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ABSTRACT OF THE DISSERTATION

Democratizing Tensor Processors: Efficient and Generalized Tensor Computation with
Architectural Support

by

Yunan Zhang

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2024

Dr. Hung-Wei Tseng, Chairperson

Tensor processors, notably matrix units (MXUs), have become indispensable in

accelerating matrix operations for machine learning. However, their specialized design and

limited support for varying data types and operators have hindered wider adoption. This

dissertation tackles these limitations by enhancing the flexibility and capabilities of tensor

processors across three key areas.

First, multi-mode matrix processing units (M3XU) are introduced, capable of effi-

ciently handling both IEEE 754 single-precision and complex 32-bit floating-point numbers.

This innovation broadens the applicability of MXUs in scientific computing without requir-

ing significant modifications to existing systems.

Second, SIMD2, a novel programming paradigm and architecture, is proposed to

extend MXU capabilities beyond matrix multiplications to a wider range of generalized

matrix operations. By leveraging existing tensor processor infrastructure, SIMD2 offers

substantial performance improvements over traditional approaches, further expanding the

utility of these processors.
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Finally, to address the challenges of memory-bound sparse tensor computations,

a new compute dataflow, Output-stationary-Element-wise-Input-stationary (OEI), and its

corresponding architecture, SIDA, are presented. This combined approach exploits inter-

and intra-operator reuse opportunities, significantly reducing memory traffic and enhancing

the efficiency of tensor processors in sparse linear algebra workloads.
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Chapter 1

Introduction

Tensor processors, especially matrix processors, have emerged as a cornerstone of

modern computing due to their ability to accelerate computationally intensive tasks involv-

ing large multi-dimensional arrays of data (tensors). These processors are specifically de-

signed to optimize matrix operations, which are fundamental to a wide range of applications

across various domains. In the realm of artificial intelligence, matrix processors power deep

learning algorithms, enabling efficient training and inference of complex neural networks.

They are also critical for scientific computing, where they speed up simulations in fields like

computational fluid dynamics, molecular dynamics, and weather forecasting. Additionally,

matrix processors play a crucial role in graphics processing, image and video processing,

signal processing, and financial modeling. The importance of these processors stems from

their ability to significantly reduce computation time, enhance energy efficiency, and enable

breakthroughs in fields that heavily rely on matrix computations. Algorithms like matrix

multiplication, convolution, and decomposition are optimized for these processors, ensur-
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ing high performance and scalability. The widespread adoption of tensor processors across

diverse fields underscores their significance in driving innovation and accelerating progress

in computationally demanding areas.

Tensor processors and matrix units (MXUs) come in various forms, each tailored to

specific applications and workloads. Google’s Tensor Processing Units (TPUs), application-

specific integrated circuits (ASICs) designed for accelerating machine learning workloads,

are equipped with powerful matrix multiply units (MXUs) and high-bandwidth memory to

handle large matrix operations efficiently. NVIDIA’s GPUs, originally designed for graph-

ics rendering, have evolved to incorporate Tensor Cores optimized for accelerating matrix

operations, making them ideal for deep learning training and inference. Additionally, In-

tel’s Advanced Matrix Extensions (AMX), a set of instructions integrated into Intel Xeon

Scalable processors, significantly enhance CPU performance in matrix operations, enabling

them to competently handle computationally intensive tasks involving matrices. These are

just a few examples highlighting the diverse landscape of tensor processors and MXUs, each

designed to address the growing demands of computationally intensive tasks that rely on

efficient matrix operations.

Tensor processors are characterized by their specialized architecture designed to

accelerate matrix operations, which are fundamental to various computational tasks. These

processors often feature large arrays of multiply-accumulate (MAC) units, optimized for par-

allel execution of matrix computations. Additionally, they typically have high-bandwidth

memory interfaces to efficiently feed data into the computational units and store the re-

sults. Tensor processors often support lower numerical precision formats, such as 8-bit or

2



16-bit floating point, as these are sufficient for many machine learning applications and

allow for higher computational throughput. Furthermore, they may incorporate specialized

instructions or hardware accelerators for specific operations like matrix multiplication or

convolution, further enhancing their performance in targeted workloads. While tensor pro-

cessors offer significant computational advantages for matrix operations, it’s important to

note that they often exhibit limitations in terms of domain specificity. Each tensor proces-

sor tends to be optimized for a particular set of data types, operator types, and operation

types, making them highly efficient within their intended domain. For instance, some pro-

cessors might excel at handling floating-point arithmetic with specific precision, while others

might be tailored for integer operations. Similarly, they might be optimized for certain ma-

trix operations like matrix multiplication or convolution, but less efficient for others. This

specialization can restrict their flexibility when dealing with diverse computational tasks

requiring a wider range of data and operation types.

Much like how GPUs evolved from graphics accelerators to general-purpose ar-

chitectures, it is crucial for tensor processors to broaden their applicability across diverse

domains, thereby democratizing their use. To achieve this, three key avenues of exploration

emerge:

(1) Exploiting Data Precision: Investigating methods to enable a single tensor

processor to efficiently handle multiple data precision formats is essential. This would allow

for flexibility in addressing various computational tasks with varying accuracy requirements,

thus expanding the processor’s applicability beyond its initially designed domain.

3



(2) Exploiting Operator Diversity: Expanding the capabilities of tensor processors

beyond multiplication and accumulation operations is pivotal. By incorporating support for

a wider range of operators, these processors can cater to a broader spectrum of applications,

extending their utility beyond their current niche.

(3) Exploring Operation and Data Reuse Opportunities for Sparse Applications:

Sparse matrices, characterized by a significant proportion of zero elements, are prevalent

in numerous real-world applications. Investigating techniques to exploit operation and

data reuse opportunities within sparse matrix computations can significantly enhance the

efficiency and applicability of tensor processors in these domains.

By pursuing these avenues, tensor processors can transcend their current limita-

tions and evolve into versatile computational engines capable of accelerating a wide ar-

ray of tasks across diverse fields, ultimately democratizing access to their computational

power.This thesis will comprehensively explore the three key avenues of democratizing ten-

sor processors. The following organizational structure will be employed to systematically

investigate these aspects.

Chapter 2 presents M3XU, multi-mode matrix processing units that support IEEE

754 single-precision and complex 32-bit floating-point numbers. M3XU does not rely on

more precise but costly multipliers. Instead, M3XU proposes a multi-step approach that

extends existing MXUs for AI/ML workloads. The resulting M3XU can seamlessly up-

grade existing systems without programmers’ efforts and maintain the bandwidth demand

of existing memory subsystems. This paper evaluates M3XU with full-system emulation

and hardware synthesis. M3XU can achieve a 3.89× speedup for 32-bit matrix multiplica-

4



tions and 3.8× speedup for complex number operations compared with conventional vector

processing units.

Chapter 3 presents SIMD2, a new programming paradigm to support generalized

matrix operations with a semiring-like structure. SIMD2 instructions accelerate eight more

types of matrix operations, in addition to matrix multiplications. Since SIMD2 instructions

resemble a matrix-multiplication instruction, SIMD2 architecture is built on top of any

MXU architecture with minimal modifications. SIMD2 provides up to 38.59× speedup and

more than 6.94× on average over optimized CUDA programs, with only 5% of full-chip area

overhead.

Chapter 4 presents Output-stationary-Element-wise-Input-stationary (OEI) datafow,

a novel dataflow to capture both reuse opportunities in STA applications, and SIDA, a sparse

dataflow architecture to support the OEI dataflow and maximize data reuse. Evaluation

results show that SIDA with OEI dataflow is 19.99×/7.39× faster than CPU/GPU, and is

1.76× faster than an ideal sparse accelerator that cannot exploit inter-operator reuse.

Chapter 5 will provide a comprehensive review of related work, encompassing not

only the landscape of existing tensor processors but also the ongoing efforts to democratize

these powerful computational tools. This chapter will delve into the current state-of-the-art

in tensor processor design, highlighting their architectures, capabilities, and limitations.

Additionally, it will examine existing research and initiatives aimed at broadening the ap-

plicability of tensor processors by addressing challenges related to data precision, operator

diversity, and sparse matrix computation.
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Chapter 6 will serve as a culminating synthesis of the thesis, revisiting the three key

avenues of democratization explored. This chapter will recapitulate the significant findings

and contributions of each avenue, highlighting their potential to revolutionize the landscape

of tensor processors. In addition, this chapter will identify and delve into potential future

research directions.
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Chapter 2

Exploiting Data Precision

Matrix multiplication units (MXUs) or matrix processing units have become ubiq-

uitous in all computing scenarios due to the criticality of matrix operations in artificial

intelligence and machine learning (AI/ML) workloads. MXUs can serve as the core in stan-

dalone AI/ML accelerators [51,73–75], present as another compute engine in modern GPU

architectures [8, 121, 122], or integrate into CPUs as extensions to existing instruction set

architectures (e.g., Intel AMX [69], ARM’s SME [12], and Apple’s Matrix Extensions [10]).

The evolution of MXUs has continuously lifted the roofline of core neural networks (NNs) op-

erations to the memory bandwidth and provided a more scalable processing model through

the embarrassingly parallel matrix operations for huge problem sizes [75]. However, as

modern adoption of MXUs targets AI/ML applications, most existing MXUs only support

low-precision matrix operations (e.g., 16-bit half-precision, INT8) or introduce formats (e.g.,

BF16, TF16, TF32) for better performance, energy, and area efficiency.
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2.1 High precision floating point numbers for MXUs

Beyond accelerating workloads dominated by low-precision matrix operations,

MXUs can help a broader set of compute-intensive workloads to scale with the advances of

modern AI/ML hardware and parallelize through matrix processing models if they support

the following two formats.

Single-precision floating point numbers (FP32) Scientific applications [14, 15, 15, 36,

58,117], data analytics/mining applications [43,49], statistical learning [89], and graph ana-

lytics [35,150] are sensitive to numerical errors and most existing implementations must rely

on IEEE 754 standard single-precision floating-point-numbers (FP32) to function correctly.

Many Domain-Specific Accelerators require FP32 inputs [53, 56, 184], and using other for-

mats can lead to unwanted results. Despite the error tolerance in inferencing, training NN

models still rely on intensive FP32 operations [121], or require significant re-engineering to

accommodate other data types [108].

Single-precision complex floating point numbers (FP32C) Fast Fourier Transforms

(FFTs) that rely on matrix multiplications with complex numbers are the core of signal

processing [20, 21, 37, 93, 153] and security applications [95, 138]. Also, simulating quan-

tum computing needs complex matrix multiplications to represent qubits and their oper-

ations [18, 94, 147, 163, 187, 190]. As multimedia signals become complex numbers after

transformations, recent studies also show neural networks using complex number matrix

multiplications are advantageous [11,33,60,85,86,118,158,162,173].

However, extending MXUs to support higher precision floating point or complex

numbers is expensive. The cost of FMA logic is roughly quadratic in the input bitwidth.
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For example, going from 16-bit to 32-bit floating-point inputs and maintaining the number

of operations per cycle roughly quadruples the hardware area. Furthermore, even if we are

willing to pay the quadratic hardware cost in MXUs, the doubled data width also requires

doubling the memory subsystem bandwidth to match the consumption rate.

By revisiting the mathematical operations of matrix multiplications with higher-

precision and complex numbers, we can decompose each computation step as a series of

low-precision matrix multiplications between different components of the input matrices.

Also, considering the limitations on feeding the MXU with data from memory, we can

hit the roofline of the existing memory hierarchy if we use multiple low-precision steps to

perform both high-precision and complex matrix multiplications. In other words, the matrix

hardware can reuse existing components to perform wider and/or complex multiplications

at reasonable performance if we enable operations on different matrix components on the

MXU.

Inspired by the insights from mathematical observations, this section presents

M3XU, a multi-mode MXU that extends half-precision MXUs to support matrix operations

using FP32 and FP32C inputs, in addition to low-precision floating point numbers at low

hardware costs. M3XU simply requires (1) additions of logic to feed different parts of

matrix inputs in each step of operations, (2) minor extensions to the arithmetic units to

support exact FP32 precisions, and (3) slight extensions to accumulators to accumulate

numbers in correct double-precision formats. Moreover, M3XU does not double the bitwidth

of arithmetic units, avoiding the considerable area overhead or the increase in memory

bandwidth. M3XU still delivers FP32 and FP32C matrix multiplications at the theoretical
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throughput that the current memory bandwidth can support. The same M3XU remains the

support of the original functions. As M3XU supports standard FP32 and FP32C, M3XU

does not require any modification to existing programs.

Compared to software alternatives that perform FP32 and FP32C operations with

multiple low precision ones, M3XU reduces dynamic instructions, allowing M3XU to execute

equivalent computation more efficiently and maximize reuse of register contents. More

importantly, as M3XU faithfully supports FP32 operations, M3XU requires zero changes in

software to accommodate the loss of precision in existing software solutions [39,102,105,127,

130]. As M3XU enables native FP32C computations, M3XU delivers better performance

and more accurate results than software approximations [37,93,153].

Experimental results show an average 3.89× speedup compared to conventional

implementations on FP32 precision optimized for CUDA/SIMT(Single instruction, mul-

tiple threads) cores. As M3XU brings hardware support for complex numbers, M3XU

can directly perform FFT calculations without approximations and achieves up to 1.99×

speedup compared with state-of-the-art cuFFT libraries. The synthesized M3XU hardware

incurs 47% area-overhead, significantly smaller than the 3.55× overhead from extending

arithmetic logic. If we make M3XU an extension to NVIDIA’s Ampere architecture, the

resulting overhead is 4% of the streaming multiprocessors (SMs).
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Figure 2.1: The baseline Tensor Core architecture

2.2 Target tensor processor and existing methods of extend-

ing precision

This section describes the exemplary MXU architecture that M3XU extends, as

well as the challenges of supporting higher precision or complex numbers in MXUs.

2.2.1 Tensor Core architecture

Among commercial matrix accelerators, this paper selected NVIDIA’s Tensor

Cores as the baseline accelerator as (1) the hardware of Tensor Cores is commercially

available to the public, and (2) the low-level programming interface is available for this
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paper to assess the performance of our proposed extensions. However, the extension that

M3XU proposes can apply to any MXU architecture, regardless of whether the underlying

implementation is dot-product-unit-based, outer-product-unit-based, or a systolic array.

In NVIDIA’s GPU architectures, Tensor Cores are part of the streaming multi-

processors (SMs). They share the register file, schedulers, and caches with other SM com-

ponents. The only type of operation that a Tensor Core supports is matrix multiplications.

Though NVIDIA does not reveal Tensor Cores’ microarchitecture, the model that GPGPU-

sim uses seamlessly resembles the measured performance characteristics [83, 140, 169]; Fig-

ure 2.1 depicts this. Each Tensor Core consists of multiple four-element dot-product units

that can perform all necessary multiplications and accumulations for MMA operations per

cycle. According to NVIDIA’s datasheet, each Tensor Core unit supports 16-bit floating-

point MMA operations in 8×4×8 (i.e., multiplying an 8×8 matrix by a 8×4 matrix, resulting

in an 8×4 matrix) by default.

Table 2.1 excerpts the peak throughput of NVIDIA A100’s Tensor Cores on various

data types from the datasheet [121]. Based on the datasheet, NVIDIA’s programming

interface, and reverse engineering from prior work [156, 185], the hardware architecture

of Tensor Cores can provide native support of MMA operations using FP16, BF16, and

TF32 inputs. By observing the union of these three formats, a reasonable design of a

dot-product unit uses a one-bit sign, eight-bit exponent, and 11-bit mantissa (including an

implicit bit). Current Tensor Cores provide no hardware support for true FP32 arithmetic or

complex numbers. NVIDIA’s Tensor Cores support TF32, seamlessly allowing the software

to provide FP32 inputs and deliver results at half the BF16/FP16 FLOPS. However, TF32

12



Data Type Bit Format* Peak Throughput

FP32 (1,8,23) 19.5 TFLOPS

FP16 (1,5,10) 78 TFLOPS

BF16 (1,8,7) 39 TFLOPS

TF32 Tensor Core (1,8,10) 156 TFLOPS

FP16 Tensor Core (1,5,10) 312 TFLOPS

BF16 Tensor Core (1,8,7) 312 TFLOPS

* Each bit format of floating-point data type means
(the number of sign bits, exponenet bits, mantissa bits)

Table 2.1: A100 HMMA peak throughput

has 13-bit fewer mantissa bits than FP32; programmers must handle the information loss

for usages needing more precision. To get “real” FP32 operations (or FP32C), we must rely

on (1) the SIMD hardware, which has 8x less throughput than TF32 Tensor Cores, or (2)

software modifications using multiple MMA operations at a lower precision.

2.2.2 Challenges of Extending MXUs

Despite the demand for FP32 and FP32C and the shortfalls in using alternative

data types, extending MXUs to support either FP32 or FP32C has yet to be done because

it is expensive and challenging.

Area overhead FP32 and FP32C use a 23-bit mantissa, so we must double the bitwidth

of multipliers and accumulators. Expanding multipliers is especially costly as the area is

quadratic to the input bandwidth. We synthesized the area overhead of an FP32-MXU

(with no FP32C support) with as many FP32 FLOPS as FP16/BF16 FLOPS using the

same process technology and tool that Section 2.5.1 will describe later. The FP32-MXU is

3.55× larger than a baseline MXU without FP32, increasing the SM area by 11%.
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Memory pressure Suppose an MXU, with p-bit inputs, can multiply an M ×K matrix

with an K×N (we abbreviate these dimensions as M×N×K in the rest of the paper) each

cycle. Such an MXU will consume M ×K+K×N p-bit elements, or (M ×K+K×N)× p
8

bytes per cycle and generate M × N p-bit elements, at full utilization. If the SM runs at

frequency F and contains X MXUs, the total memory bandwidth B to keep the MXUs fed

is: B = (M ×K +K ×N +M ×N)× p
8 × F ×X.

In an A100 GPU with 432 Tensor Cores running at 1.41 GHz, at 16-bit precision,

B is 156 TB/sec. A100 already uses a 128B-blocked cache and 1024-bit wide interface

to feed the Tensor Cores. If we double the bitwidth of MXUs and maintain the same

clock rate, the required bandwidth will become 312 TB/sec. However, building a memory

hierarchy supporting the required bandwidth is very expensive: we will need to double

the bitwidth of the front-end bus between the cache and Tensor Cores, as well as the

bandwidth of the caches and DRAM. As the white paper of H100 documents, the latest

high bandwidth memory (HBM) technologies can only deliver 3.35 TB/sec. Modern Tensor

Core library implementations have already applied intensive optimizations to extract the

reuse of matrix tiles to mitigate the memory gap. Recent studies have shown that even

the most optimized cuBLAS still cannot reach the peak throughput with the default 16-bit

number format [130,144].

Trade-offs between memory-MXUs As doubling the bitwidth of MXUs and the memory

interface is expensive, we could maintain the same memory bandwidth. However, in this

case, the extended MXUs can only deliver 50% of their peak performance. An alternative

is to halve the number of MXUs. However, as each FP32-MXU is 3.55× larger, halving the
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number of MXUs still incurs 1.78× area overhead, increasing the SM area by 6%. This also

would halve the low-precision compute throughput and still not provide hardware support

for complex numbers in the MXUs.

2.2.3 Alternatives

Prior software-based alternatives have tried supporting the demand for matrix mul-

tiplications on FP32 [39,102,105,127,130] and FP32C [37] numbers, but all have limitations.

Some MXU architectures also try to accommodate lower-precision matrix multiplications

with more-precise hardware [8,120,121]. However, no project like M3XU can perform com-

plex number matrix multiplications in hardware or even try to combine complex number

and conventional floating point matrix multiplications in a single hardware unit, to the best

of our knowledge.

Software-based Alternatives

Despite the advantage of zero additional hardware costs, existing software alter-

natives [39, 102, 105, 105, 127, 130] have limitations on performance in two major aspects.

First, software alternatives must explicitly control the data accesses, incurring additional

matrix loads, register accesses, and dynamic instructions on tile matrix operations. Second,

software alternatives unavoidably have to decouple values and compensate for potential

precision losses.

Figure 2.2 compares existing software-based FP32 GEMM solutions on FP16

MXUs and on FP32 MXUs. The same philosophy applies to software-based FP32C imple-
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Figure 2.2: Comparison between software-based and hardware-based solutions

mentations. Without hardware support, the software solution needs additional instructions

to compute, shift, and split the exponent, mantissa parts, and flipping sign bits before feed-

ing data into MXUs. In contrast, appropriate hardware support can implicitly handle the

bit assignments, shifts, and splits without incurring instructions.

After decoupling data, software solutions must explicitly control the loads and

stores for each tiled matrix operation as separate instruction streams with no guarantees in

scheduling but increasing the total number of dynamic instructions. In contrast, hardware

solutions can perform the same computation within a single stream, with fewer loads/stores

and fewer instructions.
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Hardware Solutions

Existing multi-precision hardware MXUs support FP32 MMA operations by pro-

viding logic that natively supports the highest precisions in the design [8]. Such design

philosophy allows the hardware to offer downward-support of lower-precision arithmetics

without suffering precision loss. However, the area cost and energy consumption are higher

than native supports of lower precision arithmetics.

