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SUMMARY

For microbiome biology to become a more predictive science, we must identify which descriptive 

features of microbial communities are reproducible and predictable, which are not, and why. 

We address this question by experimentally studying parallelism and convergence in microbial 

community assembly in replicate glucose-limited habitats. Here, we show that the previously 

observed family-level convergence in these habitats reflects a reproducible metabolic organization, 

where the ratio of the dominant metabolic groups can be explained from a simple resource-

partitioning model. In turn, taxonomic divergence among replicate communities arises from 

multistability in population dynamics. Multistability can also lead to alternative functional states 

in closed ecosystems but not in metacommunities. Our findings empirically illustrate how 

the evolutionary conservation of quantitative metabolic traits, multistability, and the inherent 

stochasticity of population dynamics, may all conspire to generate the patterns of reproducibility 

and variability at different levels of organization that are commonplace in microbial community 

assembly.

In brief

Microbiomes may be described at different levels of organization: from strains to metabolic 

functions. The predictability of microbiome assembly often increases as we zoom out and look 
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at their emergent functional behavior. Due to the significant challenges of studying microbiomes 

in their natural habitats, these recurrent patterns remain poorly understood. Here, we investigate 

laboratory ecosystems exhibiting a similar pattern of functional convergence despite fine-scale 

taxonomic divergence. By combining experiments and modeling, we provide a mechanistic 

explanation for these patterns.

Graphical Abstract

INTRODUCTION

The structure and function of microbial communities result from a complex interplay 

between selection, historical contingency, and chance events, in a manner that remains 

poorly understood (Costello et al., 2012). Integrating all of the deterministic and stochastic 

ecological processes that shape community assembly into a predictive theoretical framework 

is a major aspiration in microbiome biology. To meet this challenge, we must understand 

how each of these ecological forces influence the structure and functional attributes of 

microbial communities.

Several recent studies in a range of natural microbiomes, including those of systems as 

diverse as soils (Nelson et al., 2016), the oceans (Louca et al., 2016a), plants (Burke et al., 

2011; Louca et al., 2016b), and the human gut (Human Microbiome Project Consortium, 

2012; Turnbaugh et al., 2009), have reported intriguing generic patterns of convergence and 
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variation at different levels of ecological organization. When binned by metabolic pathway, 

the fraction of the community metagenome that is devoted to different metabolic functions 

is often quantitatively reproducible in similar habitats (e.g., the same body part in different 

individuals) (Louca et al., 2018). Yet, these studies also find that the taxonomic composition 

(particularly at the genus level or lower) is generally highly variable in these habitats. 

This has led to the proposal that environmental selection determines the fractions of the 

metagenome devoted to certain metabolic functions, whereas the taxonomic composition is 

less constrained and more sensitive to chance events, environmental heterogeneity, historical 

contingency, and other processes (Louca et al., 2016b, 2018). In contrast to these findings, 

other recent studies have reported that seemingly important metabolic functions, such as 

the enzymatic degradation of growth-limiting polymers, may also be affected by historical 

contingency (Bittleston et al., 2020).

Reconciling these observations and explaining them within a single theoretical framework 

is challenging, due to fundamental limitations that are inherent to natural surveys. Namely, 

working under natural conditions makes it difficult to perform well-controlled manipulative 

experiments. This limitation makes it difficult to draw direct mechanistic links between 

physiological processes at the cellular level and the patterns of ecological convergence 

and variation that are observed at the community level. We cannot generally explain, for 

instance, why the specific ratios of different metabolic pathways are what they are in a given 

natural environment, nor how they should change in response to specific perturbations, such 

as nutrient shifts or antibiotic treatment. Perhaps one of the biggest challenges is that the 

selective pressures experienced by microbes in most natural habitats are not known exactly, 

nor do we have a detailed chronology of the historical events that may have led to the current 

state of a community.

Some of these problems would be resolved if we were to study the assembly process in 

simpler and well-controlled habitats, where the selective and non-selective forces at play 

can be identified and mechanistically and quantitatively modeled (Carlson et al., 2020; 

Harcombe et al., 2014; Klitgord and Segrè, 2010; Sanchez and Gore, 2013; Zelezniak 

et al., 2015). To this end, we have recently investigated the self-assembly of hundreds 

of stable enrichment communities in replicate synthetic habitats of known biochemical 

composition and assembly history (Goldford et al., 2018). In these experiments, we found a 

strong convergence in community composition among replicate habitats at higher levels 

of taxonomy (i.e., family or higher), despite the presence of substantial variability at 

lower levels (i.e., genus). For instance, across N∼100 replicate glucose-limited habitats, 

communities in equilibrium adopted similar ratios of the two dominant taxonomic families 

(Enterobacteriaceae and Pseudomonadaceae), despite the different starting pools of species 

used to colonize each habitat. This is an example of ecological convergence (Figure 1A). 

At the same time, parallel community assembly experiments found that the species-level 

composition within each of these families was highly variable, diverging even across 

communities that were started from the same inoculum in identical habitats (Goldford et 

al., 2018).

However, the mechanisms responsible for these patterns of convergence and divergence at 

different levels of organization are unknown. It is tempting to hypothesize that, consistent 
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with observations in natural habitats, family-level convergence in our laboratory-assembled 

communities may also reflect an emergent metabolic organization to which communities 

converge despite the unavoidable effects of chance, historical contingency, or idiosyncratic 

species interactions. As for the ecological processes leading to taxonomic variability at 

lower levels of taxonomy, we had originally speculated that alternative states in parallel 

assembly experiments may be due to sampling different taxa into different habitats from 

the same species pool (Goldford et al., 2018; Marsland et al., 2019). Alternatively, it 

is also possible that these represent alternative stable states, driven by multistability and 

stochasticity in population dynamics (Schröder et al., 2005).

In this paper, we set out to test these different hypotheses and to provide quantitative 

explanations for the observed quantitative patterns of convergence and variability at different 

levels of organization. To that end, we combine phenotypic assays and multi-replicated 

enrichment community experiments in defined media and link them with ecological and 

metabolic modeling. First, our findings indicate that quantitative nutrient utilization traits 

(i.e., growth rates and amount of nutrients secreted) are more deeply conserved than would 

be expected based on the shallow conservation of qualitative nutrient utilization traits in 

bacteria (Martiny et al., 2015). Second, we show that the previously observed convergent 

ratios of Pseudomonadaceae and Enterobacteriaceae in glucose enrichment communities 

reflect an emergent metabolic organization of microbial communities, where the latter 

specialize in the supplied glucose and the former in the organic acids released during 

overflow metabolism. Furthermore, we show that the ratio between the abundances of both 

functional guilds can be quantitatively explained by a simple resource-partitioning model. 

Third, we demonstrate that multistability explains the adoption of different compositions 

in replicate habitats and that the alternative community compositions are driven by the 

outcome of mutual inhibition between just two sub-dominant strains. Using dynamical 

systems theory, we can predict dynamical information, such as the location of the tipping 

points between alternative community states from the distribution of equilibrium abundances 

of just these two strains. Finally, we also show that, although alternative functional states are 

also possible when communities are propagated in isolation, these will collapse into a single 

functional state when connected through migration. Collectively, our work demonstrates 

the promise of using enrichment microbial community experiments and linking them with 

dynamical systems theory and systems biology models to quantitatively explain properties of 

experimental microbiomes—a step toward the aspiration of constructing a predictive theory 

of microbiome assembly (Costello et al., 2012; Estrela et al., 2021).

RESULTS

Family-level convergence reflects an emergent metabolic organization of self-assembled 
communities

As previewed above, we have recently found that natural bacterial communities that 

were serially passaged every 48 h in glucose minimal media self-assembled into 

stable communities containing N = 2–17 taxa, which coexist thanks to extensive cross-

feeding interactions (Goldford et al., 2018). Despite their different starting inocula, these 

communities adopted highly reproducible compositions at the family (or higher) level of 
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taxonomy, while varying widely in their composition at (or below) the genus level (Goldford 

et al., 2018). Communities were dominated by the Enterobacteriaceae (E), and in all cases 

the second most abundant family was the Pseudomonadaceae (P), at a median ratio of 

P/E = 0.27 (N = 92, Q1 = 0.15, Q3 = 0.70) (Figure 1A). The reasons for the strong 

reproducibility of community assembly at higher levels of taxonomic organization, and for 

the specific ratios of these two specific families, remain unknown. Based on simulations of 

community assembly using consumer-resource models, we had originally hypothesized that 

family-level convergence in our experiments may reflect an emergent metabolic organization 

that would map to the phylogeny through the conservation of quantitative metabolic traits 

at the family level (Goldford et al., 2018). Our mathematical models had suggested that 

the dominant family in our communities would be selected for their faster growth on the 

supplied resource, whereas the sub-dominant families would be selected by their competitive 

ability in the metabolic secretions (Goldford et al., 2018).

