
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Optimization of Read Thresholds in NAND Flash Memory for LDPC Codes

Permalink
https://escholarship.org/uc/item/86d1c95b

Author
Yeh, Yi-Shen

Publication Date
2020

Supplemental Material
https://escholarship.org/uc/item/86d1c95b#supplemental

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/86d1c95b
https://escholarship.org/uc/item/86d1c95b#supplemental
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Optimization of Read Thresholds in NAND Flash Memory for LDPC Codes

A thesis submitted in partial satisfaction of the
requirements for the degree

Master of Science

in

Electrical and Computer Engineering
(Communication Theory and Systems)

by

Yi-Shen Yeh

Committee in charge:

Professor Paul H. Siegel, Chair
Professor Young-Han Kim
Professor Alexander Vardy

2020

Copyright

Yi-Shen Yeh, 2020

All rights reserved.

The thesis of Yi-Shen Yeh is approved, and it is acceptable in

quality and form for publication on microfilm and electroni-

cally:

Chair

University of California San Diego

2020

iii

DEDICATION

To my beloved parents

iv

EPIGRAPH

For the ideal that I hold dear to my heart,

I’d not regret a thousand time to die.

— Qu Yuan, "Li Sao"

Translated to English by Lu Zhang

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . x

Acknowledgements . xii

Vita . xv

Abstract of the Thesis . xvi

Chapter 1 Introduction . 1

Chapter 2 NAND Flash Memory . 5
2.1 Structure . 6
2.2 NAND Flash Operations . 8

2.2.1 Program and Erase Operations 8
2.2.2 Read Operation . 9

2.3 Noise Models . 10
2.3.1 Erase Operation Model . 10
2.3.2 Program Operation Model 10
2.3.3 Cell-to-Cell Interference (CCI) 11
2.3.4 Random Telegraph Noise (RTN) 12
2.3.5 Data Retention Noise . 13
2.3.6 NAND Flash Channel Model 14

2.4 Read Retry Algorithm . 14

Chapter 3 Read Threshold and Channel Capacity 16
3.1 Channel Model . 16

3.1.1 Read Threshold and Gaps 17
3.1.2 Equivalent Discrete Memoryless Channel 19

3.2 Maximizing Mutual Information 20
3.3 Simulation and Results . 21

3.3.1 Higher Number of Reads 22
3.3.2 Symmetric Channel Labeling 23

vi

Chapter 4 LDPC Codes . 29
4.1 Overview . 29
4.2 Code Design . 33

4.2.1 QC LDPC Codes . 34
4.2.2 LDPC Codes for NAND flash 36

4.3 Encoding . 37
4.3.1 Efficient Encoding . 38
4.3.2 Double Diagonal Encoding 38

4.4 Decoding . 40
4.4.1 Belief Propagation . 42
4.4.2 Min-sum decoding . 45

4.5 Density Evolution . 46
4.5.1 Standard Density Evolution 48
4.5.2 Gaussian Approximation 49

Chapter 5 Read Threshold and LDPC Codes . 54
5.1 Discretized Density Evolution . 55

5.1.1 Split Ratio Quantization 56
5.1.2 Finite LLR-pmf Operations 57
5.1.3 Discretized Density Update 59
5.1.4 Pre-computing R-List . 60

5.2 Read Threshold Optimization . 62
5.3 Simulation Results and Discussion 62

5.3.1 Simulation Results for Code A 62
5.3.2 Comparison of MMI and DDE Based Optimization 63
5.3.3 Initialization of Read Thresholds for LSB 64
5.3.4 Higher Number of Iterations in BP Decoding 67
5.3.5 Simulation Results for Code B 68

5.4 Summary . 69

Appendix A MMI Optimal Read Thresholds . 72

Appendix B MMI Optimal Thresholds of MLC-SCL LSB Channel 84

Appendix C DE Optimal Thresholds of MLC-SCL LSB Channel 95

Appendix D Double Diagonal LDPC Code Base Matrix in 802.11n 97

Bibliography . 99

vii

LIST OF FIGURES

Figure 1.1: NAND flash memory scaling trends [1]. 2

Figure 2.1: A floating gate transistor. 6
Figure 2.2: Configuration of NAND and NOR flash memories [2]. 7
Figure 2.3: Flash memory organization [3]. 8
Figure 2.4: Two-step programming of lower page and upper page in MLC flash memory. 9
Figure 2.5: Illustration of cell-to-cell interference in an even-odd bit-line architecture [4]. 12
Figure 2.6: Illustration of the approximate NAND flash memory device channel model

consisting of major distortion sources. 14
Figure 2.7: Read retry algorithm for NAND flash memory. 15

Figure 3.1: The 3dB difference in the two definition of the SNR to noise variance con-
version. 18

Figure 3.2: Signal to noise ratio (SNR) vs. P/E cycles [5]. 19
Figure 3.3: Read voltage thresholds and voltage distributions for an MLC NAND flash

memory with m = 6 read thresholds. 19
Figure 3.4: Equivalent discrete memoryless channel (DMC) model for MLC with m = 6

read thresholds. 20
Figure 3.5: The mutual information achieved and evolution of position of read thresholds

throughout gradient descent iteration in m = 6, SNR = 10 (dB) case. Final
mutual information attained is 1.5147. 25

Figure 3.6: Exhaustive search across gaps for special m = 6 case and for SNR = 10 to 18
dB. 26

Figure 3.7: Optimal read threshold positions for m = 6 case with the constraint of equal
gaps and for SNR = 0 to 18 dB. 26

Figure 3.8: The evolution of positions of read thresholds throughout gradient descent
iteration in m = 30, SNR = 10 (dB) case. Final mutual information attained
is 1.5781. 27

Figure 3.9: Maximum mutual information achievable for m= [2,30] and SNR = [10,15](dB). 27
Figure 3.10: Maximum mutual information achievable for the LSB channel using MLC-

SCL with m = [3,30] and SNR = [10,15](dB). 28
Figure 3.11: Maximum mutual information achievable for the MSB channel using MLC-

SCL with m = [3,30] and SNR = [10,15](dB). 28

Figure 4.1: Simulated decoding failure probability vs. NAND flash memory raw bit
error rate of hard-decision and soft-decision LDPC decoding and BCH code
decoding. Both LDPC code and BCH code protect each 4KB user data with
512B coding redundancy [6]. 30

Figure 4.2: Schematic diagram of an error correcting code with rate R = k/n. 30
Figure 4.3: A Tanner graph where the circle and the square nodes denote the variable

and the check nodes, respectively. 32

viii

Figure 4.4: A simple example of generating the derived graph from a protograph [7]. . 34
Figure 4.5: Example of a sub-blocked Tanner graph with 3 sub-blocks of length 6 inter-

connected by 3 joint check nodes [8]. 37
Figure 4.6: The approximate lower triangular form of a parity check matrix where m =

n− k and g is typically much less than n [9]. 38
Figure 4.7: A simple example of message passing at a (a) VN and (b) CN, both of degree

3. We use ed to denote the dth edge in our consideration. ` and L are the
LLR and LR messages passed along the edges, respectively. `(ch) denotes the
observed channel values. 45

Figure 4.8: The evolution of the LLR densities at the VNs (left column) and CNs (right
column) for iterations l = 0,5,10,50, and 140 corresponding to each row
from top to bottom, for BAWGNC with noise variance σ2 = 0.932 with a
code specified by the degree distribution in equation (4.18) [10]. 50

Figure 4.9: Evolution of probability of errors Pe given by Gaussian approximation meth-
ods of a (3, 6)-regular LDPC code with different noise parameters σ. 53

Figure 5.1: Block diagram of read threshold optimization using density evolution. . . . 55
Figure 5.2: The MLC-SCL channel probability distributions with m read thresholds. . . 56
Figure 5.3: Split ratio quantization (SRQ). 57
Figure 5.4: The effect of SRQ is to smooth out the transition of LSB channel LLR

densities, where ∆ = 0.05. 58
Figure 5.5: Illustration of the 3-tuple indices that satisfy equation (5.6) for ∆ = 0.05 and

different values of ∆N. 61
Figure 5.6: Histogram of symbol occurrences in the MLC-SCL channel (LSB and MSB

channels independently LDPC-coded). 65
Figure 5.7: Illustration of the evolution of optimizing read threshold positions using DDE

criteria for MLC-SCL LSB channel with Code A, SNR = 13(dB), m = 6,
R = 2. The threshold positions are initialized to equal spacing. 65

Figure 5.8: BER performance comparison between MMI thresholds and DDE thresholds
for MLC-SCL LSB channel with m = 6,R = 2. 66

Figure 5.9: A 2D DE exhaustive search for m = 5 reads, SNR = 13dB MLC-SCL, and
γ = [γ1,γ2,γ3,γ4,γ5] where γ1 =−γ5, γ2 =−γ4 and γ3 = 0. 68

Figure 5.10: BER performance comparison between read thresholds at local minimum
and global minimum given by density evolution. 69

Figure 5.11: BER performance comparison between different number of iterations in BP
decoding for m = 5 reads. 70

ix

LIST OF TABLES

Table 1.1: List of common acronyms used in this thesis. 4

Table 5.1: Parameters used in our simulations if not otherwise specified. 63
Table 5.2: BER performance comparison with BP decoding between MMI and DE given

optimal threshold positions. Results are shown for m = 6,R = 2 using (3,4)-
QCLDPC code (Code A). 67

Table 5.3: Comparing the DE optimal thresholds for Code A, with m = 5 MLC-SCL
LSB channel, when gradient descent is initialized to different values. We see
that there are two local minima with a significant error probability difference. 67

Table 5.4: BER performance comparison given by BP decoding between MMI and DE
with different BP decoding iterations. Results are shown for SNR = 13dB,
m = 5,R = 2,20 using (3,4)-QCLDPC code (Code A). 70

Table 5.5: BER performance comparison of Code B under BP decoding for MLC-SCL
LSB channel with read thresholds optimized for SNR = 14dB, m = 5, R = 2
and various criteria . 70

Table A.1: Read threshold positions γ̄ that attain the maximum mutual information for
m = 2 at the given SNR value. 73

Table A.2: Read threshold positions γ̄ that attain the maximum mutual information for
m = 3 at the given SNR value. 74

Table A.3: Read threshold positions γ̄ that attain the maximum mutual information for
m = 4 at the given SNR value. 75

Table A.4: Read threshold positions γ̄ that attain the maximum mutual information for
m = 5 at the given SNR value. 76

Table A.5: Read threshold positions γ̄ that attain the maximum mutual information for
m = 6 at the given SNR value. 77

Table A.6: Read threshold positions γ̄ that attain the maximum mutual information for
m = 7 at the given SNR value. 78

Table A.7: Read threshold positions γ̄ that attain the maximum mutual information for
m = 8 at the given SNR value. 79

Table A.8: Read threshold positions γ̄ that attain the maximum mutual information for
m = 10 at the given SNR value. 80

Table A.9: Read threshold positions γ̄ that attain the maximum mutual information for
given number of reads m and SNR = 10(dB). 81

Table A.10: Read threshold positions γ̄ that attain the maximum mutual information for
given number of reads m and SNR = 13(dB). 82

Table A.11: Read threshold positions γ̄ that attain the maximum mutual information for
given number of reads m and SNR = 15(dB). 83

Table B.1: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for m = 3 at the given SNR value. 85

x

Table B.2: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for m = 4 at the given SNR value. 86

Table B.3: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for m = 5 at the given SNR value. 87

Table B.4: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for m = 6 at the given SNR value. 88

Table B.5: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for m = 7 at the given SNR value. 89

Table B.6: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for m = 8 at the given SNR value. 90

Table B.7: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for m = 10 at the given SNR value. 91

Table B.8: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for given number of reads m and SNR = 10(dB). 92

Table B.9: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for given number of reads m and SNR = 13(dB). 93

Table B.10: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for given number of reads m and SNR = 15(dB). 94

Table C.1: DE-optimized read threshold positions γ̄ of MLC-SCL LSB for Code A m = 5
at the given SNR value. Thresholds are found using gradient descent initialized
to MMI optimal positions. 96

Table C.2: DE-optimized read threshold positions γ̄ of MLC-SCL LSB for Code A m = 6
at the given SNR value. 96

Table C.3: DE-optimized read threshold positions γ of MLC-SCL LSB for Code B, m = 5
at the given SNR value. 96

Table D.1: The base matrices of LDPC codes used in the Wi-Fi standards 802.11n of
code length n = 1944 bits, sub-block length Z = 81 of various rates [11]. . . 98

xi

ACKNOWLEDGEMENTS

To the building of this thesis, I have many people I’d like to express my gratitude towards.