Similar to the philosophy of M3XU, recent MXUs that originally targeted AI/ML

applications have supported data types with higher precisions [120, 121]. However, all ex-

isting MXUs slightly extend the exponent or the mantissa fields but implicitly discard bits

incompatible with internal low-precision MXUs to create an illusion of higher-precision sup-

ports. Despite the performance, area, and energy advantages, this line of MXUs will lead

to unprecedented numerical errors and floating-point exceptions that are unacceptable to

existing FP32 applications and require significant software rewriting and debugging efforts.

2.3 Opportunities For M3XU

Through mathematical analysis of general matrix multiplications (GEMMs), we

can identify the minimum requirement to extend a lower-precision MXU to support higher-

precision operations at the peak throughput without increasing the memory bandwidth.

This section describes the insights that inspired the design of M3XU.
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2.3.1 Higher precision GEMM with lower precision MXUs

Assume that we have three input matrices, A, B, and C, where A is an M × K

matrix, B is an K × N matrix, and C is an M × N matrix. Equation 2.1 shows the

calculation of the most frequently used matrix function – general matrix multiplication

(GEMM), D = A ·B + C, with a scaling factor as 1.

∀ai,j ∈ A, bi,j ∈ B, ci,j ∈ C, di,j ∈ D,

di,j =

K∑
k=0

ai,kbk,j + ci,j (2.1)

If we expand Equation 2.1 by separating the summation between the cases where

k is odd or even, we get Equation 2.2.

di,j =

K

2∑
k=0

ai,2×kb2×k,j +

K

2∑
k=0

ai,2×k+1b2×k+1,j + ci,j (2.2)

Now, consider the case where we have three input matrices, A′, B′, and C ′, where

A′ is an M × K
2 matrix and B′ is a K

2 × N matrix and C ′ is an M × N matrix. In other

words, we halve the K of A and B. In addition, each number in A′, B′, and C ′ is at 2p-bit

precision, where p is an arbitrary constant value. Then, we split A′ into two matrices, A′
H

and A′
L, where they store the upper and lower p bits, respectively, of each number in A′.

Therefore, A′ = A′
H · 2p + A′

L. Similarly, we split B′ as B′ = B′
H · 2p + B′

L. Equation 2.3

summarizes the GEMM calculation of D′ = A′ ·B′ + C ′.
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D′ = A′ ·B′ + C ′

= (A′
H · 2p +A′

L) · (B′
H · 2p +B′

L) + C ′

= A′
H ·B′

H · 22p + (A′
H ·B′

L +A′
L ·B′

H) · 2p +A′
L ·B′

L + C ′ (2.3)

Again, let us create a M× K
2 matrix A” and K

2 ×N matrix B” using the following equation.

∀a′′i,j ∈ A′′, a′Hi,j ∈ A′
H , a′Li,j ∈ A′

L,


a′′i,2×j = a′Hi,j

a′′i,2×j+1 = a′Li,j

(2.4)

∀b′′i,j ∈ B′′, b′Hi,j ∈ B′
H , b′Li,j ∈ B′

L,


b′′2×i,j = b′Hi,j

b′′2×i+1,j = b′Li,j

(2.5)

If we perform matrix multiplication as D′
H = A′′ ·B′′ and apply a similar decom-

position as in Equation 2.2, we can derive Equation 2.6 as below.

∀a′′i,j ∈ A′′, b′′i,j ∈ B′′, d′Hi,j ∈ D′
H ,

d′Hi,j =

K
2∑

k=0

a′′i,kb
′′
k,j

=

K
4∑

k=0

a′′i,2×kb
′′
2×k,j +

K
4∑

k=0

a′′i,2×k+1b
′′
2×k+1,j

= A′
H ·B′

H +A′
L ·B′

L (2.6)

Equation 2.6 shows that A′′ ·B′′ covers the multiplication results for A′
H ·B′

H and

A′
L ·B′

L. If we flip the order of assignment in matrix B” and create another K
2 ×N matrix

B”’ using the following equation,
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∀b′′′i,j ∈ B′′′, b′Hi,j ∈ B′
H , b′Li,j ∈ B′

L,


b′′′2×i,j = b′Li,j

b′′′2×i+1,j = b′Hi,j

(2.7)

and perform D′
L = A′′ ·B′′′, we can derive Equation 2.8 as:

∀a′′i,j ∈ A′′, b′′′i,j ∈ B′′′, d′Li,j ∈ D′
L,

d′Li,j =

K
2∑

k=0

a′′i,kb
′′′
k,j

=

K
4∑

k=0

a′′i,2×kb
′′′
2×k,j +

K
4∑

k=0

a′′i,2×k+1b
′′′
2×k+1,j

= A′
H ·B′

L +A′
L ·B′

H (2.8)

Equation 2.8 shows that A′′ ·B′′ covers the multiplication results for A′
H ·B′

L and

A′
L ·B′

H . We can conclude the first observation by summarizing the result in Equation 2.6

and Equation 2.8:

Observation 1: An MXU that can perform a M × N ×K matrix multiplications (or in

general, any Matrix Semiring operation) at p-bit precision can perform all multiplications

that are necessary in a M × N × K
2 matrix multiplication at 2p-bit precision in two steps

if the hardware can reassign inputs in these two different steps.

However, directly summing up the result A′
H · B′

H and A′
L · B′

L is not useful to the final

result as we need A′
H ·B′

H × 22p +A′
L ·B′

L. Therefore, our second observation is:
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Observation 2: We need to extend the p-bit MXU to shift the accumulation

result of A′
H · B′

H by 2p bits and shift D′
L by p bits and accumulate these multiplication

results to support 2p-bit matrix multiplications. These two observations also lead to the

following corollaries:

Corollary 1: By reusing existing multipliers, extending accumulators, and adding shifters,

an MXU capable of a p-bit M ×N ×K matrix multiplication every c cycles can support a

2p-bit M ×N × K
2 matrix multiplication every 2c cycles.

Corollary 2: The extended MXU of Corollary 1 can support 2p-bit M × N ×K matrix

multiplications at 1
4 of the peak TOPS (tensor operations per second) of p-bit M ×N ×K

matrix multiplications.

2.3.2 Complex number GEMM with existing MXUs

We can also perform a similar analysis on complex number matrix multiplications

(CGEMM). Assume that we have a set of three input matrices in complex numbers, A′
C ,

B′
C , and C ′

C , where A′ is an m× k
2 matrix and B′

C is an k
2 × n matrix and C ′

C is an m× n

matrix. Then, we split each number in A′
C to create two matrices, A′

CR and A′
CI , where

A′
CR contains the real part of each number in A′

C and A′
CI contains the imaginary part of

each number. That is, A′
C = A′

CR+A′
CIi. Similarly, we also split B′

C as B′
C = B′

CR+B′
CIi.

21



D′
C = A′

C ·B′
C + C ′

C

= (A′
CR +A′

CIi) · (B
′
CR +B′

CIi) + C ′
C

= (A′
CR ·B′

CR −A′
CI ·B

′
CI)+

(A′
CR ·B′

CI +A′
CI ·B

′
CR)i+ C ′

C (2.9)

Equation 2.9 expands D′
C = A′

C · B′
C + C ′

C with the split AC
′ and BC

′. This is

almost identical to Equation 2.3, except for the subtraction. If we repeat the processing

as Equation 2.4 – Equation 2.8, and treat A′
CR and B′

CR as A′
H and B′

H and A′
CI and

B′
CI as A′

L and B′
L, then we again see that the existing MXU can perform all necessary

multiplications, but needs to additionally support the subtraction of the product of A′
CI

and B′
CI . With Equation 2.9, we can conclude the third observation:

Observation 3: A p-bit MXU can support p-bit CGEMM in two steps if it has hardware

support to subtract the products of imaginary parts. If we want to support CGEMM

with 2p bits in each number’s real and imaginary parts, we can combine the insights from

Observation 1 and Observation 3 and derive the following.

Corollary 3: By reusing existing multipliers and adding shifting and subtraction logic, an

MXU capable of a p-bit M × N × K matrix multiplication every c cycles can support a

2p-bit M ×N ×K CGEMM every 16c cycles.

2.3.3 Performance Expectation on Modern Hardware

This section estimates the performance gain on modern hardware using the ob-

servations and corollaries from Sections 2.3.1 and 2.3.2 to derive this work’s advantage.
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Referencing the white papers from NVIDIA’s Tensor Core Architectures (our baseline hard-

ware architecture) [121,122], the peak FP16 FLOPS on Tensor Cores on existing GPUs are

15×-16× higher than that of the FP32 CUDA/SIMT cores. Therefore, the theoretical

throughput of our proposed work, M3XU, still has a 4× performance advantage over FP32

CUDA cores, equivalent to 78 TFLOPS on the Ampere architecture or 248 TFLOPS on

the Hopper architecture. For FP32C CGEMM, M3XU maintains a 4× peak performance

advantage over using conventional CUDA cores. If we extend AMD’s Matrix Cores as the

baseline, M3XU still has a performance advantage. The total TOPS of Matrix Cores on

AMD’s MI100 and MI250 are 8× of the SIMT cores, meaning M3XU would have a 2×

advantage over SIMT cores on those GPUs.
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Figure 2.3: The high-level design of the data-assignment stage. (a) Data-assignment stage
for FP32 (b) Dot-product unit hardware modifications for FP32
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2.4 M3XU Microarchitecture

Leveraging the insights from Section 2.3, M3XU is built via a small extension to

an MXU that originally targets low-precision operations, and which is enhanced to support

true FP32 and FP32C computations. This section describes the hardware architecture in

detail.

2.4.1 Extending MXUs for FP32

Summarizing Observations 1 and 2 in Section 2.3, supporting FP32 in a 16-bit

MXU using two steps requires the following extensions. (1) The hardware needs the ability

to change the dataflow of the inputs in each step. (2) The bit width of each input to the

multiplier must be at least half of the width of the mantissa. In the case of FP32, the bit

width must be at least 12 (i.e., p >= 12). (3) The exponent adder must be as wide as that

of the high-precision type (8 bits for FP32). (4) Some accumulators can selectively shift

numbers by 2p and p bits. M3XU fulfills these requirements by adding a data-assignment

stage and extending the arithmetic logic units.

M3XU controls the dataflow of each step of an operation via multiplexers and

buffers that store the inputs of each step. Figure 2.3 depicts the high-level design of this

data-assignment stage. Since the arithmetic logic must support half of the width of the

mantissa in FP32 and the full exponent bits of FP32, each buffer entry contains space for

the 1-bit sign, 8-bit exponent, and 12 bits of mantissa. For each dot-product unit that

performs s steps of operations for two m-element input vectors, we need 2 ×m × s buffer

entries. In the default FP16 mode, the data-assignment stage directly feeds each input
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value into the pairs of input buffers. As FP16 contains a hidden, leading 1 in the mantissa

field, the circuit will fill the hidden 1 in the input buffer and unused bits in the buffer entry

with 0s.

M3XU has native FP32 support without introducing a new data layout. Therefore,

as inputs come from registers, the data-assignment stage splits each 32-bit chunk of data

(i.e., a single FP32 number containing one sign bit, eight exponent bits, and 23 mantissa

bits) into two low-precision numbers and assigns them to the corresponding input buffers for

the multipliers in each step. In other words, the data-assignment stage divides each FP32

number (e.g., a′i,j) into aH
′
i,j and aL

′
i,j . As in Figure 2.3(a), the data-assignment stage

wires the 1-bit sign and the 8-bit exponent to both the buffer entries representing aH
′
i,j and

aL
′
i,j . The exponent is thus artificially small for aL

′
i,j , which is why the hardware must

later correct for this, post-multiplication. The data-assignment stage attaches the hidden

1 to the buffer representing aH
′
i,j and wires the most significant 4 bits from the second

half of the original FP32 number. The 12-bit mantissa field in the aL
′
i,j completely comes

from the least significant 12 bits of the second half of the original FP32 number. The same

process applies to both FP32 input vectors. In the first step, each pair of buffer entries

to the same multiplier will either work on the most or least significant parts of both input

numbers. Then, in the second step, the data-assignment stage signals the multiplexers to

flip the assignment of one of the input vectors (e.g., bH
′
i,j and bL

′
i,j in Figure 2.3(a)). This

allows the multipliers to compute the products of the most significant parts of one vector

and the least significant parts of another vector.
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The extension to arithmetic logics As Equation 2.3 points out, the M3XU’s arithmetic

logic must (1) accommodate 12 bits of mantissa computation and (2) accumulate the par-

tial sum-of-products correctly for the case of supporting FP32. Figure 2.3(b) depicts the

extensions M3XU makes to the baseline MXU, the Tensor Core architecture of Ampere, for

this.

Since existing Tensor Cores only support an 11-bit mantissa, we need to expand

the arithmetic logic to support 12 bits. This 1-bit extension is much cheaper than a brute

force extension to 24 bits for FP32. Modern Tensor Cores already provide native support for

8-bit exponents, so M3XU does not need to extend the exponent-related logic. In addition,

we need to add multiplexers next to the outputs of the multipliers that calculate A′
H ×B′

H

and shift the result by 24 bits, or else separately accumulate the outputs of A′
H ×B′

H and

A′
L × B′

L and shift the “high” result once by 24 bits. We also need 48-bit registers for the

accumulation results. In Figure 2.3(b), we draw the former for clarity, but we implement

the latter for efficiency. For the second step of the computation, all circuits remain, except

that we do not shift the results of any multipliers but instead extend the multiplexers to

shift the accumulation result by 16 bits, and also accumulate the result in this stage with

the previous stage. Based on an 8× 4× 8 MXU of a Tensor Core, the resulting M3XU can

perform 8× 4× 4 in FP32 in each 2-step operation.

2.4.2 Extending MXUs for FP32C

Using Observation 3 in Section 2.3 and combining the earlier-described FP32 ex-

tensions for M3XU, M3XU can additionally support complex number arithmetic and act
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Figure 2.4: Data-assignment stage for FP32C

as an accelerator for FP32C. In addition to the modifications in Section 2.4.1, supporting

FP32C requires (1) subtractions in parts of the sum-of-products and (2) 4-step operations

where two of the steps will generate the real part and the rest generate the imaginary part.

Figure 2.4 depicts the extension to FP32-M3XU for FP32C.

Equation 2.9 indicates that M3XU can perform complex number arithmetic in

two steps. However, as each part of a complex number in FP32C is a FP32 number,

M3XU has to consider the real part, A′
CR · B′

CR − A′
CI · B′

CI , and the imaginary part,

A′
CR · B′

CI + A′
CL · B′

CH , as two separate FP32 matrix multiplications. Since each FP32

multiplication takes two steps, the data-assignment stage needs to prepare four levels of

inputs and store them in buffers twice the size of the ones in FP32-M3XU.
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Figure 2.4(c) illustrates the data-assignment stage in FP32C mode. M3XU as-

sumes the conventional interleaved representation of complex numbers where a pair of

consecutive elements store a complex number’s real and imaginary parts. Therefore, an

8 × 4 FP32 matrix will contain 4 × 4 FP32C numbers. The resulting M3XU can perform

an FP32C matrix multiplication of size 8× 4× 2 in a single 4-step operation.

M3XU first computes the real parts of the output, then the imaginary parts. Like

in FP32 mode, M3XU splits each FP32 element into two numbers, high-order and low-order

parts. For the inputs in the first step, the data-assignment logic assigns either a pair of high-

order parts or low-order parts together and also assigns a pair of real parts or imaginary

parts together. In the case that the multiplication corresponds to two imaginary parts of

numbers, the data-assignment logic flips the sign-bit for the first input such that the result

will be “subtracted” when accumulated. In the case that the multiplication corresponds to

two high-order parts, the output will be shifted 24 bits. For the second step, M3XU swaps

the high-order and low-order parts of the b input from two adjacent multipliers to complete

all necessary multiplications for the real part of FP32C. The computation in this stage will

again reuse the FP32 logic to shift the results by 16 bits and accumulate with the first step.

For the third and fourth steps, M3XU computes the imaginary parts by interleaving the real

part of one number and the imaginary part from the other. However, for this set of inputs,

M3XU reverses the flip signed bit back as M3XU does not need to perform subtraction in

the corresponding stage. The data assignment logic swaps the imaginary and real parts of

the b input across four adjacent multipliers (as shown), and shifts the outputs by 16 bits

during accumulation. The last step swaps high-order and low-order parts of the b input from
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OPcode Output Input Shape

Exising
Tensor Core
Instructions

HMMA.16816.F32 FP32 FP16 16×8×16
HMMA.16816.F16 FP16 FP16 16×8×16
HMMA.16816.F32.BF16 FP32 BFP16 16×8×16
HMMA.1684.F32.TF32 FP32 TF32 16×8×4

M3XU
extension

HMMA.16416.F32.FP32 FP32 FP32 16×8×8
HMMA.16216.F32C.FP32C FP32C FP32C 16×8×4

Table 2.2: M3XU MMA instructions and existing Tensor Cores Instructions. In existing
Tensor Core Instructions, NVIDIA uses F32 for FP32.

two adjacent multipliers. The 3rd and 4th steps are interchangeable. Our implementation

eliminates the overhead of reassigning inputs.

2.4.3 Instruction Set Architecture for M3XU

M3XU provides an instruction set architecture that extends NVIDIA’s tensor cores

(our baseline in this paper) to support FP32 and FP32C computations. However, M3XU’s

ISA and architectural design can apply to other MXU architectures. Table 2.2 shows the

opcodes for Tensor Cores’ half-precision matrix multiplications in NVIDIA Ampere GPUs.

Each opcode indicates the operation, output data type, input data type, and matrix multi-

plication shape. Shape is specified as M×N×K. As dot-product units in Ampere’s Tensor

Cores only support 11-bit mantissas, even though some instructions produce FP32 outputs,

the computations are not true FP32 and have different results than computing on FP32

inputs using SIMD cores or a CPU.

We use the existing opcode naming scheme and add two opcodes, HMMA.16416.-

F32.FP32 and HMMA.16216.F32C.FP32C. Since M3XU does not widen the data path to the
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Tensor Cores, it halves and quarters the K of the matrix multiplication shape, for FP32

and FP32C operations, respectively. These two instructions produce the exact same result

as one gets from using SIMD cores to perform FP32/FP32C arithmetic.

2.5 Experimental Methodology

This section describes the hardware synthesis results and the evaluation framework

that we use to evaluate M3XU.

2.5.1 Hardware validation

We implemented the baseline MXU and M3XU using the system Verilog and syn-

thesized them using Synopsys Design Compiler with the 45nm FreePDK45 library. We also

used ModelSim to validate the correctness of our designs. The baseline MXU resembles the

capability of a Tensor Core in Ampere [121] and Accel-Sim [81] as it can perform 8× 8× 4

matrix multiplications on FP16/BF16 input elements and accumulates results in FP32.

2.5.2 Performance emulation framework

M3XU’s extension of the tensor instruction set does not change how the software

uses the MXU. The programming model, interaction with the register file, and use of low-

level instructions remain the same as the existing Tensor Cores. Therefore, we leverage

existing Tensor Core MMA instructions and extend high-level CUDA GEMM libraries for

performance evaluation, similar to prior works [39,188]. Unlike previous works, our perfor-

mance emulation framework does not include correctness validation and error rate checking
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phases for two main reasons. First, a GEMM implementation using M3XU MMA instruc-

tions applies identical algorithms and optimizations compared with ones using existing Ten-

sor Core architectures, and the computation result of M3XU is exactly the same as FP32.

Second, unlike software emulation approaches proposed in prior works [39, 102,127], which

remain to have between one and several bits of precision loss, M3XU can retrieve standard

IEEE 754 floating-point formats. Accordingly, computation results using M3XU instruc-

tions introduce no additional error compared to conventional FP32 ALUs (e.g., CUDA

cores). Therefore, our framework focuses on studying the performance of M3XU.

Emulating performance using existing Tensor Core MMA instructions

The evaluation methodology in this paper conservatively but correctly emulates

M3XU performance using existing Tensor Core MMA in the following three aspects.

(a) MMA instruction latency: Since each M3XU FP32 MMA instruction requires two

steps of computation within the dot product unit, each M3XU FP32 MMA instruction takes

2× the cycles of an FP16 Tensor Core MMA. Therefore, the emulation framework implicitly

instruments 2 FP16 Tensor Core MMA instructions to emulate the latency of an M3XU

FP32 MMA instruction. Similarly, an M3XU FP32C MMA instruction requires 4 FP16

Tensor Core MMA instructions.