To evaluate the merits of this theory-motivated hypothesis, we collected 73 isolates 

(spanning a total of 11 genera) from 17 representative communities. Our isolates included 

members of the dominant Enterobacteriaceae family (N = 47 isolates) and the sub-dominant 

Pseudomonadaceae (N = 20 isolates), as well as other rarer families, such as Moraxellaceae 

(N = 3), Aeromonadaceae (N = 1), Alcaligenaceae (N = 1), and Comamonadaceae (N = 1) 

(STAR Methods). On average, our isolates represented 89.4% of the exact sequence variant 

(ESV)-level composition of the 17 communities from where they were collected (Figure 

S1; STAR Methods). We first measured the growth rates of all isolates in monoculture in 

the same M9 glucose minimal media where the communities had been originally assembled 

(STAR Methods). The vast majority of our isolates (72/73) were able to grow on glucose 

in monoculture (Figure S2). However, taken as a group, the Enterobacteriaceae isolates 

have much stronger growth rates in this medium than the Pseudomonadaceae isolates 

(mean(E, glu) = 0.72/h and mean(P, glu) = 0.47/h, p < 0.0001, two-sample t test, df = 

32, N = 67; Figures 1B and S2). The finding that isolates belonging to the dominant family 

(Enterobacteriaceae) in our communities have, on average, a 60% growth advantage over the 

sub-dominant Pseudomonadaceae isolates is consistent with our hypothesis.

Although glucose is the only supplied resource, we have previously found that cross-feeding 

is rampant in these communities (Goldford et al., 2018). Because of their competitive 

disadvantage in the supplied glucose, we had hypothesized earlier that the permanence 

of Pseudomonadaceae in the community may be associated with stronger growth on the 

metabolic secretions of the Enterobacteriaceae. To identify what these byproducts may 

be, we used liquid-chromatography mass spectrometry (LC-MS) to analyze the most 

abundant secreted byproducts of glucose metabolism for a representative Enterobacter 
strain in our communities, as well as for E. coli MG1655 as a reference member of this 

family (STAR Methods). These two species also represent the two main forms of glucose 

fermentation typically found in the Enterobacteriaceae (Vivijs et al., 2015). The three 

dominant byproducts secreted by both strains into the environment during the exponential 

phase were acetate, lactate, and succinate (Figure S3), consistent with the known patterns 

of glucose overflow metabolism in Enterobacteriaceae (Vivijs et al., 2015). Of these, 

acetate was the most abundant, at a concentration of 4.7 ± 0.5 mM for E. coli and 6.0 

± 0.2 mM for Enterobacter after 28 h of growth. To test the generality of these secretion 
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patterns, we quantified the amount of acetate, succinate, and lactate secreted by all of our 

Enterobacteriaceae isolates in glucose minimal media (STAR Methods). All three organic 

acids are strongly secreted by all the Enterobacteriaceae (at similar levels across isolates, 

with some genus-level variation Figure S4) but, as expected, to a much lesser extent by the 

Pseudomonadaceae (Figure 1B). Acetate, is in all cases, the dominant overflow byproduct 

(median = 8.5 mM, Q1 = 7.4 mM, and Q3 = 9.6 mM after 16 h of growth, N = 47).

If, as hypothesized above, the Pseudomonadaceae persist in our communities because of 

their growth advantage on the metabolic byproducts of the dominant Enterobacteriaceae, 

we should expect Pseudomonadaceae isolates to have a higher growth rate in the 

dominant organic acid (acetate), and possibly also in the others as well. To test this 

hypothesis, we measured the growth rates of all of our isolates in acetate, succinate, and 

lactate minimal media, separately (STAR Methods). Compared with the Enterobacteriaceae 

isolates, Pseudomonadaceae did indeed grow faster in acetate (mean(P, acetate) = 0.31/h 

versus mean(E, acetate) = 0.19/h, p < 0.01, two-sample t test, df = 31, N = 67), in succinate 

(mean(P, succinate) = 0.46/h versus mean(E, succinate) = 0.29/h, p < 0.01, two-sample t test, 

df = 27, N = 64), and also in lactate (mean(P, lactate) = 0.54/h versus mean(E, lactate) = 

0.37/h, p < 0.01, two-sample t test, df = 24, N = 67) (Figures 1B, S2, and S5). Importantly, 

the vast majority of the isolates in our collection were also able to grow in all of the 

secreted nutrients (acetate, succinate, and lactate), regardless of the families they belonged 

to. Therefore, the difference in growth traits between families is quantitative rather than 

qualitative.

The outcome of these experiments is consistent with the theoretical explanation of family-

level convergence due to quantitative (as opposed to qualitative) functional similarity, 

both in terms of niches created and in the growth response to the available resources. 

Thus, we propose that the Enterobacteriaceae in our communities (as well as the closely 

related Aeromonadaceae, which exhibits remarkably similar quantitative metabolic traits 

to the Enterobacteriaceae Figures 1B and S2) form a respiro-fermentative functional guild 

(F), which is selected due to their faster growth on the supplied glucose. In turn, the 

Pseudomonadaceae (together with the Moraxellaceae and Comamonadaceae) form a second 

functional group of respirative (R) bacteria, which is primarily selected by the organic acids 

released by the fermenters.

Because glucose is the only supplied resource at the beginning of each batch incubation, 

the scenario proposed above would predict that the fermentative (F) bacteria should initially 

increase in relative abundance over the respirative (R) group in the early phases of an 

incubation. This should lead to an early drop in the ratio between R/F abundances. By the 

time glucose is completely exhausted (which always occurs by 24 h of growth), the only 

carbon sources available are organic acids. Therefore, we should expect R specialists to 

have a growth advantage in the second half of the incubation, causing an increase in the 

R/F ratio. To test this prediction, we revived 9 stable communities from Goldford et al. 

(2018) (STAR Methods) and inoculated them on minimal glucose media at 30°C. We then 

measured the R/F ratio at different time points during a 48-h incubation (at 0, 10, 21, and 48 

h), also quantifying the concentrations of glucose and acetate at each time. Consistent with 

our hypothesis, fermenters have a growth advantage in all communities (characterized by a 
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drop in the R/F ratio) early on the incubation period (T = 0–10 h) when glucose is abundant 

(Figures 1C and S6). In turn, respirators have a growth advantage (characterized by an 

increase in the R/F ratio) in the second part of the incubation period (T = 21–48 h) (Figures 

1C and S6), when glucose is absent but organic acids are abundant. Consistent with our 

hypothesis, the initial growth advantage of the F guild was accompanied by a depletion of 

glucose, whereas the later growth advantage of the R guild is concomitant with a depletion 

of acetate (Figures 1C and S6).

Although glucose is primarily metabolized by the F specialists and acetate is primarily 

metabolized by the R specialists, the latter do still grow (albeit less than F specialists do) 

within the first phase of the incubation where glucose is the only carbon source. This raises 

the question of whether R could be selected because of their growth on glucose rather 

than their significantly faster growth on the metabolic byproducts of F. To directly test this 

alternative hypothesis, we performed a new experiment where communities composed of 

three Enterobacteriaceae and one Pseudomonas were passaged under conditions that select 

for fast growth on glucose. For this, we shortened the incubation time to 12 h (instead of 

the usual 48 h), a time that is too short for a significant accumulation of organic acids and 

for the communities to reach stationary phase. As shown in Figure S7, under this scenario 

Pseudomonas are generally excluded from the communities and only Enterobacteriaceae 

are found. This provides further evidence that the R strains (such as Pseudomonas) are not 

selected for their growth on glucose but rather because of their fast growth on the organic 

acids secreted by the F strains.

In additional sets of assembly experiments, we have found that when communities lacked 

either Enterobacteriaceae or Pseudomonadaceae, these families were replaced at similar 

frequencies by members of other families with similar functional roles. For instance, 

Enterobacteriaceae can be replaced by Aeromonadaceae (Figures 1A and S8), another 

family of known respiro-fermentative bacteria that grow strongly in glucose (Figure S2) 

and produce the same organic acids as Enterobacteriaceae (Figure 1B). Likewise, we have 

observed that Pseudomonadaceae could be replaced by either Moraxellaceae (Figures 1 

and S8) or Alcaligenaceae (Figure S8). These Alcaligenaceae do not metabolize glucose at 

all, and they are pure organic acid specialists. All of these enrichment communities have 

different family compositions but highly similar convergent ratios of organic acid respirators 

to glucose fermenters to the one found in Figure 1A (median R/F = 0.29, Q1 = 0.17, Q3 

= 0.69, N = 92). This further supports the idea that family-level convergence reflects a 

convergent functional self-organization, which arises due to the evolutionary conservation of 

quantitative metabolic traits, such as the strength of niche construction and the growth-rate 

response to nutrients.

A simple metabolic model quantitatively explains the ratio of both functional groups

However, this does not explain why the observed ratio is R/F = 0.29. To test whether 

this ratio could be explained from simple metabolic principles, we develop a minimal two-

species resource-partitioning model (STAR Methods). Briefly, the model assumes that all 

supplied glucose is consumed by the F specialist, whereas the excreted acetate is consumed 

by the R specialist. By empirically parameterizing the model with our collection of F and 
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R isolates, we find a median predicted R/F ratio of 0.31 (Q1 = 0.22, Q3 = 0.43, N = 846), 

very close to the experimentally observed median R/F ratio of 0.29 (Q1 = 0.17, Q3 = 0.69, 

N = 92) in our communities (Figure 1D). We explore the generality of this result using 

constraint-based metabolic modeling (flux balance analysis [FBA]; STAR Methods) and a 

set of previously published genome-scale models for 74 Pseudomonadaceae (Nogales et al., 

2020) and 59 Enterobacteriaceae (Orth et al., 2011) strains, which do not represent any of 

the isolates in our communities. We find a median R/F ratio of 0.303 (Q1 = 0.302, Q3 = 

0.356, N = 4,366), which is also well aligned with the experimental R/F ratio of 0.29 in our 

glucose communities (Figures 1D, S9, and S10).