Without their help, it wouldn’t have been possible for me to complete this work.

First,I would like to express my sincerest gratitude towards my advisor Prof. Paul H.

Siegel for his encouragement, patience, guidance and kindness. Throughout the time that I’ve

been working with him, apart from his professional expertise and invaluable insights unequal to

any, he showed great tenderness and care from all aspects and details that not only made me felt

comfortable expressing new and sometimes errouneous ideas, but also more confident in my own

work. He was also very understanding when it comes to conflicts in schedules, and are able to

change the meeting times to adapt to my trip in another time zone. I am grateful for all his help,

advices and thoughtfulness. I am surely very fortunate to have Prof. Siegel as my advisor.

Secondly, I would like to thank Arman Fazeli, a postdoc at UCSD and a brilliant mentor.

When I first encountered the field of coding theory, I was very troubled and frustrated by the

subject. This changed completely after I met him, first in a class where he had to substitute for,

and another where he was the main instructor. Patience is his greatest personality and is the reason

why I go to him whenever I am in doubt. Not only was he the one that guided my into the field of

LDPC codes and eventually recommended me to my advisor Prof. Siegel, but also whenever I

had an upcoming job interview or a non-coding related problem, he never hesitated to lend my

a helping hand. Furthermore, in our time working together, he always have this super power

of explaining a concept, which was foreign to me, in a simplified way so that I’d understand.

Repeatedly, he’d given me numerous insightful and monumental suggestions that boosted the

content of our work. Repeatedly, he’s shown great consideration in the sense of surfing through

my English writings, teaching my Latex and have even been there with me debugging my program

when I needed a fresh pair of eyes. There is not a chance I would have completed this thesis

without his help and I consider myself more than lucky to have worked along side him.

Throughout the journey of my life, there are two people whom I am forever indebted to, my

xii

beloved parents. My mom and dad have always been my number one advocate, unconditionally.

Needless to say, their support was paramount and unequivocal. They backed my tuition knowing

that they have to live on the breadline and this means the world to me. Calling them at the end of

each week recharges my mind and gives me the strength to pursue my dreams further. This thesis

is entirely dedicated to them.

Next, I would like to thank Prof. Alexander Vardy and Prof. Young-Han Kim to agreeing

to be a part of my thesis committee, for the time and effort and the insightful comments that

helped improve this work significantly.

I would like to thank Che-Yu Huang and Yu-Hsin Lin for the informative discussions

and debates with them. They’re with me throughout the process of understanding new concepts

and dissecting complicated mathematical equations. Having their input stimulated my thought

process, provided my with a new perspective and helped me a great deal in pushing my work

forward. I would also like to extend my gratitude towards my roommate Henry Chang. With his

company, I have someone to share my daily life and the progress of thesis with, and needn’t fight

through the COVID-19 pandemic alone.

Finally, I would like to thank Chao-Hsuan Chen for her continuous devotion to our

relationship. Not only is her loyal and tireless support invaluable, but she has also been a constant

motivation and a true inspiration for me. She is the best friend one can have and an excellent

partner in crime. I am a better person because of her.

Chapter 3, in part, contains materials from [12]. Y. Yeh, A. Fazeli, and P.H. Siegel,

"Optimization of Read Thresholds in MLC NAND Memory for LDPC Codes," in Proc. 11th

Annu. Non-Volatile Memories Workshop (NVMW), La Jolla, CA, USA, Mar. 2020. [Online].

Available: http://nvmw.ucsd.edu/program/. The thesis author was the primary investigator and

author of this paper.

xiii

Chapter 5, in part, contains materials from [12]. Y. Yeh, A. Fazeli, and P.H. Siegel,

"Optimization of Read Thresholds in MLC NAND Memory for LDPC Codes," in Proc. 11th

Annu. Non-Volatile Memories Workshop (NVMW), La Jolla, CA, USA, Mar. 2020. [Online].

Available: http://nvmw.ucsd.edu/program/. The thesis author was the primary investigator and

author of this paper.

xiv

VITA

2018 B. S. in Communication Engineering, National Taipei University, Taipei

2020 M. S. in Electrical and Computer Engineering, University of California
San Diego

PUBLICATIONS

Y. Yeh, A. Fazeli, and P.H. Siegel, "Optimization of Read Thresholds in MLC NAND Memory
for LDPC Codes," in Proc. 11th Annu. Non-Volatile Memories Workshop (NVMW), La Jolla, CA,
USA, Mar. 2020. [Online]. Available: http://nvmw.ucsd.edu/program/

FIELDS OF STUDY

Major Field: Electrical Engineering

Studies in Communication Theory and Systems

Advisor: Paul H. Siegel

xv

ABSTRACT OF THE THESIS

Optimization of Read Thresholds in NAND Flash Memory for LDPC Codes

by

Yi-Shen Yeh

Master of Science in Electrical and Computer Engineering
(Communication Theory and Systems)

University of California San Diego, 2020

Professor Paul H. Siegel, Chair

As conventional hard decision error correction codes (ECCs), such as BCH codes, become

inadequate as the capacity of flash memory increases, soft decision ECCs such as LDPC codes

have become a desirable option. However, fully utilizing the potential of soft decision based

codes demands higher precision memory sensing with the tradeoff of memory read latency. To

that extent, this thesis explores and compares two approaches to optimizing the positioning as

well as the number of read (word-line) voltages for a specified program/erase (PE) cycle.

The first approach is optimization subject to maximizing the mutual information (MMI)

of the equivalent discrete memoryless channel using gradient descent. We show that we can

xvi

get a near optimal performance by only using ∼ 20 reads since additional reads beyond this

point provides less than 0.05% of additional mutual information and less than 5% of additional

performance gain.

The second approach is the optimization of read thresholds taking the code structure of

LDPC codes into account. We use discretized density evolution as a proxy for bit error rate,

and to serve as our performance measure in the gradient descent search. This optimization is

code-dependent and gives lower BER; however, it is subject to be trapped in secondary local

minimum. As a result, we propose a two-step optimization: first utilize the MMI approach for

coarse read threshold optimization, then follow by the DE-based method for fine optimization.

xvii

Chapter 1

Introduction

Flash memories are used widely in multi-media and consumer device storage systems

for their capability of storing large quantities of data without having to maintain power (non-

volatility). They use the charge (or voltage levels) stored in floating-gate cells to represent

data symbols. The naming of flash memories corresponds to the number of bits per symbols

represented by this charge, e.g., single-level-cell (SLC), multi-level-cell (MLC) and triple-level-

cell (TLC) corresponds to two levels, four levels and eight levels. However, as technologies

continue to scale down, NAND flash memory continues to require stronger error correction codes

(ECCs) to maintain data storage integrity [1]. For the longest time, BCH codes with hard-decision

decoding (HDD) have been the dominant choice as ECCs in flash memory. As industry has

continued to push the technology-scaling envelope, soft-decision decoders (such as the Chase

BCH decoders [13] [14]) have been developed for BCH codes to prolong their viability and

to forestall the introduction of more complex ECCs requiring iterative soft-decision decoding.

However in recent years, BCH codes, even with soft-decision decoding, have been found to be

insufficient and an alternative choice has been required.

Low-density parity-check (LDPC) codes are well-known for their capacity-achieving

abilities for AWGN channels [15] and have become the main choice of ECCs in flash memories

1

Figure 1.1: NAND flash memory scaling trends [1].

nowadays. The decoding gains from employing soft-decision LDPC codes compared with

traditional HDD BCH codes are shown in [6]. However, to fully exploit the advantage of soft-

decision decoding demands higher precision of memory sensing in the floating-gate transistors

that feeds the soft information to the ECC decoders with the trade-off of memory read latency.

Approaches such as rank modulation that eliminates the need for discrete cell levels have been

discussed [16] [17], however in this thesis, we focus on the architecture of applying a constant

voltage throughout a word-line. Therefore, the grey area between hard-decision reads and fully

soft-decision reads is worth exploring, including both the placement and the number of these

reads. In [18], the optimization of read threshold positions that maximizes the mutual information

(MMI) of the NAND flash discrete equivalent channel is proposed. Another approach, in [19],

uses density evolution (DE) as a tool to analyze the error probability of the channel of flash

memory channel, which serves as the cost function in the optimization problem.

This thesis compares the two approaches (MMI and DE) towards optimizing the read

thresholds for NAND flash memories. In Chapter 2, we present in detail the required background

knowledge about NAND flash memory. We first discuss the structure and the read/write operations

of this technology, followed by a discussion of noise sources and their mathematical models.

In Chapter 3, we discuss the underlying equivalent discrete channel model for NAND flash

memory. We reproduce the results in [18] and extend them to a higher number of reads. Also, we

establish a binary labeling of cell-levels called the symmetric channel labeling (SCL) specifically

2

for use when looking into the MSB and LSB of MLC flash memory channels separately. We

provide the corresponding threshold optimization results from this section in Appendix A and

Appendix B. In Chapter 4, we present a review of required background knowledge on LDPC

codes. We will explain the fundamental aspects of the code structure including the Tanner graph,

cycles/girth, degree distributions, and code rate, as well as some of the common encoding and

decoding methods. We will introduce two specific LDPC codes used in our analysis, a toy code

which is a (3, 4)-regular QCLDPC code of girth 8 and rate 1/3 (which we will refer to as "Code

A"), and an irregular LDPC code of rate 2/3 that is defined in 802.11n standards [11] and widely

adopted for practical purposes (which we will refer to as "Code B"). Finally in Chapter 5, we

will discuss the refinement of read thresholds using a density evolution approach, extending the

ideas in [19]. We introduce a new quantization method (the split ratio quantization (SRQ)) on

top of the standard quantizations to compensate for the fluctuations in the BER curves. We also

discuss the discretized DE [20] method in detail. In the end, we provide our simulation results

and discussion of our unique findings.

Throughout this thesis, we will assume no pre-existing knowledge of NAND flash memo-

ries and low-density parity check (LDPC) codes from the reader, but a basic understanding of

linear algebra and communication theory is required. In terms of notation, we will use overbar (v̄)

or lowercase boldfaced letters (v), hat (ŵ) and uppercase boldfaced letters (H) to denote a row

vector, a quantized version of the original message w and a matrix, respectively. (·)T denotes the

transpose operation. We will use ~ and ⊗ to denote the standard convolution and the discretized

convolution, respectively. The R, Z, Z+ and Z++ symbols denote the set of all real values, the

set of all integers, the set of all non-negative integers and the set of positive integers respectively.

We use N (µ,σ2) to denote the Gaussian probability density function with mean µ and variance

σ2. The E(·) denotes the expected value operation.

3

Table 1.1: List of common acronyms used in this thesis.