(b) Instruction count: Each M3XU FP32 MMA instruction computes one 16×8×8 ma-

trix multiplication, which computes half of existing Tensor Core MMA instruction, thus,

one 16×8×16 matrix multiplication requires 2 invocations of M3XU FP32 MMA instruc-

tions. Compared to existing Tensor Core MMA instruction, which computes one FP16

16×8×16 matrix multiplication , the total instruction count of computing the same shape
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of FP32 matrix multiplication using M3XU MMA instruction is 2× FP16 matrix multipli-

cation using existing FP16 Tensor Core MMA instruction. Similarly, M3XU FP32C matrix

multiplication requires 4× total instruction count.

(c) Memory access behavior: M3XU leverages the existing Tensor Core memory hi-

erarchy. A single M3XU MMA instruction incurs the same memory access latency as an

FP16 Tensor Core MMA instruction, generating the same number of fragments and fetch-

ing the same amount of data from shared memory to the register file. The total memory

traffic of M3XU FP32 and FP32C matrix multiplication is 2× and 4× that of FP16 matrix

multiplication, respectively.

Constructing performance emulation kernels

Our framework utilizes CUTLASS [127] to efficiently implement hierarchical blocked

GEMM kernels. To assure section 2.5.2 (a), our framework takes advantage of PTX injection

and cooperates with CUTLASS’s code generator, which assures all CUTLASS kernels gen-

erate 2× or 4× more MMA instructions. To assure section 2.5.2 (b) and (c), for any GEMM

kernel launched with a problem shape of M×K×N, our framework launches M×K×N×2 or

M×K×N×4 kernels for FP32 and FP32C, respectively. Since M3XU may need to oper-

ate at a lowert frequency due to extentsion of Tensor Core, our framework uses nvidia-smi

to control GPU SM clock frequency. Table 2.3 lists all four GEMM kerenls used in our

evaluation.
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Name Description

M3XU sgemm pipelined FP32 GEMM Kernel by invoking 1 more
MMA instruction, and 2× problem shape

M3XU sgemm FP32 GEMMKernel with controlled clock fre-
quency

M3XU cgemm pipelined FP32 Complex GEMM Kernel by invoking
3 more MMA instructions, and 4× problem
shape

M3XU cgemm FP32 Complex GEMMKernel with controlled
clock frequency

Table 2.3: M3XU GEMM Kernels provided by performance emulation framework

2.5.3 Environment configuration

We deployed our performance emulation framework on an Nvidia DGX Station.

Our experiments use an installed Nvidia A100 GPU based on the Ampere architecture with

40 GB HBM. The machine hosts a DGX-specialized Ubuntu (Linux kernel version 5.4.0-

81-generic) with NVIDIA’s CUDA 11.4 using driver version 470.57.02. Our performance

emulation framework controls the Tensor Core frequency of our testbed GPU to run at

1170 MHz. It can optionally reduce the Tensor Core frequency to 960 MHz when launching

selected performance emulation kernels.

2.6 Experimental Results

This section presents the performance of M3XU against various approaches for

FP32 and FP32C in critical kernels, including GEMM, 2D-convolution, and FFT. We also

selected four representative applications as case studies. In summary, M3XU delivers up

to 3.89× speedup on FP32 GEMM compared to conventional vector processing units and

1.63× speedup compared to prior approaches in support of single precision GEMM. M3XU
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Baseline MXUs M3XU

FP16 FP32 M3XU M3XU M3XU
w/o FP32C w/o FP32C pipelined

Area 1 3.55 1.37 1.41 1.47
Cycle Time 1 1.00 1.21 1.21 1.00

Power 1 7.97 0.66 0.69 1.07

Table 2.4: The relative overhead of various M3XU implementations, compared with the
three reference designs, the baseline FP16 MXU and two naively extended FP32-MXU
with half/same amount of inputs

can directly perform FFT calculations without approximations and achieves up to 1.99 ×

compared with state-of-the-art cuFFT libraries.

2.6.1 Hardware synthesis result

We presented three-versions M3XU implementations that incorporate our proposed

extensions: (A) An M3XU that only supports FP32 MMA in addition to FP16 MMA. (B)

An M3XU that does not change the existing pipeline of the baseline MXU to minimize the

area overhead, (C) An M3XU that separates an additional pipeline stage in assigning the

inputs for different phases to maintain the same clock rate as the baseline.

Table 2.4 summarizes the synthesis results. Adding the proposed FP32 MMA

support in M3XU incurs 37% area overhead. However, 56% of that overhead comes from

the arithmetic to support the additional 1 bit of mantissa. If we extend an MXU that

already supports 12-bit mantissas, the area-overhead of supporting FP32 in M3XU is only

16%.

The complete M3XU supports both FP32 and FP32C and incurs 4% more area

overhead than just supporting FP32. However, M3XU will result in a 21% increase in cycle

time if we do not pipeline the data assignment stage. Despite the slowdown in supporting
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Name Compute Type Precision Description

FP32 Kernels

cutlass simt sgemm SIMT fp32 cutlass fp32 gemm kernel using CUDA cores

cutlass tensorop sgemm TensorOp fp32 cutlass software emulation fp32 gemm kernel using 3 tf32 gemm

EEHC sgemm fp32B TensorOp fp32-B Prior software emulation [102] using three bf16s warp level gemm

FP32-Complex Kernels

cutlass simt cgemm SIMT fp32 complex cutlass fp32 complex gemm kernel using CUDA cores

cutlass tensorop cgemm TensorOp fp32 complex cutlass software emulation fp32 complex gemm kernel using 3 tf32 complex gemm

Table 2.5: Baseline and prior GEMM Kernels

the baseline MXU operations, the lowered frequencies of these implementations allow the

resulting M3XUs to operate at 31% or 34% lower power with or without FP32C support,

respectively. To maintain the same cycle time, an alternative design that pipelines the

data multiplexing with the two-phase computation would incur 47% area overhead to the

baseline and result in a 7% increase in power. The speedup of applications can still make

the pipelined design more energy-efficient than other alternatives and pay off the slight

increase in power consumption. However, even with 47% area overhead, the area increase

is only 4% to the SM’s die size. In contrast to the area-efficiency of M3XU, if we were to

double the front-end memory bandwidth of Tensor Cores, completely double the bit-width

of input and output data, and use FP32 multipliers, we could achieve the same throughput

as FP16 MXUs. However, the design will lead to 3.55× area overhead and almost 8× power

consumption but does not provide any support for FP32C as M3XU does.

2.6.2 Microbenchmark

Table 2.5 shows the five GEMM implementations we selected to represent the

performance of existing approaches in single-precision GEMM. Four baseline kernels use

FP32 arithmetic.
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(1) cutlass simt sgemm computes using standard IEEE-754 FP32 and CUDA

cores;

(2) cutlass tensorop sgemm is a vendor-provided, software emulated FP32 ker-

nel using TF32 and Tensor Cores. It computes FP32 GEMM using 3 TF32 Tensor Core

GEMMs; it’s worth mentioning that perfectly emulating FP32 GEMM using TF32 Tensor

Core will require 4 TF32 GEMM operations. CUTLASS omitted the 4th GEMM on two

low-order portions of the FP32 inputs to reach better performance.

(3) EEHC sgemm fp32B is another software solution [102] that decouples each FP32

GEMM into 3 BF16 Tensor Core GEMM. For FP32C, we select three kernels with similar

configurations as their counterparts in FP32.

GEMM performance compared with CUDA cores: Figure 2.5 (a) shows the perfor-

mance gain of M3XU and prior approaches on single precision GEMM kernels (SGEMM)

over GPU SIMT GEMM kernels with problem sizes ranging from 1K × 1K × 1K to

16K× 16K× 16K. M3XU SGEMM achieves up to 3.89× and an average of 3.64× speedup

across all SGEMM problem sizes compared with the baseline CUDA/SIMT cores. Other

alternatives only achieve up to 2.67× speedup and spend 14% execution time in decoupling

inputs on average. Excluding the data decoupling time, other alternatives still fall behind

M3XU with a maximum speedup at 3.10× due to the increased number of dynamic instruc-

tions. The performance gain of M3XU saturates at about 3.89× when the SGEMM problem

size is larger than 8K × 8K × 8K.
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Figure 2.5: Performance comparison of GEMM using different Tensor Core approaches: (a)
SGEMM, (b) CGEMM.

Figure 2.5 (b) shows the evaluation result of FP32C GEMM. M3XU FP32C

SGEMM achieves 3.51× speedup on average, compared with baseline SIMT FP32C SGEMM.

With various problem sizes, M3XU achieved up to 3.82× speedup across all problem sizes.

Software alternatives using three TF32 Tensor Core operations can only outperform base-

line for up to 2.1×, 1.7× slower than M3XU. With reduced clock frequency, non-pipelined

M3XU still reveals 3.35×, and 3.51× speedup over baseline kernels for FP32 and FP32C,

respectively.

Energy consumption: Figure 2.6 (a) and (b) shows the relative energy consumption of

M3XU compared with baseline FP32-MXUs that implemented with full bit-width multipli-

ers (i.e., baseline MXU sgemm and baseline MXU cgemm in Figure 2.6) and alternatives

on FP16-MXUs. Despite 7% higher power consumption than FP16-MXUs, M3XU’s energy

consumption is 61% lower than FP32-MXU and 27% lower than the most energy-efficient
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Figure 2.6: Relative analysis of M3XU: (a) relative energy of SGEMM, (b) relative energy
of CGEMM, (c) relative performance of SGEMM, (d) relative performance of CGEMM.
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software solution when performing FP32 operations. The non-pipelined version of M3XU

enjoys lower power consumption as it operates at a lower frequency while delivering decent

performance gain over other alternatives. Therefore, the non-pipelined version of M3XU

saves the most energy, 71% lower compared against FP32-MXUs and 45% lower than the

most energy-efficient software-emulated solutions. When computing FP32 complex num-

bers, M3XU’s energy consumption is 57% lower than FP32-MXU and 36% lower than

software solutions. The non-pipelined version of M3XU saves the most energy, 68% lower

compared to FP32-MXUs and 52% lower than software solutions.

GEMM performance compared with theoretical peak performance: As mentioned

in Section 2.3, the performance target of FP32 GEMM and CGEMM is 25% and 6.25%

of FP16 Tensor Core TOPS. To demonstrate that M3XU meets theoretical performance

without loss of precisions, we compared the relative peak performance of M3XU and other

software solutions with the performance targets. Figure 2.6 (c) and (d) shows both M3XU

SGEMM and CGEMM kernels reach more than 94% of the theoretical performance, while

all prior software solutions only reach up to 63% of the target.

Conv2D performance: Like our GEMM evaluation approach, Table 2.6 demonstrates

seven 2D-convolution kernels, including three baseline kernels selected from CUTLASS,

and four M3XU kernels generated by our performance emulation framework. Our evaluation

examined 12 convolution layer configurations in ResNet-50 (as Kernel 1 to Kernel 12) with a

batch size of 64 for all experiments. Figure 2.7 shows that 2-D convolution using M3XU can

achieve 2.8× more throughput compared with baseline CUDA core kernels, which is 1.2×
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Name Description

FP32 Kernels

cutlass simt fprop cutlass fp32 conv2d kernel using CUDA cores

cutlass tensorop fprop cutlass fp32 conv2d Tensor Core kernel emu-
lated with 3xtf32

M3XU fprop pipelined M3XU fp32 conv2d Tensor Core kernel

M3XU fprop M3XU fp32 conv2d Tensor Core kernel with
controlled clock frequency

FP32-Complex Kernels

cutlass simt cfprop cutlass fp32 complex conv2d kernel using
CUDA cores

M3XU cfprop pipelined M3XU fp32 complex conv2d Tensor Core ker-
nel

M3XU cfprop M3XU fp32 complex conv2d Tensor Core ker-
nel with controlled clock frequency

Table 2.6: Baseline and M3XU 2D-Convolution Kernels

better than software alternatives. Figure 2.8 shows that M3XU reaches up to 2.93× more

throughput compared with CUDA core kernels when executing the same set of convolution

layers. Non-pipeline M3XU kernel reaches up to 3.1 × and 2.5 × more throughput. Our

evaluation shows the convolutional kernel size and input activation size are critical to the

throughput. When dealing with a small convolutional kernel and relatively large input

activation, including kernels 1,3,6 in both microbenchmarks, Tensor Core is underutilized

and results in less throughput compared with other kernels.
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Figure 2.7: Throughput of convolution layers using FP32 Tensor Core

2.6.3 Case studies

This section demonstrate the impact of M3XU in four real-world applications.

FFT

M3XU can directly compute FFT using its FP32C mode to improve runtime per-

formance. We specifically evaluated the performance of FFT implemented using M3XU

compared with prior GPU implementations [93, 123]. tcFFT [93] is the state-of-the-art

Tensor Core FFT implementation, which uses 4× more operations on Tensor Core to com-

pute each complex GEMM. Since tcFFT only supports FP16 complex numbers, for fair
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Figure 2.8: Throughput of convolution layers using FP32 complex Tensor Core

comparisons, we extended tcFFT to support single precision GEMM using TF32 Tensor

Cores and compared the end-to-end speedup with cuFFT [123], a vendor-optimized GPU

FFT library, as the baseline. Figure 2.9 reveals that M3XU can achieve up to 1.99× and an

average of 1.52× speedup over cuFTT across all FFT sizes. Conversely, tcFFT does not

improve performance over cuFTT.

DNN training

This case study evaluates the performance improvements of M3XU on machine

learning workloads using Nebula benchmark [82]. We extended ResNet, VGG, and AlexNet.

Figure 2.10 shows that M3XU is 1.65× faster than conventional mixed-precision training.

Our proposed M3XU acceleration utilizes the existing Tensor Core GEMM during

the forward pass to attain the same advantages as mixed-precision training, resembling
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Figure 2.9: Speedup of FFT over cuFFT

the process in Pytorch. For the backward pass, the existing implementation only applies

SIMT-based kernels to mixed precision training due to the absence of FP32 Tensor Core

instructions. With M3XU’s capability in achieving the same numerical results as standard

FP32, M3XU can accelerate the backward pass that accounts for 39.6%, 39.1%, and 46.5%

runtime in VGG, ResNet, and AlexNet, respectively. M3XU reveals 3.6× speedup for a

backward pass that the existing mixed-precision method cannot improve.

MRF

The primary challenge in MRF is the computationally demanding reconstruction

process, which relies on the accuracy of the signal model used. MRF often requires the

use of high-precision complex floating point formats. Our baseline, SnapMRF [167], is

a state-of-the-art GPU-based MRF approach that uses complex matrix multiplication for
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Figure 2.10: End-to-end Latency of single iteration training of CNN models

dictionary generation and pattern matching phase of MRF, and the dictionary generation

phase takes 98.2% of total run time. CGEMM accounts for 22% of the runtime in the

dictionary generation phase. As shown in Figure 2.11, M3XU achieves up to 1.26× speedup

in end-to-end latency of dictionary generation phase over the cublas cgemm-based baseline.

Statistical learning

Conventional statistical learning methods, like K-Nearest Neighbor(KNN) and K-

Means, are also SGEMM intensive but precision-sensitive. We evaluated KNN-CUDA [164]

that intensively uses the cuBlas sgemm function. Although conventional FP16 Tensor Cores

can accelerate the GEMM function, the reduced precision will produce meaningless compu-

tation results for input data with extremely small values. On the other hand, M3XU can

accelerate FP32 matrix operations without precision loss.
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Figure 2.11: Speedup of MRF dictionary generation over CUDA cores

Figure 2.12 shows the heatmaps the performance gain of KNN using M3XU over

the cuBlas sgemm-based implementation. We evaluated KNN workloads with total refer-

ence and query points ranging from 2048 to 65536 with four dimensions ranging from 512

to 4096. We chose a fixed K of 16 as configuration as the portion of runtime contributed

by GEMM increases along with input sizes, M3XU reveals more performance gain and tops

at 1.8× for large input sizes.

2.6.4 FP64 Tensor Core

Ampere architecture supports double precision Tensor Core GEMMwith 2× speedup [121].

Although NVIDIA provides no details regarding FP64 Tensor Core, M3XU can serve as an

alternative implementation of FP64 Tensor Core. Like the FP32C emulation explained in

Section 2.4.2, the dot-product units reuse real and imaginary wires can receive two dou-

46



2048
4096
8192

16384
32768Q

ue
ry 1.0 1.0 1.0 1.3 1.1 1.0

1.0 1.0 1.0 1.1 1.1 1.1
1.0 1.0 1.1 1.2 1.1 1.2
1.5 1.1 1.0 1.4 1.2 1.1
1.2 1.0 1.2 1.3 1.2 1.1

Dim = 512
1.0 1.1 1.2 1.2 1.1 1.1
1.1 1.1 1.0 1.2 1.2 1.1
1.3 1.2 1.2 1.2 1.2 1.1
1.0 1.5 1.4 1.4 1.2 1.1
1.0 1.3 1.3 1.2 1.1 1.1

Dim = 1024

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Reference

2048
4096
8192

16384
32768Q

ue
ry 1.1 1.0 1.1 1.1 1.3 1.3

1.0 1.2 1.3 1.2 1.2 1.2
1.2 1.3 1.4 1.7 1.4 1.3
1.2 1.3 1.4 1.4 1.3 1.2
1.1 1.5 1.4 1.1 1.1 1.8

Dim = 2048

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Reference

1.2 1.2 1.1 1.3 1.2 1.2
1.4 1.1 1.4 1.4 1.3 1.5
1.2 1.3 1.4 1.4 1.4 1.1
1.1 1.5 1.5 1.4 1.2 1.5
1.2 1.4 1.4 1.3 1.6 1.7

Dim = 4096

Figure 2.12: KNN speedup over CUDA cores

ble values as input. Then it decouples the two values into four parts(high-high, high-low,

low-high, and low-low) and conducts four dot-product operations with the same swapping

policy as FP32C. All results are accumulated from multiplier to FP64 registers similar to

the FP32/FP32C mode. With minor hardware modification, we extended our performance

emulation framework to evaluate the performance of M3XU FP64 GEMM kernels. M3XU

achieved an average performance gain of 6.8× and 6.16× for pipelined and non-pipelined

design, respectively, 2.9 × faster than existing Tensor Core FP64 GEMM.

2.7 Conclusion

As matrix multiplications are at the core of many problems, the MXUs in AI/ML

accelerators can have a broader impact than their current focuses. However, the cost of

extending these low-precision MXUs prevents AI/ML accelerators from embracing more

applications.
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M3XU provides a timely solution that allows MXUs to support standard FP32

floating point numbers and FP32C complex numbers at their theoretical throughput under

current memory technologies, with relatively minor area overhead. M3XU brings an average

3.89× on SGEMM, and faithful computation on CGEMM with close to 3.8× speedup.
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Chapter 3

Exploiting Operator

2-dimenional tensor/matrices are essential data structures at the core of scientific

computing, data and graph analytics as well as artificial intelligence (AI) and machine

learning (ML) workloads. Due to the stagnating general-purpose processor performance

scaling and memory-wall problem [177], a recent trend of efficient computing on matrices

focuses on building hardware accelerators. Famous examples include NVIDIA’s Tensor

Cores [121,124], Google’s Tensor Processing Units (TPUs) [74], and the recent IBM Power

10 MMA unit [159]. The demand of matrix-multiplication accelerators is so strong that the

upcoming generations of Intel and ARM CPU processors will also provide matrix extensions

and integrate MXUs [12,69].

3.1 Overview of SIMD2

Compared with conventional SIMD processors (e.g., GPGPUs), MXUs are more

efficient in general matrix multiplication (GEMM) for two reasons. First, GEMMs are easy
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to parallelize. Each MXU can take tiles from input matrices and generate an output tile,

and multiple MXUs can work together to form a larger GEMM accelerator, temporally or

spatially. Second, GEMMs have a higher compute intensity than vector operations (e.g.,

saxpy [1]). Such compute intensity alleviates the memory-wall issue in modern throughput-

oriented SIMD processors and allows architects to simply add more compute throughput to

scale the performance of MXU with the same on-chip and off-chip bandwidth limitation.

Besides GEMM, a wide-spectrum of problems, including all-pair-shortest-path,

minimum spanning tree as well as graph problems, have matrix-based algorithms/solutions

share the same computation pattern. They all follow a semiring-like structure – A ⊕

(B ⊗ C), where the problem generates results (or intermediate results) by performing two-

step operations (⊕ and ⊗) on three matrix inputs (A, B and C). For example, dynamic

programming methods for all-pair-shortest-path problems using All Pairs Bellman-Ford or

Floyd-Warshall algorithms can be expressed in a semiring-like structure through having

the ⊗ operator represent the addition-based distance update operations [110,146], and the

minimum operation replaces ⊕ operator.

However, as modern MXUs are highly specialized for just GEMM or convolutions,

programmers must perform non-trivial algorithm optimizations (e.g., mapping matrix mul-

tiplications to convolutions [63,98]) to tailor these applications for supported matrix opera-

tions. Besides, the resulting program may still under-utilize MXUs as mapping the original

set of matrix operations to GEMMs that require changing the dataflow or data layout of

the program before the actual computation can start. Finally, for problems including the

dynamic programming algorithms, existing MXUs cannot provide native support for the
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required ⊕ and ⊗ operations and have to fallback to SIMD processors (e.g., CUDA cores),

even though these algorithms share the semiring-like structure with GEMM.