Our communities were grown on glucose as the single carbon source. Is the observed R/F 

ratio specific to growth on glucose or is this a more general signature of fast growth on 

sugars that lead to the release of organic acids on which organic acid specialists can grow? 

By assembling a new set of communities in five other single carbon sources (three sugars 

and two organic acids) under identical conditions as the glucose experiments, we find that 

the R/F ratio is quantitatively very similar to the R/F ratio of the glucose communities in 

all sugars tested, which include a hexose (fructose), a pentose (ribose), and a disaccharide 

(cellobiose), but increases when non-fermentable carbon sources (citrate and glutamine) 

are used (Figure S11). This finding is consistent with our model, which predicts that 

because respirators have a growth advantage on non-fermentable carbon sources relative 

to fermenters, respirators are favored and fermenters disfavored; therefore, the R/F ratio 

should increase.

Replaying the tape of community assembly a large number of times revealed multiple 
alternative community states at the ESV level

Despite their quantitatively convergent metabolic self-organization, communities often 

exhibited substantial taxonomic variation at the ESV and genus levels, even when all 

communities were started from the same inoculum (Goldford et al., 2018). Based on 

consumer-resource simulations, we had originally hypothesized that the observed variability 

in species-level composition may be caused by the random sorting of species into different 

replicate habitats; that is, some genera may be sampled only into some but not all of the 

habitats (Goldford et al., 2018). An alternative mechanism that may also explain taxonomic 

divergence in parallel assembly experiments is the existence of alternative stable states 

in population dynamics (Amor et al., 2020; Case, 1990; Dai et al., 2012; Faust et al., 

2015; Fukami, 2015; Schröder et al., 2005; Shaw et al., 2019). Multi-stability is a common 

outcome of nonlinear dynamics, and it has been reported in a wide range of biological 

systems (Axelrod et al., 2015; Dai et al., 2012; Hirota et al., 2011; Ozbudak et al., 2004; 

Rauch et al., 2017; Sorek et al., 2013).

The number of replicates (eight per inoculum) used in the assembly experiment shown 

in Figure 1A is not high enough to unambiguously discriminate among these alternative 

(yet, compatible) hypotheses. This prompted us to start a new experiment with 92 parallel 

replicate communities, all seeded from the same environmental inoculum and propagated 

in minimal glucose media as we did before (Figure 2A). After 18 serial dilution transfers, 

most communities (77 out of 92) assembled into the metabolic structure described above, 
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consisting of F and R specialists at proportions that fall within the range we had observed 

before (R/F = 0.46, Q1 = 0.34, Q3 = 0.65) (Figure 2B). We will leave the remaining 15 

communities aside for now and return back to them in later sections of this paper.

Consistent with previous experiments, our parallel assembly experiment resulted in 

communities with alternative taxonomic compositions. We identified two main states within 

the fermentative functional group and three alternative compositions within the respirative 

functional group. These alternative states are evident when we simply group together all 

communities that share the same set of ESVs above a threshold of 0.01 relative abundance 

(Figure 2B), and they are also generally consistent with the outcome of cluster analysis 

(Figure S12). The two main taxa in the R group are an ESV of the genus Alcaligenes 
(referred to further on as A) and an ESV of the genus Pseudomonas (referred to further on 

as P). Among the fermenters, the dominant taxa were two ESVs of the genus Klebsiella, 

hereafter referred to as Kp and Km, respectively (STAR Methods). The two, dominant 

respirator ESVs, Alcaligenes (A) and Pseudomonas (P), appear to be key determinants of 

taxonomic composition. They were never found together above an abundance of 0.01. In 

communities where A dominated the R guild, the F guild could contain either Kp alone, 

or both Kp and Km together above a 0.01 abundance threshold (R/F = 0.56, Q1 = 0.41, 

Q3 = 0.66). By contrast, when P dominates the R guild, the F guild would only contain 

one of these Klebsiella strains (Kp) but never the other, and it also may contain an ESV of 

the genus Enterococcus, which is, in turn, never found co-occurring with the A strain (R/F 

= 0.15, Q1 = 0.13, Q3 = 0.17). The composition of the respirator group is also strongly 

determined by its dominant taxa: the A strain may co-occur with a Delftia ESV (in N = 50 

communities) and Achromobacter ESV (in N = 7 communities) and sometimes both (in N = 

6 communities). The P strain, on the other hand, is never found together with neither Delftia 
nor Achromobacter. For simplicity, further on, we will refer to the state where A is the 

dominant member of the R guild as KA and to the state where P is the dominant member of 

the R guild as KP. However, note that these states may themselves contain several taxonomic 

alternative states. For instance, the KA state may not only consist of A coexisting with Kp 
but also with Km, Delftia, and/or Achromobacter.

The population dynamics of two R strains drive the formation of alternative stable states

What ecological mechanism governs whether a community will contain Pseudomonas or 

Alcaligenes as their dominant member of the R guild? A first hypothesis is random 

sampling: because there is no immigration, any community where either the A or the P 
strains were, by chance, not sampled into the habitat at the start of the experiment, will also 

not have these strains at the end (Goldford et al., 2018). Contrary to this hypothesis, we 

find that the P strain is still present below a relative abundance of 0.01 in ∼35% (23/65) 

of the A dominated communities (STAR Methods; Figure S13). Likewise, in ∼67% (8/12) 

of the P dominated communities, the A strain is also present below 0.01 relative abundance 

(STAR Methods; Figure S13). This result suggests that the alternative states we observed are 

in general not caused by randomly failing to inoculate either A or P in some of our habitats, 

nor is it caused by the stochastic extinction of established taxa during serial passaging.
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The fact that both A and P may exist in either a low- or a high-abundance state in our 

replicate habitats suggests the possible existence of alternative stable states. For an initial 

exploration of this possibility we applied quasi-potential analysis (Hirota et al., 2011; Livina 

et al., 2010), an ecological method that has been recently applied to detect alternative states 

in the gut microbiome (Lahti et al., 2014). Quasi-potential analysis connects the probability 

density of a stochastic variable x (Q[x]) with the dynamical potential on which it moves 

(U[x]) through the Fokker-Planck equation (STAR Methods). This analysis allows us to 

derive the stable and unstable dynamical equilibria of the variable x, and we use it to 

separately estimate the potentials for A and P from their respective probability densities (N = 

370 parallel communities) at transfer 18 (Figure 2C; STAR Methods).

For both strains, we detect a metastable state at low abundance and a stable equilibrium 

state at high abundance (indicated by the two local minima of the potentials, dark gray 

dashed lines), separated by a threshold (local maximum, light gray dashed line) (Figure 2D). 

To test whether the alternative equilibria and their switching thresholds are predictive of 

the assembly dynamics in our self-assembled communities, we sequenced the full temporal 

dynamics for a representative subset of 31 communities (Figure 2D). The predicted stable 

equilibria and thresholds for both strains are consistent with the observed population 

dynamics for each strain: when A or P jump over their predicted threshold they generally 

converge to the predicted high-abundance state, remaining there without switching back to 

the low-abundance state (Figure 2D).

These results are consistent with the existence of alternative stable states, but they fail to 

explain why we never see A and P together at high abundance. We hypothesize that this may 

be due to A and P mutually inhibiting one another when they are both at high abundance, 

so that once either of them reaches the high-abundance equilibrium, it prevents the other 

from switching to its own. This hypothesis would imply that, if we were to reconstitute 

communities with different initial abundances of A and P, we should find that neither of 

them may invade when rare if the other is at (or near) its high-abundance equilibrium.

To test this hypothesis, we isolated the dominant strains (Kp, P, and A) and inoculated 

multiple populations of Klebsiella (Kp) with varying initial densities of A and P in 

minimal glucose media (Figure 3A). By starting multiple communities with regularly spaced 

densities of both species, and then allowing them to find their dynamical equilibria, we 

are also mapping out the basins of attraction of the stable equilibria in a two-dimensional 

phase portrait formed by A and P abundances (Chen et al., 2014; Sanchez and Gore, 2013) 

(Figure 3B; STAR Methods). To that effect, we passaged all these reconstituted communities 

for 12 growth-dilution cycles and measured their abundances at three different time points 

(Figure 3A) (STAR Methods). Consistent with the expectation of multistable population 

dynamics, we find that P and A both stably coexist with Kp, but generally not with one 

another regardless of their initial densities (Figures 3B, 3C, and S14). Importantly, and as 

expected from the multistability hypothesis, whether P or A is found in equilibrium depends 

on the initial state of the population in the phase portrait. In the upper-left side, where P 
starts at low and A at high abundance, communities converge to a state dominated by A 
(basin of attraction for A). In the lower-right part of the phase portrait, where the opposite 

is true, communities converge to a state dominated by P (basin of attraction for P) (Figure 
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3B). Although we kept the initial density of Kp constant across all treatments here, because 

Kp specializes primarily in the supplied glucose, it should equilibrate fast and therefore we 

expect the outcome to not be too affected by its initial abundance.

