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High-Temporal-Resolution Kinetic Modeling of Lung
Tumors with Dual-Blood Input Function Using Total-Body
Dynamic PET

Yiran Wang1,2, Yasser G. Abdelhafez1,3, Benjamin A. Spencer1, Rashmi Verma4, Mamta Parikh4, Nicholas Stollenwerk4,
Lorenzo Nardo1, Terry Jones1, Ramsey D. Badawi1,2, Simon R. Cherry1,2, and Guobao Wang1

1Department of Radiology, University of California Davis Medical Center, Sacramento, California; 2Department of Biomedical
Engineering, University of California, Davis, Davis, California; 3Nuclear Medicine Unit, South Egypt Cancer Institute, Assiut
University, Assiut, Egypt; and 4Comprehensive Cancer Center, University of California Davis Medical Center, Sacramento, California

The lungs are supplied by both the pulmonary arteries carrying deoxy-
genated blood originating from the right ventricle and the bronchial
arteries carrying oxygenated blood downstream from the left ventricle.
However, this effect of dual blood supply has never been investigated
using PET, partially because the temporal resolution of conventional
dynamic PET scans is limited. The advent of PET scanners with a long
axial field of view, such as the uEXPLORER total-body PET/CT sys-
tem, permits dynamic imaging with high temporal resolution (HTR). In
this work, we modeled the dual-blood input function (DBIF) and stud-
ied its impact on the kinetic quantification of normal lung tissue and
lung tumors using HTR dynamic PET imaging. Methods: Thirteen
healthy subjects and 6 cancer subjects with lung tumors underwent a
dynamic 18F-FDG scan with the uEXPLORER for 1h. Data were
reconstructed into dynamic frames of 1 s in the early phase. Regional
time–activity curves of lung tissue and tumors were analyzed using a
2-tissue compartmental model with 3 different input functions: the
right ventricle input function, left ventricle input function, and pro-
posed DBIF, all with time delay and dispersion corrections. These
models were compared for time–activity curve fitting quality using the
corrected Akaike information criterion and for differentiating lung
tumors from lung tissue using the Mann–Whitney U test. Voxelwise
multiparametric images by the DBIF model were further generated to
verify the regional kinetic analysis. Results: The effect of dual blood
supply was pronounced in the high-temporal-resolution time–activity
curves of lung tumors. The DBIF model achieved better time–activity
curve fitting than the other 2 single-input models according to the cor-
rected Akaike information criterion. The estimated fraction of left ven-
tricle input was low in normal lung tissue of healthy subjects but much
higher in lung tumors (�0.04 vs. �0.3, P , 0.0003). The DBIF model
also showed better robustness in the difference in 18F-FDG net influx
rate Ki and delivery rate K1 between lung tumors and normal lung tis-
sue. Multiparametric imaging with the DBIF model further confirmed
the differences in tracer kinetics between normal lung tissue and lung
tumors. Conclusion: The effect of dual blood supply in the lungs was
demonstrated using HTR dynamic imaging and compartmental
modeling with the proposed DBIF model. The effect was small in lung
tissue but nonnegligible in lung tumors. HTR dynamic imaging with
total-body PET can offer a sensitive tool for investigating lung
diseases.

KeyWords: total-body dynamic PET; lung cancer; high temporal res-
olution; kinetic modeling; dual-blood input function
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The lungs have 2 blood supplies: the pulmonary arteries that
carry deoxygenated blood originating from the right ventricle
(RV) (1,2) and the bronchial arteries that carry oxygenated blood
downstream from the left ventricle (LV) (3–5). Although the blood
supply to normal lung tissue is usually dominated by the pulmo-
nary arteries, lung tumors tend to have an increased blood supply
fraction from the bronchial arteries (6–8). This dual-blood-supply
effect of lung tumors has been studied with dynamic CT imaging
(8–11), though with a limited axial field of view. However, to our
best knowledge, it has never been investigated by dynamic PET,
partially because the temporal resolution of conventional dynamic
PET imaging (12–14) has been limited (5–30 s/frame) and not able
to detect the rapidly changing early dynamics of the lungs and dif-
ferentiate the dual blood supplies. As a result, existing lung kinetic
modeling approaches for dynamic PET often neglect the effect of
dual blood supply and only use a single input function for kinetic
modeling (13,15–17).
Total-body and long-axial-field-of-view PET scanners (18–20)