AWGN additive white Gaussian noise
BAWGNC binary AWGN channel
BCH Bose-Chaudhuri-Hocquenghem
BER bit error rate
BP belief propagation
BSMC binary symmetric memoryless channel
CCI cell-to-cell interference
CN check node
CPM circular permutation matrix
DE/DDE density evolution/discretized DE
DMC discrete memoryless channel
ECC error correction code
FER frame error rate
FFT fast Fourier transform
GD gradient descent
ISPP incremental step pulse program
LDPC low-density parity-check
LDPCL LDPC locality
LLR log-likelihood ratio
LSB least significant bit
MI mutual information
MLC multi-level cell
MMI maximum/maximize MI
MS min-sum
MSB most significant bit
NR new radio
P/E program/erase
PCM parity-check matrix
PDF probability density function
PMF probability mass function
QC quasi-cyclic
RTN random-telegraph noise
SCL symmetric channel labeling
SLC single-level cell
SNR signal-to-noise ratio
SRQ split ratio quantization
SSD solid-state drive
TLC triple-level cell
VN variable node

4

Chapter 2

NAND Flash Memory

Solid-state drives (SSDs) are widely used in computer systems nowadays as a primary

method of data storage and NAND flash memory technology is the main contributor. Flash

memory is a non-volatile solid-state storage medium that relies on electric circuits to store and

retrieve data. It has no moving parts, unlike most magnetic storage devices, thus reducing

mechanical errors, and is resilient against physical impacts. Moreover, it provides significantly

higher read and write performance while requiring less power and much smaller latencies. For the

past two decades, the cost per bit for flash memories has maintained a steady reduction allowing

a widespread adoption and adhering to the increasing demand from data centers, enterprise and

personal computing, and mobile consumer devices.

The term non-volatile refers to the capability of maintaining data without power. This is

due to the use of a floating-gate transistor as the basic memory element, referred to as a cell (see

Figure 2.1). A NAND flash memory uses different voltage levels in cells to represent different

information symbols stored. The number of bits in those cells also determine the naming of the

flash. For example, 1, 2 and 3 bits per symbols are called single-level cell (SLC), multi-level cell

(MLC) and triple-level cell (TLC), respectively. In this thesis, we will focus mainly on MLC

NAND flash memory setup (i.e. two bits per symbol). However, our methods can be easily

5

Figure 2.1: A floating gate transistor.

integrated into other types as well.

2.1 Structure

A NAND flash memory is named so because the cells are connected in a way that

resembles a NAND gate. Its counterpart is the NOR Flash. Both configurations organize cells

into rectangular arrays called a block, with word-lines connecting the cells row-wise plugging

into the transistor’s control gate and bit-lines connecting the cells column-wise linking each cell’s

source and drain. The main difference is that for NOR flash, the bit-lines run along side the cells

whereas in NAND flashes the bit-lines run through the cells, bypassing the need for an extra

bit-line connector (see Figure 2.2) [2]. Due to their wiring configurations, NOR offers better

read speeds and random access capabilities; NAND offers better write/erase capabilities with a

cheaper cost per bit, so it is better suited for the data demands of SSDs, Flash Drives, and Flash

Memory Cards.

In a broader view, the hierarchy of flash memory is:

Chip→ Die→ Plane→ Block→ Page→ Cell

6

(a) NAND (b) NOR

Figure 2.2: Configuration of NAND and NOR flash memories [2].

as shown in Figure 2.3. A chip can have as many as 16 dies, each of which in turn contains

between one and four planes. Each plane contains hundreds to thousands of flash blocks, and each

block is a 2-D array that contains hundreds of rows of flash cells [3]. In a MLC flash memory, the

two bits in the cells connected along a word-line are assigned to two separate pages. In practice,

page size ranges from 512-byte to 8K-byte data. The most significant bit (MSB) is assigned

to the lower page while the least significant bit (LSB) is assigned to the upper page. Also, in

our simulations, we let voltage levels in each cell that correspond to the 2-bit symbols, denoted

{′11′,′ 10′,′ 00′,′ 01′} or {1,2,3,4}, be:

{µ11,µ10,µ00,µ01} ≡ {µ1,µ2,µ3,µ4}= {−3,−1,1,3}(V) (2.1)

7

Figure 2.3: Flash memory organization [3].

2.2 NAND Flash Operations

2.2.1 Program and Erase Operations

The measurement of a solid state drive’s lifespan is called program/erase cycles (PE

cycles), where one write and erase operation counts as one cycle, because flash chips suffer

a small amount of wear each time they are written and erased. All read and write operations

are performed at the granularity of a page whereas the erase operation is done on a block level.

However, before we could write to a cell, it must first be erased which is done by applying high

voltage to the substrate to remove electrons from the floating gate. The write operation, known as

programming, is done by applying high voltage at the control gate to trap electrons inside the

floating gate through Fowler-Nordheim tunneling [21] and is conducted in multiple steps. In

the case of MLC, it is conducted in two steps. The lower page bit of a cell is first programmed

followed by programming the corresponding upper page bit as depicted in Figure 2.4.

8

Figure 2.4: Two-step programming of lower page and upper page in MLC flash memory.

2.2.2 Read Operation

The read operation is done by applying a word-line reference voltage (we call it the read

voltage, read threshold or a read denoted as γ(V)) at the control gate. A sense amp comparator

compares the drain current to a threshold. If the drain current is above this threshold, then the

reference voltage was sufficient to turn on the transistor indicating that the charge written to the

floating gate is below a certain value. Conversely, if a charge in the floating gate has accumulated

above a certain level, the resistance between source and drain is high, so that the current flow

between source and drain is below the threshold [22]. This behavior resembles a binary output

where we will know either the stored voltage level is higher or lower than the reference voltage

γ(V) or read we applied. Consequently, as we increase the number of reads, we will get softer

information at the cost of read latency. Note that the stored voltage is often referred to as the

threshold voltage. However, to avoid confusion with the read thresholds, for this thesis we will

call it the stored voltage.

9

2.3 Noise Models

Throughout the life cycle of a NAND flash, no matter whether a cell is used repeatedly

or scarcely, it will always experience a variety of distortions, or noise as we call it, such as

programming noise, cell-to-cell interference (CCI), random-telegraph noise (RTN), and charge

leakage. Here we will briefly discuss some of the NAND flash channel models that reflect the

device operations as well as the influence of various factors such as program/erase (PE) cycling

and retention period [23].

2.3.1 Erase Operation Model

As we’ve previously mentioned, a flash memory cell must be erased before it can be

programmed. The threshold voltage distribution for erased cells can be modeled with Gaussian

distribution given by [4] [24]:

fe(x) = f11(x) =
1

σe
√

2π
e
− (x−µe)2

2σ2e

where µe = µ1 and σe are the mean and standard deviation of the erased state.

2.3.2 Program Operation Model

When programming the voltages into the floating gates, a tight threshold voltage control

is typically realized by using incremental step pulse program (ISPP) [25], i.e., memory cells on

the same word-line are recursively programmed using a program-and-verify approach. Denote Vp

and Vpp as the target programmed state and program step voltage respectively. The stored voltage

10

of the programmed state tends to have a uniform distribution over [Vp,Vp +∆Vpp] [4]:

fp =


1

∆Vpp
, for Vp ≤ x≤Vp +∆Vpp

0 otherwise.

Meanwhile, programmed cells are also affected by programming noise fpn , which can be modeled

with Gaussian distribution [26] with zero mean and standard deviation σpn. Thus the overall

distribution of the programmed cells can be given by:

fprog = fp ~ fpn

where fprog ∈ { f10, f00, f11} and Vp ∈ {µ2,µ3,µ4}.

2.3.3 Cell-to-Cell Interference (CCI)

The cell-to-cell interference (CCI) is a result of parasitic capacitive-coupling between

neighboring cells. The threshold voltage shift due to CCI can be given as [4]:

VCCI = ∑
k

∆Vkηk

where ∆Vk is change in threshold voltage of the interfering (neighboring) cell and ηk is the

capacitive coupling ratio defined as:

ηk =
Ck

Ctotal

where Ck is the parasitic capacitance between the interfering cell and the victim cell, and Ctotal is

the total capacitance of the victim cell. In an even-odd bit-line architecture, where even bits are

written before odd bits in a single word-line, the number of interfering cells are five and three for

even and odd bits, respectively, as shown in Figure 2.5.

11

Figure 2.5: Illustration of cell-to-cell interference in an even-odd bit-line architecture [4].

In an all bit-line architecture, on the other hand, where all bits in a word-line are written

simultaneously, all cells have three interfering cells (i.e., in the next word-line). [4] claims that

CCI can be averted using precoding with the exception of the erased state and therefore models

µ1 using Gaussian distribution function with the shifted mean µ̃1 given by:

µ̃even
1 = µ1 +∆µavg(2γx +2γxy + γy)

µ̃odd
1 = µ̃all

1 = µ1 +∆µavg(2γxy + γy)

where ∆µ = (µ1 +µ4)/2−µ1.

2.3.4 Random Telegraph Noise (RTN)

One effect of PE cycles is the random telegraph noise that occurs in semiconductors and

ultra-thin gate oxide films. More specifically, it is when electron capture and emission events at

charge trap sites near the interface over the course of PE cycling directly result in memory cell

threshold voltage fluctuation [23]. In [25], the probability density function (pdf) of RTN-induced

12

voltage fluctuation is modeled as a symmetric exponential function:

fRTN(x) =
1

2λn
e−
|x|
λn

where λn is the decay constant. However, [4] approximates RTN distribution by a zero mean

Gaussian distribution given by:

fRTN(x) =
1

σn
√

2π
e
− x2

2σ2n

where the RTN variance σ2
n is a non-stationary parameter which varies with respect to PE cycles.

Note that the effect of RTN on threshold voltage signal is less significant compared to other noise

components.

2.3.5 Data Retention Noise

Another distortion effects of PE cycles is when interface trap recovery and electron

detrapping gradually reduce memory cell threshold voltage, leading to the data retention limitation.

It is also modeled as a Gaussian distribution N (µdr, σ2
dr) [4]:


µdr = (Vs− x0) ·

[
At ·Nαi +Bt ·Nα0

]
· log(1+T)

σdr = 0.4|µdr|

where Vs ∈ {µ̃1, µ2, µ3, µ4}, T is the data retention time measured in years, N is the number of

P/E cycles and At , Bt , αi, α0, x0 are other constants.

13

Figure 2.6: Illustration of the approximate NAND flash memory device channel model consist-
ing of major distortion sources.

2.3.6 NAND Flash Channel Model

Overall, we an approximately model NAND flash memory device characteristics, as shown

in Figure 2.6, to simulate the memory cell stored voltage distribution. However, the focus of this

thesis does not require us to model the flash memory channel with such detail. Therefore, for

simplicity, we will model the overall voltage distribution as a mixture of equal-variance Gaussian

distributions with fixed, equi-distant means (corresponding to the cell levels in equation 2.1).

2.4 Read Retry Algorithm

Reading a page in flash memory is typically done with a read retry algorithm as shown

in Figure 2.7, where an additional read with a different reference voltage is applied if the initial

page read was inconclusive or had a high error rate. Apart from the obvious read latency such

retry operation introduces, sensed data should be temporarily stored in an on-chip page buffer, so

additional read will result in higher silicon cost. Therefore it is critical to optimize the placement

of these reference voltages in order to minimize the sensing precision (i.e., number of memory

sensing levels) required. This serves as the motivation of this thesis, as we will go into the

optimization problem in the following chapters.

14

Figure 2.7: Read retry algorithm for NAND flash memory.

15

Chapter 3

Read Threshold and Channel Capacity

In Chapter 2 we discussed the fundamentals of NAND flash memories. We saw that

the stored voltage level can be erroneous due to fluctuations that arise for a variety of reasons.