To address these issues, this paper presents the SIMD2 architecture to enable more

efficient matrix operations for a broader set of applications. SIMD2 provides a wider set

of matrix-based operations that naturally fit the application demands and abstract these

functions through an appropriate set of instructions. SIMD2 reuses and extends the function

of existing MXUs and data paths to minimize the overhead in supporting additional matrix

operations.

The SIMD2 architecture brings the following benefits in accelerating matrix ap-

plications. First, programmers or compilers can leverage the richer set of instructions that

naturally maps to common matrix operations without sophisticated code transformations,

which facilitates matrix-based programming. By performing more matrix operations with

a minimum number of instructions, the SIMD2 instructions further reduce the control and

data movement overhead over conventional SIMD instructions by exposing a matrix-based

abstraction.

As an initial step in this direction, our SIMD2 architecture introduces eight more

types of instructions for matrix computation, including (1) min-plus, (2) max-plus, (3) min-

mul, (4) max-mul, (5) min-max, (6) max-min, (7) or-and, and (8) plus-norm, in addition to

existing mul-plus instructions. Similar to existing hardware-accelerated GEMM operations,

these instructions also take tiles of matrices as inputs and update the resulting output tile.

Therefore, these instructions can easily share the same infrastructure of an existing MXU,

including instruction front-end, memory, and register files. As these SIMD2 instructions
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all follow the same data flow and computation pattern, they can also share the operand

delivery structure and simply require a modified data path to perform new operations.

As the necessary hardware support of SIMD2 resembles existing MXUs, a SIMD2

architecture can be implemented on top of any matrix-multiplication accelerators, either

in standalone application-specific integrated circuit (ASICs) or as processing elements in

CPUs or GPUs. This paper presents SIMD2 in the form of extending GPU architectures

as this allows us to leverage existing interface/front-end of GPU programming models and

mature software stacks, and focus on the benefits of the SIMD2 model. On the other hand,

since modern matrix-based applications still rely on non-matrix operations to complete

all computation tasks, this architecture also offers better performance by avoiding data

movements across system interconnects and taking advantage of existing high-bandwidth

memory hierarchy in GPUs.
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Table 3.1: Exemplary problems with their mappings to semiring-like structures and the
corresponding definitions of operators to their solutions.

Type of 1st OP 2nd OP Representative
matrix operations ⊕ ⊗ Algorithm(s)

Plus-Multiply + × Matrix Multiplications,
Matrix Inverse

Min-Plus min + All-pairs shortest paths
problem

Max-Plus max + Maximum cost (critical path)
Min-Multiply min × Minimum reliability paths
Max-Multiply max × Maximum reliability paths
Min-Max min max Minimum spanning tree
Max-Min max min Maximum capacity paths
Or-And or and Transitive and reflexive

closure
Add-Norm + |a− b|2 L2 Distance

3.2 The Case for SIMD2

The motivation of proposing SIMD2 for matrix and tensor problems comes from

two sources– A family of matrix algorithms that share the same semiring pattern in com-

putation, and the emergence of GEMM accelerators designed around the semiring pattern.

Both motivate the need and the possibility of a single umbrella that covers a large set of

matrix algorithms to facilitate efficient use of hardware components.

3.2.1 The Commonality among Matrix Problems

Matrices provide a natural mathematical expression for linear systems, graphs,

geometric transformations, biological datasets, and so on. In addition to data representa-

tions, many applications using matrices as inputs and outputs also share the same algebraic

structure in their algorithms. This algebraic structure contains two binary operators, ⊕ and
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for ( i = 0 ; i < N; i++) {

for ( j = 0 ; j < N; j++) {

for ( k = 0 ; k < N; k++) {

D[ i ] [ j ] = C[ i ] [ j ] + A[ i ] [ k ] ∗ B[ k ] [ j ] ;

}

}

}

(a)

for ( s r c = 0 ; s r c < N; s r c++) {

for ( dst = 0 ; dst < N; dst++) {

for ( k = 0 ; k < N; k++) {

D[ s r c ] [ dst ] = min (C[ s r c ] [ dst ] , (C[ s r c ] [ k ] + A[ k ] [ dst ] ) ) ;

}

}

}

(b)

Figure 3.1: Code snippet of (a) GEMM and (b) APSP.

⊗. The ⊕ operator satisfies properties analogous to addition. The ⊗ operator is associative

and typically has a multiplicative identity element analogous to multiplication. In other

words, a large set of matrix algorithms can be formalized as:

D = C ⊕ (A⊗B)

where A, B, C are input matrices, D is the output, as well as the two customized operators,

⊕ and ⊗.
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The above algebraic structure is similar to a semiring, (R,⊕,⊗), which contains a

set R equipped with two binary operators, ⊕ and ⊗. The ⊕ operator in a semiring satisfies

properties analogous to addition. The ⊗ operator in a semiring has more restrictions as it

must be associative, distributive as well as having a multiplicative identity element. Since

some algebraic structure of matrix problems is similar, but not mathematically identical to

semirings, we use the term semiring-like structure when referring to this identified algebraic

structure.

General matrix multiplication (i.e., GEMM) is one classic example that follows this

structure. To simplify the discussion, we use square matrices in the following examples. Let

A be an N by N matrix and a(i, j) represent the (i, j)-entry of A. Then, there also exists

two other n by n matrice, B and C, where b(i, j) and c(i, j) represent the (i, j)-entries of B

and C, respectively. General matrix multiplication consists of a set of computation for the

(i, j)-entry of the resulting matrix D, d(i, j), where d(i, j) = c(i, j)+
∑N

k=0 a(i, k)× b(k, j).

Figure 3.1(a) illustrates the code example for matrix multiplication with N ×N matrices.

The matrix multiplication therefore has a semiring-like structure where the ⊕ operates as

pair-wise addition for each pair of elements sharing the same coordinate i, j on each side of

the operator, matrix C and the result of A ⊗ B. The ⊗ operates as calculating the value

of the (i, j)-entry in the result matrix D as
∑n

k=1 a(i, k)× b(k, j) for each i, j, k. With the

aforementioned common form, a matrix multiplication problem is D = C +A×B.

Besides matrix multiplications, a wide spectrum of algorithms, especially those

for solving graph problems or algorithms that leverage dynamic programming, can also be

formulated as a structure similar to matrix multiplications by customizing the ⊕ and ⊗
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operators. For example, Figure 3.1(b) shows how the inner loops of all-piars Bellman-Ford

algorithm [38] for all-pairs-shortest-path (APSP) problem is similar to the semiring-like

algebraic structure as GEMM (Figure 3.1(a)). Each iteration in Line 4–5 of Figure 3.1(b)

performs the computation of d(i, j) = min{c(i, j),minN
k=0[c(i, k) + a(k, j)]}, where each

d(i, j), c(i, j), or a(i, j) represents the (i, j)-entry of matrix D, C or A, respectively. The

D matrix is the result of temporal all-pairs distances after the iteration, C is the result

from the last iteration, and A is the original adjacency matrix. Therefore, we can leverage

the semiring-like structure to express the all-pairs Bellman-Ford algorithm for the APSP

problem by replacing the ⊕ operator with min and the ⊗ operator with +. The core loops

become D = C min (C +A).

In addition to the APSP problem, there are other algorithms amenable to such

a semiring-like structure. Table 3.1 illustrates a set of problems and their corresponding

customizations of ⊕ and ⊗ operators in their algorithms.

Though a semiring-like structure can serve as a generic programming paradigm for

matrix problems, conventional approaches in solving matrix problems require the program-

mers to transform matrix data into lower-ranked data representations (e.g., scalar numbers

or vectors) and redesign algorithms on these data representations to fulfill the program-

ming paradigm that modern CPUs and GPUs can support. Performance optimizations

on programs solving these problems is especially challenging as they are intensive in both

computation and data accesses on conventional processor architectures.
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Figure 3.2: An example SIMD architecture.

3.2.2 Hardware Support for Semiring-like Structure in GEMMs Acceler-

ators

The semiring-like algebraic structure is the key enabler behind modern tensor ac-

celerators, like MXUs for GEMMs, which improves over conventional SIMD processors.

From a hardware design point of view, conventional SIMD architectures, shown in Fig-

ure 3.2, are bottlenecked by the vector register file bandwidth. Such data transfer bottle-

neck (von Neumann bottleneck [165]) limits how many compute units (ALUs) can be fed

by the on-chip memory. For example, a 4-wide register file can only supply to 4 ALUs at a

time. Even if the degree of parallelism grows as the problem size increases, the data transfer

bottleneck remains.

MXUs, instead, leverage the semiring-like algebraic structure to break such bot-

tleneck. Figure 3.3 shows an example implementation of MXU, modeled after the matrix

unit in TPUs [74]. In this MXU example, one input matrix is broadcast to multiple ALUs
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Figure 3.3: An example MXU for GEMM.

because of the intrinsic data reuse opportunities in algorithms with a semiring-like struc-

ture. The output matrix also leverages the structure (associative) and is accumulated across

multiple ALUs before being stored into the output matrix buffer. With the same 4-wide

memory structure, we can now supply data to 16 ALUs. More importantly, since the com-

putation complexity is O(N3), and the data transfer is O(N2) in semiring-like algorithm,

the number of ALUs can scale much more than the on-chip memory bandwidth, alleviating

the memory wall issue.

As a result, modern MXUs are designed around the semiring-like structure, instead

of optimizing the ALUs for multiply-add. The programming model of these MXUs also

leverages the nature of the algorithm to perform work partitioning and tiling to execute a

larger GEMM with multiple MXUs in a system [121] or across systems [73].
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For example, the wmma API for NVIDIA Tensor Core works at the sub-tile gran-

ularity (e.g., 16x16), and programmers can combine multiple wmma calls to merge sub-tile

into the full problem.

Our insight is that supporting a wide range of semiring-like algorithms requires

minimal changes on top of any systems with GEMM accelerators. It is clear that the ALU in

Figure 3.3 is orthogonal to the hardware support (broadcast and accumulate) for a semiring-

like structure. For example, if we enhance the ALU in Figure 3.3 to support add−minimum,

then the same MXU architecture can now be used to accelerate solving APSP. That is,

the recent development of MXUs for GEMM has laid the ground of supporting semiring-

like algorithms, and with a better abstraction and hardware support, many more matrix

algorithms can be accelerated. This motivates us to propose and design SIMD2, a new

programming paradigm and architecture for semiring-like algorithms.

3.3 SIMD2 Architecture

We propose the SIMD2 ISA to efficiently support matrix algorithms beyond GEMMs.

SIMD2 provides a programming paradigm and an instruction set to reflect the natural

semiring-like structure in solving these matrix problems. The hardware units for SIMD2

instructions extend existing MXU to support the proposed programming paradigm. This

section will introduce both.
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3.3.1 The SIMD2 hardware architecture

Like GEMM accelerators, SIMD2 architecture can be implemented as a standalone

processor that contains SIMD2 units only, or functional units embedded with general-

purpose scalar/vector processor cores to share the same instruction front-end. In this work,

we chose the latter design and prototype SIMD2 architecture on a GPU as Figure 3.4 shows.

Specifically, we build on top of the NVIDIA SM architecture [27], which integrates Tensor

Core as part of the subcore in a GPU SM. The resulting high-level architecture resembles

GPU SM with Tensor Cores [140] as the SIMD2 units implementing SIMD2 instructions are

part of a streaming multiprocessor, but the rest of the architectural components (front-end,

memory-subsystem, etc.) are shared with conventional GPU cores.

The SIMD2 unit in Figure 3.4(c) extends conventional MXUs to use different ⊗

and ⊕ operators. Each SIMD2 unit can perform an SIMD2 arithmetic instruction using

⊗ operation on fixed-size matrix tiles (e.g., 4x4 in Figure 3.4(c)) and produce an output

matrix by reducing the result from ⊗ operation with the ⊕ operator. Unlike tensor cores

that only support multiply and accumulation, the ⊗ ALU supports multiply, min/max,

add/and, and L2 dist, and the ⊕ ALU supports add, min/max, or, and subtract. Both

ALUs are configured by decoding SIMD2 instructions, as shown in Figure 3.5.

We chose to build SIMD2 architecture on top of GPUs for the following reasons.

First, since matrix operations just serve as the core computation in matrix applications,

applications typically rely on scalar or vector processors to preprocess or postprocess matrix

data structures. Collocating SIMD2 units with other processing elements enables efficient

and fine-grained data exchange and synchronization among heterogeneous computing units.
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Figure 3.5: ⊗ ALU and ⊕ ALU in an SIMD2 unit.

Second, GPU’s memory architecture design is more bandwidth-oriented and serves better

for the purpose since each SIMD2 unit would consume/produce large amounts of data at

once. Finally, there already exists Tensor Cores in NVIDIA’s GPU architecture that allow

us to leverage as a baseline design and an emulation framework.

Alternatively, we have also explored implementing the SIMD2 unit by building a

dedicated hardware unit for each semiring-like algorithm. For example, in addition to the

MXU for GEMM, we can add a hardware unit for min-add, another unit for add-norm, and

so on. Nonetheless, this design introduces 300% area overhead (See Section 4.6.7) to the

GEMM-only MXU, which is > 4× of the overhead introduced by the combined design in

Figure 3.4.

While we chose GPUs as the baseline system, building an SIMD2 architecture on

other GEMM-based accelerators, such as TPUs [74], should be straightforward and low

overhead.
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3.3.2 The SIMD2 ISA

Table 3.2: A summary of the PTX instruction set architecture for SIMD2

Data Movement Instructions Data Types Matrix Shape Source → Destination

SIMD2.load fp16 16x16 Shared Memory → Register File
SIMD2.store fp32 16x16 Register File → Share Memory

Arithmetic Instructions ⊕ OP ⊗ OP Algorithm

SIMD2.mma + × GEMM
SIMD2.minplus min + All-pairs shortest paths problem
SIMD2.maxplus max + Maximum cost (critical path)
SIMD2.minmul min × Minimum reliability paths
SIMD2.maxmul max × Maximum reliability paths
SIMD2.minmax min max Minimum spanning tree
SIMD2.maxmin max min Maximum capacity paths
SIMD2.orand or and Transitive and reflexive closure
SIMD2.addnorm + |a− b|2 L2 Distance

The SIMD2 instruction extension builds on top of the warp-level matrix-multiply-

accumulate (wmma [125]) instructions for GPUs and extends it to support new arithmetic

instructions. Table 3.2 lists these SIMD2 instructions.

The load instruction moves a chunk of data from the 1D shared memory address

space as a fixed-size (16x16) matrix to the per-thread register file. Like the wmma abstraction,

each thread in the warp stores part of the matrix in the register file and contributes to the

whole warp-level operation. The store instruction instead moves the matrix segments in

the register file back to the 1D shared memory address space.

In our implementation, we assume input operands are always in 16-bit, half-

precision floating-point format (fp16), while the output data is always in 32-bit, single-

precision floating point format (fp32). While supporting other formats (e.g., int8) is possi-

ble, for many algorithms, we find fixed-precision format cannot converge to the same result

as baseline fp32 implementations without SIMD2 instructions.
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For the arithmetic operations, we introduced eight more ⊕-⊗ ops, in addition to

the classic matrix-multiply-accumulate (mma). These nine instructions map to the frequently

used matrix problem patterns in Table 3.1. The SIMD2 arithmetic instruction shares the

same register file as the vector processor, and uses arguments that specify register locations

of input and output matrices. The latency of each SIMD2 instructions depends on the actual

hardware implementation of the SIMD2 unit, and in our implementation, we provision

the SIMD2 unit to be the same throughput as the conventional MXUs so that all SIMD2

arithmetic instructions have the same latency.

Similar to our changes for hardware architecture, we expect adding the SIMD2

instructions to other ISAs that already support GEMMs, such as Intel AMX [69], to be

straightforward. These matrix extensions already support matrices as input or output

operands and provide data movement instructions for matrices (load/store matrix). SIMD2

simply adds more arithmetic instruction on top of them. We align our SIMD2 design point

with modern GPU architectures to facilitate our evaluation, but this is not fundamental.

3.4 Programming Model

Table 3.3: Sample Low-level Matrix Operations

Sample Low-level Synopsis Description

simd2::matrix<matrix type, m, n, k, data type> Declaration function, declare the matrix will be applied in the mxnxk
matrix-matrix operation.

simd2::fillmatrix(simd2::matrix, value) Fill the target matrix with given value.

simd2::loadmatrix(simd2::matrix, source, ld) Load value from source memory location to the target matrix, load with
the step of leading dimension.

simd2::mmo(simd2::matrix, simd2::matrix, Performs the matrix-matrix operation with given opcode.
simd2::matrix, simd2::matrix, simd2::opcode)

simd2::storematrix(target, simd2::matrix, ld) Store value to source memory location from the target matrix, store with
the step of leading dimension.
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The SIMD2 units in our proposed architecture can perform matrix operations on a

set of predefined matrix shapes and data types. Therefore, the native programming interface

reflects the abstraction by which these SIMD2 units expose through the SIMD2 ISA. To fur-

ther facilitate programming at the application level, the framework can provide higher-level

library functions that decouple the programmability from architecture-dependent parame-

ters.

Table 3.3 summarizes the available functions from SIMD2’s low-level programming

interface. Each of these functions maps directly to a set of instructions that Section 3.3.2

describes. The exemplary programming interface resembles the C++ warp matrix opera-

tions that NVIDIA’s Tensor Cores use to smooth the learning curve, but not a restriction

from the SIMD2 architecture.

Since the low-level interface reflects the architecture of SIMD2 units, these func-

tions must operate on a set of matrix shapes and data types that the underlying SIMD2

hardware natively supports. The program needs to first declare the desired matrix shapes

and reserve the register resources for input matrices using the simd2::matrix function.

Then, the program can load input matrices into these reserved resources using the simd2::

loadmatrix function or set values using the simd2::fillmatrix function. The simd2::mmo

function receives arguments describing the desired SIMD2 operation to perform on the input

matrices and the location of the destination matrix.
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After the code finishes necessary computation on these matrices, the simd2::

storematrix can reflect the updated values to a memory location. In case the source dataset

does not fit the supported formats, the program typically needs to explicitly partition

datasets into tiles of matrices and aggregate partial results appropriately.

To facilitate programming and alleviate the burden of programmers, our framework

provides a set of high-level functions as an alternative programming interface. Each maps to

a specific type of SIMD2 arithmetic operations. These functions are essentially composed

using the aforementioned low-level functions. In contrast to the low-level interface with

limitations on inputs, these high-level functions allow the programmer to simply specify the

memory locations of datasets and implicitly handle the tiling/partitioning of datasets and

algorithms.

Figure 3.6 provides an example code that implements a high-level interface function

that solves the min-plus matrix problems. The compute kernel starts by identifying the

logical SIMD2 unit of the instance itself is occupying (Lines 6–7). The compute kernel

then allocates resources on the SIMD2 units (Lines 9–11). The code then loads the current

partial result of the target tile into one of the allocated matrix storage (Line 13). The

following for-loop (Lines 15–21) loads different pairs of tile matrices from the raw input

(Lines 17–18) and performs min-plus operations (Line 20) on these tile matrices together

with tile loaded in Line 13.

