, the focus of this work to date has been

on local area parallel computing. MPI process

swapping could be applied to wide area paral-

lel computing (grid computing) using MPICH-

G2 [8]. In the wide-area environment, the cost

of swapping can be much higher. However, the

swapping implementation will function on the

grid with only slight modification, and could have

benefit in that arena as well.

7. CONCLUSION

The architecture of a system to improve perfor-

mance of iterative MPI applications has been pre-

sented. By hijacking MPI calls, this user-level in-

frastructure can add dynamic performance steer-

ing to existing MPI applications with as few as

10

processor 1

processor 2

processor 3

processor 4

processor 5

processor 6

processor 7

processor 8

processor 9

processor 10

processor 11

processor 12

processor 13

processor 14

processor 15

processor 16

time

p
ro

c
e
s
s
o

r
p

e
rf

o
rm

a
n

c
e

Fig. 10. Behavior of a swapping-enabled toy application. The y-axes are processor performance (higher is better); the x-axes

are time. Broken lines show processor performance; the bars below show when processors were active.

three lines of source code change. During execu-

tion, the MPI application over-allocates MPI pro-

cesses and uses only a subset of these, bypassing

limitations in MPI 1.1 and MPI 2. A supporting

set of run-time services provides information and

support during application execution, and deter-

mines when and where to actively execute the ap-

plication.

This system has been implemented, and initial

testing has been done in a commercial produc-

tion environment. The swapping system works,

perhaps too well, as the swapping policy used in

these runs tended to swap more than it should. A

simulation environment will be utilized to further

develop and tune swapping policies. The result-

ing policies will be tried by fire again in a real

production environment.

ACKNOWLEDGMENTS

The Hewlett-Packard Company has provided

extended access to their computing facilities,

which were used for the production runs de-

scribed in this paper.

The idea of developing a light-weight MPI pro-

cess swapping system did not happen all at once,

or in a vacuum. Discussions among members of

the GrADS project, in particular Holly Dail, Ruth

Aydt, and Celso Mendez, were critical to the for-

11

mulation of a need for a run-time performance

system. MPI Process Swapping shares architec-

tural ideas with GrADS and with the AutoPilot

adaptive resource control system [13].

REFERENCES

[1] F. D. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application-level scheduling on distributed heterogeneous
networks. In Proceedings of Supercomputing 1996, pages
??–??, 1996.

[2] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak,
C. Germain, T. Herault, P. Lemarinier, O. Lodygensky,
F. Magniette, V. Neri, and A. Selikhov. MPICH-V: Toward a
scalable fault tolerant mpi for volatile nodes. In Proceedings
of Supercomputing 2002, pages ??–??, 2002.

[3] G. Cybenko. Load balancing for distributed memory proces-
sors. Journal of Parallel and Distributed Computing, 7:279–
301, 1989.

[4] R. Diekmann, B. Monien, and R. Preis. Load balancing
strategies for distributed memory machines, 1997.

[5] E. Elsässer, B. Monien, and R. Preis. Diffusion schemes for
load balancing on heterogeneous networks. Theory of Com-
puting Systems, 35:305–320, 2002.

[6] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski,
W. Smith, and S. Tuecke. A directory service for configur-
ing high-performance distributed computations. In Proc. 6th
IEEE Symp. on High Performance Distributed Computing,
pages 365–375. IEEE Computer Society Press, 1997.

[7] M. P. I. Forum. MPI: A message-passing interface standard.
Technical Report UT-CS-94-230, 1994.

[8] I. Foster and N. Karonis. A grid-enabled MPI: Message pass-
ing in heterogeneous distributed computing systems. In Pro-
ceedings of SC’98. ACM Press, 1998.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the mpi message
passing interface standard. Supercomputing Applications,
22(6):789–828, 1996.

[10] K. Kennedy, M. Mazina, J. Mellor-Crummey, K. Cooper,
L. Torczon, F. Berman, A. Chien, H. Dail, O. Sievert, D. An-
gulo, I. Foster, D. Gannon, L. Johnsson, C. Kesselman,
R. Aydt, D. Reed, J. Dongarra, S. Vadhiyar, and R. Wol-
ski. Toward a framework for preparing and executing adap-
tive grid programs. In Proceedings of NSF Next Generation
Systems Program Workshop (International Parallel and Dis-
tributed Processing Symposium 2002), Fort Lauderdale, FL,
April 2002, 2002.

[11] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter
of idle workstations. In Proceedings of the 8th International
Conference of Distributed Computing Systems, 1988.

[12] M. P. I. F. MPIF. MPI-2: Extensions to the Message-
Passing Interface. Technical Report, University of Ten-
nessee, Knoxville, 1996.

[13] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed. Autopi-
lot: Adaptive control of distributed applications. In HPDC,
pages 172–179, 1998.

[14] G. Stellner. CoCheck: Checkpointing and Process Migration
for MPI. In Proceedings of the 10th International Parallel
Processing Symposium (IPPS ’96), Honolulu, Hawaii, 1996.

[15] R. Wolski. Dynamically forecasting network performance
using the network weather service. Cluster Computing,
1(1):119–132, 1998.

[16] F. Wong and J. Demmel. UC Berkeley CS 267 course pro-
gramming assignment 4 at
http://www.cs.berkeley.edu/˜fredwong/

cs267 Spr99/assignments/assignment4.html.

12

	Introduction
	Related Work
	MPI Process Swapping
	Swapping Architecture
	Process Swapping Run-time Architecture
	Process Swapping Source Code Architecture

	Experimental Results
	Future Work
	Conclusion