However, it was shown in [18] that, because of the characteristics of the read operation discussed

in Section 2.2.2, adjusting the read (word-line) voltages and, thereby, maximizing the capacity

of the channel model can reduce the error probability. In this chapter, we first introduce the

read voltage setup, revisit the read operations with mathematical descriptions, and reproduce the

threshold optimization results given in [18]. In the last section, we extend the methods of [18]

to a higher number of reads and state our conclusions about the incremental performance gains

associated with the use of additional reads.

3.1 Channel Model

A channel model for a flash memory can be viewed as a simplified representation of the

underlying physical mechanisms which induce errors in stored data. Although we’ve discussed

some of the models in Section 2.3, for simplicity, we model the NAND flash channel fluctuations

as an additive white Gaussian noise (AWGN).

We define the relationship between the signal-to-noise ratio (SNR) and the noise variance

16

of the channel σ2 = N0 (for simplicity in writing) with:

SNR = 10log10
Es

N0
(dB) (3.1)

where Es =
(

∑
4
i=1 µ2

i
)
/4 denotes the energy per symbol. If one wishes to use the traditional

definition where σ2 = N0/2, then simply reduce the SNR value by 3dB (as shown in Figure 3.1).

Let { f11, f10, f00, f01} denote the probability density functions of Gaussian random variables

centered at {µ1,µ2,µ3,µ4} as shown in Figure 3.3, where µis, i = 1, . . . ,4, are given by equation

(2.1).

These functions represent the conditional densities of the read signal given the pro-

grammed cell level. The variance of each of these conditional densities is set equal to the noise

variance N0. In practice, flash memory channel quality is often measured in terms of the number

of program/erase (P/E) cycles, rather than as an SNR value. Therefore, channel error-rates

are usually plotted as a function of P/E cycle count. However, in this thesis, we will consider

performance as a function of SNR. In order to convert between the two channel quality measures,

one can use results in [5], where a model is developed that accurately predicts changes in the

threshold voltage distribution as the number of P/E cycles increases. The model can be used to

establish a one-to-one correspondence between SNR and an equivalent number of P/E cycles, as

illustrated in Figure 3.2.

3.1.1 Read Threshold and Gaps

Assume that there are m read thresholds γ̄ , {γ1, . . . ,γm} that divide the voltages into

m+1 regions {R1, . . . ,Rm+1}. Performing voltage reads at all these thresholds allows the decoder

to narrow down the stored voltage to one of these regions. For each region, we can calculate the

channel likelihood ratios as

17

Figure 3.1: The 3dB difference in the two definition of the SNR to noise variance conversion.

`ch
MSB = ln

(∫
Ri
(f01(ν)+ f00(ν))dν∫

Ri
(f10(ν)+ f11(ν))dν

)
`ch

LSB = ln
(∫

Ri
(f10(ν)+ f00(ν))dν∫

Ri
(f11(ν)+ f01(ν))dν

)
,

(3.2)

which are then fed to the decoder. For the special case of m = 6, we define the notion of gaps.

Suppose we set the thresholds initially at positions [γ1,γ2, ...,γ6] = [−2,−2, 0, 0, 2, 2]. The gaps

are defined as the shifts in the read voltage thresholds away from these initial positions. A

positive gap corresponds to a decrease in voltages for odd thresholds and an increase for even

thresholds (see Figure 3.3). For example, if all gaps equal 0.4(V), the read thresholds will be

[γ1,γ2, ...,γ6] = [−2.4,−1.6,−0.4, 0.4, 1.6, 2.4].

18

Figure 3.2: Signal to noise ratio (SNR) vs. P/E cycles [5].

Figure 3.3: Read voltage thresholds and voltage distributions for an MLC NAND flash memory
with m = 6 read thresholds.

3.1.2 Equivalent Discrete Memoryless Channel

For MLC with m= 6 read thresholds, the voltage range is divided into 7 regions as depicted

in Figure 3.3. This quantization effectively represents a discrete memoryless channel (DMC)

shown in Figure 3.4, where input and output are random variables denoted as X ∈ {µ1,µ2,µ3,µ4}

and Y ∈ {R1, . . . ,R7} respectively, and probabilities pi j = Pr{Y ∈ R j|X = µi} denote the crossover

probabilities for i = {1,2,3,4} and j = {1,2, · · · ,7}.

19

Figure 3.4: Equivalent discrete memoryless channel (DMC) model for MLC with m = 6 read
thresholds.

3.2 Maximizing Mutual Information

Mutual Information is a measure of the mutual dependence between the two random

variables. It quantifies the amount of information obtained about one random variable through

observing the other. Therefore it is sometimes considered an indicator for the capacity of memory

storage. Thus our objective, naturally, is to maximize the mutual information between our input

and output random variables X and Y . Assuming X in our MLC discrete memoryless channel

(Section 3.1.2) is a uniform random variable, that is, X is equally likely to be any of the input

symbols, the mutual information can be given by [18], [27]:

20

I(X ;Y) = H(Y)−H(Y |X)

= H
(

p11 + p21 + p31 + p41

4
,

p12 + p22 + p32 + p42

4
, · · · , p17 + p27 + p37 + p47

4

)
− 1

4

[
H(p11, p12, · · · , p17)+H(p21, p22, · · · , p27)+ · · ·+H(p71, p72, · · · , p77)

] (3.3)

where H(·) denotes the entropy function [27].

Constraining ourselves to the MLC scenario, given a specified SNR value and a fixed

number of read thresholds m, we use gradient descent (technically ascent since we are maximizing

the mutual information) algorithm to adjust the read thresholds to the position where it would

give us the maximum mutual information. With the cost function g(µ̄,N0, γ̄) = I(X ;Y), which we

write as g(γ̄) when the input parameters µ̄ and N0 are fixed, the gradient descend algorithm gives

us:

γ̄
(l+1) = γ̄

(l)+δ ·∇g(γ̄(l)) (3.4)

where δ is the step size (usually denoted by µ in the literature, but renamed here to avoid confusion

with our voltage means µi), γ̄(l) denotes the vector of read thresholds at iteration l and ∇(·) denotes

the gradient operation. In program simulations, the gradient is obtained by choosing two points at

distance ε apart along the read voltage dimension and taking the slope, where ε→ 0. We continue

with this equation to update the position of read thresholds until the increase in cost function g(γ̄)

per iteration no longer exceeds a certain amount. We call this incremental gain the termination

criterion, denoted as ζ.

3.3 Simulation and Results

In this section, we discuss our simulation results done with MATLAB. We set number of

reads m = 6, step size δ = 0.5, gradient distance ε = 1×10−3 and ζ = 1×10−8. The algorithm

21

is given in Algorithm 1. As shown in Figure 3.5, we can graphically visualize the evolution

of mutual information achieved during each gradient descent iteration as well as how the read

threshold positions are adjusted until the mutual information gain per iteration ∂g < ζ. We see

that the algorithm quickly converges even with randomly selected initial threshold positions (no

symmetry constraint). One observation we make here is that the final positions seem to have

equal gaps. This observation holds for all m = 6 cases with accuracy within 10−3 volts. Thus we

constrain the read thresholds to have equal gaps and conduct an exhaustive search across gaps for

different SNR values. The results are shown in Figure 3.6. We cross reference our results with

that of Figure 3.5 and see that the results are consistent. Both figures show an optimal gap of

0.3528 (V) and attain a maximum mutual information of 1.5147.

3.3.1 Higher Number of Reads

For the special case m = 6 reads that we have simulated, the results showing that optimal

positions should be placed around the intersection points of the probability density functions are

intuitive. However, this qualitative behavior is not observed when going beyond m = 6 reads.For

example, with m = 30 reads we have the results shown in Figure 3.8. We see that the read

thresholds are more densely distributed the center and gradually spread out outwards. This makes

intuitive sense since errors are prone to exist where probability density functions overlap the most,

therefore requiring more precise soft information.

Finally, in Figure 3.9, we show the maximum mutual information achievable for a practical

range of SNRs and number of reads. We conclude that after m = 20 reads, mutual information

gain per additional read is below 0.05% and thus attains near optimal performance. All simulation

data are provided in Appendix A.

22

Algorithm 1: Gradient Descent to Maximize Mutual Information
input :The vector of mean stored voltages µ̄ given by equation (2.1), the variance of

AWGN N0 and number of read thresholds m.
output :The optimal read thresholds positions γ̄ that attains the maximum mutual

information achievable.
/* Initialization */

1 Iteration number l = 0 ;
2 Initialize γ̄(0) to any starting position ;
3 Initialize gain ∂g = 10 (a very large number) ;
4 MI(l) = g(γ̄) ; // g(·) is the function that calculates the MI with

given parameters
/* Main Loop */

5 while ∂g > ζ do
/* ε̄i denotes a zero vector of length m with only ε at the ith

entry */
6 for i = 1→ m do
7 ∇g(γ̄(l))i = g(γ̄(l)+ε̄i)

ε
;

8 end
9 γ̄(l+1) = γ̄(l)+δ ·∇g(γ̄(l)) ;

10 MI(l+1) = g(γ̄(l+1)) ;
11 ∂g = MI(l+1)−MI(l) ;
12 l ++ ;
13 end

Result: Optimal read threshold positions are γ̄(l)

3.3.2 Symmetric Channel Labeling

Provided with the equivalent DMC, we see that when we look at the MSB channel and

the LSB channel individually, not only do they have different crossover probabilities, but also

their symmetry properties differ. In particular, the MSB channel is symmetric, whereas the LSB

channel is asymmetric. This will preclude the use of conventional density evolution on the LSB

channel in the later sections. Thus, putting traditional Gray code labeling aside, we employ a

second labeling which we will refer to as the symmetric channel labeling for MLC NAND flash

memory (or MLC-SCL). This labeling uses a different mapping of distribution means to symbols

23

mapping :

X ∈ {µ1,µ2,µ3,µ4} ≡ {11,10,01,00} (3.5)

that allows both MSB and LSB channels to be symmetric. It can be extended to TLC case where

the labeling sequence becomes {′111′,′ 110′,′ 101′,′ 100′,′ 011′,′ 010′,′ 001′,′ 000′}. This specific

labeling method can also be found in [28] where they refer to as the natural order(NO) labeling.

Figures 3.10 and 3.11 shows the MMI achieved for m = [3,30] reads and SNR = [10,15](dB)

for LSB and MSB channels, respectively, using MLC-SCL. We can see that the LSB channel

is clearly more degraded than its counterpart. The complete simulation data, i.e., the optimal

read threshold positions as well as the maximum mutual information attained, are provided in

Appendix B.

Chapter 3, in part, contains material from [12]

- Y. Yeh, A. Fazeli, and P.H. Siegel, "Optimization of Read Thresholds in MLC NAND

Memory for LDPC Codes," in Proc. 11th Annu. Non-Volatile Memories Workshop (NVMW),

La Jolla, CA, USA, Mar. 2020. [Online]. Available: http://nvmw.ucsd.edu/program/

The thesis author was the primary investigator and author of this paper.

24

(a) Evolution of mutual information.

(b) Evolution of read threshold positions.

Figure 3.5: The mutual information achieved and evolution of position of read thresholds
throughout gradient descent iteration in m = 6, SNR = 10 (dB) case. Final mutual information
attained is 1.5147.

25

Figure 3.6: Exhaustive search across gaps for special m = 6 case and for SNR = 10 to 18 dB.

Figure 3.7: Optimal read threshold positions for m = 6 case with the constraint of equal gaps
and for SNR = 0 to 18 dB.

26

Figure 3.8: The evolution of positions of read thresholds throughout gradient descent iteration
in m = 30, SNR = 10 (dB) case. Final mutual information attained is 1.5781.

Figure 3.9: Maximum mutual information achievable for m = [2,30] and SNR = [10,15](dB).