To use the compute kernel from Figure 3.6 or the low-level SIMD2 interface, the

programming model still requires a host program to control the workflow, coordinate the

computation on various types of processors and move datasets among memory locations
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1 void s imd2 minplus ( h a l f ∗A, ha l f ∗B,

2 f loat ∗C, f loat ∗D,

3 int m, int n , int k ){

4 // s e t t i l e ID

5 int t i l e i d y = g e t t i l e i d y ( ) ;

6 int t i l e i d x = g e t t i l e i d x ( ) ;

7 // Declare simd2 matr ices

8 simd2 : : matrix<simd2 : : matrixa , 16 , 16 , 16 , ha l f> mat A ;

9 simd2 : : matrix<simd2 : : matrixb , 16 , 16 , 16 , ha l f> mat B ;

10 simd2 : : matrix<simd2 : : accum ,16 , 16 , 16 , f loat> mat C ;

11 // load C to c t i l e

12 simd2 : : loadmatr ix (mat C , C, 16)

13 // loop over K, each time do 16 x16x16 mmo

14 for ( int t i l e i d k =0; t i l e i d k <k ; t i l e i d k +=16){

15 // load A/B in to a t i l e / b t i l e

16 simd2 : : loadmatr ix (mat A , A, 16)

17 simd2 : : loadmatr ix (mat B , B, 16)

18 // performe mmo

19 simd2 : :mmo(mat C , mat A , mat B , mat C , minplus ) ;

20 }

21 // s t o r e back r e s u l t s

22 simd2 : : s to r emat r ix (D,mat C , 1 6 ) ;

23 }

Figure 3.6: Tiled minplus MM on some architecture with SIMD2 supports

on heterogeneous computing devices. Figure 3.7 shows an example code that solves the all

pair shortest path problem using the All-pairs Bellman Ford algorithm. As SIMD2 units are
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1 f loat ∗ adj mat d ;

2 f loat ∗ d i s t d d e l t a ;

3 f loat ∗ d i s t d ;

4 cudaMalloc ( . . . , adj mat d , . . . ) ;

5 cudaMalloc ( . . . , d i s t d , . . . ) ;

6 cudaMalloc ( . . . , d i s t d d e l t a , . . . ) ;

7

8 cudaMemcpy( adj mat d , . . . , H2D) ;

9 cudaMemcpy( d i s t d d e l t a , . . . , H2D) ;

10 cudaMemcpy( d i s t d , . . . , H2D) ;

11

12 bool converge = true ;

13 while ( converge ){

14 simd2 minplus ( adj mat d , d i s t d , d i s t d , d i s t d d e l t a , v , v , v ) ;

15 converge = check convergence ( d i s t d , d i s t d d e l t a , . . . ) ;

16 }

17 cudaMemcpy ( . . . , d i s t d , . . . , D2H) ;

Figure 3.7: CUDA kernel implenmentation of APSP using SIMD2 API

auxiliary computing resources to a GPU, the program code will need to explicitly allocate

GPU device memory (Line 4–10) and move data to the allocated space before invoking

the high-level simd2 minplus function that Figure 3.6 implements (Line 14). The näıve

SIMD2 implementation of All-pairs Bellman Ford algorithm would require V iterations of

Line 14. The näıve implementation assumes the diameter of the graph is always the same

as the number of vertices, the worst case scenario. However, the diameter of a real-world

graph is way lower than that and a majority of iterations in Line 14 repeatedly generate
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identical results. Therefore, the implementation in Figure 3.7 added a convergence check

(i.e., the check convergence function call) in Line 15 to compare if any element in the

result matrix changes from the last iteration. If the result remains the same, the algorithm

can terminate earlier. The check convergence (Line 15) is a pure GPU kernel. Because

both SIMD2 units and conventional GPU cores share the same device memory and registers,

the program does not need additional data movements between Line 14 and Line 15.

In Figure 3.7, we use All-pairs Bellman Ford algorithm as the inputs of SIMD2

computation in this algorithm are easier to understand. In practice, the Leyzorek’s Algo-

rithm can solve APSP problem with fewer SIMD2 operations [90]. Leyzorek’s Algorithm

still uses SIMD2, but computes C = C ⊕ (C ⊗ C) in Line 14 instead. In this way, Ley-

zorek’s Algorithm only requires lg|V | iterations to solve an APSP problem in the worst case

scenario.

3.5 Experimental Methodology

As SIMD2 promotes matrix-based algorithms, the SIMD2-ized implementations of

our benchmark applications may use different algorithms compared to their state-of-the-

art implementations, typically using vectorized or scalar-based algorithms, on alternative

platforms. Therefore, we designed a framework that allows us to validate the correctness

of SIMD2-ized programs and emulate the performance of SIMD2-ized programs with or

without SIMD2 hardware acceleration presented. This section will describe these aspects

in detail.
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Figure 3.8: The workflow of the emulation framework for SIMD2 evaluation.

3.5.1 Emulation framework

To evaluate SIMD2, we developed a framework that evaluates the correctness and

performance for each program under test on top of a testbed using a state-of-the-art GPU

architecture.

Hardware configuration

Our validation and emulation framework uses a machine with NVIDIA’s RTX 3080

GPU based on the Ampere architecture with 10 GB device memory. This machine has an

8-core, 16 threads AMD RyZen 3700X processor with peak clock rate at 4.4 GHz and 16

GB physical main memory installed. The machine hosts an Ubuntu 20.04 (Linux kernel

version 5.13) with NVIDIA’s CUDA 11.1 using driver version 470.103.01.

Evaluation Process

Figure 3.8 illustrates the workflow of our process in evaluating applications. For

baseline applications, we executed each application directly on the hardware platform with-
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out any modification to their source code, datasets and invoked library functions. For

SIMD2-ized applications, their implementations leverage semiring-like algorithms using the

programming model and SIMD2 API functions described in Section 3.4. The evaluation

framework takes three types of inputs: (1) the compiled program and command line argu-

ments, (2) the dataset used in the baseline application, and (3) the output of the baseline

application with the input dataset and command line arguments. Once the emulation frame-

work receives these three sets of inputs, the emulation framework can dynamically change

the linked library that implements SIMD2 API functions to perform (1) correctness vali-

dation by using a backend that leverages conventional vector processors and compare the

output with the output that the baseline version produced, or (2) performance emulation by

using a backend that generates instructions to Tensor Cores residing on the hardware plat-

form. The following paragraphs will describe the correctness validation and performance

emulation process in detail.

Correctness validation In this work, we need to validate correctness in addition to

performance emulation for the following reasons. First, as we need to alter the compute

kernels to efficiently use SIMD2 units and in many cases, using a different algorithm (e.g.,

Semiring-based vs. Kruskal’s Algorithm in Minimum Spanning Tree problems), we need

to verify if the change of implementation still delivers the same outcome as the baseline

implementation. Second, as existing hardware accelerators only support MMA operations

that cannot generate the correct output for other SIMD2 operations this paper proposes to

extend, we need to verify if implemented semiring-based algorithms can generate the desired

output after mapping the computation into the proposed SIMD2 units. Finally, this process
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can help collect the statistics regarding the total amount of various matrix operations and

provide the input for performance emulation.

During the validation process, we linked the backend of the SIMD2 programming

interface to a library that we extended from cuASR [70]. This library implements exactly

the same functionality as the proposed low-level SIMD2 functions, except that the library

can simply leverage CUDA cores through NVIDIA’s high-performance CUTLASS library,

but not use Tensor Cores. When implementing low-level SIMD2 functions for validation

purposes, we carefully partitioned the inputs and outputs to fit the exact shape of matrix

inputs and outputs of proposed SIMD2 units (i.e., the input/output sizes of each Tensor

Core in our testbed) when invoking corresponding SIMD2 function calls. We also used

reduced/mixed precision inputs/outputs to match the data types that our SIMD2 units

support. Therefore, the validation process can help us access the accuracy of SIMD2 units.

For each program under test, we can optionally count the number of iterations, threads,

and low-level SIMD2 function calls that are necessary to finish running the program and

compare each program’s output with its state-of-the-art implementation on the alternative

architecture.
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Performance emulation The design of SIMD2 allows this work to leverage existing

Tensor Cores that are available on the GPU of our emulation hardware for exact performance

evaluation for the two main reasons. First, adding SIMD2 instructions do not increase the

timing of an existing MMA unit (e.g., a Tensor Core) as Section 4.6.7 reports. Second, the

low-level instructions, register files, memory hierarchy as well as the interaction with the

host machine can be made almost identical to those of Tensor Cores, except for the exact

output after each computation.

When performing performance emulation, the framework links the backend of

the low-level SIMD2 API library that implements through using equivalent Tensor Cores’

WMMA low-level interface. As this paper simply proposes to extend the ALU functions

of Tensor Cores, the memory operations remain the same in SIMD2 units compared with

Tensor Cores. Therefore, each simd2::loadmatrix and simd2::storematrix invocation

are identical in its counterpart in CUDA’s WMMA API. However, since the state-of-the-art

Tensor Cores can only performMMA operations, the performance emulation backend library

maps each invocation of simd2::mmo to a CUDA’s WMMA::mma function call on the same

size of inputs. This is also the main reason why the performance emulation backend cannot

produce correct/meaningful computation outcomes. The performance emulation process

can optionally receive statistics from the corresponding validation process to compare if

the performance emulation backend generates the exact amount of simd2 and WMMA

operations as desired. This performance emulation methodology is similar with prior work

in extending Tensor Cores [39] to support different precisions.
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Table 3.4: Source and input data size of baseline implenmentation for each selected appli-
cations.

Application Baseline Source Input Dimension

All Pair Shortest Path
(APSP)

ECL-APSP
[79,97]

Small 4096
Medium 8192
Large 16384

All Pair Critical Path
(APLP)

ECL-APSP
[79,97]

Small 4096
Medium 8192
Large 16384

Maximum Capacity Path
(MCP)

CUDA-FW
[101,106]

Small 4096
Medium 8192
Large 16384

Maximum Reliability Path
(MAXRP)

CUDA-FW
[101,106]

Small 4096
Medium 8192
Large 16384

Minimum Reliability Path
(MINRP)

CUDA-FW
[101,106]

Small 4096
Medium 8192
Large 16384

Minimum Spanning Tree
(MST)

CUDA
MST [55,61,71,141,151]

Small 1024
Medium 2048
Large 4096

Graph Transitive Colsure
(GTC)

CUBOOL
[131]

Small 1024
Medium 4096
Large 8192

K-Nearest Neighbor
(KNN)

KNN-CUDA
[164]

Small 4096
Medium 8192
Large 16384

3.5.2 Applications

To demonstrate the performance of SIMD2, we ran two types of workloads on the

aforementioned evaluation framework. The first type is a set of microbenchmark workloads

that only iteratively invoke SIMD2 functions and accept synthetic datasets to help us to

understand the pure performance gain of SIMD2 instructions over alternative implementa-

tions.

The other is a set of full-fledged benchmark applications where each program

contains not only SIMD2 functional, but also interacts with other types of processors to
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complete the tasks. These benchmark applications can accept real-world datasets and

generate meaningful outputs accordingly for us to assess the quality of results if appropriate.

For each workload, we evaluate three implementations.

State-of-the-art GPU baseline This version of code serves as the baseline of our work-

loads. We tried our best to collect implementations from publicly available open-source

code hosting websites and select the best-performing implementation on our testbed as the

state-of-the-art baseline version for each workload. These implementations simply leverage

CUDA cores, but not Tensor Cores to accomplish their tasks. In fact, without a work like

SIMD2, none of the selected benchmark can leverage Tensor Cores due to the limited MMA

functions available on such hardware units.

SIMD2 in CUDA cores This version of code serves as another baseline of our workloads.

This set of programs implement SIMD2-ized algorithms only using CUDA cores, but not

Tensor Cores. Our implementations try to leverage the highly optimized functions from

cuASR or CUTLASS whenever appropriate. Different from backend functions used in

Section 3.5.1, this version of code does not manually partition the algorithms based on our

proposed SIMD2 hardware configuration but allow the code to fully exploit the performance

from CUDA cores. This version helps us to identify the performance variance by naively

applying matrix algorithms without the presence of appropriate matrix accelerations.

SIMD2 using Tensor Cores This version of code use identical algorithms to the version

of SIMD2 in CUDA cores except that we replace these algorithms’ matrix operations to

SIMD2 ones when appropriate. As existing hardware does not support our proposed SIMD2
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operations yet, we evaluate the performance and validate the result of this version through

the framework that Section 3.5.1 describes.

Table 3.4 lists the set of benchmark applications. Each of these applications rep-

resents a use case for a proposed SIMD2 instruction as follows.

All-Pairs Shortest Path (APSP) and All-Pairs Critical (Longest) Path (APLP)

APSP and APLP are graph problems that can be solved via min-plus and max-plus SIMD2

instructions. Without SIMD2, the most efficient implementation, ECL-APSP [97], applied

a phase-based-tiled Floyd Warshall algorithm to exploit massive parallelism using CUDA.

We implemented APLP by extending the ECL-APSP with reversing the input weights on

DAG to support the desired recurrence relation. For SIMD2 version, the implementation

simply changes the function calls to use min-plus and max-plus.

Maximum Capacity Path (MaxCP), Maximum Reliability Path (MaxRP) and

Minimum Reliability Path (MinRP) MaxCP, MaxRP and MinRP represent another

set of graph problems with solutions based on transitive-closure. We select CUDA-FW as

the state-of-the-art GPU baseline for these problems and apply different operations in each

iteration of their algorithms. These applications’ SIMD2 kernels simply require invoking

max-min, max-mul and min-mul instructions.

Minimum Spanning Tree (MST) Minimum spanning tree or minimum spanning forest

(MSF) has rich applications in real-life network problems. However, conventional MST

or MSF algorithms cannot efficiently take advantage of GPU architectures due to limited

parallelism. The best-performing GPU implementation that we know of is CUDA MST

and we use this one as our baseline. MST and MSF map perfectly to the min-max SIMD2
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instruction. Our SIMD2 version of code thus leverages min-max instruction to investigate

the efficiency of SIMD2 in this type of problem.

Graph Transitive Closure (GTC) GTC is also a graph analytics workload. Unlike

other graph algorithms, GTC simply checks the connectivity between all vertices rather

than reporting a route to fulfill the goal of optimization. Therefore, GTC can use library

functions from cuBool [131] for efficient implementation on GPUs. In SIMD2 version, we

used or-and instruction to implement the solution.

K-Nearest Neighbor (KNN) Solving pair-wise L2 distance is at the core of K-nearest

neighbor and K-means problems, and can leverage SIMD2’s add-norm instruction. For the

state-of-the-art GPU baseline, we use KNN-CUDA.

3.6 Results

This section summarizes our evaluation of SIMD2. SIMD2 delivered up to 38.59×

speedup in benchmark applications with simply 5% of total chip area overhead.

3.6.1 Area and Power

We implemented the proposed SIMD2 unit in RTL and synthesize them using

Synopsis design compiler and the 45nm FreePDK45 library. We extended a baseline MMA

unit that can simply perform MMA functions like conventional MXUs presented in Tensor

Cores. The baseline MMA unit features 4x4 matrix multiplications on 16-bit input elements

and accumulates results in 32-bit elements. This configuration resembles the architecture

used by Tensor Cores [121] and Accel-Sim [81]. We carefully design the proposed extensions
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Table 3.5: The area overhead of supporting SIMD2 instructions through (a) adding instruc-
tions to the MMA unit, (b) individual accelerators, (c) extension to the MMA unit with
various precisions, compared to the baseline 16-bit MMA Unit.

Supported Ops. Area

MMA + All SIMD2 Insts. 1.69

MMA + Min-Plus 1.21
MMA + Max-Plus 1.21
MMA + Min-Mul 1.12
MMA + Max-Mul 1.12
MMA + Min-Max 1.01
MMA + Max-Min 1.01
MMA + Or-And 1.04
MMA + Add-Norm 1.18

(a)

Supported Ops. Area

Min-Plus 0.26
Max-Plus 0.26
Min-Mul 1.03
Max-Mul 1.03
Min-Max 0.06
Max-Min 0.06
Or-And 0.08
Add-Norm 0.19

Total 2.96

(b)

8-bit 16-bit 32-bit 64-bit

MMA only 0.25 1 4.04 11.17
MMA + All SIMD2 Insts. 0.69 1.69 6.42 17.01

(c)

to make the timing of the SIMD2 unit the same as the baseline. We empirically observe

that our the modification for the SIMD2 unit never increases the critical path delay.

Table 3.5(a) lists the area overhead of adding SIMD2 instructions into the baseline

MMA unit. The baseline MMA unit is 11.52 mm2 in size. Adding each individual instruc-

tion results in 1.34% – 21.25% overhead. The full-fledged SIMD2 unit has an area overhead

of 69.23%. We inspected the public die photo of an NVIDIA 3080 GPU and found that

SMs account for 50.2% of the 628.4 mm2 die area, and each SM is 3.75 mm2. If we scale

the 69.23% overhead from the 45nm process to the Samsung 8N process used for our 3080

NVIDIA GPU baseline, a SIMD2 unit introduces only 0.378 mm2, which is only 10% of the

SM area and 5% of the total die area.

Table 3.5(b) also lists the case where we only implement a processing element

to support a specific SIMD2 instruction without the MMA function (i.e., as an individual
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accelerator). If we implement each SIMD2 instruction separately as an individual acceler-

ator, the total area of these accelerators will require additional 2.96x space of the baseline

MMA unit. In contrast, the design of SIMD2 unit allows these instructions to reuse com-

mon hardware components and saves area. For example, we found that for the processing

elements supporting Min-Mul and Max-Mul operations, the area is almost the same as an

MMA unit. However, combining their functions into a single SIMD2 unit only results in

11.82% of area overhead, showing these instructions can share a large amount of circuits

that were originally used for MMA operations. The baseline MMA unit consumes 3.74 W

power. Extending the baseline as a SIMD2 unit only adds 0.79 W to the active power.

If we extend the baseline MMA to support 32-bit numbers, the size of the MMA

unit becomes 4.03x larger than a 16-bit MMA unit as Table 3.5(c) lists. A SIMD2 unit

supporting 32-bit inputs occupies 59% more area than the 32-bit MMA unit. If we further

extend the MMA to support 64-bit numbers, the size of the MMA unit becomes 11x larger

than the 16-bit MMA. Extending the 64-bit MMA unit as a 64-bit SIMD2 unit will add

52% area overhead. If we make both the baseline MMA and SIMD2 units in supporting

8x8 matrix operations in 16-bit inputs, the MMA unit will become 7.5x larger than the 4x4

baseline. The area overhead over the baseline MXU stays constant and scales well.
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Figure 3.9: Performance of microbenchmark with square matrices using SIMD2 API

3.6.2 Microbenchmarks

We used microbenchmark workloads that repetitively invoke SIMD2 the same in-

structions to gauge the performance gain of using SIMD2 units compared against equivalent

GPU implementations. The result shows up to 15.8× speedup in evaluated scenarios.

Figure 3.9 shows the performance gain of SIMD2 over the equivalent GPU baseline

implementations when using square matrices as inputs. SIMD2 reveals up to 15.8× speedup

compared with using CUDA cores to achieve the desired matrix operation on the same

dataset. The geometric mean (gmean) that discounts the outlier also shows a strong 7.9×–

9.9× speedup, depending on the input set sizes. When input matrices are larger than
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Figure 3.10: Performance of microbenchmark with nonsquare matrices using SIMD2 API

4,096×4,096 ones, the performance gain saturates at about 10×, representing the level of

peak performance gain of these instructions. Figure 3.10 shows the performance gain of

SIMD2 instructions on different shapes of matrices. The performance gain still saturates at

the level of 10× when matrices are large, regardless of their shapes.

From both results, SIMD2 has the largest performance gains for min-max, max-

min, and or-and instructions, by up to 15.8×. Such improvement is larger than the peak

throughput difference between vector units and SIMD2 units. We suspect the extra benefit

from SIMD2 units is due to the structural hazard in the GPU SM architecture, where min

and max operations share the same hardware resources(e.g., ALU port), and so are or and
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Figure 3.11: Performance of applications using SIMD2 API

and operations. By fusing these operations in a single instruction, SIMD2 unit avoids this

bottleneck and results in much higher speedup.

The speedups of Plus-Mul and Plus-Norm operations are relatively low compared

with others, but still enjoy a 3.1× speedup over using CUDA cores. This is because CUDA

cores provide support for fused multiply-add (FMA) that allow the GPU to complete plus-

mul operations with a single instruction. We expect that supporting more instructions

similar to FMA would also provide similar performance boost to the class of problems that

SIMD2 addresses. Nevertheless, SIMD2 still has a significant advantage, obtaining a speedup

of up to 5.96× for larger matrix operations. We conclude that the SIMD2 architecture has

larger potential than fusing more vector operations, which we leave to future work.
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Figure 3.13: Performance of applications using Sparse SIMD2 unit

3.6.3 Benchmark Applications

Figure 3.11 shows the speedup of kerenl latency of applications using SIMD2

(SIMD2 w/ SIMD2 units) over the baseline, optimized GPU implementations. SIMD2

achieves a geometric mean of 6.94× – 8.25×, with speedup as large as 38.59×. The perfor-

mance gain of SIMD2 in 7 out of the 8 applications remains strong even when dataset sizes

increased.

Compared with implementing the same matrix-based algorithms without SIMD2

presented (SIMD2 w/ CUDA cores), all applications show significant slow down when
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SIMD2 units are absent. For APLP, MST, MaxRP, MinRP, and APSP, these applica-

tions can never take advantage of matrix-base algorithms due to their higher computational

complexities when SIMD2 units are absent. This result explains why these algorithms were

not favorable in conventional architectures. However, the introduction of SIMD2 makes

these matrix algorithms feasible. The matrix processing power from the SIMD2 unit can

compensate or even improve the performance of the applications as our experimental results

tell. In fact, these algorithms can potentially take advantage of the embarrassingly parallel

nature of matrix multiplication to parallelize hard-to-parallelize problems.
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For MCP, GTC, and KNN, their SIMD2 implementations out-perform their base-

line, state-of-the-art implementations, even without the presence of SIMD2 units. For KNN,

the computational complexity is the same for both SIMD2 and the baseline implementa-

tions. However, the SIMD2 kernel can still achieve a maximum speedup of 6.55× without

the help of SIMD2 units. This is because the baseline implementation uses customized func-

tions to implement the algorithm, but the backend library of SIMD2 without SIMD2 units

leverages CUTLASS that is more optimized and adaptive to modern GPU architectures.