The outcome of the bottom-up invasion experiment in Figure 3B gives us the set of 

initial conditions of the basin of attractions for A and for P, which allows us to map the 

A-P phase portrait shown in Figures 4B and 4C. One may be skeptical of whether the 

basins of attraction inferred with this simple 3-member community will also describe our 

self-assembled communities, where many additional species are also present. To address 

this question, we projected the full temporal dynamics of the self-assembled communities 

(shown in Figure 4A) as trajectories over the A-P phase portrait mapped earlier (Figure 4C). 

The stable compositions of the self-assembled communities after 18 transfers fall within 

or very close to the basins of attraction inferred from the reconstituted, 3-species consortia 

(Figure 4). Communities start in a state where both P and A are low, and as time goes 

on, they fall into one of the two attractors and never switch back (Figure 4). Importantly 

for what follows, communities could also get trapped in the transition region where the 

separatrix between both basins of attraction is predicted to be, resulting in final states (after 

T = 18 transfers) where neither A nor P have yet reached their high-abundance state.

Migration between communities funnels communities to functional convergence

Indeed, as already advanced in previous sections, a non-negligible fraction of the 

communities in Figure 2B (15/92) adopted an alternative functional state characterized by a 

low abundance of the respirative guild (R/F = 0.002, Q1 = 0.0014, Q3 = 0.0042). However, 

the results discussed above and shown in Figures 2, 3, and 4 suggest that these communities 

might be trapped in either a slow-dynamics transition region (near the separatrix) or in 

a metastable state. Previous theoretical and experimental work has shown that migration 

between communities can homogenize community composition, disfavoring metastable 

equilibria (Chase, 2003; Fodelianakis et al., 2019; Leibold et al., 2004; Stegen et al., 2013). 

Based on this premise, we hypothesized that opening the system by connecting communities 

through migration may destabilize this alternative functional state, pushing all communities 

toward the states with “typical” representation of both guilds.

To test this hypothesis, we repeated our parallel community assembly experiments using 

the same initial inoculum in N = 93 identical habitats, but this time we also imposed 

migration between communities for twelve growth cycles (Figure 5A). We then allowed the 

communities to stabilize without migration for six additional transfers (Figure 5A). This 

experimental setup is similar to metacommunity dynamics with global dispersal (Leibold et 

al., 2004), and we hereafter refer to this treatment as “global migration” (Kryazhimskiy et 

al., 2012). Consistent with our hypothesis, we found that communities perturbed by global 

migration converged to a single metabolic attractor with a R/F = 0.40 (Q1 = 0.37, Q3 = 0.46, 

N = 93) (Figures 5B and 5C). At the taxonomic level, these communities all converged to 

the state most commonly observed in the closed system without migration, that is, the one 

dominated by the Enterobacteriaceae and Alcaligenaceae families (Figure 5B).

To further validate this result, we repeated the same experiment, but this time, imposing 

migration from the regional pool for 12 transfers followed by stabilization for 6 transfers. 
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This “regional migration” perturbation pushed all but one of the 93 communities away from 

the low R/F functional state, switching to either the Pseudomonas dominated state (n = 88) 

or the Alcaligenes dominated state (n = 4). This experiment also supports the hypothesis that 

the alternative, low R/F (∼0.002) functional state reflects either communities existing in a 

metastable state, or communities stuck near the separatrix. Given enough time, or sufficient 

perturbations, these low R/F communities will eventually collapse into a metabolic state 

with an R/F ratio that is comparable with those we had observed before and whose R/F 

ratios are also consistent with the predictions from our resource-partitioning model (Figure 

S15).

DISCUSSION

At the onset of this paper, we set out to address three questions that will help us 

understand the previously reported patterns of convergence and parallelism observed in 

multi-replicated microbial community assembly experiments. Does convergent family-level 

structure observed in these experiments reflect a convergent metabolic self-organization of 

our communities? If that is the case, can we quantitatively and mechanistically explain the 

ratios of different metabolic groups? What ecological processes may be responsible for the 

observed divergence at lower levels of taxonomy in parallel assembly experiments? Through 

a combination of experiments and mathematical models, we present strong evidence that the 

previously reported family-level convergence in minimal glucose-limited habitats reflects 

an emergent metabolic self-organization to which these communities converge. Bacteria 

belonging to the dominant family, mainly Enterobacteriaceae, are selected for their fast 

growth on the supplied glucose, and they all secrete similar amounts of organic acids 

as metabolic by-products (glucose fermenters, F). In turn, bacteria belonging to the sub-

dominant family, mainly Pseudomonadaceae, are selected for their faster growth on the 

organic acids (respirative strategists, R).

To study the ecological mechanisms behind the observed divergence in species-level 

composition, we have replayed the proverbial tape of community assembly hundreds of 

times under different migration treatments. Our experiments indicate that both (1) alternative 

taxonomic compositions of the same functional guilds and (2) alternative functional states 

may arise from multi-stable population dynamics and that this multistability may be driven 

by interactions between just two key strains. These results indicate that the combination 

of multistability and stochasticity can generate historical contingency and lead to different 

taxonomic and functional structures in closed microbial communities assembled in parallel. 

This provides a potential explanation for a similar observation of alternative functional states 

in aquatic microcosms under serial passaging (Bittleston et al., 2020). We speculate that, 

similar to what we have found in our experiments, migration between these microcosms 

might eliminate this functional variation and lead instead to convergence.

Other studies that have reported functional variation in replicate habitats were performed 

under a single batch without passaging and involved competition for space (Zhou et al., 

2013). Under these conditions, one would intuitively expect historical contingency to play an 

even larger role. By contrast, our experiments are done under serial passaging (rather than 

in a single batch) under a relatively high dilution factor (125x). This treatment replenishes 
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nutrients and removes microbes from the habitat every 48 h, and this allows communities to 

reach a state of “generational” equilibrium (Sánchez et al., 2021). Our experiments were also 

done under a strong selection regime. How increasing stochasticity should affect community 

assembly at different levels of organization is still an open question, but one may speculate 

that the effect of neutral processes would be stronger as we do so (Aguirre de Cárcer, 2019; 

D’Andrea et al., 2020). Finally, although the ratio of respirative to fermentative bacteria is 

strongly convergent in our glucose-limited habitats, we should not necessarily expect all 

other metabolic functions to be equally convergent (Bittleston et al., 2020). The strength of 

the different selective pressures, the distribution of metabolic functions in the phylogeny, 

and other demographic and ecological processes, such as the nutrient flow rate through a 

system or the turnover rate, could all affect the degree of functional convergence. Putting 

together all of these and other ecological factors into a comprehensive theory of microbial 

community assembly will represent a major conceptual advance with the potential to unify 

disparate observations across different habitats and conditions (Bittleston et al., 2020; 

Fukami, 2015; Louca et al., 2018). Future work will be needed to help us understand how 

selective pressures constrain the functional assembly of microbial communities, and under 

which conditions we should expect the joint effects of chance and historical contingency to 

make it unpredictable. We hope that the work presented herein will help motivate new such 

studies.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the Lead Contact, Alvaro Sanchez 

(alvaro.sanchez@yale.edu).

Materials availability—This study did not generate new materials.

Data and code availability

• The 16S rRNA sequencing abundance data are available at Dryad or Zenodo and 

are publicly available as of the date of publication. Accession numbers are listed 

in the key resources table.

• The raw 16S rRNA amplicon sequences and metadata files have been deposited 

in the NCBI SRA database under accession number PRJNA761777 and 

PRJNA761387 and are publicly available as of the date of publication.

• The whole-genome sequence reads for the 5 isolates have been deposited in the 

NCBI SRA database under accession number PRJNA749600.

• The source data files and scripts used to generate the figures are available at 

https://github.com/sylestrela/Estrelaetal2021_FunctionalAttractors and Zenodo. 

DOI is listed in the key resources table.
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• The code for the FBA simulations are available at https://github.com/vilacelestin/

Estrelaetal2021_FunctionalAttractors and Zenodo. DOI is listed in the key 

resources table.

• Any additional information required to re-analyze the data reported in this paper 

is available from the lead contact upon request.

METHOD DETAILS

Resource partitioning model—To try to explain the observed R/F ratio to which our 

serially passaged enrichment communities converge after 12 transfers (Figure 1A), we 

develop a resource-partitioning model. Our working hypothesis is that most (though not 

necessarily all, as elaborated in the Methods S1; Figure S6) of the glucose is uptaken by 

the fermentative guild (F), while most (though, again, not all; Figure S6) of the organic 

acids they release as overflow byproducts (primarily acetate; Figure 1B) is captured by 

the respirative specialists (R). Therefore, we reasoned that the observed median R/F ratio 

may simply reflect the ratio between (i) the average amount of biomass that the respirative 

specialists may extract from the secreted acetate over the incubation period, and (ii) the 

average biomass the glucose specialists can extract from the supplied glucose over the 

incubation period. We illustrate and formalize this hypothesis in Figure 1D. With minimal 

additional assumptions, this resource partitioning hypothesis would predict an R/F ratio of

R
F ≈ Dace, glu

W ace
R

W glu
F , (Equation 1)

where Dace, glu is the average number of acetate molecules secreted per glucose molecule 

uptaken by the F specialists; wgluF  is the average biomass yield of F specialists per glucose 

molecule over the entire incubation time, and waceR is the average biomass yield of R 

specialists per acetate molecule uptaken over the entire incubation time. As described in 

the Methods S1, Equation 1 is an approximation, which includes only the effects of the 

two most abundant resources, glucose and acetate, while ignoring the other less abundant 

resources. In the Methods S1 we derive Equation 1, and explore additional limits where 

those other resources are also included.