27

Figure 3.10: Maximum mutual information achievable for the LSB channel using MLC-SCL
with m = [3,30] and SNR = [10,15](dB).

Figure 3.11: Maximum mutual information achievable for the MSB channel using MLC-SCL
with m = [3,30] and SNR = [10,15](dB).

28

Chapter 4

LDPC Codes

Error control coding for Flash memory is becoming more important as the capacity of

flash memory increases. The increasing number of levels increases sensitivity to variations in

signal-to-noise ratio (SNR) from cell to cell and over time due to program/erase (P/E) cycles. This

makes stronger error-correction codes, e.g., low-density parity-check (LDPC) codes, necessary.

While hard-decision LDPC codes have high error correcting capabilities, they sometimes can be

overwhelmed by an inordinate number of errors. That is where iterative soft-decision decoding of

LDPC codes, a more analog-based correction algorithm, comes into play. In [6], the performance

advantage of soft-decision LDPC decoding over hard-decision LDPC decoding and hard-decision

BCH decoding is presented (as shown in Figure 4.1). Therefore, in this chapter, we will give a

thorough background review in LDPC codes and iterative soft-decision decoding.

4.1 Overview

Low-density parity-check (LDPC) code [29] is a type of linear error-correcting code

(ECC) used to transmit messages through a noisy channel. The term low-density refers to the fact

that the parity-check matrix H ∈ GF(q)(n−k)×n that characterizes the codewords of the code C is

a sparse matrix. We use GF(q) to denote a finite (Galois) field of size q. Throughout the thesis,

29

Figure 4.1: Simulated decoding failure probability vs. NAND flash memory raw bit error rate
of hard-decision and soft-decision LDPC decoding and BCH code decoding. Both LDPC code
and BCH code protect each 4KB user data with 512B coding redundancy [6].

Figure 4.2: Schematic diagram of an error correcting code with rate R = k/n.

we will only consider binary (q = 2) LDPC codes; therefore the codewords are all of the binary

vectors c ∈ GF(2)n that satisfy H · cT = 0T . In other words, the set of codewords is the null space

of H. We call n the length of a codeword and k the dimension of the code (i.e., there are a total of

2k codewords). Hence the rate of the code is R = k/n.

30

Generator Matrix

A generator matrix G of an LDPC code can be obtained directly (typically not uniquely)

from the parity-check matrix. It is a k×n matrix whose rows form a basis of the code. Obviously

the rank of the generator matrix G is equal to the dimension k of the code C and it is orthogonal

to H, i.e., GHT = 0. It is used to encode a message vector x ∈ GF(2)k:

x 7→ xG = c

and since it is full rank, it can be view as a one-to-one mapping: GF(2)k → GF(2)n. In the

special case when the parity-check matrix can be written in the form H =
[
−AT |I(n−k)×(n−k)

]
(I

is the identity matrix), the corresponding generator matrix of the form G =
[
Ik×k|A

]
is called

systematic [30].

Tanner Graph

The (n− k)×n parity-check matrix can be represented by a Tanner graph (i.e., a bipartite

graph), with (n− k) check nodes in one subset of vertices and n variable (or message) nodes in

the other subset (see Figure 4.3). The degree of a node is the number of edges connected to it.

If all variable nodes have degree land all check node has degree r, then we call such a code

an (l, r)-regular LDPC code. In contrast, an irregular LDPC code is an LDPC code where the

degrees of nodes are chosen according to some variable node distribution λ(x) and check node

distribution ρ(x):

λ(x) =
dv

∑
i=1

λixi−1

ρ(x) =
dc

∑
i=1

ρixi−1,

(4.1)

31

Figure 4.3: A Tanner graph where the circle and the square nodes denote the variable and the
check nodes, respectively.

where λi and ρi denote the fraction of edges connected to variable nodes and check nodes with

degree i, respectively, and dv and dc denote the maximum degree of variable nodes and check

nodes, respectively.

Cycles and Girth

An important property of a Tanner graph is its cycle lengths, since these relate directly to

the independence of messages passed along edges during iterative decoding. In Section 4.5, we

use a technique for analyzing the decoding performance of LDPC codes called density evolution,

which assumes the Tanner graph is cycle-free to ensure independence of messages. The girth

and, more generally, the distribution of cycle lengths of an LDPC code have implications for the

accuracy of density evolution as a proxy for actual decoding performance.

First, a path is a finite sequence of edges connecting a subset of nodes. A path is called

a cycle if the first node of the path is the same as the last node with no other nodes being

repeated. Thus we define the length of a cycle as the number of edges within that cycle. By

definition, a Tanner graph which is a bipartite graph contains no cycles of odd length. This is

easily understandable since no two variable nodes nor two check nodes are connected with one

edge. The girth is the minimum cycle length in a graph. A method of counting the number of

cycles of short lengths is presented in [31].

32

4.2 Code Design

Although following Gallager’s [29] introduction of LDPC codes, MacKay and Neal

proved that they can achieve near capacity performance [32] over binary-input memoryless

symmetric channels (BMSC), it is an ongoing challenge to design the actual code structure that

attains such performance. Richardson et al. investigated the design of LDPC codes by optimizing

the degree structure of the underlying graph using density evolution [15]. There are a few notable

codes such as concatenated tree (CT) codes [33], (generalized irregular) repeat-accumulate (RA)

codes [34], [35] and codes in [36], [37] that led to the formalism of multi-edge type (MET) LDPC

codes by Richardson and Urbanke [38]. The structure of MET-LDPC codes is different from

standard LDPC codes in the way that they contain diverse edge types which are permuted with

a uniformly chosen interleaver. The nodes are characterized by a sequence of degrees, each of

which expresses the number of connected edges of a certain type. A specific sequence of degrees

is called edge degree vector (EDV). The MET-LDPC codes not only outperform the standard

LDPC codes, but also possess lower encoding complexity. They are considered an intermediate

class of codes that bridges between the standard LDPC codes and protograph codes [39].

Protograph Code

Protograph codes, although not used in this thesis, are worth mentioning because they

are a family of codes that exhibit simpler structures, lower complexity and better performance

than MET-LDPC codes. A protograph code is defined as an LDPC codes whose Tanner graph is

a derived graph. First introduced in [7], a protograph G = (V ,C ,E) consist of three sets: NP

variable nodes v j ∈ V , MP check node ci ∈ C and edges ei j ∈ E . It can be fully specified by

an MP×NP base matrix B = (bi j) where bi j represents the number of connecting edges from

v j to ci. Different from conventional LDPC codes, parallel edges are allowed in a protograph,

i.e., bi j ∈ Z+. Through the "copy-and-permute" operation, we can obtain a larger graph, i.e., the

33

Figure 4.4: A simple example of generating the derived graph from a protograph [7].

derived graph, from a protograph. A simple illustration in [7], which is shown in Figure 4.4,

serves as a good explanation of generating a derived graph. The corresponding base matrix of the

protograph is:

B =

v1 v2 v3 v4


1 1 1 2 c1

1 1 0 0 c2

1 0 1 0 c3

The derived graph is of size M×N where M = zMP,N = zNp, and z is the so-called

lifting factor [40]. In practice, one can use the progressive-edge-growth (PEG) algorithm [41] to

implement the lifting operation.

4.2.1 QC LDPC Codes

An important category of LDPC codes that is widely adopted in current standards and

practices is called the quasi-cyclic (QC) LDPC codes [42]. They not only have competitive

performance under iterative decoding, but also can be implemented efficiently because of their

underlying structure. A QC-LDPC code has an mbL×nbL parity-check matrix specified by an

mb×nb exponent matrix (or base matrix) we denote as E(H):

34

E(H) =



a11 a12 · · · a1nb

a21 a22 · · · a2nb

...
...

amb1 amb2 · · · ambnb


(4.2)

with entries ai j ∈ {−1,0,1, ...,L−1}. The corresponding parity-check matrix H is given by:

H =



Pa11 Pa12 · · · Pa1nb

Pa21 Pa22 · · · Pa2nb

...
...

Pamb1 Pamb2 · · · Pambnb


(4.3)

where P is an L×L circulant permutation matrix (CPM) defined by:

Pai j
i j =


1 if i+ai j ≡ j mod L

0 otherwise.
(4.4)

In other words, Pai j is an L×L binary square matrix that circularly shifts the identity

matrix I to the right by ai j times for any integer 0 ≤ ai j < L. Also, P−1 (P∞ in some papers)

denotes the L×L zero matrix. We call L the sub-block size, which is denoted as Z in the standards

[11].

If we wish for a parity-check matrix with larger girth, we can replace some CPMs in H

with zero matrices of the same size to reduce the number of short cycles and possibly enlarge

the girth value. This replacement is called masking. Ways of designing QC-LDPC codes with

high girths can be found in [43], [42] and [44]. An extension of QC-LDPC codes called lifting,

presented in [45], offers a trade-off between performance and memory efficiency.

We use two QC-LDPC codes throughout this thesis. The first is a (3,4)-regular QC-LDPC

35

code of length n = 36 and L = 9 specified by base matrix:

E(H) =


0 0 0 0

0 1 3 7

0 2 6 5

 (4.5)

(see [44]), which we refer to as "Code A". The second one is an irregular QC-LDPC code of

length n = 1944, rate 2/3 and L = 81 used in the 802.11n Wi-Fi standard [11], which we refer to

as "Code B". It’s base matrix is specified by:



61 75 4 63 56 − − − − − − 8 − 2 17 25 1 0 − − − − − −
56 74 77 20 − − − 64 24 4 67 − 7 − − − − 0 0 − − − − −
28 21 68 10 7 14 65 − − − 23 − − − 75 − − − 0 0 − − − −
48 38 43 78 76 − − − − 5 36 − 15 72 − − − − − 0 0 − − −
40 2 53 25 − 52 62 − 20 − − 44 − − − − 0 − − − 0 0 − −
69 23 64 10 22 − 21 − − − − − 68 23 29 − − − − − − 0 0 −
12 0 68 20 55 61 − 40 − − − 52 − − − 44 − − − − − − 0 0
58 8 34 64 78 − − 11 78 24 − − − − − 58 1 − − − − − − 0


(4.6)

where we replace the (−1) elements indicating the zero matrices with dash marks for better

visualization. Notice that it has a double diagonal structure at the end of the matrix. It is for the

purpose of low encoding complexity which we will discuss further in Section 4.3.2.

4.2.2 LDPC Codes for NAND flash

There are other special types of LDPC code designs that aim for specific purposes for

NAND flash, one of which is the rate-compatible (RC) LDPC code [46], [47]. For flash memories,

it is well known that the raw BER increases with repeated P/E cycles, thus requiring a more

powerful (i.e., lower rate) code as PE cycle count increases. One approach is by puncturing

36

Figure 4.5: Example of a sub-blocked Tanner graph with 3 sub-blocks of length 6 interconnected
by 3 joint check nodes [8].

the code, which is starting off with a low-rate code, then gradually discarding the parity bits to

achieve higher rates [48]. Another approach is by extending the code, that is, to start with a good

high-rate code and then successively add more parity-check bits to generate lower-rate codes [49],

[50].

Another code design motivated by the storage applications is the LDPCL codes (suffix L

represents locality) [8]. These codes are designed to have the capability of decoding a sub-block

(locally) independent of other sub-blocks for decoding speed and fall back to global decoding

(i.e., decoding the entire codeword) when local decoding fails. An example of the graph of such a

code is presented in Figure 4.5 where ’L’ and ’J’ labels denote the local and joint check nodes,

respectively.

4.3 Encoding

Recall in Section 4.1 we addressed the basic encoding method using a generator matrix

G, as well as the fact that codewords comprise the null space of a parity check matrix H. Thus

all codewords c in codebook C must satisfy HcT = 0. In this section, we discuss some of the

encoding methods for LDPC codes.