greatly improve the detection sensitivity and hence permit high-
temporal-resolution (HTR) dynamic imaging, opening the door for
HTR kinetic modeling for the lungs. For example, the uEX-
PLORER (United Imaging Healthcare) total-body PET/CT scan-
ner allows HTR dynamic PET imaging with 1 s or less per frame
(21–23). In this study, we exploited the ability of the uEX-
PLORER for HTR dynamic PET imaging to model the dual-blood
input function (DBIF) in the lungs and investigated its impact on
the kinetic quantification of normal lung tissue and lung tumors.
Modeling of the DBIF may provide useful insights into the bron-
chial circulation and can potentially benefit the characterization of
lung nodules, such as to distinguish malignancy from benign
lesions after low-dose CT lung cancer screening (10,24).

MATERIALS AND METHODS

HTR Dynamic Data Acquisition on Total-Body PET
This study included 13 healthy human subjects (mean age 6 SD,

49 6 15 y; weight, 82 6 18 kg; 6 men, 7 women) and 6 cancer
patients with lung tumors, which include 3 primary lung cancer sub-
jects (age, 68 6 3 y; weight, 78 6 8 kg; 2 men, 1 women) and 3
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genitourinary cancer subjects with lung metastases (age, 64 6 10 y;
weight, 796 10 kg; 3 men). All subjects provided written informed con-
sent with the approval of the Institutional Review Board at the University
of California, Davis. The subjects were scanned on the uEXPLORER
total-body PET/CT system (25) with an ultra-low-dose (140 kVp,
5 mAs) or low-dose (140 kVp, 50 mAs) CT scan performed first, fol-
lowed by a 60-min total-body dynamic 18F-FDG PET scan with a dose
of about 360 MBq (291–390 MBq) through intravenous administration.
The acquired list-mode PET data were reconstructed into a total of 120
frames over 60 min, with HTR frames (1–2 s per frame) in the first
2 min: 6031 s, 3032 s, 6310 s, 6330 s, 123120 s, and 63300 s
using the vendor-provided ordered-subset expectation maximization algo-
rithm (4 iterations and 20 subsets) with 43434 mm3 voxels. Regions of
interest (ROIs) were placed in the LV cavity and RV cavity for each sub-
ject to extract time–activity curves for image-derived input functions,
CLVðtÞ and CRVðtÞ, which provide the bronchial blood supply and pul-
monary blood supply to the lungs, respectively. Time–activity curves of
nontumor lung tissue were extracted for each of the 6 cancer subjects
and 13 healthy subjects by averaging 5 lung ROIs for each subject
(1 ROI per each lung lobe; Supplemental Fig. 1A provides an illustrative
example; supplemental materials are available at http://jnm.snmjournals.
org). In total, 8 lung tumors, including 3 primary lung tumors (from each
of the 3 primary lung cancer subjects) and 5 lung metastases (3 from 1
genitourinary cancer subject and 2 from each of the other 2 genitourinary
cancer subjects) were also identified among the 6 cancer subjects. ROIs
for these lung tumors were placed (Supplemental Fig. 1B), and corre-
sponding time–activity curves were extracted.