An advantage of the model in Equation 1 is that it can be tested quantitatively. One 

could estimate the values of Dace, glu, wgluF , and waceR that are characteristic of F and 

R bacteria in our communities, by measuring them in our collection of isolated taxa. If 

Equation 1 approximates the underlying ecology with sufficient realism, we should expect 

that evaluating it with those parameters should produce a value of the R/F ratio that is 

similar to that to which our enrichment communities converge. To test this model, we thus 

proceeded to estimate the value of Dace, glu for each of our F isolates, by measuring the 

total amount of acetate released at the time when glucose had just been exhausted, and 

dividing it over the amount of supplied glucose (STAR Methods and Methods S1). We then 

estimated wgluF  and waceR for each of our F and R isolates by growing them in monoculture 

in glucose and acetate media, respectively (STAR Methods and Methods S1; Figure S9A). In 

Estrela et al. Page 14

Cell Syst. Author manuscript; available in PMC 2023 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/vilacelestin/Estrelaetal2021_FunctionalAttractors
https://github.com/vilacelestin/Estrelaetal2021_FunctionalAttractors


Figure 1D we plot the expected R/F ratio by evaluating Equation 1 with the parameter values 

obtained for all pairs of isolates in our collection. This empirically parameterized model 

gives us a median predicted R/F ratio of 0.31 (Q1=0.22, Q3=0.43, N=846), very close to the 

experimental R/F ratio of 0.29 (Q1=0.17, Q3=0.69, N=92) in our communities (Figure 1D).

To explore the generality of this result beyond the specific set of isolates in our communities, 

we set out to evaluate Equation 1 using constraint-based metabolic modeling (Flux Balance 

Analysis [FBA]; STAR Methods) and a set of previously published genome-scale models 

for 74 Pseudomonadaceae (Nogales et al., 2020) and 59 Enterobacteriaceae (Orth et al., 

2011) strains, which do not necessarily represent any of the isolates in our communities. 

Because FBA assumes that microbes grow optimally, this approach will give us the expected 

R/F ratio that one should observe if Enterobacteriaceae and Pseudomonadaceae were using 

optimal metabolic strategies in glucose and acetate, respectively (STAR Methods). In 

Figure 1D, we show the result of evaluating Equation 1 by entering the computed values 

of Dace, glu , waceR, and wgluF  for all of the possible R-F pairs one can form from our 

set of genome-scale models (Figures S9B, S9C, and S10). The median R/F ratio was 

0.303 (Q1=0.302, Q3=0.356, N=4366) which is also well aligned with the experimentally 

observed median R/F ratio of 0.29 (Q1=0.17, Q3=0.69, N=92) in our glucose communities 

(Figure 1D). Additional variations of this model that explored more stringent (but less 

realistic) limits, i.e. where the additional secreted byproducts are either all consumed by the 

R specialists or by the F specialists, or they are evenly split between R and F specialists, 

are discussed in the Methods S1 and Figure S16. All yielded R/F ratios that were within the 

range of values to which our empirical communities converged to. We also use FBA to show 

that oxygen is generally required for growth on acetate, lactate, and succinate (Methods 

S1; Figure S17). To confirm the validity of using genome-scale models from the literature, 

we also performed whole genome sequencing for 5 strains from our isolate collection 

(belonging to 5 different genera) (Figure 1B) and built genome-scale metabolic models of 

these strains (Methods S1). As shown in Figure S18, repeating our analysis using these 

models produced results that are in line with those observed for the library of published 

models.

Isolates collection—Isolates were collected from several communities previously 

stabilized in glucose minimal media and stored in 40% glycerol at −80C. The communities 

used were C1R2, C1R4, C1R6, C1R7, C2R4, C2R6, C2R8, C4R1, C7R1, C8R2, 

C8R4, C8R5, C10R2, C11R1, C11R2, C11R5, C11R6, where CXRY stands for initial 

environmental sample (inoculum) X replicate community Y (Goldford et al., 2018). These 

communities were plated in three different media: Tryptic Soy Agar (TSA) and minimal M9 

supplemented with glucose or citrate at concentration 0.07 moles of carbon per liter. Isolates 

from these plates were streaked on the corresponding medium based on visual inspection 

of colony morphology after 2 and 5 days. Colonies from the streaked plates were streaked 

twice more on new plates, then cultured in the corresponding liquid medium (Tryptic Soy 

Broth (TSB), M9 glucose or M9 citrate) and stored at −80C with 40% glycerol.

Growth curves and maximum growth rate calculation—Isolates were streaked from 

glycerol on TSA plates and grown at 30C for 48h. Single colonies of each isolate were 
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used to inoculate 500uL TSB in a deep-well plate. These pre-cultures were incubated at 

30C without shaking for 48h. Pre-cultures were then diluted 1:1000 in M9 supplemented 

with either glucose (VWR, #0188), acetate (Sigma, #S8625), D-lactate (Sigma, #71716), 

or succinate (Alfa Aesar, #419A3) at a final concentration of 0.07 moles of carbon per 

liter. The final volume for the growth assays was 100uL in 384 well plates. Each isolate 

was assayed in two replicates. For computing the maximal exponential growth rate, the 

log(OD620) of each replicate was first smoothed by fitting a generalized additive model 

with an adaptive smoother, using the gam function from the mgcv package in R. This 

method allows for extraction of estimates of growth rate that are not biased by underlying 

assumptions when fitting predetermined models. The maximum of the derivative was taken 

as the exponential growth rate. We excluded the first 1h of growth, as well as all of the 

timepoints in the beginning of the curve that showed an OD<0.01, to avoid artifacts derived 

from measurement and fitting noise respectively.

LC-MS of E. coli and Enterobacter supernatant—E. coli MG1655 and an 

Enterobacter isolate from the glucose communities in (Goldford et al., 2018) were revived 

from frozen stock by streaking on LB Agar. Two replicate colonies of each strain were 

used to inoculate separate 50ml falcon tubes which contained 5ml of LB-Lennox and were 

incubated at 30C overnight (shaking at 200RPM). After ∼16h of growth, overnight cultures 

were brought into balanced exponential by three serial transfers into fresh LB (1ml of 

culture in 4ml of fresh media). The first two transfers were performed at 1h intervals whilst 

after the final transfer the cultures were allowed to grow for 1h and 30 min. Cells were 

centrifuged, washed and re-suspended 3 times, using 1.1x M9 media (containing no carbon 

source). After the final washing step, cells were normalized to an OD620 of 0.1. 500ul 

of M9 glucose in a 96 deep well plate was inoculated with 4ul of normalized cells, and 

grown at 30C. After 28h of growth, spent media was extracted using 0.2um AcroPrep filter 

plates. Spent media was submitted for a targeted metabolomics analysis carried out by the 

Metabolomics Innovation Center (TMIC), in Alberta, Canada, and described below.

The samples were analysed using a targeted quantitative metabolomics approach. This 

approach combines a direct injection mass spectrometry method with a reverse-phase LC-

MS/MS custom assay. Together with an ABSciex 4000 QTrap (Applied Biosystems/MDS 

Sciex) mass spectrometer, this method allows the targeted identification and quantification 

of up to 143 different endogenous metabolites, including sugars, amino acids, biogenic 

amines & derivatives, acylcarnitines, uremic toxins, glycerophospholipids, and sphingolipids 

(Foroutan et al., 2019, 2020). This method combines the derivatization and extraction of 

analytes, and the selective mass-spectrometric detection using multiple reaction monitoring 

(MRM) pairs. For metabolite quantification, isotope-labeled internal standards and other 

internal standards are used. Mass spectrometric analysis was performed on an AB 

Sciex 4000 Qtrap® tandem mass spectrometry instrument (Applied Biosystems/MDS 

Analytical Technologies, Foster City, CA) equipped with an Agilent 1260 series UHPLC 

system (Agilent Technologies, Palo Alto, CA). The samples were delivered to the mass 

spectrometer by a LC method followed by a direct injection (DI) method. Data analysis was 

done using Analyst 1.6.2.
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48h growth assay of single isolates—Isolates were revived from frozen stock and 

acclimated to growth on glucose minimal media (500uL) for 48h. 4uL of the grown cultures 

were then inoculated into 500uL fresh glucose media (4 replicates each) and samples 

were collected at different timepoints during the 48h growth cycle (one replicate used 

per timepoint, i.e. at 0h, 16h, 28h, and 48h). At each timepoint, 100uL of samples were 

collected, their OD620 was measured, followed by storage at −80C with 40% glycerol. The 

remaining samples were immediately centrifuged at 3000 rpm for 25min to separate the cells 

from the supernatant. The supernatant was transferred to a 96 well 0.2μm AcroPrep filter 

plate on top of a 96 well NUNC plate fitted with the metal collar adaptor and centrifuged at 

3000 rpm for 10 min. The supernatant was immediately frozen at −80C until processing.