37

Figure 4.6: The approximate lower triangular form of a parity check matrix where m = n− k
and g is typically much less than n [9].

4.3.1 Efficient Encoding

One efficient encoding method applicable to all parity-check matrices is the efficient

encoding in [9]. The number of operations required is upper bounded by 0.0172n2 +O(n) where

n is the code length. The idea is to divide the encoding into two steps: preprocessing, which only

needs to be done once, and encoding. The preprocessing step brings the parity check matrix into

an approximate lower triangular form as shown in Figure 4.6. Then the encoding step can be

done as described in Algorithm 2. The codeword c can be written as c = [s,p1,p2] where s is the

data vector and p1,p2 are given in equation (4.8).

4.3.2 Double Diagonal Encoding

Another encoding method that is widely used in the existing communication standards is

the double/dual diagonal encoding which exploits the double diagonal structure in the parity-check

matrix of a QC-LDPC code. A double diagonal LDPC code in a narrow sense has the mb×nb

base matrix of the form:

E(H) =

[
A D

]

38

Algorithm 2: Efficient Encoding for LDPC Codes
STEP I :Preprocessing
Input :Full rank parity check matrix H.
Output :An equivalent matrix in approximate lower triangular form such that

−ET−1B+D is non-singular
1 [Triangulation] Perform row and column permutations to bring the PCM H into

approximate lower triangular form:

H =

[
A B T
C D E

]
(4.7)

2 [Check Singularity] Check if φ =−ET−1B+D is invertible (non-singular). Perform
column permutations to make it so.

STEP II :Encoding
Input :Input the PCM generated form the previous step and a data vector

s ∈ GF(2)n−m.
Output :Codeword c = [s,p1,p2],p1 ∈ GF(2)g,p2 ∈ GF(2)n−g.

3 {
p1 = [−φ−1(−ET−1A+C)sT]T

p2 = [−T−1(AsT +Bp1
T)]T

(4.8)

where m = Lmb = n− k, n = Lnb and the square matrix Dmb×mb is the double diagonal part:

Dmb×mb =

[
dT

1×mb
D′mb×(mb−1)

]
=



d 0
0 0

0 . . .

0
. . . 0

0 0
d 0


where dT is a column vector of weight 3 and d ∈ Z++. IEEE 802.11n LDPC codes are structured

this way and support codeword lengths of n = 648, 1296, and 1944 with sub-block sizes L =

27, 54, and 81, respectively. The supported code rates are 1/2, 2/3, 3/4 and 5/6 and the

corresponding base matrices are shown in Table D.1 for the length n = 1944 code.

39

In a broader sense, a double diagonal LDPC code can have a base matrix of the form:

E(H) =

 A D 0

B C I


where D has the double diagonal structure discussed previously, 0 is an all-zero matrix and I

is the identity matrix (this type is common in the 5G NR standards). Columns A and B are

the information columns; Columns D and C are the core parity columns; Columns 0 and I are

considered as the extension parity columns. Note that, given such a base matrix, one can perform

the rate matching operation to obtain a sub-PCM of another desired rate, but this is a topic

reserved for another time. Below, in Algorithm 3, we will only discuss the encoding for the first

type but it can be easily extended to encode the second type. We will use it throughout the rest of

this thesis to encode our Code B (equation (4.6)). One can also refer to [51] [52] and [53] for

more hardware-efficient encoding methods.

4.4 Decoding

In this section, we discuss some decoders for LDPC codes in general. We will first go

through the standard LDPC decoding scheme, the belief-propagation (BP) decoding, in detail

because this decoding method is closely related to our discussion of density evolution in the later

sections. Next, we will discuss an approximated BP decoding called the min-sum algorithm which

is a more hardware-efficient decoding method that is widely used in practice. We will describe its

decoding process in pseudo-code due to its importance. Besides these two decoders, there exists

a more recently proposed decoder called the finite alphabet iterative decoder (FAID) which is

not directly relevant to this thesis but is worth mentioning briefly here due to its performance

properties. On finite length codes, BP decoding in the low error-rate region can exhibit what is

called the error floor, i.e., a flattening of the performance, due to the presence of cycles forcing

40

Algorithm 3: Double Diagonal Encoding Algorithm

Input :A data vector s = [s1,s2, · · · ,sk] ∈ GF(2)(1×k), L, and a mb×nb base matrix
of the form E(H) =

[
A dT D′

]
with elements ei j, where

k = L(nb−mb)
Output :The codeword vector c ∈ GF(2)(1×n)

/* ----- Main Code ----- */
1 c = 0(1×nb·L)
2 c
[
1 : (nb−mb)L

]
= s

3 for i = 1→ mb do
4 for j = 1→ nb−mb do

5 t1×L = mod2
{

t + shift
(

c
[
(j−1)L+1 : jL

]
, ei j

) }
6 end
7 end
8 r = the index of the 0 element in dT

9 p = er,(nb−mb+1)

10 c
[
(nb−mb)L+1 : (nb−mb +1)L

]
= shift

(
t, L− p

)
11 for i = 1→ mb do
12 t = 0(1×L)
13 for j = 1→ nb−mb + i do

14 t = mod2
{

t + shift
(

c
[
(j−1) ·L+1 : j ·L

]
, ei j

) }
15 end
16 c

[
(nb−mb + i)L+1 : (nb−mb + i+1)L

]
= t

17 end
18

/* ----- Functions ----- */
19 Function y = shift(x, k):
20 if if k==-1 then
21 y = 0(1×length(x))
22 else
23 y =

[
x(k+1 : end) x(1 : k)

]
24 end
25 return

the decoding process to converge to trapping sets. FAIDs were introduced to overcome this

problem [54], [55]. They are designed to optimize the error-correcting capability in the error floor

region [56].

41

4.4.1 Belief Propagation

A common decoding scheme for LDPC codes is the Belief Propagation (BP) decoding

[29], also known as the sum-product algorithm and a sub-class of message passing algorithms. It

is a soft-input soft-output iterative algorithm that passes probability messages, or "beliefs", along

the edges of a Tanner graph (see Figure 4.3).

In the case of decoding LDPC codes specified by the m×n PCM H, each variable node

(VN) takes real values (a priori information) from the channel along with the latest communicated

values from its connecting check nodes (CNs). It then computes updated information to send to

each of its connecting CNs. Each CN, which represents a parity-check constraint of the code,

then computes updated information from its received messages to return to its connecting VNs.

This process make up one decoding iteration.

Let us use m(l)v jci and m(l)civ j to denote the messages passed from VN v j to CN ci and from

CN ci to VN v j, respectively, at iteration l where i ∈ {1,2, · · · ,m} and j ∈ {1,2, · · · ,n}. Also

let x = (x1,x2, · · · ,xn) ∈ GF(2)1×n denote the codeword and y = (y1,y2, · · · ,yn) ∈ R1×n be the

received vector. Initially at iteration 0, each VN v j calculates the log-likelihood ratios (LLRs)

defined as `(ch):

`
(ch)
j = ln

(
Pr(x j = 0|y j)

Pr(x j = 1|y j)

)
(4.9)

where Pr(x j = 0|y j) and Pr(x j = 1|y j) are the conditional probabilities of x j = 0 and x j = 1 given

y j, respectively. Intuitively, we can think of the magnitude of LLRs as the amount of confidence

or certainty that a bit is 0 or 1. If the LLR > 0, then the decision of the bit is 0. Otherwise, the

decision of the bit is 1. The job of the BP decoder is to iteratively update these LLRs by passing

them between the VNs and CNs to obtain the output.

42

VN Update Rule

Let’s first discuss the VN update rule, i.e., the calculation of the message passed from VN

to CNs (m(l)v jci). One important feature of BP decoding is that only extrinsic information is being

passed, e.g., when calculating m(l)v jci , m
(l−1)
civ j is excluded from consideration and vice versa with the

superscripts of the message swapped. To give an example, let us consider the case depicted in

Figure 4.7a where VN v j is of degree 3 with edges (e1,e2,e3) ∈ E j connecting CNs ci, c6, and

c7. The message v j passes to ci is:

m(l)v jci = `
(ch)
j + `

(l−1)
e2 + `

(l−1)
e3

As you can see, we are excluding `
(l−1)
e1 from the summation. Note that in our notation, `(l−1)

e2 ≡

`
(l−1)
6 and `

(l−1)
e3 ≡ `

(l−1)
7 . Extending to general cases, the VN messages are given by:

m(l)v jci = `
(ch)
j + ∑

ed∈E|\{ed=i}
`
(l−1)
ed (4.10)

where `(0) is initialized to 0.

CN Update Rule

To explain the CN update rule for message m(l)civ j , let us consider another simple example

depicted in Figure 4.7b where a CN c5 is connected to three other VNs v1,v6 and v7 via edges

(e1,e2,e3) ∈ E5 and we wish to compute m(l)c5v1 . For simplicity, all messages are expressed as

likelihood ratios (LRs) denoted as L , rather than LLRs. We have:


L6 =

Pr(x6=0|y6)
Pr(x6=1|y6)

, p60
p61

L7 =
Pr(x7=0|y7)
Pr(x7=1|y7)

, p70
p71

43

and

L6⊕L7 ≡ Le2⊕Le3

=
p61 p71 + p60 p70

p60 p71 + p61 p70
=

1+ p60 p70
p61 p71

p60
p61

+ p70
p71

=
1+L6L7

L6 +L7
=

2+2L6L7

2(L6 +L7)

=
(L6 +1)(L7 +1)+(L6−1)(L7−1)
(L6 +1)(L7 +1)− (L6−1)(L7−1)

=
1+ L6−1

L6+1
L7−1
L7+1

1− L6−1
L6+1

L7−1
L7+1

(4.11)

where ⊕ denotes the addition operation in modulo 2, equivalent to the XOR operation. Thus in

general, when the CN ci has dc connecting edges Ei = (e1,e2, ...edc) connected to VNs ved , the

message m(l)civ j is given by:

m(l)civ j =

1+∏ed∈Ei\{ed= j}
L(l−1)

ed −1

L(l−1)
ed +1

1−∏ed∈Ei\{ed= j}
L(l−1)

ed −1

L(l−1)
ed +1

(4.12)

Moreover, coming back to working with LLRs (i.e., `= lnL), we have:

L−1
L +1

= tanh(
`

2
)

and finally, the LLR update rule at CNs is given by:

m(l)civ j = 2tanh−1
(

∏
ed∈Ei\{ed= j}

tanh(
`
(l−1)
ed

2
)
)

= 2tanh−1
[

exp
(

∑
ed∈Ei\{ed= j}

ln
[

tanh(
`
(l−1)
ed

2
)
])] (4.13)

Given equations (4.10) and (4.13), the iterations are repeated accordingly, usually until

either the maximum number of iterations lmax is reached or the average magnitude of LLR values

44

(a) VN update (b) CN update

Figure 4.7: A simple example of message passing at a (a) VN and (b) CN, both of degree 3.
We use ed to denote the dth edge in our consideration. ` and L are the LLR and LR messages
passed along the edges, respectively. `(ch) denotes the observed channel values.

exceeds a certain threshold. As such, we show the complete decoding process in Algorithm 4.

4.4.2 Min-sum decoding

Although BP decoding gives good performance, it is considered too computationally

expensive for hardware implementation due to the floating point calculations. An approximated

method that deals only with positive real numbers and XOR operations, the min-sum (MS)

algorithm greatly reduces the complexity of BP [57] [58]. Thus we will briefly present the

essence of this algorithm below (Algorithm 5). The reader should acknowledge the fact that

while MS is hardware efficient, its ultimate performance is often much worse than that of BP.