Compartmental Modeling
We used a 2-tissue irreversible compartmental model (26,27) to

model the 18F-FDG kinetics in the lungs (Fig. 1A). The model is
described by the following set of differential equations:

d
dt

Cf ðtÞ
CmðtÞ

� �
5

2k22k3 0

k3 0

� �
Cf ðtÞ
CmðtÞ

� �
1

K1

0

� �
CpðtÞ, Eq. 1

where CpðtÞ is the blood input function, Cf ðtÞ is the concentration of free-
state 18F-FDG in the tissue, and CmðtÞ is the phosphorylated 18F-FDG
(18F-FDG-6P) in tissue. K1 (mL/min/cm3) and k2 (min21) are the blood-to-
tissue and tissue-to-blood 18F-FDG delivery rate constants, respectively,
and k3 (min21) is the rate constant of 18F-FDG phosphorylation. The irre-
versible model is based on the assumption of negligible 18F-FDG-6P

dephosphorylation (i.e., the dephosphorylation rate constant k450). The
total 18F-FDG concentration measured by PET is modeled as a combina-
tion of concentrations in the extravascular tissue and in the blood,

CTðtÞ5 ð12vbÞHðt;kÞ �CpðtÞ1vbCwbðtÞ, Eq. 2

where CTðtÞ is the modeled total concentration, vb is the blood volume
fraction, and CwbðtÞ is the whole-blood tracer concentration, which can

be approximated by the image-derived input function. k5 ½ K1, k2, k3�T,
and Hðt;kÞ is the impulse response function of the 2-tissue irreversible

model: Hðt;kÞ5 K1
k2 1k3

�
k31 k2e2ðk2 1 k3Þt

�
: With this model, all kinetic

parameters are jointly estimated using a nonlinear least-square time–activ-
ity curve fitting (28):

û5 argmin
u

WRSSðuÞ, WRSSðuÞ5
XM
m51

wm½C�TðtmÞ2CTðtmÞ�2:

Eq. 3

C�TðtÞ is the real measured 18F-FDG concentration. WRSSðuÞ is the
weighted residual sum of squares of the time–activity curve fitting. u is
the collection of unknown parameters in the kinetic model. M is the total
number of dynamic frames. tm and wm are the time and the weight of the
mth frame, respectively. A uniform weight was used in this study (28).

Single-Blood Input Functions
Because the pulmonary input accounts for most of the total blood

input to the lung tissue (4), previous studies (13,15–17) commonly
used the RV-derived input function (RVIF) (Fig. 1B) for kinetic
modeling of lung tissue. In HTR lung kinetic modeling, it also
becomes important to include corrections for time delay and disper-
sion to the image-derived input function (29). Hence, the RVIF model
implemented in this work is

CRVIF
p ðtÞ5CRVðt2tRVÞ � kdexpð2kdtÞ, Eq. 4

where the time delay parameter tRV (s) denotes the time delay between the
RV where the image-derived input function is extracted and the arrival of
the radiotracer in the tissue of interest. The dispersion parameter
kd (min21) aims to adaptively correct the dispersion effect between the
2 sites. The same CRVIF

p ðtÞ (Eq. 4) is also used for CwbðtÞ in the RVIF
model. The parameters tRV and kd are jointly estimated with other kinetic
parameters during time–activity curve fitting.

On the other hand, an LV-derived input function (LVIF) is typically
used for modeling lung tumors (30–32). The model supposes that the
bronchial arteries, which are downstream from the LV, are the domi-
nant blood supply of the tissue of interest. Similar to the RVIF model,
the LVIF model (Fig. 1B) to be compared in this work is

CLVIF
p ðtÞ5CLVðt2tLVÞ � kdexpð2kdtÞ, Eq. 5

where tLV(s) denotes the time delay between the LV and the arrival of the
radiotracer in the tissue of interest, and kd (min21) is for the dispersion
correction. CLVIF

p ðtÞ in Equation 5 is also used for CwbðtÞ in the LVIF
model.