However, the performance gap between configurations with or without SIMD2 units ranges

between 4.79× and 6.43×. The performance advantage is more significant when we use the

largest dataset. Therefore, even we revisit the design of the GPU baseline and make that

as efficient as SIMD2 on CUDA cores, such implementation still has a huge performance

gap to catch up with the performance using SIMD2 units. For MCP and GTC, SIMD2 w/

CUDA cores can outperform their baseline implementations even though the computational

complexity is higher in SIMD2 implementations for two reasons. The first reason is simi-

lar to the case in KNN that SIMD2 w/ CUDA cores benefits from more optimized library

functions than the baseline ones.

The other reason is that the rich parallelism of these matrix-based algorithms al-

low these implementations to scale better on modern GPU architectures – considering that

the RTX 3080 GPU has twice as many CUDA cores than that of the previous generation

of GPU architecture. However, the state-of-the-art baseline implementation cannot take

advantage of this architectural improvement. On the other hand, this result also reveals

that SIMD2 programming model can make programs more adaptive to various underly-
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ing architectures since these architectural optimizations on SIMD2 operations will remain

without the demand of further code optimization.

The performance of APLP and MST using SIMD2 degrades when datasets become

larger. This is because both APLP and MST using SIMD2 require additional convergence

checks that are sensitive to input data values to determine the completion of the solution.

As the input dataset grows, the variance in the content also becomes more significant and

needs more iterations for the algorithm to converge. However, if the number of iterations do

not increase with the growth of dataset sizes, the program can still show performance gain

over conventional CUDA cores since SIMD2 still makes each iteration faster. For MST, the

baseline GPU solution uses Kruskal’s algorithm that can solve MST/MSF problems with

computational complexity at O(E logE) [30,87], where E is defined as the number of edges

in the input graph. In contrast, each iteration of the matrix-based SIMD2 solution has

the complexity of O(V 3) [30, 42], where V is the number of vertices in the input graph.

Therefore, SIMD2 becomes slower than the baseline implementation in each iteration for

MST when dataset size is larger.

3.6.4 Discussion on algorithmic optimizations

In Figure 3.11, our implementations use Leyzorek’s algorithm and convergence

checks to optimize the number of SIMD2 operations, except for KNN. As the proposed

SIMD2 architecture improves the performance of supported semiring-like operations, SIMD2

still allows these matrix-based algorithms to outperform the baseline state-of-the-art GPU

implementations without these algorithmic optimizations.
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The effect of convergence checks is sensitive to inputs. For each compute kernel

using Leyzorek’s algorithm on graph problems with V vertices, the implementation will take

lg|V | SIMD2 operations in the worst-case scenario. To evaluate the worst-case performance,

we implemented a version of these applications without convergence checks. Figure 3.12

illustrates the performance of these implementations with bars labeled as Leyzorek w/o

convergence. The baseline remains the same as Figure 3.11. Despite the increasing numbers

of iterations, all applications still outperform their baseline GPU implementations, ranging

from 1.11× to 10.91×.

In Figure 3.12, we also present implementations of these applications using the

less efficient all-pair Bellman-Ford algorithm (AP-BF w/ convergence). As Bellman-Ford

algorithm can take up to —V— SIMD2 operations, using Bellman-Ford algorithm can

slow down APLP and MST when datasets become large. MINRP can never beat GPU

implementations if we use Bellman-Ford algorithm-based implementations. However, the

performance gain remains significant for other applications as the advantage of SIMD2

architecture out-weighted the shortcomings of increased computational complexity.

3.6.5 SIMD2 for Sparse Workloads

SIMD2 on architectural support for sparsity. The idea of SIMD2 can be

applied to architecture support for sparse inputs, too. As an initial look of the SIMD2

model, we extend our emulation framework and build on top of the cuSparselt library to

model the benefit of applying the SIMD2 idea to the sparse Tensor Cores in the RTX 3080

GPU, which supports structured sparsity and provides up to 2× throughput. We assume
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Figure 3.14: Performance of sparse matrix multiplication

the inputs are pre-processed and stored in the format required by the sparse Tensor Core,

excluding the processing overhead when reporting the speedup.

Figure 3.13 shows the speedup over baseline implementation when using a sparse

SIMD2 unit. We performed experiments using datasets with densities at 1%. Using sparse

SIMD2 units can improve performance by up to 68.33×, with geometric means ranging

from 12.79×–15.65×. Compared with the baseline SIMD2, SIMD2 on sparse Tensor Cores

is 1.67×–1.9× faster.

SIMD2 for extremely sparse inputs. Some applications often have extremely

sparse inputs, especially for graph algorithms. For these sparse inputs, a dense SIMD2 unit
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might provide less performance improvement over implementations that are designed for

sparse inputs, such as the cuSparse library. We therefore explore at what sparsity SIMD2

can still provide benefits, which is illustrated in Figure 3.14. The x-axis in Figure 3.14 shows

the sparsity of inputs, meaning the ratio of zeros to non-zeros in each dataset. The y-axis

shows the speedup of using NVIDIA’s spGemm function, a sparse GEMM function optimized

for Tensor Cores, from cuSparse library compared against gemmEx function, a dense GEMM

function for Tensor Cores, from cuBlas library. The results show that cuSparse does not

outperform cuBlas for matrices of size 1024 × 1024, and for matrices of size 4096 × 4096,

cuSparse can outperform cuBlas when the sparsity of the input matrix exceeds 99%. This

result shows that while many applications need to process sparse inputs, there is still a

range of sparsity where SIMD2 can provide benefit. Such range also covers a number of real

graph datasets that do not exceed the sparsity indicated in the results [107], implying that

it is more efficient to use the dense matrix processing method for these cases if appropriate

architectural support for sparse matrix operations are absent.
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To handle extremely sparse inputs (sparsity >= 99%) on larger graphs, we can

apply SIMD2 sparse accelerators for spGEMM, which also use multiply-and-add for the

ALU, such as GAMMA [183]. For example, a GAMMA PE uses FP64 multiplier and

adder, and an SIMD2 GAMMA PE will use two FP64 ALUs, one supports the ⊕ op, and

the other supports the ⊗ op. This SIMD2 GAMMA accelerator would then be able to run

APSP on sparse graphs. In fact, extending sparse accelerators with SIMD2 would incur less

overheads, as compute units contribute to less area than dense accelerators. For example, in

GAMMA, only 10% of the total area is due to the FP64 MAC unit. We leave this extension

to future work.

It is worth mentioning that while libraries like cuSparse have an advantage in

terms of space complexity when dealing with extremely sparse matrices, the compressed

matrix format may consume more device memory when storing relatively dense matrices.

Experimental results show that cuSparse requires more memory than a single RTX 3080

GPU can provide when processing matrices with sparsity less than 90% (the OOM result

in Figure 3.14) and size more than 16384× 16384. However, when using a dense processing

method, a GPU with 10GB of device memory can accommodate a matrix multiplication of

at least 32768× 32768 in size.

3.7 Conclusion

Recent advance in hardware accelerators that accelerate matrix multiplications in

AI/ML workloads encourage us to take a new look at other matrix problems. As many ma-

trix problems share a similar computation pattern with matrix multiplications that existing
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hardware accelerators already optimize for, a more generalized matrix processor will allow

these matrix problems to benefit from hardware acceleration.

This paper introduces SIMD2 to investigate the potential of this research avenue.

We leverage the common computation pattern of significant matrix problems to design

the SIMD2 instruction set and implement a feasible, exemplary hardware architecture sup-

porting these SIMD2 instructions with 5% total chip area overhead. We demonstrate the

effectiveness of SIMD2 using a set of benchmark applications, some of them are rewritten

with algorithms that are traditionally considered inefficient due to the lack of hardware

support like SIMD2. Our evaluation results show that the proposed SIMD2 architecture

achieves more than 6.94× speedup on average across eight applications with various tensor

computation patterns.
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Chapter 4

Exploiting Data reuse with

Inter-operator Dataflow

Sparse tensor algebra (STA) is the key building block of scientific computing, graph

analytics, and machine learning applications. STA operators such as SpMSpM (sparse

matrix-sparse matrix multiplication), SpMM (sparse matrix-dense matrix multiplication),

and SpMV (sparse matrix-dense vector multiplication) contribute to the majority of the

runtime of these applications [4,57]. Unlike dense tensor algebra, the data movement limits

performance of STA applications due to their low arithmetic intensity. Thus, maximizing

data reuse is the key to accelerating STA applications.

4.1 Overview of data resue and SIDA

Prior research focuses on exploiting intra-operator data reuse to reduce data move-

ment. For example, SpMSpM accelerators [57, 112, 183] propose dataflows with specialized
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format and microarchitecture support to minimize data movement in SpMSpM operations.

Other work improves cache locality [16, 17] of SpMV operations in graph analytics. These

ideas push the system closer to the roofline [172], where the available memory bandwidth

is fully utilized for the STA operation. However, even with these improvements, due to the

intrinsic low arithmetic intensity in STA operations, many applications still reside in the

bandwidth-bound region of the roofline [128], and any further data movement reduction

can be directly translated into performance.

Conventionally, implementing STA applications requires hand-written and format-

specific code with nested loops and application-specific logic, muddling opportunities to re-

duce data movements. Fortunately, recent developments in domain-specific STA languages

and compilers [19, 41, 84, 142] alleviate the programming burden by generating low-level

code for STA applications. Frameworks with tensor and dataflow abstractions, such as

TensorFlow [6], PyTorch [68], GraphBLAS [34], and ALP [181], offer new abstractions

for STA applications. Such novel abstraction with a dataflow graph presents data reuse

opportunities beyond a single operator.

We find that there are two unexplored, inter-operator reuse opportunities for STA

applications. First, producer-consumer data reuse reduces data movement by combin-

ing multiple tensor operations into a single, large fused operation. Prevalent in dataflow

graphs, producer-consumer reuse is typically captured by forming pipelines of operations

to keep intermediate results in on-chip buffers. While producer-consumer data reuse has

been exploited widely in dense tensor algebra [7], limited work has explored this reuse

opportunity in STA applications.
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Second, cross-iteration data reuse is a new reuse opportunity revealed in this

paper, which extends beyond single or adjacent STA operations. By unrolling loops or

stages in STA applications, it is possible to fuse multiple identical operations (e.g. SpMV in

a while-loop) and reduce memory traffic across iterations. No prior work has identified this

opportunity, and harnessing cross-iteration data reuse requires a novel dataflow (Section 4.3)

and corresponding hardware supports (Section 4.4).

To exploit these inter-operator reuse opportunities, this chapter proposes (a) OEI

datflow, which facilitates inter-operator data reuse, and (b) SIDA–Sparse Inter-operator

Dataflow Architecture, which incorporates key features:

• A dynamic execution pipeline with compute cores for each stage of the OEI dataflow.

These cores support the diverse semiring operations prevalent in common STA appli-

cations, extending its applicability beyond HPC/DNN.

• An efficient on-chip buffer that streamlines the data supply to compute cores in the

OEI dataflow.

• A set of intelligent control and management policies to schedule computation and data

access tasks in sub-tensor manners to maximize data reuse, targeting the producer-

consumer and cross-iteration reuse opportunities.

• A sparse tensor preprocessing algorithm, including blocking and reordering, to improve

inter-operator reuse.
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4.2 STA applications and Challenges of data reuse

In this section, we first review how to represent STA applications in modern sparse

tensor framework. With this representation, we then identify the required hardware archi-

tecture ingredients and potential data reuses to motivate the proposed OEI dataflow and

our SIDA architecture.

Implementing high-performance STA applications traditionally requires various

manual optimizations and is rarely portable. To improve programmers’ productivity, re-

cent advances in language and compiler design thus leverage and extend the abstraction

of BLAS [1] and Einsum [84] to allow programmers to represent their STA applications as

tensor dataflow graph. For example, in Fig. 4.2, we compare two implementations of a clas-

sic STA application, PageRank, one in standard C, and the other in the GraphBLAS [80],

tensor-based abstraction.

There are three advantages of the dataflow representation. First, the building

block is a set of well-define, semiring tensor operators, such as vxm or mxm (vector/matrix

matrix multiplication), and a series of e-wise (element-wise) operations.
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4.2.1 STA applications as tensor dataflow graphs

For example, in PageRank, the used operators are vxm with Mul-Add as the semiring

operation, and set, fold, dot (vector-vector dot product), swap as e-wise operations,

and other STA applications use different combinations (see Table. 4.2 in Sec. 4.5). The

implementation details of the operators, including storage format and tensor traversal order,

are hidden from the programmer. This separation of concerns [139] lets programmers focus

on expressing the applications and leaves how to optimize operators to system designers.

set < 0 >

pr nextnext

vxm

pr nextnext convergence 

check

L

row sum

foldl

pr next

set < 0 >

e-wise apply 

< mul >

pr next

dangling

foldl
dot

residual

pr

pr nextnext
swap

pr nextnext

vector

matrix

operation 

< operator >

scalar

current 
iteration

next 
iteration

Figure 4.1: Inner loop dataflow graph of Pagerank algorithm implemneted by ALP/graph-
bas. Few small operations are ommited to increase readibility.

Second, under this abstraction, the tensor dataflow and dependency between op-

erators is clear. Compared to an non-fused cpmute graph shown in Fig. 4.1, Fig. 4.3 shows

an abstracted compute graph of PageRank’s inner loop. The vxm operator takes vector pr -

next and matrix L as input and produces vector pr nextnext as output, while other vectors
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serve as inputs, outputs, or intermediates for fused e-wise. As shown in Fig. 4.3 (b), two

groups of e-wise can be fused by identifying connected components of operations and data

nodes, yielding two new sub-graphs. This abstracted compute graph enhances visibility of

data dependencies across each loop iteration, facilitating exploration of cross-iteration data

reuse opportunities.

Lastly, under the dataflow representation, STA applications contain multiple it-

erations/stages of the same subgraph, with each iteration advancing towards a convergent

result. The loop body can generally be divided into a BLAS-2/3 operation (vxm or mxm),

and a series of e-wise operations. Very often, the matrix in the vxm or mxm operator is a

constant sparse tensor (e.g., the graph L in PageRank), which accounts for the most of the

data movement and is shared across iterations.

for( int i = 0; i < n; i++ ) {

  dangling += pr[i] + row_sum[i];

  pr_next[i] = pr[j] * row_sum[j];

}

dangling = (d * dangling + 1 - d)/n;

for( int i = 0; i < n; i++ ) {

  sum = dangling

  for( int j = 0; j < n; j++ ) {

    sum += pr_next[i] * L[i][j];

  }

  pr_nextnext[i] = sum;

}

for ( int i = 0; i < n; i++ ) {

  res += fabs(pr[i]-pr_nextnext[i]);

}

pr = pr_next;

foldl(dangling, pr, row_sum, Add);

set(pr_next, 0);

eWiseApply(pr_next, pr, row_sum, Mul);

dangling = (d * dangling + 1 - d) / n;

set(pr_nextnext, 0);

vxm(pr_nextnext, pr_next, L, Mul-Add);

foldl( pr_nextnext, dangling, Add);

dot(res, pr, pr_nextnext, add, Abs-Diff);

swap(pr, pr_nextnext);

// L: Input graph  d: Damping factor

// pr, pr_next, pr_nextnext, row_sum: PageRank vector buffer

// dangling: Caching the contribution of random jumps from dangling nodes

// res: Residual value

// Mul-Add, Abs-Diff, Add, Mul: Semiring/Monoid operator

Standard C code GraphBLAS code

Figure 4.2: Inner loop of PageRank algorithm. For simplicity, the c implementation assumes
dense tensors.
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row sum pr
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pr next
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e-wise apply 

< Mul >

pr nextdangling

pr nextnext prdangling
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dot < Abs-Diff >

residualpr

pr nextnext

swap

pr nextnext

e-wise 0 e-wise 1

(b)

Figure 4.3: Inner loop compute graph of PageRank algorithm, (a) abstracted compute graph
fusing e-wise operations, (b) further break down of e-wise operations.
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4.2.2 Architectural support to accelerate STA applications

To accelerate dataflow-based STA application like PageRank shown in Fig. 4.3, we

identify several key architectural supports missing from existing solutions.

First, supporting and accelerating configurable semiring tensor operations is a

must. STA applications implemented in frameworks like GraphBLAS require a larger set of

semiring operators (similar to algorithms mentioned in Table. 3.2). Prior sparse accelerators,

such as GAMMA [183] for scientific applications, SCNN [132] for sparse DNNs, optimize the

data reuse within a STA operator, but only support multiply-add as the basic computation.

SIMD2 [188] extends dense tensor accelerator for general semiring computation, but no

prior work in sparse accelerators has the required semiring support.

Moreover, simply combining ideas in optimizing intra-operator reuse and SIMD2

does not capture the full reuse opportunity in Fig. 4.3. To fully capture the inter-operator

reuse, the sparse architecture should support an explicit data staging between operators.

ISOSceles [179] proposes hardware support to capture such producer-consumer reuse, but

only for sparse CNNs. ALP and Graphblas’s nonblocking execution method lets the pro-

grammer exploits producer-consumer reuse of STA applications in CPUs, but the lack of

an explicit buffer control in hardware hinders the programmer to exploit the reuse opportu-

nity. Such hardware support is similar to prior accelerators [135] for dense tensor dataflow

graphs, but need to specialize for the dataflow and dynamism of STA applications.

Finally, despite that the sparse matrix is very often reused across multiple itera-

tions or stages in STA applications, the footprint of this sparse matrix and the long reuse

distance (i.e., cross-iteration) prevent any prior on-chip buffer or cache optimizations to cap-
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ture such reuse. To address this, the system needs to store only a small portion of sparse

tensors at any time and executes work in different iterations in a short time window to

exploit the potential reuse across iterations, ensuring that stored data is quickly consumed

to make room for new data. Therefore, the system must closely monitor the on-chip buffer

and schedule work to maximize reuse.

Implementing all above required support in purely software can be both chal-

lenging and inefficient, negating the potential benefits of inter-operator data reuse. These

opportunities and challenges motivate us to propose the OEI dataflow and develop the SIDA

architecture.

4.3 Exploiting cross-iteration data reuse

This section details a novel dataflow tailored for cross-iteration data reuse. We

start by formulating an abstract view of STA applications to identify cross-iteration data

reuse.

4.3.1 Abstracting sparse algorithms

STA algorithms typically can be decomposed into two components: leading matrix

(e.g.,vxm/mxv) operations and subsequent e-wise operations. By fusing all e-wise opera-

tions, the originally complex compute graph simplifies, revealing clear data dependencies

between input and output tensors.
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matrix

access

vxm / mxv
e-wise e-wise
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matrix 

access
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(a)
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Partial computation exposes sub-tensor dependency

partially computed

vxm / mxv
e-wise e-wise

vxm / mxv
e-wise

fused e-wise

fully computed

current iteration next iteration

matrix value accessed

(b)

Figure 4.4: Generalized compute graph of STA applications. (a) Data dependencies of STA
application using conventional computation. (b) Data dependencies of STA application
using partial computation.

To exploit cross-iteration reuse, a dataflow schedule must simultaneously execute

operations spanning multiple loop iterations. That is, to reuse the input sparse matrix, it

is crucial that the vxm and fused e-wise from the current iteration are fused with the vxm

of the subsequent iteration.
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However, conventional dataflow schedule of STA applications executes operators

sequentially (i.e., vxm has to finish before e-wise starts). Such schedule leads to a long

reuse distance between two consecutive vxm operations. Figure 4.4 (a) shows the unrolled

compute graph of an arbitrary STA application including vxm in two iterations. To provide

the input vector of the second vxm, the current iteration needs to access the entire input

matrix for the first vxm to produce the output vector, and fully compute fused e-wise

operations. Data dependencies on the entire output vector lead to long reuse distance,

preventing efficient fusing of two vxm operations.

Fortunately, for STA in dataflow representation, the loop traversal order is hidden

from the programmer. The system can optimize the schedule arbitrarily and performs

partial computation, so long as it acknowledge the finest-data dependency (as small as a

scalar). Figure 4.4 (b) demonstrates the advantage of partial computation, which reveals

finer granularity of data dependencies. If the schedule aims to produce just a single input

element for the subsequent vxm, the current iteration only needs to partially access the

input matrix and computes corresponding elements of fused e-wise operation. We define

such finer data dependency as sub-tensor dependency.
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Figure 4.5: Abstracted STA compute graph with isolation of sub-tensor dependency only
region.

Sub-tensor dependency reduces the reuse distance of two consecutive vxm opera-

tions, as the top-left element of the sparse matrix can be reused after the first vxm access

only a column of the sparse matrix, instead of the full matrix. Isolating the sub-tensor

dependency-only-region of the dataflow thus reveals cross-iteration data reuse opportu-

nity in any STA applications. Figure 4.5 shows the generalized STA compute graph after

fusing e-wise operations. For any STA compute graph, if there exists a subgraph that in-

cludes both input and output vector of vxm, and all operations within the subgraph exhibit

sub-tensor dependency, fusing two vxm can leverage cross-iteration data reuse. For example,

in PageRank, a valid subgraph can be structured by vxm → e-wise 1 → e-wise 0 → vxm,

which exposes sub-tensor dependency for all operations fused in e-wise 1 and e-wise 0.