To compensate for this degradation, a linear post processing (normalization) of the check node

messages can be effective [59] [60]. The optimal normalization factor can be found using density

evolution methods such that it achieves near BP decoding capability. In [61], an improved 2D

normalization method for MS decoding is presented that gives considerably better performance

than standard MS and 1D normalized MS decoding.

In the min-sum algorithm, we use S to denote a storage matrix of the same size as the

45

Algorithm 4: Belief Propagation Decoding Algorithm

Input :The received LLR vector y = [y1,y2, · · · ,yn] ∈ R(1×n) given by the channel,
the m×n PCM H and lmax.

Output :The decoded codeword c′ ∈ GF(2)(1×n)

/* ----- Initialization ----- */
1 Set iteration count l = 0 ;
2 Initialize two m×n storage matrix V = C = H ;
3 Set ṽi j, the non-zero entries of V, to be y j for all j ∈ [1,n] ;
/* ----- Message Passing Loop ----- */

4 while l < lmax do
/* ----- VN update C ----- */

5 for all non-zero entry (i, j) pairs do
6 c̃i j = m(l)v jci given by equation (4.10);
7 end

/* ----- CN update V ----- */
8 for all non-zero entry (i, j) pairs do
9 ṽi j = m(l)civ j given by equation (4.13);

10 end
11 l ++ ;
12 end

/* ----- Decode LLR to Binary ----- */
13 for j = 1→ n do
14 c′j = avg(non-zero entries of column j in C);
15 end
16 c′ = c′ < 0 ;

parity-check matrix of the code H ∈ GF(2)(n−k)×n. We let hi j and si j denote the entries in H and

S respectively. Also we let s̃i j denote the non-zero entries in S. The main loop of the algorithm

generally consist of two parts, row operation and column operation, and is fully described in

Algorithm 5.

4.5 Density Evolution

Density evolution, proposed in [62], is the most powerful analytical asymptotic tool for

determining the capacity for LDPC codes under message passing decoding algorithms. It relies

46

Algorithm 5: Min-sum Decoding Algorithm
Input :The received vector r = [r1,r2, · · · ,rn] given by the channel.
Output :The decoded codeword c′ ∈ GF(2)(1×n)

/* ----- Initialization ----- */
1 Set iteration count l = 0 and maximum iteration number lmax ;

2 Initialize a (n− k)×n storage matrix S =

{
si j = r j if hi j = 1
si j = 0 otherwise

;

3 while l < lmax do
/* ----- Row Operation ----- */

4 for i = 1→ (n− k) do
5 min1 = minimum absolute value of all non-zero entries in row i;
6 min2 = the next minimum absolute value;

7 sign =

{
+1 if ∏

n
j=1 s̃i j > 0

−1 otherwise
;

8 Set magnitude of all s̃i j = min1;
9 Set magnitude of the original min1 value = min2 ;

10 Element-wise multiplication of row i with sign;
11 end

/* ----- Column Operation ----- */
12 for j = 1→ n do
13 c′j = r j +∑

n−k
i=1 si j;

// Update codeword
14 for i = 1→ (n− k) do
15 ŝi j = c′j− ŝi j;
16 end
17 end
18 l ++ ;
19 end

/* ----- Decode LLR to Binary ----- */
20 c′ = c′ < 0 ;

on the assumption of message independence, which can be satisfied as the codeword length tends

to infinity such that the corresponding graph is close to cycle-free. Another important assumption

is the channel symmetry. This is the reason for Section 3.3.2 where we established a symmetric

channel labeling (SCL) specifically for MLC LSB channels in the flash memory scenario. In this

section, we will first introduce the fundamentals of the standard (continuous) density evolution,

47

followed by an approximated method called the Gaussian approximation method that greatly

simplifies the process for BAWGNC [63].

4.5.1 Standard Density Evolution

Given the VN and CN update rules (equations 4.10 and 4.13), suppose we let p(l)v and p(l)c

denote the probability density functions (pdf) of VNs and CNs, respectively at iteration l. Then

we have the density function p(l)v of the outgoing LLRs at the variable node v:

p(l)v = p(ch)~
[
p(l−1)
c

]~(dv−1) (4.14)

where p~n is a short hand for the pdf p convolved with itself n−1 times (e.g., p~3 ≡ p~ p~ p),

p(ch) denotes the pdf given by the channel LLRs and dv denote the degree of the target VN v. On

the other hand, the density p(l)c of the outgoing LLRs at the check node c is given by:

p(l)c = Γ
−1
([

Γ(p(l−1)
v)

]~(dc−1)
)

(4.15)

where Γ(·) is an invertible operator on probability densities defined in [10]. Furthermore, with:

λ(p), ∑
i≥2

λi(p)~(i−1)

ρ(p), ∑
i≥2

ρi(p)~(i−1)

where λi and ρi are as defined in equation (4.1), we have the updating equation of VN densities:

p(l)v = p(ch)~λ

[
Γ
−1
(

ρ
[
Γ(p(l−1)

v)
])]

(4.16)

While performing density evolution analysis, we usually assume that all-0 codeword is

being transmitted. Naturally, with the conventional BPSK mapping where symbols ’0’ and ’1’

48

get mapped to positive values and negative values, respectively, we have the probability of error

after l iterations given by:

P(l)
e =

∫ 0

−∞

p(l)v (z)dz. (4.17)

A graphical example that visualizes the density evolution process borrowed from [10] is

given in Figure 4.8 for a code with degree distributions:

λ(x) =0.212332x+0.197596x2 +0.0142733x4 +0.0744898x5 +0.0379457x6

+0.0693008x7 +0.086264x8 +0.00788586x10 +0.0168657x11 +0.283047x30

ρ(x) =x8

(4.18)

Since the channel is a BAWGNC with noise variance σ2 = 0.932, the channel density

function p(ch) ∼ N (2
σ2 ,

4
σ2) as depicted in the upper left corner of the figure p(0)v = p(ch). The

p(0)c is always initialized as a unit-impulse with all its mass at 0 because the initial message from

any CN is 0. We can observe that, with the assumption of all-0 codeword being transmitted,

both pv and pc densities gradually shift towards the right as iteration progresses. Intuitively, this

indicates that the decoder becomes more confident in its decision, while simultaneously having

larger fraction of bits being decided as the ’0’ symbol, i.e., reducing Pe.

4.5.2 Gaussian Approximation

A method that greatly simplifies the process of density evolution is called Gaussian

approximation proposed in [63]. It treats the messages exchanged in BP decoding as Gaussian

random variables with mean µ and variance 2µ. By doing so, we only need to track the mean

throughout each iteration since it fully specifies the entire LLR density function. Equation (4.10)

simply becomes

µ(l)v = µ(ch)+(dv−1)µ(l−1)
c (4.19)

49

Figure 4.8: The evolution of the LLR densities at the VNs (left column) and CNs (right
column) for iterations l = 0,5,10,50, and 140 corresponding to each row from top to bottom,
for BAWGNC with noise variance σ2 = 0.932 with a code specified by the degree distribution
in equation (4.18) [10].

50

where µ(l)v , µ(l)c and µ(ch) denote the mean of the density functions p(l)v , p(l)c , and p(ch), respectively.

The indices j are omitted because v j’s are i.i.d. for 1≤ i < dv. And in general, the VN update

rule becomes:

µ(l)v = ∑
i

λi

[
µ(ch)+ i ·µ(l−1)

c

]
(4.20)

The update mean µ(l)c can be calculated by taking the expected value on both sides of

equation (4.13)

E
[

tanh
m(l)cv
2

]
= E

[
tanh

m(l)vc
2

]dc−1

(4.21)

and since we’re approximating mcv as Gaussian N (µc,2µc), the expectation E
[

tanh mcv
2

]
depends

only on the mean µc :

E
[

tanh
mcv
2

]
=

1√
4πµc

∫
R

tanh
mcv
2

exp
[
− (mcv−µc)2

4µc

]
dmcv (4.22)

If we let f (µ) be:

f (µ) =


1− 1√

4πµ

∫
R tanh u

2 exp
[
− (u−µ)2

4µ

]
du, if µ > 0

1, if µ = 0

then f (µ) can be approximated by φ(µ) [63]:

φ(µ) =


e−0.4527µ0.86+0.0218, µ < 10√

π

µ e−
µ
4 (1− 20

7µ), µ≥ 10

The corresponding CN update rule at one specific CN with degree dc is:

51

µ(l)c = φ
−1
(

1−
[
1−φ

(
µ(l−1)
v

)]dc−1
)

(4.23)

Averaging over all check node degrees, we have the CN update rule as:

µ(l)c = ∑
j

ρ jφ
−1
(

1−
[
1−φ

(
µ(l−1)
v

)] j−1
)

(4.24)

Finally, given degree distribution of the code [λ(x),ρ(x)], with equations (4.20) and (4.24)

we have the following update equation:

µ(l)c = ∑
j

ρ jφ
−1
(

1−
[
1−∑

i
λiφ
(
µ(ch)+(i−1)µ(l−1)

c
)] j−1

)
(4.25)

Figure 4.9 shows an example of the evolution of Pe throughout each message-passing iteration

using Gaussian approximation with a (3, 6)-regular LDPC code and different noise parameters

σ, where Pe is given by Φ
(−µv

σ

)
and Φ(·) is the cumulative distribution function (CDF) of the

standard normal distribution (N (0,1)). Overall, Gaussian approximation serves as an alternative

analysis method for the additive white Gaussian noise channel reducing what used to be the

evolution of infinite-dimensional density space into the evolution in a single parameter. However,

the MSB and LSB flash memory channels are not AWGN channels, so Gaussian approximation is

not applicable. Therefore, in the next chapter, we discuss a more relevant computational method,

discretized density evolution.

52

Figure 4.9: Evolution of probability of errors Pe given by Gaussian approximation methods of a
(3, 6)-regular LDPC code with different noise parameters σ.

53

Chapter 5

Read Threshold and LDPC Codes

In this chapter, we discuss the approach of using density evolution as an analytical method

of refining the read threshold positions such that it gives the minimum BER possible, as shown in

Figure 5.1. This approach was proposed in [19], where a brute force search was used to identify

optimal read thresholds for use with an LDPC code. In an attempt to reproduce the results in

[19], we developed an alternative, algorithmic approach to to the problem and systematically

explored several technical issues that arise in the application of density evolution in this context.

We will discuss the individual components of our approach in succession from a system point

of view. We begin with the read signal noise variance N0 = σ2, represented by an SNR value.

This is the input to the channel quantizer, where the finite discrete channel LLR pmfs, denoted

as p(ch), are computed using a split-ratio quantization method, to be discussed in more detail

below. Then we use the discretized density evolution (DDE) method introduced in [20] as a

proxy for bit error rate (BER), followed by the implementation of gradient descent to gradually

adjust the read positions. This process is repeated until it reaches the near-optimal positions, i.e.,

when the gradient computed is close to zero, indicating that a local minimum has been reached.

Towards the end of this chapter, we will provide our simulation parameters as well as results and

discussions.

54

Figure 5.1: Block diagram of read threshold optimization using density evolution.

5.1 Discretized Density Evolution

In [20], an improved implementation of density evolution is developed called the dis-

cretized density evolution (DDE) which is able to model the exact behavior of discretized

sum-product decoding on quantized AWGN channels. The input to the DDE are the channel LLR

pmfs which are dictated by both SNR (i.e., noise variance σ2) and the position of read thresholds

γ. We use the MLC NAND flash scenario, 2 bits (MSB and LSB) per symbol, while using the

symmetric channel labeling (SCL) as discussed in Section 3.3.2 (see Figure 5.2). The LLRs are

computed as

`(ch)
MSB = ln

(∫
Ri
(f01(ν)+ f00(ν))dν∫

Ri
(f10(ν)+ f11(ν))dν

)

`(ch)
LSB = ln

(∫
Ri
(f10(ν)+ f00(ν))dν∫

Ri
(f11(ν)+ f01(ν))dν

)
,

represent the messages being passed along the edges of the graph.