48h growth assay of communities—Previously stabilized communities in glucose 

minimal media for 12 serial transfers (Goldford et al., 2018) were revived from frozen 

stock and serially transferred for three passages on glucose minimal media, under the 

same experimental conditions as before. We selected a subset (N=9) of communities where 

fermenters and respirators were detected after three serial transfers. At the start of the 

fourth passage, 4 replicate 96-well plates were started. Samples were collected at different 

timepoints during the 48h growth cycle (one plate used per time point, i.e. at 0h, 10h, 21h 

and 48h). At each timepoint, 100ul of samples were taken and stored at −80C with 40% 

glycerol. The remaining samples were immediately centrifuged at 3000 rpm for 25min to 

separate the cells from the supernatant. The supernatant was processed as described above.

Glucose, acetate, lactate, and succinate assays—Glucose concentration was 

measured using the glucose GO assay kit from Millipore (GAGO20). Acetate concentration 

was measured using the Acetate assay kit (ab204719). D-lactate concentration was measured 

using the D-Lactate assay kit (ab83429). Succinate concentration was measured using the 

Succinate assay kit (ab204718). For each assay, the supernatant was diluted (if needed) to 

ensure that the OD readings are within the standard curve range.

pH measurement—Determination of pH was done using the same filtered supernatant as 

for the assays described above. Bromocresol purple (BCP) was used as a pH indicator. The 

standard curve was prepared by adding different amounts of HCl 1M to M9 without carbon, 

and by measuring pH with an electronic pH-meter. pH of the samples was interpolated on 

the standard curve as described in (Yao and Byrne, 2001).

Fermentation profile assignment—We assigned a fermentation profile- respirator 

(R) or fermenter (F) to all dominant families (Table S1). For instance, bacterial genera 

belonging to the Enterobacteriaceae family are well-known fermenters while bacterial 

species belonging to the genus Pseudomonas are well-known non-fermenters. Some rare 

taxa belong to families that cannot be assigned to R or F, thus they were not accounted for 

in the R/F ratio. These taxa are at very low abundance, and therefore their effect on the 

R/F ratio is negligible. When counting CFUs, R and F were distinguished by platting on 

chromogenic agar (HiCrome Universal differential Medium from Sigma). White colonies 

were counted as R and blue/purple colonies were counted as F. Each isolate was platted on 

chromogenic agar to confirm its R/F assignment. There is a positive correlation between the 
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R/F ratio obtained by CFU counting and by 16S sequencing (slope= 0.46, intercept −0.066, 

R2=0.32; Figure S19) and the two ratios are within the same order of magnitude (Figure 

S20).

Short incubation time experiment—We had previously isolated the four dominant 

strains from one of the self-assembled communities shown in Figure 1A (Goldford et al., 

2018). Three of the strains belong to the Enterobacteriaceae family– Klebsiella, Raoultella, 

Citrobacter- and one strain belongs to the Pseudomonadaceae family (Pseudomonas). Each 

strain was grown for 24h in chromogenic agar at 30C. A colony was picked and resuspended 

in 500uL PBS 1x. Cells were then centrifuged for 10 min at 3500 rpm, washed, and re-

suspended in PBS 1x (3 times in total). After the final washing step, cells were normalized 

to an OD620 of 0.15 and the 4-strain community was established by mixing the strains 

1:1:1:1. 4ul from the mixture was transferred into 500uL of m9+glucose 0.2% in 6 replicates 

and incubated at 30C. The cultures were then serially-transferred to fresh medium (1:125 

dilution) every 48h for 5 transfers. After the 5th transfer, the cultures were propagated for 5 

more transfers of 48h (control treatment) (N=6) or 12h each (N=6). The relative abundance 

of each family was determined by plating into chromogenic agar (Enterobacteriaceae appear 

as blue/purple colonies while Pseudomonas appear as white colonies).

Soil sample collection—A soil sample was collected from a natural site in West Haven 

(CT, USA) using sterilized spatula, placed into a sterile bottle, and returned to the lab. 10 g 

of soil sample were then placed into a new sterile bottle and soaked into 100mL of sterile 

PBS supplemented with 200 μg/mL cycloheximide to inhibit eukaryotic growth. The bottle 

was vortexed and allowed to sit for 48 hours at room temperature. After 48h, samples of the 

supernatant solution containing the ‘source’ soil microbiome were used as inoculum for the 

experiment (see section below) or stored at −80C after mixing with 40% glycerol.

Growth medium and ‘no migration’ experimental setup—92 replicate communities 

from the same source community were cultured separately in the wells of 96 deep-well 

plates (VWR). Each replicate community was initiated by inoculating 4uL from the source 

community into 500uL of M9 minimal media supplemented with glucose 0.2% (i.e., 0.07 

C-mol/L) (as in (Goldford et al., 2018)). The communities were grown at 30C under static 

conditions for 48h. After 48h growth, 4uL from the grown culture was transferred to fresh 

media. This dilution-growth cycle was repeated 18 times. For the first two growth cycles, 

cycloheximide (200 μg/mL) was added to the media. OD620 was measured at the end of 

each growth cycle and samples of the grown communities were stored at −80C after mixing 

with 40% glycerol. In a parallel experiment, 93 replicate communities were started with a 

10x inoculation size (40ul) from the same source community, and propagated as described 

above.

Migration between local communities experiment—Similar to the treatment without 

migration, each replicate community was initiated by inoculating 4uL from the source 

community into 500uL of M9 minimal media. At the end of each growth cycle, however, 

4uL from each well was pooled into a ‘migrant pool community’ and diluted 10,000-fold. 

Each well of the fresh media was inoculated with 4uL of this migrant pool community in 
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addition to the 4uL from the corresponding replicate community (well) from the previous 

growth cycle. Thus, each replicate community from the 96 deep-well plate represents a local 

community from the same meta-community where the local communities are linked through 

migration. This migration step was performed for the first 12 growth cycles, followed by 

6 dilution-growth cycles without migration (normal transfer only). OD620 was measured at 

the end of each growth cycle and culture samples were stored at −80C after mixing with 

40% glycerol.

Migration from the regional pool experiment—Each replicate community was started 

with 4uL from the same source community into 500uL of M9 minimal media. At the start 

of each growth cycle, 4uL from the source community was inoculated into fresh media in 

addition to the 4uL from the corresponding replicate community (well) from the previous 

growth cycle. Thus, each replicate community from the 96 deep-well plate represents a 

local community that is linked to its regional pool through migration. This migration step 

was performed for the first 12 growth cycles, followed by 6 dilution-growth cycles without 

migration (normal transfer only). OD620 was measured at the end of each growth cycle and 

culture samples were stored at −80C after mixing with 40% glycerol.

DNA extraction and library preparation—Samples to be sequenced were centrifuged 

for 30min at 3500rpm. DNA extraction was performed following the DNeasy 96 Blood & 

Tissue kit protocol for animal tissues (QIAGEN) including the pre-treatment step for Gram-

positive bacteria. DNA concentration was quantified using the Quan-iT PicoGreen dsDNA 

Assay kit (Invitrogen) and normalized to 5ng/uL. 16S rRNA amplicon library preparation 

was conducted using a dual-index paired-end approach (Kozich et al., 2013) and has been 

described in detail in (Goldford et al., 2018). The PCR reaction products were purified and 

normalized using the SequalPrep PCR cleanup and normalization kit (Invitrogen).

Sequencing and taxonomy assignment—The community composition profile was 

based on 16S (V4) rRNA gene sequence analysis, a commonly used genetic marker 

for classifying bacteria as it is highly conserved between different species. The samples 

were sequenced at the Yale Center for Genome Analysis (YCGA) using the Illumina 

MiSeq (2×250 bp paired-end) sequencing platform. Post-sequencing processing of the raw 

sequences, namely demultiplexing and removing the barcodes, indexes and primers, was 

performed using QIIME (version 1.9, (Caporaso et al., 2010)). The generated fastq files 

for the forward and reverse sequences were analysed using the DADA2 pipeline (version 

1.6.0) to infer exact sequence variants (ESVs) (Callahan et al., 2016). The forward and 

reverse reads were trimmed at position 240 and 160, respectively, and then merged with a 

minimum overlap of 100bp. All other parameters were set to the DADA2 default values. 

Chimeras were removed using the “consensus” method in DADA2. The taxonomy of each 

16S exact sequence variant (ESV) was then assigned using the naïve Bayesian classifier 

method (Wang et al., 2007) and the Silva reference database version 128 (Quast et al., 

2013) as described in DADA2. A single strain E. coli (n=10) and a commercial DNA mock 

community (D6305, Zymo Research, Irvin, CA, USA) (n=12) were used as positive controls 

to correct for spurious detection during amplicon sequencing (Figure S13). In Figure S20, 

the estimated 16S R/F ratio was corrected for amplicon abundance bias using a in-house 
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cell mock community composed of 5 isolates (1 Klebsiella, 1 Raoultella, 1 Aeromonas 
and 2 Pseudomonas) all mixed 1:1 by OD, thus giving a theoretical R/F ratio of 0.6. This 

mock community was processed using the same DNA extraction and PCR protocols as the 

communities above and sequenced at Microbiome Insights Inc. (Vancouver, Canada).