Proposed DBIF
In this work, we hypothesized that the contribution of each blood sup-

ply is nonnegligible and should be accounted for when analyzing HTR
dynamic PET data; hence, we proposed modeling both supplies rather
than omitting either of them. The proposed DBIF is a linear combination
of the 2 image-derived input functions CRVðtÞ and CLVðtÞ (Fig. 1B):

CDBIF
p ðtÞ5 ½fCLVðt2tLVÞ1 ð12f ÞCRVðt2tRVÞ� � kdexpð2kdtÞ,

Eq. 6

where f represents the fractional contribution from the bronchial blood
supply. As in the RVIF and LVIF models, tLV and tRV are the time delays
for each of the 2 blood supplies and kd is the dispersion parameter. This

FIGURE 1. (A) 2-tissue irreversible model for kinetic modeling of lung
dynamic 18F-FDG PET. (B) Different blood input functions for HTR lung
kinetic modeling. Time delay and dispersion corrections are applied to 3
input functions.
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setting of 2 separate time-delay parameters and 1 comprehensive disper-
sion parameter was selected on the basis of our initial studies of curve fit-
ting and parameter quantification. Similar to the single-input models,
CwbðtÞ is modeled by CDBIF

p ðtÞ in the DBIF model. Again, all parameters
are jointly estimated with other kinetic parameters through time–activity
curve fitting. The DBIF model is equivalent to the RVIF model if f 50
and the LVIF model if f 51.

With this DBIF model, a tissue time–activity curve CTðtÞ can be
decomposed into an LV-supplied component CLV

T ðtÞ and an RV-supplied
component CRV

T ðtÞ:
CTðtÞ5CLV

T ðtÞ1CRV
T ðtÞ, Eq. 7

where the decomposed time–activity curves are calculated by

CLV
T ðtÞ5 f

�
ð12vbÞHðt;kÞ �CLVIF

p ðtÞ1vbC
LVIF
p ðtÞ

�
, Eq. 8

CRV
T ðtÞ5 ð12f Þ

�
ð12vbÞHðt;kÞ �CRVIF

p ðtÞ1vbC
RVIF
p ðtÞ

�
, Eq. 9

with CLVIF
p ðtÞ and CRVIF

p ðtÞ given by Equations 5 and 4, respectively.

Evaluation of Statistical Fit Quality
To assess the statistical fitting quality of the 3 models (RVIF,

LVIF, and DBIF), the corrected Akaike information criterion (AICc)
was used (33,34):

AICc5M ln
WRSS
M

� �
1 2N1

2N2 1 2N
M2N21

, Eq. 10

in which N is the number of unknown parameters (N56, 6, and 8 for the
LVIF, RVIF, and DBIF models, respectively). The AICc considers the cor-
rection to the limited sample size M

n #40 (35) and is a balance between the
goodness of curve fitting and model simplicity. A lower AICc value indi-
cates better fitting quality. AICc values of the 3 models (LVIF, RVIF, and
DBIF) were compared to quantify any improvement in fitting quality by
the proposed DBIF model.

Impact on Kinetic Quantification
The impact of the DBIF model was evaluated in relation to the quantifi-

cation of kinetic parameters of major interest by comparing the results with
those derived from the single-blood input function models. The investi-
gated parameters included 18F-FDG delivery rate K1,

18F-FDG net influx
rate Ki5K1k3=ðk21 k3Þ, fractional blood vol-
ume vb, and time delay parameters tLV and tRV.
The LV fraction f , uniquely estimated by the
DBIF model, was also investigated. Further, we
compared the statistical difference between the
lung tissue group and the lung tumor group
using the Mann–Whitney U test of the kinetic
parameters quantified by different models. A
P value of less than 0.05 was considered to be
significant.

Demonstration of Multiparametric
Imaging Using the DBIF Model

In addition to the ROI-based analysis, we
applied the proposed DBIF model for voxel-
wise parametric imaging to acquire multi-
parametric images of lung K1, Ki, vb, and f .
Kernel smoothing was applied to the
dynamic images to reduce noise (28).

As shown by Equation 7, one property of the
DBIF model is to separate the LV-supplied and
RV-supplied components. Therefore, we also
used the decomposition to generate dynamic
lung activity images showing the supply by the
individual LVIF and RVIF.