Several other structurally different compute graphs also reveal the benefits of this

generalized STA abstraction. KNN (K-nearest neighbors), as shown in Figure 4.6, incorpo-

rates two vxm (or mxv) within the same iteration. Despite its unique structure, the circular
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Figure 4.6: Inner loop compute graph of KNN.
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Figure 4.7: Inner loop compute graph of GCN.

dependency between the two vxm across iterations forms a subgraph: vxm → no-op → vxm,

making reuse of input matrix possible.

In addition, as shown in Figure 4.7, Graph Convolutional Neural Networks (GCNs)

can be represented as subgraphs of SpMM→ MM (Dense Matrix Multiplication) → ReLU. Since

no value in the input dense matrix is blocked by MM and ReLU, and SpMM can be implemented

as multiple vxm, it is possible to fuse SpMM operations from different stages to exploit cross-

iteration data reuse.

Based on this observation, so long as an STA algorithm can be abstracted with

the generalized compute graph, cross-iteration data reuse applies regardless of whether the

fused operations occur within a single loop iteration or span across multiple iterations.
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=

(a)

=

(b)

Figure 4.8: vxm dataflow: (a) Output stationary vxm dataflow. (b) Input stationary vxm

dataflow.

= e-wise e-wise…
=

Fused e-wise vxm in next iterationvxm in current iteration

e-wise

Figure 4.9: Overview of OEI dataflow, fusing OS vxm and IS vxm.

4.3.2 OEI dataflow

Within the isolated subgraph exposes sub-tensor dependency, the subsequent vxm

must execute concurrently with the preceding vxm without causing any blockages. Given

that all other operations within the subgraph do not interfere with each other, any output

generated by the earlier vxm can be immediately consumed by the subsequent vxm.
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However, single vxm can only choose stationarity between the input vector or the

output vector. As illustrated in Figure 4.8, vxm operations exhibit two prevalent compute

dataflows: (a) Output Stationary (OS) dataflow, which generates a single element in the

output vector at a time, requiring access to all input vector elements, and (b) Input Sta-

tionary (IS) dataflow, which yields partial results for all output vector elements but requires

only a single input vector element at a time.

Conventional implementations of STA algorithms adopt one dataflow type across

all iterations, which prevents the cross-iteration data reuse of multiple vxm. For instance,

when fusing two vxm with OS dataflow, the first vxm produces one output element at a

time, but the second vxm requires entire vector output from the first vxm to start. Namely,

the first vxm does no expose sub-tensor dependency with the second vxm. Conversely, when

choosing IS dataflow for both vxm, the input vector elements for the second vxm are not

fully available until the completion of the first vxm, which also prevents the sub-tensor

dependency between two vxm.

To address this, our insight is to employ OS dataflow for the first vxm and

IS dataflow for the second vxm. This mixed dataflow meets the necessary condition to

reuse the data from the sparse matrix. As depicted in Figure 4.9 (a), the first vxm with

the OS dataflow generates an output vector element, subsequently consumed by the fused

e-wise operation. The element produced by e-wise operations can be directly consumed

by the second vxm with the IS dataflow, without any hindrance from preceding operations.
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Figure 4.10: Illustration of OEI dataflow for dense matrices.

We name such dataflow as OEI (OS-ewise-IS) dataflow, which facilitates the simul-

taneous execution of operations in the subgraph, enabling the reuse of large input matrices

in two vxm across iteration.
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Table 4.1: Portion of sparse matrix need to be stored on-chip to enable OS-ewise-IS dataflow
(smaller % is better)

matrix row/col nnz max (%) avg (%)

ca 18772 198110 98802 (49.9%) 65124 (32.9%)

gy 17361 178896 8661 (4.8%) 3321 (1.9%)

g2 150102 438388 15448 (3.5%) 7304 (1.7%)

co 434102 16036720 2143362 ( 13.7%) 1155196 (7.2%)

bu 513351 10360701 9329007 (90%) 4944897 (47.7%)

wi 3566907 45030389 17422630 (38.7%) 10450514 (23.2%)

ad 6815744 13624320 1143568 (9.4%) 694064 (5.1%)

ro 23947347 28854312 557694 (1.9%) 281769 (1.0%)

eu 50912018 54054660 2338567 (4.3%) 1419430 (2.6%)

Fig. 4.10 demonstrates the OEI dataflow with a 5×5 dense matrix as an example.

In each step, the OS vxm computes one output vector element by accessing the entire input

vector and a single column of the input matrix. The fused e-wise is delayed by one step

relative to the OS vxm because the input vector elements required for e-wise are not fully

available until the OS vxm completes its previous step. Similarly, IS vxm lags two steps

behind the OS vxm, as it awaits the completion of both the OS vxm and the fused e-wise.

IS vxm scatters the partial sum from the multiplication for each pair of elements, where

the matrix value has been previously use by OS vxm. Therefore, the IS vxm avoids the

computation of the full outer product in each step.

To show the data reuse, the matrix reuse pattern in Fig. 4.10 indicates matrix

values that are either ready for reuse or are currently being reused. Figure 4.9 (b) highlights

the matrix reuse pattern for selected execution steps after applying the OEI dataflow to

a sparse matrix. For extremely sparse input matrices in STA applications, only a small

portion of the matrix is required to be buffer at a time, potentially fitting within a standard

on-chip buffer.
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Figure 4.11: Illustration of OEI dataflow for sparse matrices with eager IS execution.

Table 4.1 demonstrates our simulation results for the maximum and average per-

centage of the nonzero values in a sparse matrix to be stored on-chip using the OEI dataflow.

For a vast majority of the examined matrices, maintaining only a small fraction (<10%) of

values is sufficient to capture the reuse opportunity in the OEI dataflow.

When the on-chip buffer can hold all the reusable matrix values across all steps,

the IS vxm need not to load any matrix element from memory. However, given the uneven

distribution of non-zero values in sparse matrices, it becomes challenging to ensure that OS

vxm uniformly loads data from the main memory in each step.
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This uneven data distribution can lead to load imbalance between OS and IS stages

and under-utilization of memory bandwidth in certain steps. To address this, figure 4.11

shows an enhancement to the OEI dataflow, using the same sparse matrix referenced in

Figure 4.9 (b). In step 3, the initial element of the IS vxm input vector is generated by

fused e-wise operations. Besides computing a partial sum with reusable matrix elements,

the IS vxm also proactively loads another matrix value from memory, instead of idling. The

matrix value loaded by IS vxm is instead reused by OS vxm in step 4, eliminating the need

for additional main memory loading. Similar dynamics occur between steps 4 and 5. This

refined approach addresses the issues of load imbalance and bandwidth utilization.

4.4 Sparse Inter-operator Dataflow Architecture

We now presents SIDA, an dataflow architecture that exploits the reuse opportu-

nities of sparse tensor algebra. This section will overview the proposed architecture and

describe key components and optimization in the software framework.

4.4.1 Overview of SIDA microarchitecture

Figure 4.12 presents the high-level functional blocks of SIDA. SIDA efficiently

supports sparse tensor algebra while enabling data reuse opportunities in the following

aspects.

• Dual sparse storage in on-chip buffers to efficiently accommodate various data access

demands in different stages of OEI dataflow.

• A dynamic scheduling pipeline that natively supports OEI dataflow and sparse tensor
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Figure 4.12: High level architecture of SIDA: Pipelined OS Core, IS Core, and E-Wise Core
share an on-chip buffer.

semiring operations through compute cores, dedicated to the demand of each stage in

the OEI dataflow: the OS Core, E-Wise Core, and IS Core.

• A dataflow-aware controlling logic that schedules memory accesses, dispatches com-

putation tasks, and prefetches data in units of sub-tensors in the control logic to

efficiently use memory bandwidth and buffer space.

SIDA leverages the compiler behind existing STA programming frameworks to

generate efficient tensor semiring instructions. SIDA and a SIDA-compliant language frame-

work partition data and schedule computation tasks in sub-tensors to more efficiently use

memory bandwidth and reduce memory footprint. SIDA initiates a stream of computa-

tion tasks from loading input sub-tensors that typically contain multiple columns of data

for the OS Core and propagates the intermediate sub-tensors to the E-Wise Core. In the
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Figure 4.13: Dual sparse storage and memory layout of SIDA on-chip buffer

meantime, SIDA can initiate another stream of computation tasks by loading another set of

sub-tensors into the buffer. SIDA can perform OS operations for the later stream as soon as

the previous stream advanced to the E-wise operations. By executing streams of sub-tensor

computation tasks in a pipeline manner among OEI compute cores, SIDA exploits pipeline

parallelism and cross-iteration data reuse opportunities. In addition to the architectural

supports and optimizations, the language framework can further optimize data structures

that facilitate program execution and improve space efficiency. In the rest of this section,

we will describe these architectural and software components.
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4.4.2 Dual sparse storage

In SIDA architecture, both the OS and IS Cores require sub-tensor inputs from the

same sparse tensor but with opposite traversal orders. Specifically, the vxm operations in

OS Cores need sub-tensors from the input matrix in column order for the desired semiring

operations with the input vector. In the meantime, IS vxm demands row-wise access for

scatter multiplication with a matrix row to yield partial outputs. A design option of the

on-chip buffer is to cache input tensor elements using an orientation-neutral format like

coordinate Format (COO) that does not favor column-based or row-based access patterns;

such a design can only ensure efficient access for the sorted dimension.

Therefore, SIDA’s on-chip buffers store input sub-tensors in a dual storage strategy

that utilizes both CSC and CSR formats to optimize data access for both OS and IS

dataflows to address that limitation that no single sparse matrix storage format optimally

supports both row and column data access simultaneously. Figure 4.13 depicts the high-

level idea of the dual storage on-chip buffers. Each buffer contains a CSC space for data in

CSC format and CSR space for data in CSR format.

As CSC format consecutively places column data between col start and col end

of the coordinate and data arrays, each val shares the same col idx but exhibits unique

row coord. SIDA stores the same column consecutively in the on-chip buffer, providing

straightforward access for OS Cores. The practice of consecutive fetching and storing column

data fetched from CSC format seamlessly extends to managing row data fetched from CSR

format. Storing row data fetched from CSR format into the CSR space follows a similar

strategy.
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As data in the same column always belongs to unique rows, the on-chip buffer

must store the converted row data non-consecutively in the CSR space the original input is

in CSC format. To address this, SIDA determines the necessary space for each row using

row start - row end from the CSR index array, reserving space upon receiving the first

converted row data from CSC data. Specifically, when column data (col idx, row coord,

val) from CSC format is converted to row data as (row coord, col idx, val), equivalent to

(row idx, col coord, val) in CSR format, SIDA calculates and reserves the required space

for newly fetched rows, assigning a buffer index for subsequent access.

As STA applications demand column data in the order from lower to higher col -

idx, the row data in which an earlier fetching operation brings should always have lower

col coord compared the later ones. Therefore, the first non-zero element of any row can

always trigger space reservation in advance, allowing for consecutive and ascending storage

of subsequently fetched row data within its reserved space. Additionally, when row data

are eagerly loaded from the CSR format to utilize the remaining memory bandwidth, they

are converted to column data and stored in the CSC space following the same logic.

4.4.3 The OEI compute pipeline

The compute pipeline of SIDA features the OS Core, the E-Wise Core, and the IS

Core for efficiently executing the OEI dataflow. Fig. 4.14 presents the runtime exmaple of

SIDA pipeline.
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OS Core

The OS Core executes operations on each matrix column and vector pair like dot-

products. Beyond the mul-add operation, SIDA extends each processing element (PE) to

additionally support frequently used semiring operations in sparse tensor algebra, including

and-or, min-add, aril-add. Each PE in the OS Core can execute of a semiring operation

on a sub-tensor/column simultaneously with other PEs. SIDA uses the Forwarding Adder

Tree from SIGMA [137] to handle the varying number of non-zero elements per column,

allowing flexible sets of PEs to communicate during the reduction phase of each vector-

column dot product. The OS Core stores the generated intermediate sub-tensors (vectors)

in a buffer for the later stage.

E-Wise Core

E-Wise Core processes e-wise operations on the OS vxm’s output buffer, where the

sub-tensor size directly corresponds to the number of elements managed by the E-Wise Core

in each step of OEI dataflow. The E-Wise Core processes sub-tensor elements concurrently

in Single Instruction, Multiple Data (SIMD) model. SIDA uses offline compilation to pre-

generate instructions for fused e-wise operations specific to an application. Each PE in

the E-Wise Core is identical to the PEs in the OS Core. E-Wise Core stores the results of

sub-tensors into the e-wise vector buffer.

IS Core

The IS Core performs outer product calculation, where a single vector element

multiplies against multiple row elements and accumulates with intermediate values gener-
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ated in E-Wise Cores. SIDA includes an output vector buffer to store partial results from

the IS Core and employs a scatter network to integrate the most recent products. SIDA

writes each fully computed output vector element back to the main memory. Similar to OS

Core, IS Core configures semiring operators specific to each application before execution,

eliminating any additional runtime overhead.
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Figure 4.15: SIDA controll logic

4.4.4 Control logic

As memory bandwidth limits the roofline of STA applications, the control unit

in SIDA targets utilizing all available memory bandwidth beyond just controlling compute

resource operations. SIDA’s controller serves the following purposes:

• Estimating bottleneck component of SIDA at each step within the OEI dataflow.

• Managing the selection of CSC/vector sub-tensors for loading in the forthcoming steps

of the OEI dataflow.

• Determining when to load CSR data to maximize memory bandwidth utilization.

• Regulating the compute phase for each step of the OEI dataflow.
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Pipeline control

The pipeline control logic generates control signals for each datapath element in

the OEI pipeline. Unlike OS vxm and e-wise, which operates on determinent sub-tensor in

each step of OEI dataflow, the runtime behavior of the IS vxm can vary based on several

conditions: (1) SIDA opts to load CSR data only when there’s leftover bandwidth. (2) The

IS dataflow limits its computation to element-row scatter multiplication exclusively for the

rows in the on-chip buffer. (3) Scatter multiplication computations by the IS dataflow are

contingent upon the completion of OS vxm and e-wise.

Figure 4.16 shows the concept of SIDA’s pipeline control. The sub-tensor dis-

patcher orchestrates the control stage by maintaining a state machine that tracks the index

I. The sub-tensor dispatcher generates signals based on I to coordinate other components

immediately before initiating the next step. Assuming I − 2 represents the sub-tensor fully

processed by both the OS and element-wise operations, the sequence for the upcoming step

is as follows:

• Index I is allocated to sub-tensors for element-wise operation execution.

• Index I + 1 is designated for sub-tensors under OS dataflow processing and loading

of element-wise vectors.

• Index I + 2 indicates CSC data that will be prefetched.

Initially, the sub-tensor dispatcher sends the index I+2 to the traffic estimator to calculate

the total non-zero count of CSC data required for the next step by accessing a buffered

CSC index array stored in the buffer metadata. Leveraging this non-zero count, the traffic
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Figure 4.16: Runtime behavior of pipeline control, sub-tensor index assignment to each of
SIDA component.

estimator computes the cycle count X, by comparing the loading latency of CSC and

element-wise data against compute latency of OS operations and E-wise operations. If the

computation time determines the X value, the traffic estimator will proceed to calculate

R, the quantity of row data that the IS Core can fetch to optimize memory bandwidth

utilization in the subsequent step. Sub-tensor dispatcher issues the relevant sub-tensor

indexes to other components after X ′ cycles, as estimated by the preceding control stage.

The pipeline control sets the operations of each core unit using the following rules.

At any given step s, if the E-Wise Core dispatcher receives sub-tensor index I, then the OS

Core dispatcher receives sub-tensor index I+1, as the OS dataflow naturally progresses one

step ahead of element-wise operations. The prefetch stage ensures all necessary data are

prefetched and stored in the on-chip buffer, allowing the OS and E-Wise Core dispatchers
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to directly access the SRAM controller and transmit data to the OS and E-Wise Cores,

respectively. When using a sub-tensor of size T , the OS Core dispatcher loads columns

and vector elements with indexes ranging from (I + 1) ∗ T to (I + 2) ∗ T , whereas the

E-Wise Core dispatcher loads elements of e-wise vectors with indexes ranging from I ∗ T

to (I + 1) ∗ T . On the other hand, IS Core dispatcher, theoretically, can eagerly compute

scatter multiplication up to the s-th rows. However, to prevent bottlenecks in the IS Core

from affecting other stages and to align with data prefetched by the CSR loader, the IS

Core conservatively fetches up to R (received from the traffic estimator) row data in all

rows along with the corresponding vector elements.

Sub-tensor loading and prefetching

SIDA contains three dedicated data loaders for each phase of the OEI dataflow:

the CSC loader for the OS Core, E-wise vector loader, and CSR loader for the IS Core.

Both the CSC and e-wise vector loaders directly receive sub-tensor indexes from the sub-

tensor dispatcher and generate fetch commands for CSC and vector inputs, respectively.

The loader issues commands to the HBM if a demanding portion of the sub-sensor does not

exist in on-chip buffers.

Conversely, the CSR loader may receive a parameter R from the traffic estimator,

indicating the quantity of necessary sub-tensor data. As on-chip buffer stores all row data

in consecutive and ascending from each row’s first non-zero element, the CSR loader can

access all rows eligible for IS vxm computation from the buffer. Suppose memory bandwidth

saturates due to the loading of CSC data for the OS dataflow and vector data for E-wise

operations. In that case, the IS Core will prioritize computing scatter multiplications solely
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on data already fetched or converted to CSR format. When bottlenecks arise during the

compute phase and accesses to the CSC and vector data under-utilizes the available memory

bandwidth, SIDA prioritizes loading CSR data to mitigate this imbalance.

SIDA also prefetches CSR data heuristically. For each row r has an index greater

than the highest fully computed row index S by the IS vxm, yet smaller than the fully

computed index E, the CSR loader decides the number of elements to prefetch per row by

considering (a) the total number of fetched row data does not surpass R and, (b) for each

row r, where S < r < E, the CSR loader calculates P (r) =
∑r

i=S T (i)
r , where T (i) denotes

the count of already fetched row data for row i. This heuristic ensures that (a) the loaded

row data fully utilizes the remaining memory bandwidth, and (b) load balance of IS vxm.

The CSR loader then issues fetch commands for each row r to retrieve consecutive data

starting from the next non-zero at col coord to col coord+P (r).

If a column in CSC space has reserved its space but a newly converted column

data is not the next non-zero element the computation task needs, SIDA discards this

conversion. Even if storing the converted column were feasible, any not-requested data

with a lower column index would lead to separate fetches, potentially causing the CSC

loader to initiate multiple commands for non-consecutive data in the same column, thus

diminishing memory utilization efficiency.

123



Upon receiving a fetch command from CSC and CSR loaders, the front-end data

fetcher retrieves the data and computes a set of vxm vector indexes by intersecting all

received row idx and row coord. It retrieves the necessary vector data from memory and

stores them in the on-chip buffer. Lastly, the e-wise vector loader directly issues fetch

commands since e-wise PEs use all e-wise data in a single step of the dataflow.

Data eviction and repacking

OEI dataflow facilitates data reuse by only storing a fraction of the input matrix

in the on-chip buffer. SIDA further reduces the buffer size required with an efficient eviction

policy and a buffer repacking mechanism.

In CSC space, SIDA immediately evicts entire column data consumed by the OS

Core, freeing up reserved space without delay. Using sub-tensor execution further prevents

fragmentation by fetching and evicting multiple columns concurrently.

Conversely, since IS Core operations consume each data element in a row indi-

vidually, SIDA maintains additional metadata for each stored row to monitor the total

count of consumed elements. Upon surpassing a predetermined threshold of total consumed

elements, the controller initiates a buffer repacking process that discards fully computed

sub-tensors and places remaining sub-tensors in a contiguous CSR space.

When SIDA encounters Out-Of-Memory (OOM) conditions without any available

repacking opportunities, SIDA adheres to the reuse patterns outlined in Figure 4.10, prior-

itizes eviction for rows with higher row idx. The control logic will reload the evicted row

when later steps of OEI dataflow need that row.
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4.4.5 Sparse tensor preprocessing

SIDA implements two offline optimizations designed to preprocess input sparse

matrices.

Row reorder

SIDA employs row reordering to enhance the locality of the non-zero distribution

of sparse matrices. As any converted row data may trigger CSR space reservation, string

too much unconsumable row data with high row idx causes frequent Out-Of-Memory in the

on-chip buffer, leading to memory ping-ponging in later steps. SIDA favors fetching row

data with higher row idx in later steps of the OEI dataflow.