Isolation of dominant taxa—We isolated the four most abundant ESVs, two belonging 

to the Enterobacteriaceae family, one Pseudomonas and one Alcaligenes, and verified 

their taxonomy by sequencing the full-length 16S rRNA gene (GENEWIZ). Taxonomy 

was assigned using both the Silva database (v1.2.11) and the RDP Naive Bayesian 

rRNA Classifier Version 2.11 (training set 16). The two reference datasets provided 

equivalent taxonomic assignments and confirmed the identity assigned to the 16S V4 rRNA 

sequences. One of the most dominant ESVs belonging to the Enterobacteriaceae family was 

unidentified at the genus level but isolation of that strain followed by Sanger sequencing on 

the full-length 16S rRNA gene revealed that it belongs to the genus Klebsiella. We therefore 

assigned that ESV to Klebsiella. The two Klebsiella isolates display different morphologies 

on glucose agarose plates and an indole test (Remel Kovacs Indole Reagent, #R21227) 

revealed that one of the isolates is indole positive while the other isolate is indole negative. 

Based on this distinction, we decided to refer to the two Klebsiella as Klebsiella positive 

(Kp) and Klebsiella negative (Km).

Mapping isolates to amplicon sequencing data—To match our isolates from Sanger 

sequencing (full-length 16S rDNA sequence) to the amplicon sequencing data (ESVs) of 

the communities, we performed a pairwise alignment using the function pairwiseAlignment 
from the R package Biostrings (Pagès et al., 2017), with alignment type set to “local”. For 

each isolate in a community, we aligned its full-length Sanger sequence with all possible 

ESVs from the same community and obtained the reported alignment scores. Sanger-ESV 

alignment with highest alignment score was picked. If two Sanger sequences were matched 

to one ESV, the one with lower alignment score was dropped (19 of 73 isolate Sanger 

sequences were dropped). In the 54 pairwise alignments, the shortest consensus length is 

234 base pairs, with 45 full matches, eight one base pair mismatches, and one two base pair 

mismatches.

Bottom-up invasion experiment—We performed an invasion experiment between 

Klebsiella (Kp) (resident) and Pseudomonas and/or Alcaligenes (invaders) either alone 

(mono-invasion) or together (co-invasion). Prior to the start of the invasion experiment, 

the three strains were grown from frozen glycerol stocks alone into LB-agarose plates. For 

each strain, colonies were re-suspended into 1x M9 (without glucose) and normalized to 

an OD620 of 0.1. The normalized A and P stocks were then serially diluted independently 

10-fold four times from 10−1 to 10-4. Note that here we refer to OD620 of 0.1 as the baseline 

OD (100). For the co-invasion assays, Alcaligenes and Pseudomonas were mixed together 

for all five A and P dilutions (100 to 10−4) generating 25 different A-P initial density 

combinations. Competitions were started by mixing 2uL of Kp with 2uL of the A:P mixtures 

(co-invasion) or 2uL of A or P monocultures (mono-invasion) at the 5 different dilutions 

into 500uL of M9 + glucose. In total, 36 invasion scenarios with different initial frequencies 

and densities of A and/or P (25 co-invasions, 10 mono-invasions, and Kp alone) were 
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investigated in duplicate, setting the initial position of the population in the phase portrait 

shown in Figure 3. Strains were grown for 48h without shaking at 30C and then diluted 

1:125 into fresh medium, and this growth-dilution cycle was repeated for 12 transfers. 

The relative abundance of each strain was estimated by plating (Colony-Forming Units) on 

LB-agarose plates.

Probability distributions and quasi-potential—In Figure 2C, shown are the 

probability density distributions of the relative abundance (log10) of the dominant 

Alcaligenes (A) and Pseudomonas (P) ESVs at Transfer 18 in the communities self-

assembled from the same inoculum under the four different treatments described above, 

that is, in the ‘no migration’ (both low and high inocula), ‘global migration’, and ‘regional 

migration’ (n=370). For the bimodal distributions, the distribution parameters for each 

Gaussian (lambda, mu, and sigma) were obtained by fitting a mixture distribution with the 

normalmix EM function in R. The position of the local minimum in between the two local 

maxima were determined using the FindMinimum function in Mathematica.

The potential U(x) was derived using the Fokker-Planck equation. The potential U(x) and 

the probability density of x are connected through the Fokker-Planck equation (Lahti et al., 

2014), where U(x) is given by:

U(x) = − D2
2 ln(P (x))

where D is the noise level. Assuming that x is the log10 relative abundance of A (or P) at 

equilibrium (T18), we can derive the energy potential U(a) and U(p) from their probability 

distributions (P(a) and P(p)). Assuming that D=1,

U(a) = − ln(P (a))/2

and

U(p) = − ln(P (p))/2

The roots of the potential U(x) were calculated using the FindRoot function in Mathematica.

Phase diagram and separatrix—The phase diagram drawn in Figures 4B and 4C was 

obtained by analysis of the outcome of the bottom-up invasion experiment described above 

and shown in Figures 3 and S14. The ‘transition’ region was determined as follow. First, we 

identified the ‘flickering’ region of the A-P initial frequency space where the outcome either 

changed (e.g. from coexistence (gray) to A dominated state (yellow)) or remained gray at 

any point during one of the 3 transfers (T3, T8, T12) and in one or both of the 2 replicates 

analysed. The basin boundary of Alcaligenes was determined by taking, for each initial 

frequency, the mid-points between the initial frequencies inside the basin of attraction of 

Alcaligenes and inside the ‘flickering’ region that are closest to the transition line. Similarly, 

the basin boundary of Pseudomonas was determined by taking, for each initial frequency, 

the mid-points between the initial frequencies inside the basin of attraction of Pseudomonas 

Estrela et al. Page 21

Cell Syst. Author manuscript; available in PMC 2023 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and inside the ‘flickering’ region that are closest to the transition line. The separatrix shows 

the midline between the two boundaries. In Figure 4B, the datapoints where the relative 

abundance is below the detection threshold are arbitrarily set to a value of −4.33.

Community assembly in alternative carbon sources—Four replicate communities, 

all started from the same soil inoculum, were serially transferred every 48h in minimal 

medium supplemented with a single carbon source (glucose, fructose, cellobiose, ribose, 

citrate, and glutamine) for a total of 10 transfers. The single carbon sources were adjusted 

to equal C-molar concentrations. The serial transfers were performed under the same 

conditions as described in the ‘Growth medium and no migration experimental setup’ 

section above. The DNA extraction was performed with the DNeasy 96 Blood & Tissue 

kit for animal tissues (QIAGEN) as described above. The 16S rRNA gene amplicon 

library preparation and sequencing were performed by Microbiome Insights, Vancouver, 

Canada (www.microbiomeinsights.com). The library preparation was done as described 

above. The samples were sequenced on the Illumina MiSeq using the 300-bp paired end kit 

v3.chemistry.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details can be found in the figure legends, Results, or Methods. All statistical 

analysis was performed with R.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We study convergence and divergence in microbiome assembly in replicate 

habitats

• Functional convergence reflects an emergent metabolic self-organization

• Taxonomic divergence arises from multistability in population dynamics

• Simple models can explain observed quantitative patterns in microbiome 

assembly
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Figure 1. Emergent metabolic structure in self-assembled microbial communities
(A) Barplots show the relative abundance of the dominant families (Enterobacteriaceae, 

Pseudomonadaceae, Aeromonadaceae, and Moraxellaceae) in 92 communities started from 

12 leaf or soil inocula (7–8 replicates each) after assembly in minimal media with glucose 

for 12 growth/dilution cycles (data from Goldford et al., 2018). Other families are shown in 

gray.

(B) Isolates belonging to different families were grown in monoculture for 48 h in 

minimal media supplemented with a single carbon source (CS) (glucose, acetate, lactate, 

or succinate) (N = 73, Figure S2). Each dot corresponds to an isolate’s maximum growth 

rate. Note that **** indicates p ≤ 0.0001, ** indicates p ≤ 0.01, two-sample t test. We 

measured the pH and quantified the amount of acetate, lactate, and succinate in the medium 

at various time points for all isolates. The dashed lines represent the mean concentrations for 

isolates of each family.

(C) Communities were thawed and grown in minimal media with glucose for a single 

incubation time. Samples were taken at 10, 21, and 48 h, and we measured the R/F ratio 

and the concentrations of glucose and acetate in the medium. Only one representative 
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community (out of N = 9) is shown. See Figure S6 for other communities. The R/F 

ratio represents the mean ± SD of the CFU ratios calculated by bootstrapping (N = 1,000 

replicates).

(D) Observed and predicted R/F ratio using a simple resource-partitioning model. The 

model assumes that the glucose is consumed by the fermentative specialist (F), whereas the 

acetate released as a metabolic by-product is consumed by the respirative specialist (R). 