RESULTS

HTR Dynamic Images of Subjects with Lung Tumors
Figure 2A shows the HTR total-body dynamic images of a rep-

resentative cancer subject with lung metastasis in maximum-
intensity projections, and Figure 2B shows the corresponding ROI
time–activity curves extracted from the images. After the intrave-
nous administration at around 10 s, the tracer traveled through the
RV (Fig. 2A, 17–18 s) and arrived at the lungs (Fig. 2A, 22–23 s)
through the pulmonary arteries. The tracer then flowed into the
LV (Fig. 2A, 27–28 s) through the pulmonary vein. Hence, the
arrival order of the early-phase time–activity curve peak is RV
(at �17 s), lung tissue (at �22 s), and LV (at �27 s), as seen in
Figure 2B. However, the lung tumor time–activity curve had a first
peak at about 20 s (�3 s after the RV peak) and a second peak at
about 32 s (�5 s after the LV peak, also visible in Fig. 2A), and
the latter is later than the LV peak. This observation suggests a
dual-blood-supply effect in the lung tumor.

Time–Activity Curve Fitting Using Different Input
Function Models
Figure 3A and Supplemental Figure 2 show examples of fitting

the time–activity curves of a lung tumor from a cancer subject and
a normal lung tissue sample from a healthy subject by the 2
single-input models (RVIF and LVIF) and the DBIF model. For
the tumor time–activity curve, neither the RVIF nor the LVIF
model was able to fit the 2 peaks in the early phase. However, the
DBIF model achieved better fitting. The nontumor lung tissue
time–activity curve fitting by the LVIF model was poor, whereas
the RVIF and DBIF had similar good results. The time–activity
curve fitting quality is further evaluated by AICc in Table 1 and
Figure 3B. For the normal lung tissue from healthy subjects and
the nontumor lung tissue from cancer subjects, the AICc of the
RVIF model was much lower than the LVIF model, confirming
the appropriateness of using RVIF for modeling lung tissue. Com-
pared with RVIF and the LVIF, the DBIF model achieved the best
AICc, especially for the modeling of lung tumor time–activity
curves.

FIGURE 2. Cancer subject with lung metastasis. (A) HTR total-body 18F-FDG dynamic images
acquired with uEXPLORER PET/CT system. Arrows point to lesion. (B) HTR time–activity curves
extracted from dynamic image set. Nontumor lung tissue time–activity curve is averaged from 5 ROIs
placed in 5 lung lobes, and lung tumor time–activity curve is obtained as shown in Supplemental
Figure 1B.
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For an illustrative example, the time–activity curves of the lung
tissue and the lung tumor (Fig. 3A) were further decomposed in
Figure 4 according to the individual LV and RV blood supplies
using Equation 7. In the normal lung tissue, the LV-supplied com-
ponent was small, with f 50:045. In comparison, for the tumor
time–activity curve, the LV-supplied component contributed sig-
nificantly to fitting the second peak (�35s), with f 50:31.

Statistical Analysis of Estimated f in Lung Tissue and Tumors
Figure 5A compares the LV fraction f of the DBIF model in

the lung tissue of healthy subjects, lung tissue of cancer subjects,

and lung tumors. The estimations of f by DBIF for the 3 groups
were 0.0376 0.013, 0.0416 0.027, and 0.306 0.27, respectively.
The primary tumors had f 50:3560:45, whereas metastases had
f 50:2760:16. The U tests indicated significant differences
between the tumor group and the other 2 lung tissue groups
(tumors vs. lung tissue of healthy subjects, P , 0.0003; tumors vs.
lung tissue of cancer subjects, P , 0.003). No statistical difference
was observed between the healthy-subject lung tissue and cancer-
subject lung tissue (P. 0.4). The characteristics and the f quantifica-
tion of each lung tissue sample and tumor are listed in Supplemental
Table 1.