Like prior works optimizing the SpMSpM operation [183], SIDA utilizes the GraphOrder

algorithm [170] to rearrange rows for input data. Additionally, SIDA incorporates a straight-

forward vanilla reorder algorithm as an alternative, which aims to reorder the sparse matrix

towards an upper triangular matrix with simple heuristics.

Blocked sparse storage

SIDA also adopts blocked sparse storage to reduce the storage overhead due to dual

sparse storage. Dual sparse storage has two main drawbacks: (a) CSC and CSR formats

use redundant data arrays. (b) Overhead in indexing structure as each coordinate requires

at least 4 bytes. Using the FiberTree notation proposed in Sparseloop [176], SIDA uses

UOP-CP-CP format. Specifically, each value in the data array of CSC and CSR points to a

non-zero block of the original sparse matrix, which offers two advantages: (a) A single byte

can store a coordinate within any block that has a size up to 256; (b) quantity of non-zero
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blocks is significantly less than non-zero values, allowing CSR and CSC format to have less

redundancy when storing coordinate and data array.

Beyond storage efficiency, blocks of non-zeros also provide SIDA performance im-

provements for specific input matrices and applications. Leveraging these benefits, SIDA

opts for blocked sparse storage. When utilizing blocked storage, CSC and CSR loaders

additionally transmit the loaded block ID to the block loader, which then facilitates the

Front-end data fetcher in loading the required non-zero blocks. Similarly, in the compute

stage, OS and IS Core dispatchers load prefetched non-zero blocks and unpacked row/col-

umn data that compute cores will later use for processing.

4.5 Methodology

This paper evaluates SIDA through a custom-built simulator and a set of STA

algorithms. This section highlights the simulated configurations and workloads.

4.5.1 Modeling SIDA

We developed a simulation framework to assess the performance of SIDA, accom-

modating various system configurations. The framework simulates an SIDA architecture

with 1024 PEs for each compute core, a 64 MB on-chip buffer, and communicating with

the on-device DRAM at 512GB/s bandwidth.

We evaluated the energy consumption of compute units and memory components

using Cacti [115] and Accelergy [175] with the Aladdin [148] plug-in. We also scale the

dynamic energy consumption based on factors reported in prior work [72].
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Table 4.2: Benchmark STA applications.

Algorithm
vxm

Semiring

Reuse

Pattern
Domain

PageRank (pr) Mul-Add

cross-

iteration,

producer-

consumer

Graph

Analytics

Kcore Decomposition (kcore) Mul-Add

Breadth First Search (bfs) And-Or

Single Source

Shortest Path (sssp)
Min-Add

Kmeans Initialisation (kpp) Aril∗-Add
Clustering

K-Nearest Neighbors (knn) And-Or

Label Propagation (label) Mul-Add Machine

LearningGraph Convolutional

Neural network (gcn)
Mul-Add

Generalized Minimal

Residuals (gmres)
Mul-Add

Solver,

HPCConjugate Gradient (cg) Mul-Add producer-

consumerBiconjugate Gradients

Stabilized (bgs)
Mul-Add

4.5.2 Evaluated STA algorithms and systems

We evaluate a total of 10 applications from ALP/GraphBLAS. Table 4.2 lists these

applications, including their semiring operations, data reuse patterns, and application do-

mains. Eight applications can leverage cross-iteration data reuse. We also include two

applications that benefit solely from inter-operator data reuse to assess the performance of

SIDA on applications without OEI dataflows. 4 out of 10 applications employ graph ana-

lytics algorithms, while the remaining six power scientific computing and machine learning

applications.

To thoroughly investigate the performance across all applications, we selected all

nine representative sparse matrices, each with unique row/column size, sparsity, and non-

zero distributions. Table 4.1 provides the list of these datasets.

127



We compare the performance of SIDA with two other configurations. (1) CPU-

based system with large on-chip memory. We run the same workloads and datasets and

collect performance counter numbers from a machine with AMD 5800X3D CPU, featuring a

96 MB 3D stacked V-cache and 128GB of dual-channel DDR4 main memory with measured

memory bandwidth at 44 GB/s. (2) An idealized sparse accelerator (baseline) that utilizes

the same compute and memory bandwidth as SIDA, but does not exploit inter-operator

data reuse. This idealized sparse accelerator always has the throughput as its

roofline, representing the upper bound of the prior sparse accelerator. Additionally, we

chose PageRank as a benchmark application to compare SIDA’s performance against an

NVIDIA 4070 GPU with memory bandwidth at 504 GB/s.

4.6 Experimental Result

4.6.1 Performance over an idealized sparse accelerator

SIDA achieves up to 2.18 × in end-to-end latency over the baseline accelerator

across all benchmark applications. For applications with OEI dataflow presented, SIDA

achieves a geometric mean speedup ranging from 1.23× to 2.56×, with the highest speedup

reaching 3.55×. Figure 4.17 detailed the speedup of end-to-end latency in each application.
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Figure 4.19: (a) GPU case study. (b) Storage improvement of blocked format.

Despite the baseline accelerator in Figure 4.17 always delivering performance at

the roofline of each STA operation, the baseline does not exploit inter-operator data reuse

nor data reuse in OEI dataflow. Even for applications without OEI dataflow (i.e., cg and

bags), SIDA still achieves the same level speedup as the baseline accelerator, ranging from

0.75× to 1.20× as SIDA can still exploit producer-consumer reuse in these applications.

4.6.2 Performance over CPU and GPU implementations

Figure 4.18 compares SIDA with implementations using ALP/GraphBLAS run-

ning on a multicore CPU-based STA framework. The CPU implementations exploit non-

blocking execution patterns for producer-consumer data reuse. In contrast, SIDA benefits

from both OEI dataflow and a higher memory bandwidth utilization. Excluding graph

convolution neural networks (GCN), where SIDA also benefits from dp4a-like instructions,

SIDA achieves up to a 174.37× speedup. Across all applications and matrices, SIDA per-
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Figure 4.20: The performance of SIDA compared with an accelerator with perfect inter-
operator reuse.

forms 12.28× to 35.16× better, surpassing the theoretical benefit ratio of 11.6× on system

configuration with higher memory bandwidth.

While our focus primarily lies in presenting evaluation results compared to accelerator-

based approaches, we also chose the PageRank algorithm as a representative benchmark

to study SIDA’s advantages over GPUs. We utilized the implementation from Graph-

BLAST [178], a GPU-based STA framework. As Figure 4.19 (a) demonstrates, SIDA

achieves up to a 32.08× speedup.

4.6.3 Effectiveness in exploiting cross-iteration data reuse

To evaluate the effectiveness of SIDA in exploiting cross-iteration and OEI dataflow

data reuse opportunities, we modeled an oracle STA accelerator that assumes that all ele-

ments of the input sparse matrix are always ready when reuse opportunities across iterations

present, fully exploiting all inter-operator data reuse opportunities irrespective of on-chip

buffer size. Such an oracle accelerator presents the theoretical performance upper limit for
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Figure 4.21: Sensitivity study for the benefit of data optimization.

STA applications. As shown in Figure 4.20, on average, SIDA achieves 66.78% of the oracle

accelerator’s performance, utilizing only a 64MB on-chip buffer to process sparse matrices

as large as 1.3GB (with 64-bit datatype).

4.6.4 Impact of sparse tensor preprocessing

The accelerator architecture of SIDA presents a skeleton of STA accelerators.

Without any optimization, Figure 4.21 shows that SIDA can still achieve 1.37× speedup

over the baseline accelerator.

Encoding data using the blocked sparse format can help SIDA to improve perfor-

mance by up to 1.11×. Employing solely the optimal row reorder technique slightly boosts

SIDA’s performance from 1.01× to 1.03×. With both optimizations increasing the locality

of non-zero values, SIDA can have a more efficient data access pattern during the OS-wise-IS

dataflow, leading to 1.10× to 1.33× speedup from the SIDA without data optimizations.
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Figure 4.22: Bandwidth utilization of SIDA, geometric mean across algorithms and sparse
matrices.

Using the blocked sparse format reduces the size of the dual sparse storage of

input matrices. Figure 4.19 (b) illustrates the storage benefits of the blocked dual sparse

format. Regardless of the reorder technique employed, blocked formats enhance the storage

efficiency of dual storage, decreasing the storage requirements to 39.2% of the non-blocked

dual-storage format.

4.6.5 Memory bandwidth utilization in SIDA

SIDA can effectively use available memory bandwidth for bandwidth-sensitive STA

applications. Figure 4.22 shows that SIDAmaintains 82.93% memory bandwidth utilization.

When considering only naturally memory-bound applications (excluding gmres and gcn),

SIDAfficiently utilized a geometric mean of 92.94% of system memory bandwidth.

4.6.6 Energy savings with SIDA

The primary advantage of SIDA lies in reducing the memory traffic of STA appli-

cations through cross-iteration data reuse. Since memory operations dominate the energy
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Figure 4.23: Relative energy consumption of SIDA separating compute, memory, and cache
operations.

consumption for a significant portion of the selected STA applications, SIDA achieves a

significant energy saving. It reduces energy consumption by an average of 55.11% across

all applications compared with the baseline accelerator. Specifically, SIDA saves 50.38% of

energy on memory operations and 38.35% on cache/on-chip buffer operations.

4.6.7 Area Estimation of SIDA

The simulated configuration resembles the size of a consumer grade, mid-tier

GPU. We estimated SIDA’s area using RTL and synthesized it with the Synopsys De-

sign Compiler using the 45 nm technology library and scaled the design to the Samsung 8N

process. Under the identical hardware configurations as our performance simulation, SIDA

takes 348mm2, close to that of an RTX 3070 GPU. The on-chip buffer contributes 200mm2

of the chip area.
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4.7 Conclusion

Reducing data movement and maximizing data reuse are the key to accelerate STA

applications. While prior work exploits solely intra-operator reuse, this paper identifies two

other inter-operator reuse opportunities in sparse dataflow graphs, consumer-producer reuse

and cross-iteration reuse. We further propose the OEI dataflow to capture inter-operator

reuse, and the SIDA architecture to support the OEI dataflow and maximize reuse with

limited buffer space. Our evaluation shows that SIDA is significantly faster than CPU/GPU

for STA applications, and exploiting inter-operator reuse provides notable advantage even

over an idealized sparse accelerator.
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Chapter 5

Related works

This section will provide a comprehensive review of related work pertaining to all

democratization techniques explored in this thesis. Specifically, it will delve into existing

literature and research efforts aimed at expanding the applicability of tensor processors

by addressing challenges related to data precision, operator diversity, and sparse matrix

computation. By examining prior work in these areas, this section will establish a solid

foundation for understanding the current state-of-the-art and identifying potential avenues

for further innovation.

Mixed-precision Mixed-Precision Fused Multiply-Add Vector Units M3XU dis-

tinguishes itself from existing multi-precision Fused Multiply-Add (FMA) floating-point

units [22,50,66,67,103,104,157,185] as M3XU is the only design that exploits the potential

of reusing multiple low-precision floating-point multipliers within MXUs. Prior work on

FMA units focuses on vector processing or uses a downward-support approach that enables

lower-precision arithmetic using higher-precision hardware.

137



Mixed-precision application-specific accelerators: Prior work has intensively inves-

tigated low-precision (under INT8) neural networks [31,46,54,91,92,133,168,182,192] and

corresponding accelerator designs [26,40,47,59,74,145,149,174,180,194] to exploit the error-

tolerance aspect of neural networks and the high arithmetic density of low-bitwidth-based

MXUs. Although low-precision models and corresponding accelerator designs can improve

inferencing latency, training throughput, and memory efficiency, ensuring convergence and

acceptable accuracy drop are still challenging. Thus, several techniques and accelerators

support multiple precisions, allowing users to choose appropriate precision [26,47,145,149].

Furthermore, several prior projects propose arbitrary precision support to enable various

sizes of data programmer-transparently [40]. However, as previous works focus on low-

bitwidth computations, naively implementing multi-precision or arbitrary-precision tech-

niques in high-bitwidth computation might incur high computational overhead. To our

knowledge, this is the first study to tailor MXUs to compute high-bitwidth computations.

Complex matrix multiplication: Without M3XU’s hardware support, existing projects

must perform four matrix multiplications (real-real, real-imaginary, imaginary-real, and

imaginary-imaginary parts) for complex numbers [37, 37, 93, 153] or they have to avoid

complex number arithmetic but use software-based approximation techniques [61,126,127]

or implement a separate accelerator or FPGA acceleration [85].

Synthesis of wider hardware using narrower function units: M3XU is different

from hardware synthesis that uses narrower function units to achieve functions with wider

bitwidth [9]. Existing work focuses on using the exact block to create new functions, but

M3XU observes the similarity of desired functions and suggests extensions in existing func-
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tional units for more purpose. Therefore, existing automatic synthesization/optimization

techniques cannot achieve these non-trivial extensions that M3XU presents.

Matrix extensions and instructions Instruction-level support for matrix-matrix multi-

plication can be dated back to the 90s. MOM [29] proposes to leverage MXU to accelerate

multi-media applications. As neural networks become one of the most critical workloads,

commercial general processors now also include matrix instructions as well as MXUs to ac-

celerate tiled-matrix-multiplication. NVIDIA Tensor Core [121, 124], Intel AMX [69], and

Arm SME [12] all provide instructions for GEMM. Our SIMD2 architecture is compati-

ble with these prior work and modern designs. SIMD2 reuses the existing hardware and

software infrastructure to accelerate matrix operations beyond GEMM.

Dense tensor accelerators SIMD2 builds on top of recent dense tensor accelerators for

matrix-multiplication [25, 73, 74, 96, 121, 159] to efficiently share data across datapath and

reduce the bandwidth requirement of SIMD2 instructions. While we implement our SIMD2

microarchitecture using systolic-array-like hardware structure, other matrix-multiplication

accelerator architecture, such as the IBM MMA [159] unit, can be extended to support

SIMD2 instructions. In addition to matrix-multiplication, prior work also proposes accel-

erators for other dense linear algebra algorithms with different data sharing patterns. For

example, Weng et al. [171] propose a hybrid systolic-dataflow architecture for inductive ma-

trix algorithms (e.g., linear algebra solver). Tithi et al. [161] propose a spatial accelerator

for edit distance algorithms. While these algorithms have a different data sharing pattern

than SIMD2 instructions support, we expect they can be implemented as CISC-SIMD2

instructions with variable latency. We nonetheless leave this extension to prior work.
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Graph algorithm accelerators While many graph algorithms can be expressed as tensor

operations and linear algebra [80] and accelerated by tensor accelerators, prior work has

also proposed hardware accelerators to speed up graph algorithms and analytics in their

classic form. Graphicionado [53], GraphR [152], GraphP [186], and GraphQ [195] leverage

processing-in-memory (PIM) architecture to alleviate the bandwidth bottleneck in graph

algorithms. PHI [114] and HATS [113] instead enhance conventional multi-core processors

to accelerate common operations in graph analytics, such as commutative reduction and

traversal scheduling. These hardware acceleration techniques focus on leveraging properties

in graph algorithms to reduce data movement and bandwidth requirement. In contrast,

SIMD2 proposes a new instruction set for tensorized graph algorithms to leverage tensor

accelerators ubiquitous in all compute platforms.

Sparse tensor algebra framework and compiler In addition to ALP and GraphBlast,

there are serveral system software proposals to assist STA programming. For example, the

Sparse Abstract Machine [64] argues for an Einsum-based programming model to generate

hardware accelerator for STA. Sparse MLIR [19], TACO [28, 84], and COMET [116, 160]

provide compiler support to generate performant, format-optimized implementations across

CPU/GPUs. SIDA shares the same tensor abstraction programming model as these prior

proposals, and our proposed OEI dataflow could be implemented in the framework as a

software solution, albeit the potential overhead in buffer and work management.
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Sparse dataflows and accelerators Much prior work in sparse accelerator has focused on

intra-operator reuse for SpMSpM. This includes DRT [128], OuterSPACE [4], SpArch [189],

MatRaptor [154], ExTensor [57], and Gamma [183]. SIDA instead explores inter-operator

reuse and is therefore orthogonal to these prior accelerators. Other work in sparse acceler-

ators also focuses on reconfigurable hardware and specialized storage format to accelerate

STA. For example, ALRESCHA [13] accelerates SpMV, SMASH [76] targets both SpMV

and SpMM, and Flexagon [112] accelerates SpMSpM in DNNs. Qin et. al [136] proposes

flexible hardware to support multiple sparse formats. SIGMA [137] and MAERI [3] exploits

configurable network for sparse DNNs. Symphony [134] proposes a coarse-grained reconfig-

urable architecture for sparse and dense tensor algebra. Since they still optimize for a single

sparse operator, the proposed OEI dataflow can be combined to these prior accelerators.

Exploiting inter-operator reuse Prior work in DNNs has investigated how to exploit

producer-consumer data reuse in dense tensor algebra. On the one hand, prior research

has proposed special dataflows to optimize for producer-consumer reuse. For example,

FLAT [77] optimizes for the multi-head attention kernel in Transformers, Fused-Layer CNN

Accelerators [7] optimized for for CNNs. Some other work, such as Pipelayer [2], TAN-

GRAM [5], ARCHON [129], and Atomic dataflow [191], proposes to optimize producer-

consumer reuse across spatial hardware units and optimize for the whole DNNs. On the

other hand, as optimizing for fusion requires a large design space search, prior work has

also explored tools and modeling techniques for fusion. Convfusion [166], DNNFuser [78],

MultiFuse [24], and Stream [155] provide optimization tools to automatically search for the

best fusion decisions. SET [23] and LoopTree [48] propose polyhedral abstraction to rea-
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son about fusion decision more effectively. All techniques above optimizes for dense tensor

algebra, while SIDA targets STA instead.

Exploit specific sparse tensor applications Finally, very recent work has also looked

into producer-consumer reuse for a specific STA domain. For example, ISOSceles [179]

targets sparse CNNs, GOGETA [44] targets Conjugate Gradient (CG) in HPC, and Raveesh

et. al [45] exploits pipeline dataflows in GNNs. These techniques specialize for only the

targeted STA domain. In contrast, SIDA supports a wide range of STA applications and

exploits cross-iteration reuse, a new type of data reuse.
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Chapter 6

Conclusions and Future Work

This thesis presents a comprehensive exploration of three key avenues for democ-

ratizing tensor processors, primarily focusing on their application in accelerating deep neu-

ral networks within the realm of artificial intelligence and machine learning (AI/ML). In

addition to accelerating NNs, recent projects have demonstrated the strong potential of

using NN/MMA accelerators for a broader spectrum of applications. Both Tensor Cores

and TPUs can help improve the performance of linear algebra beyond GEMM [52, 63],

database queries [32,62,65], cryptography [88] and scientific computing problems [37,39,93,

98–100,111,119]. Ray tracing accelerators are also useful for Monte Carlo simulations [143],

robotics navigation [109] and nearest neighbor search problems [193]. However, due to the

domain-specific nature of these accelerators, programmers have to intensively re-engineer

the algorithm implementation to make use of these hardware accelerators. The resulting

program may also incur overhead when transforming data structures to fulfill the demand of

the target accelerator. By extending the hardware features, SIMD2,M3XU provides better
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programmability to reduce the overhead of remapping algorithms and allows applications

that are not possible on conventional NN/MMA accelerators. With hardware accelera-

tors lifting the roofline, a critical issue is designing a memory hierarchy that streamlines

the data inputs/outputs for computational logic. The overarching aim of this thesis is to

contribute to the democratization of domain-specific architectures (DSAs). This involves

elevating their programmability and extending their computational capabilities to a wider

array of applications, thereby benefiting diverse scientific fields through the advancements

of modern computer architecture.

Akin to the evolutionary trajectory of GPUs, which transitioned from specialized

graphics accelerators to versatile general-purpose GPUs (GPGPUs) now bolstering nearly

all scientific applications, many DSAs could also find broader utility if their functionality

and programmability were enhanced and their ”killer applications” identified. This neces-

sitates a dual effort: re-examining classic algorithms and applications to uncover potential

for acceleration, and efficiently designing new microarchitectures with minimal resource

expenditure.

In fact, modern CPUs and GPUs already demonstrate this approach. x86 archi-

tectures have integrated vector (SSE and AVX) and matrix (AMX) instructions alongside

dedicated hardware units, while streaming multiprocessors now feature specialized compo-

nents for real-time ray tracing (RT cores) and neural network acceleration (Tensor Cores).

These distinct components are seamlessly integrated into the original, straightforward de-

signs through shared memory hierarchies and unified programming models, all driven by

the need for acceleration in specific domains.
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As research delves deeper into democratization strategies, we envision the emer-

gence of more unified architecture designs that cater to a broader range of scientific domains.

This thesis explores several promising research directions and areas within this landscape,

with the ultimate goal of inspiring further investigation and encouraging contributions from

experts in the field. The hope is that these collective efforts will lead to the development of

more accessible and versatile DSAs, fostering innovation and accelerating progress across a

multitude of scientific disciplines.
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