Communities 16S: R/F ratio observed experimentally in the glucose communities described 

in Figure 1A (median = 0.29, Q1 = 0.17, Q3 = 0.69, N = 92). Empirically calibrated model: 
R/F ratio empirically calculated using parameters obtained from 47 Enterobacteriaceae 

isolates and 18 Pseudomonas isolates (STAR Methods; Figure S9) (median = 0.31, Q1 

= 0.22, Q3 = 0.43, N = 846). FBA calibrated model: using Flux Balance Analysis, we 

calculated the biomass obtained from glucose fermentation by Enterobacteriaceae strains 

(F) and the biomass obtained from consumption of the F’s metabolic byproduct, acetate, 

by Pseudomonas strains (R). The predicted ratio between R and F biomass was calculated 

for 74 Pseudomonas metabolic models and 59 Enterobacteriaceae metabolic models. The 

simulations predict a median R/F ratio of ∼0.303 (Q1 = 0.302, Q3 = 0.356, N = 4,366) 

(Figures S9 and S10). Each dot represents a different Pseudomonas/Enterobacteriaceae pair.

Estrela et al. Page 28

Cell Syst. Author manuscript; available in PMC 2023 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Multiple alternative states at the metabolic and taxonomic level arise from assembly of 
replicate communities from a single inoculum
(A) Schematic of experimental design: starting from a highly diverse soil microbial 

community, 92 communities were serially passaged in replicate habitats with glucose as 

the single carbon source for 18 incubation (growth/dilution) cycles (48 h each).

(B) Taxonomic profile of communities shown at the exact sequence variant (ESV) level (one 

color per ESV) with corresponding genus and family-level assignments. Only the ESVs with 

a relative abundance >0.01 are shown. After 18 transfers, we find that replicate communities 

self-assembled in two major functional groups, fermenters only (N = 15) or fermenters with 
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respirators (N = 77). Within the fermenter functional group, we can see two alternative 

taxonomic compositions depending on whether one or two Klebsiella strains are present 

(Kp and Kp+Km). Within the respirator functional group, we can clearly identify three 

alternative taxonomic groups (Pseudomonas, Alcaligenes, and Alcaligenes + Delftia).

(C) Probability density distribution of the relative abundance of the dominant Alcaligenes 
(A) and Pseudomonas (P) ESVs at Transfer 18 all started from the same inoculum (N = 370 

communities) (STAR Methods).

(D) Population dynamics of A and P for a subset of the communities represented in (C) (N 

= 31), where the background shows the absolute value of the derivative of the potential (U′ 
[x]) (left plots). The plots on the right of each timeseries show the potential (U[x]) (colored 

solid line) and the dark gray dashed lines show the local maximum (indicating the tipping 

point, x = −1.18 for A and x = −1.97 for P) between the two minima (indicating the stable 

states; light gray dashed line).

Estrela et al. Page 30

Cell Syst. Author manuscript; available in PMC 2023 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Multistable coexistence between two organic acid specialists explains the alternative 
attractors in community composition
(A) We isolated the three dominant strains—Klebsiella (Kp), Alcaligenes (A), and 

Pseudomonas (P) that make up the two major alternative attractors and grew them in a 

pairwise coculture (Kp+A or Kp+P) or in a three-member consortia (Kp+A+P) by mixing 

Kp with different initial densities of A and/or P (see STAR Methods). These reconstituted 

communities were grown in the same conditions as the top-down assembly communities for 

12 transfers (STAR Methods).
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(B) Phase portrait showing the state of the community after T = 3, 8, and 12 transfers for 

2 biological replicates. A square is colored yellow if a community that was started there 

contained A but not P at time T, and it is purple if it contained P but not A. It is gray if 

both A and P were present in both replicates. Squares with a seamless pattern show states 

where the two replicates exhibit different outcomes. We can see that the phase portrait is 

divided in two regions: the upper-left diagonal is made up by the basin of attraction of A 
dominated communities, whereas the bottom-right diagonal contains the basin of attraction 

for P dominated communities. A and P generally mutually exclude each other depending on 

their starting densities. See Figure S14 for the phase portraits of the two biological replicate 

experiments separately.

(C) Temporal dynamics of the relative abundance of each taxa for a subset of the 

communities shown in (B) (the 2 replicates are shown separately). See Figure S14 for the 

time series of all pairwise initial conditions of the phase portrait.
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Figure 4. Multistable metabolic attractors between two organic acid specialists
(A) Temporal dynamics for a subset of the replicate communities shown in Figure 2B (N = 

19). Replicate communities were all started from the same inoculum and serially transferred 

to fresh minimal media with glucose every 48 h for a total of 18 growth-dilution cycles. 

Only the top four dominant ESVs (Kp, Km, P, and A) at transfer 18 are colored, other ESVs 

are shown in gray.

(B and C) Phase diagram showing the basins of attraction for Alcaligenes (A) dominated 

(yellow area) and for Pseudomonas (P) dominated (purple area) states, inferred from the 
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outcome of the bottom-up invasion experiment in Figure 3B (STAR Methods), separated 

by a transition region (white area). The gray dashed line indicates the separatrix between 

the two basins of attraction. In (B), the dots show the relative abundance of A and P at 

Transfer 18 (N = 92) for the communities shown in Figure 2B. The gray shaded areas 

indicate the regions of low A and low P that are below the detection level of amplicon 

sequencing. In (C), overlaid are the trajectories of the relative abundance of A and P for 

all N = 19 communities shown in panel (A). The arrows become darker with time (i.e., 

from T1 to T18). At T0 (original inoculum), P was found at a relative abundance of 0.0086, 

whereas A was undetectable. We highlight four typical outcomes: the community explores 

the landscape and remains in the metastable state of low R/F (i), the community switches 

abruptly to the A dominated state (ii), the community explores the landscape and switches to 

the A dominated state (iii), and the community explores the landscape and switches to the P 
dominated state (iv).
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Figure 5. Opening the system through migration leads to functional convergence
(A) Replicate communities all started from the same inoculum (and the same inoculum as 

in Figure 2) were assembled in an open system with global migration (N = 93)—that is, in 

addition to the normal transfer, each community received a small amount of migrants from 

a common migrant pool or with migration from the regional pool (i.e., inoculum) (N = 92) 

(STAR Methods). Communities were assembled under these migration scenarios for twelve 

growth cycles (T1–T12), after which migration was stopped, and communities were allowed 

to stabilize for six additional transfers without migration (T13–T18).
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(B) Community composition at Transfer 18. ESVs with a relative abundance ≤0.01 are 

shown as “other”.

(C) R/F ratio of the communities at Transfer 18 for the no migration (Figure 2B), global 

migration, and regional migration (Figure 5B) treatments. Each dot represents a community 

and is colored by its taxonomic community state. The blue dots show communities 

mainly composed of fermenters, the yellow dots show communities where Alcaligenes is 

the dominant respirator, and the purple dots show communities where Pseudomonas is 

the dominant respirator. The gray shading area represents the interquartile range of the 

communities shown in Figure 1A.
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KEY RESOURCES TABLE

REAGENT OR RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

D-glucose VWR Cat. #0188

Acetate Sigma Cat. #S8625

D-lactate Sigma Cat. #71716

succinate Alfa Aesar Cat. #419A3

Critical commercial assays

glucose GO assay kit Millipore Cat. #GAGO20

Acetate assay kit Abcam Cat. #ab204719

D-Lactate assay kit Abcam Cat. #ab83429

Succinate assay kit Abcam Cat. #ab204718

DNeasy 96 Blood & Tissue kit QIAGEN Cat. #69582

Quan-iTPicoGreen dsDNA Assay kit Invitrogen Cat. #P11496

SequalPrep PCR cleanup and normalization 
kit

Invitrogen Cat. #A1051001

Deposited data

16S rRNA sequencing abundance data This study https://doi.org/10.5061/dryad.5x69p8d3z

Genome scale metabolic models This study SRA: PRJNA749600

Raw 16S rRNA amplicon sequences for 
communities assembled in glucose under 
different migration treatments

This study SRA: PRJNA761777

Raw 16S rRNA amplicon sequences for 
communities assembled in alternate carbon 
sources

This study SRA: PRJNA761387

Community abundance data Goldford et al., 2018 https://doi.org/10.5281/zenodo.3817698

Software and algorithms

Source data files and code used to generate 
the figures.

This study https://github.com/sylestrela/
Estrelaetal2021_FunctionalAttractors
(https://doi.org/10.5281/zenodo.5510318)

Code for the FBA simulations. This study https://github.com/vilacelestin/
Estrelaetal2021_FunctionalAttractors
(https://doi.org/10.5281/zenodo.5510298)

R (version 3.4.3) (R Core Team, 2017) R: A
language and environment for 
statistical computing. R Foundation 
for Statistical Computing, Vienna, 
Austria.
https://www.r-project.org/

RRID:SCR_001905

DADA2 (version 1.6.0) Callahan et al., 2016 N/A

COBRApy (version 0.17.1) Ebrahim A, Lerman JA, Palsson 
BO, Hyduke DR. COBRApy: 
COnstraints-Based Reconstruction 
and Analysis for Python.
BMC Syst Biol. 2013;7: 74.

RRID:SCR_012096

Mathematica (version 11.0.1.0) Wolfram RRID:SCR_014448
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