Impact of DBIF on Kinetic Quantification
The difference in f led to changes in the estimation of kinetic

parameters of interest. The impact on the normal lung tissue of
healthy subjects and lung tumors is shown in Table 2, and the
kinetic quantification of nontumor lung tissue of cancer subjects is
shown in Supplemental Table 2. Compared with the 2 single-input
models (RVIF and LVIF), the DBIF resulted in higher vb and lower
K1 in both normal lung tissue and lung tumors. Particularly, the vb
estimated by DBIF for lung tissue of healthy subjects was closer to
the reference value of 0.16 as reported in the literature (27).
Figures 5B and 5C further compare K1 and Ki of the DBIF

model for differentiating lung tumors from normal lung tissue
of healthy subjects or nontumor lung tissue of cancer subjects.
Both kinetic parameters showed a statistical group difference
(P , 0.01). The comparisons between the lung tissue and tumors
using the DBIF and single-input models are summarized in Table 2
(tumors vs. healthy-subject lung tissue) and Supplemental Table 2
(tumors vs. cancer-subject nontumor lung tissue). The RVIF
model had worse performance than DBIF and LVIF for using K1

to differentiate lung tumors, whereas the LVIF model had less

2,400
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2,000

1,800

1,600

1,400

DBIF

LVIF

RVIF

Lung tumor TAC fitting Normal lung tissue TAC fittingA

B

HS lung tissue (13) CS lung tissue (6) Lung tumor (8)

AI
C

c

FIGURE 3. (A) HTR time–activity curve fitting of lung metastasis from gen-
itourinary cancer subject and normal lung tissue from healthy subject with 3
models: RVIF, LVIF, and DBIF. (B) AICc of RVIF, LVIF models, and proposed
DBIF model in lung tissue groups and lung tumor group. Lower values indi-
cate better fitting quality. CS5 cancer subject; HS5 healthy subject.

TABLE 1
AICc Value of Time–Activity Curve Fitting of Normal Lung

Tissue of Healthy Subjects, Lung Tissue of Cancer
Subjects, and Lung Tumors by Kinetic Models with

Different Input Functions

AICc

Model

Normal lung
tissue of

healthy subjects
(n 5 13)

Lung tissue
of cancer
subjects
(n 5 6)

Lung tumors
of cancer
subjects
(n 5 8)

LVIF 2,280.46101.1 2,087.06150.9 2,101.66 262.5

RVIF 1,741.0674.7 1,546.16109.5 1,841.66 135.6

DBIF 1,739.1675.1 1,542.86108.0 1,767.56 130.1

FIGURE 4. Examples of decomposition of fitted time–activity curve into
LV-supplied component and RV-supplied component in DBIF model for
normal lung tissue time–activity curve from healthy subject and lung tumor
time–activity curve from cancer subject.
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power than DBIF and RVIF for using Ki to differentiate tumors,
as indicated by the P values. In addition, tRV and tLV by the DBIF
tended to be different between lung tissue and lung tumors, as
shown in Table 2. Overall, the DBIF demonstrated a more robust
differentiation performance.

Demonstration of Multiparametric Imaging
Figure 6 shows the parametric images (f , K1, Ki, and vb) of the

total lung of a cancer subject by the DBIF model as compared
with the image of the SUV. The parametric images show a clear
difference in the lung tumors and surrounding tissue in f , K1, and
Ki, supporting the ROI-based analysis.
Figure 7 shows the decomposition of the dynamic images into

the LV-supplied and RV-supplied components for 1 subject.
When the tracer first passed through the lung via the pulmonary
artery at 20–22 s, the measured activity was all in the RV-supplied
component, and there was no LV-related component. However,

when the second peak of the tumor time–activity curve appeared
at 32–34 s, the LV-supplied component appeared in the tumors
and was the dominant contribution to the total measured activity
in those tumors. The LV-supplied component continued to contrib-
ute to the total activity until the late phase of the 1-h scan.

DISCUSSION

In this study, we investigated DBIF in normal lung tissue and
lung tumors using HTR dynamic 18F-FDG imaging enabled with a
total-body PET scanner. To the best of our knowledge, this was
the first time that the dual blood supply of the lung tumor was
monitored using dynamic PET and modeled by kinetic modeling.
It is also worth noting that the DBIF model is not limited to
dynamic 18F-FDG PET but also can be used for lung studies with
other tracers (e.g., perfusion tracers such as H2

15O or 11C-butanol)
(36). Compared with previous dynamic CT studies of lung dual

FIGURE 5. Comparison of lung tissue (from healthy subjects and cancer subjects) and lung tumors using kinetic parameters estimated by proposed
DBIF model: LV fraction f (A), 18F-FDG delivery rate K1 (B), and 18F-FDG net influx rate Ki (C). P values are for Mann–Whitney U test. CS 5 cancer sub-
ject; HS5 healthy subject.

TABLE 2
Comparison of Normal Lung Tissue of Healthy Subjects with Lung Tumors Using 18F-FDG K1, vb, Ki, tLV, and tRV

Estimated by Kinetic Models with Different Input Functions

Parameter Model Lung tissue (n 5 13) Lung tumor (n 5 8) P

K1 ðmL=min=cm3Þ RVIF 0.06660.030 0.3360.33 0.013

LVIF 0.05360.028 0.4260.37 0.00034

DBIF 0.04460.022 0.2760.22 0.00098

vb RVIF 0.1460.03 0.1860.10 0.86

LVIF 0.1060.03 0.1460.12 0.74

DBIF 0.1560.03 0.2160.10 0.23

Ki ðmL=min=cm3Þ RVIF 0.0007660.00047 0.02260.024 0.00019

LVIF 0.0000760.00014 0.02060.024 0.00098

DBIF 0.0006160.00034 0.02260.023 0.00019

tRV ðsÞ RVIF 2.1660.38 2.363.3 0.14

LVIF — — —

DBIF 2.1760.35 1.360.9 0.039

tLV ðsÞ RVIF — — —

LVIF 060 0.461.1 0.24

DBIF 13.063.0 5.565.7 0.0042

P values are for Mann–Whitney U test.
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blood supply (8–11) that were limited to a short axial field of
view, our total-body PET study covered the total lung and enabled
a multiparametric quantification of tracer kinetics, especially f ,
K1, and Ki.
The significance of DBIF was demonstrated for HTR lung

kinetic modeling by comparing the DBIF model with single-input
models (i.e., LVIF and RVIF). The DBIF model achieved the best
AICc for time–activity curve fitting, especially for tumor time–
activity curves, whereas the LVIF and the RVIF were not able to

provide good fitting (Fig. 3). A further test
of time–activity curve fitting (Supplemen-
tal Table 3) found that the DBIF model
still achieved the best fitting when a differ-
ent nonuniform weighting scheme was
used (37). However, the efficacy of the
DBIF model was compromised for data
with a lower temporal resolution (e.g.,
10 s/frame; Supplemental Table 4), indi-
cating the importance of the HTR data for
the application of DBIF.
The DBIF model had a significant impact

on kinetic parameter quantification, particu-
larly for 18F-FDG delivery rate K1 and frac-
tional blood volume vb (Table 2). More
notably, the DBIF model also provides an
estimation of the fraction of the bronchial
supply (i.e., f ) and the fraction of pulmonary
supply (i.e., 12f ), which were significantly
different in lung tumors and lung tissue (Fig.
5A). In addition, f also has the potential to
be estimated with a shortened dynamic scan
duration, for example, 0–2min, as suggested
by the preliminary results shown in Supple-
mental Table 5, though a more comprehen-

sive study is warranted. The quantification of f may provide insights
into the angiogenesis of lung tumors (9) to characterize lung nodules
(10), which may have an application in evaluating malignancy from
benign lesions to potentially address the high false-positive challenge
resulting from low-dose CT lung cancer screening (24). Furthermore,
the potential applications of f are not limited to lung cancer but also
may encompass other lung diseases, such as asthma (38), acute lung
inflammation (3), and coronavirus disease 2019 (39). For example,
bronchial circulation is altered in asthma, and f thus has the potential

to be used for evaluating treatment efficacy
(40,41).
In the proposed DBIF model, the same

dispersion parameter kd was used to account
for the dispersion effects in both blood sup-
plies. This choice was based on its compari-
son with multiple other options, including
no dispersion correction, dispersion correc-
tion for the LVIF only, dispersion correction
for the RVIF only, and 2 different disper-
sion corrections for the LVIF and RVIF.
The shared dispersion correction provided
the most robust and physiologically reason-
able results in the comparison (results not
shown). It is also worth noting that the lung
DBIF model proposed in this study is math-
ematically and physiologically different
from the DBIF model used for liver PET
studies (42,43) that consider the dual
blood supplies from the hepatic artery
and portal vein.
This work has some limitations. Pri-

mary lung tumors and lung metastases
were pooled together for statistical analy-
sis because of the limited sample size. It is
possible that the dual-blood input effect
was different in primary lung cancer

FIGURE 6. Comparison of total-lung 18F-FDG SUV image and parametric images for cancer sub-
ject with 2 metastatic lung nodules (arrows). Parametric images include LV fraction f, 18F-FDG deliv-
ery rate K1,

18F-FDG net influx rate Ki, and fractional blood volume vb generated by proposed DBIF
model. Coronal PET images are overlaid on corresponding CT slice.

FIGURE 7. Dynamic 18F-FDG images of cancer subject with lung metastases (top) were decom-
posed into LV-supplied component and RV-supplied component using DBIF model. 18F-FDG PET
images are overlaid on corresponding CT slice, and arrows point at metastases.
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(f 50:3560:45) and lung metastases (f 50:2760:16), but fur-
ther analysis was limited because of a small sample size. It would
be valuable to further subtype the tumor group in future investiga-
tions. The proposed DBIF model is more complex and involves 2
more parameters (f and an additional time delay parameter) than
the single-blood input function models. We also tested using a
single time delay for both LVIF and RVIF in the DBIF model.
However, the result suggested the need for different time delays
for the 2 input functions. Although the new model has increased
complexity, its benefits were demonstrated by time–activity curve
fitting quality and the impact on the quantification of kinetic para-
meters of interest. Our future work will further explore the poten-
tial of these kinetic parameters (e.g., K1 and f ) as disease
biomarkers. Also, the fact that the air fraction correction (44,45)
was not included in this study may have impacted the quantitative
values of K1 and Ki. Our future work will also investigate this
direction.

CONCLUSION

The effect of modeling lung dual blood supply was demon-
strated using HTR dynamic total-body PET. The proposed DBIF
model improved time–activity curve fitting quality, enabled quan-
tification of the vascular fraction parameter f , and led to a nonne-
gligible impact on quantification of other kinetic parameters (e.g.,
vb and K1). The DBIF effect was higher in lung tumors than in
lung tissue. HTR dynamic imaging with total-body PET has the
potential to be a sensitive tool for investigating lung physiology
and diseases.
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KEY POINTS

QUESTION: Can the DBIF that accounts for the dual blood supply
of the lungs improve kinetic modeling of the lung tissue and lung
tumors in HTR dynamic imaging with total-body PET?

PERTINENT FINDINGS: The DBIF model achieved improved
time–activity curve fitting compared with single-blood input
function models and led to quantification of the vascular fraction
parameter. The effect of dual-blood-supply modeling was larger
in lung tumors than in lung tissue as indicated by this kinetic
parameter.

IMPLICATIONS FOR PATIENT CARE: The incorporation of the
DBIF in HTR dynamic PET imaging of the lung may improve the
diagnosis and evaluation of lung diseases.
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