Note that the LSB channel and MSB channel are entirely distinct and and hence should

be analyzed separately. Howver, we will mainly deal with the LSB channel since it is shown in

Figure 3.11 that the LSB channel is more degraded than MSB, which makes it the bottleneck in

improving the BER.

55

Figure 5.2: The MLC-SCL channel probability distributions with m read thresholds.

5.1.1 Split Ratio Quantization

The first step is quantization. As we know, the core of density evolution revolves around

keeping track of the LLR densities at the CNs and VNs. However for hardware implementations

and computer simulations, we could never store continuous and unbounded data without some

modifications. Thus the quantization is used regularly to convert continuous LLR pdfs into

discrete and finite LLR pmfs. For a message w, the standard quantization generates the quantized

message Q (w) = ŵ, defined as:

ŵ≡ Q (w) =



⌊
w
∆
+ 1

2

⌋
·∆, if w≥ ∆

2⌈
w
∆
− 1

2

⌉
·∆, if w≤ ∆

2

0, otherwise

(5.1)

where ∆ is the quantization interval. The pmf value P(w) associated with w is then assigned to

Q (w). However, in our DDE implementation, we observed fluctuations in the DDE output due to

the use of this quantization. Therefore, we introduced a modified quantization method, which

we call split ratio quantization (SRQ), whereby the pmf value associated to w is split between

adjacent quantization points in inverse proportion to the distance of w to those points. We refer

to Figure 5.3, where original data point is at position w with value P(w). The quantized pmf

56

under SRQ has two components at positions Ql(w) and Qr(w) with values Pl(w) = b
(a+b)P(w)

and Pr(w) = a
(a+b)P(w), respectively.

Figure 5.3: Split ratio quantization (SRQ).

The effect of this method can be observed in Figure 5.4 where we show the LSB channel

pmfs before and after applying SRQ. In Figure 5.4a, the LLR pmfs for gaps = 0.347 to 0.350

have almost identical non-zero value at LLR = 3.15 while the LLR pmfs for gap = 0.351 to

0.353 have almost identical non-zero value at the next quantization point LLR = 3.20. This sharp

transition between the gap = 0.350 and the gap = 0.351 is the source of the observed fluctuations.

After applying SRQ, as shown in Figure 5.4b, the transition is smoothed out and fluctuations are

significantly reduced. This is important because later on, when we implement gradient descent

on top of this, even the slightest fluctuations will result in the creation of local minima traps and

prevent us from converging to the global minimum we want.

5.1.2 Finite LLR-pmf Operations

With the quantization method established for the discretized LLR pmfs, we now need

to address the issue of representing the pmfs using only a finite number of values. We follow

the recommendation of [10] where we only store the LLR range of ∆[−N,N]Z. We use p to

57

(a) Before SRQ.

(b) After SRQ.

Figure 5.4: The effect of SRQ is to smooth out the transition of LSB channel LLR densities,
where ∆ = 0.05.

58

denote this pmf of length 2N + 1. If we convolve two such pmfs, pa and pb, the size of these

pmfs are usually really large, therefore the use of an efficient convolution method is a must. We

use the FFT-based convolution where the output pmf pc = pa⊗ pb = IFFT
{

FFT{pa}FFT{pb}
}

of length 4N + 1 supported on ∆[−2N,2N]Z. This pmf pc can be divided into three parts:

∆[−2N,−(N +1)]Z, ∆[−N,N]Z and ∆[N +1,2N]Z. The first part (∆[−2N,−(N +1)]Z) can be

neglected if the pmfs are symmetric (in the sense of [10]) and if (N +1)∆ is sufficiently large,

which are both satisfied in our case. It is recommended that the probability mass on the last part

be stored either at ∆N or separately; we choose the first approach. The resulting convolution

operation on finite pmfs produces an output with the same length as the inputs.

5.1.3 Discretized Density Update

The core of DDE [20] is updating the discretized LLR densities, i.e., the finite LLR pmfs

discussed previously. In Chapter 4, Section 4.4.1 we discussed the VN update rule under BP

decoding. Those rules can be converted to the discrete version:

pv = p(ch)⊗
(
p⊗(dv−1)
c

)
(5.2)

where pv and pc are the pmf of VN and CN respectively.

As for the CN update equation, we recall the definition of R -operator from [20] for two

quantized messages ŵ1 and ŵ2:

R (ŵ1, ŵ2) = Q
[

2tanh−1
(

tanh
ŵ1

2
tanh

ŵ2

2

)]

Then if ŵ3 = R (ŵ1, ŵ2), then the pmf associated with this message is given by:

pŵ3
[k] = ∑

(i, j):k∆=R (i∆, j∆)
pŵ1

[i]pŵ2
[j] (5.3)

59

which we further denote as pŵ3
= R

(
pŵ1

,pŵ2

)
. For a CN with degree dc, we have pc =

R
(
pv,R

(
pv, · · · ,R

(
pv,pv

)
, · · ·
))
≡R (dc−1)pv since all pvi

’s are i.i.d for 1≤ i< dc. By defining:

λ(p), ∑
i≥2

λi[p⊗(i−1)]

ρ(p), ∑
j≥2

ρ j[R (j−1)p]

we can describe the DDE update rule as

p(l+1)
c = ρ

[
p(ch)⊗λ(p(l)c)

]
(5.4)

where p(0)c is a unit impulse at LLR = 0.

The corresponding probability of error at iteration l, is given by:

P(l)
e =

0

∑
k=−N

p(l)v [k] (5.5)

5.1.4 Pre-computing R-List

In equation 5.3 we defined the R -operation [20] produces a new pmf from two input pmfs.

This is a key computational element of DDE. However, computing it on the go requires O(n3)

computational complexity since we have to run a 3-layered for-loop of indices k, i and j, where

each index runs over the interval ∈ [0,2N +1]. This can be done in a more efficient manner by

pre-computing all the 3-tuple indices that satisfy

(i, j) : k∆ = R (i∆, j∆) (5.6)

and store them in a list, which we refer to as the R -List. Figure 5.5 shows all the 3-tuple indices

that satisfy equation (5.6). Therefore, in exchange for a little bit of additional memory, we can

60

reduce the complexity by an entire dimension and significantly reduce computational cost.

(a) ∆N = 25.

(b) ∆N = 50.

Figure 5.5: Illustration of the 3-tuple indices that satisfy equation (5.6) for ∆ = 0.05 and
different values of ∆N.

61

5.2 Read Threshold Optimization

Now that the DDE process has been fully explained, we can define a function g(·), which

takes µ,∆N,λ(x),ρ(x),µ,N0, and ` as input parameters, uses the computational tricks described

earlier, and outputs a the BER estimated after ` iterations of massage passing. For simplicity, we

denote this function by g(γ) since the rest of the input parameters remain constant throughout an

entire optimization lifetime. We use the gradient descent again for our optimization algorithm

and continuously update the read threshold positions with

γ
(t+1) = γ

(t)+δ ·∇g
(
γ
(t)), (5.7)

as we did for MMI-based optimization, where δ is the step size. We use t here to indicate gradient

descent iterations, not to be confused with l, the message passing iterations. The gradient is

calculated as before, i.e., by picking a small offset value ε and calculating the slope of Pe when

each element in γ is offset by ε.

5.3 Simulation Results and Discussion

In this section we apply our DDE-based threshold optimization method to Code A and

Code B. We first present results for Code A and then make several observations pertaining to the

choice of parity-check matrix, the advantage of DDE over MMI, the initialization of the read

thresholds, and the BP performance with more iterations. Finally, we present DDE results for

Code B and compare them to the MMI results.

5.3.1 Simulation Results for Code A

The simulation parameters are shown in Table 5.1 if not otherwise specified, and the

overall process is given in Algorithm 6. We use Code A (introduced in Section 4.2.1) of rate 1/3

62

in most of our simulation studies of the MLC-SCL LSB channel because it is a regular code with

a sparse degree distribution, thereby requiring fewer computations and less run-time. We choose

to work with the LSB channel because as shown in Figures 3.10 and 3.11, the LSB channel

is more degraded. However, our simulations can easily be adapted for the MSB channel by

simply changing the channel LLR densities provided as input to the DDE. The general generator

matrix encoding method is used for Code A and the double-diagonal encoding is used for Code B

while we use the standard BP decoding for both cases. Figure 5.7 depicts the evolution of error

probability and read thresholds in gradient descent iterations.

Table 5.1: Parameters used in our simulations if not otherwise specified.

Parameter Value
µ [-3, -1, 1, 3](V)
∆ 0.05
ε 1×10−3

δ 0.1
N 800
ζ 1×10−14

R (# of BP/DDE iterations) 2
Channel MLC-SCL LSB

LDPC Code Code A (Section: 4.2.1)

5.3.2 Comparison of MMI and DDE Based Optimization

We observed that DDE optimization approach does indeed perform better than the MMI

approach in the mid-SNR regions (as shown in Figure 5.8 and Table 5.2). The final read threshold

positions given by DE eventually converge back to the thresholds given by MMI in high-SNR

regions. The optimal threshold positions given by MMI and DE are provided in Appendix B and

C, respectively.

63

Algorithm 6: Gradient Descent to Minimize Probability of Error given by Density
Evolution

input :The vector of mean stored voltages µ given by equation (2.1), the variance of
AWGN N0 and the number of read thresholds m.

output :The optimal read threshold positions γ that attain the minimum probability of
error given by density evolution.

/* Initialization */
1 Iteration number l = 0 ;
2 Initialize γ(0) to a certain starting position ;
3 Initialize gain ∂g = 10 (a very large number) ;

4 P(l)
e = g(γ(l)) ; // g(·) is the function that produces the Pe as
discussed in Section 5.2

/* Main Loop */
5 while ∂g > ζ do

/* εi denotes a vector of length m with ε in the ith entry and
zero elsewhere */

6 for i = 1→ m do
7 ∇g(γ(l))i = g(γ(l)+εi)

ε
;

8 end
9 γ(l+1) = γ(l)+δ ·∇g(γ(l)) ;

10 Constrain γ to be symmetric ;

11 P(l+1)
e = g(γ(l+1)) ;

12 ∂g = P(l+1)
e −P(l)

e ;
13 l ++ ;
14 end

Result: Optimal read threshold positions are γ(l)

5.3.3 Initialization of Read Thresholds for LSB

When implementing the DDE-GD approach, it is possible for GD to get stuck in a local

minimum. Referring to Figure 5.9, we explore a two-dimensional (2D) exhaustive search for

m = 5 reads. This is possible for all m≤ 5 cases because of the symmetric constraint imposed

on the read thresholds γ. In this case, the search becomes a function of two variables γ4 and

γ5. We can see from Figure 5.9a that there are two local minima, around (γ4,γ5) = (0.25,2)

and (1.85,2.25). This is due to the labeling for the LSB. Therefore we propose to initialize the

read thresholds γ to MMI positions and then refine them using DDE-GD. By doing so, we can

64

Figure 5.6: Histogram of symbol occurrences in the MLC-SCL channel (LSB and MSB
channels independently LDPC-coded).

(a) Evolution of error probability. (b) Evolution of read threshold positions.

Figure 5.7: Illustration of the evolution of optimizing read threshold positions using DDE
criteria for MLC-SCL LSB channel with Code A, SNR = 13(dB), m = 6, R = 2. The threshold
positions are initialized to equal spacing.

guarantee that we can achieve better BER than MMI. In our simulations, we do always end up at

the global minimum using this 2-step method, however, there are no mathematical proofs that

guarantees this to always be the case. The cost of being trapped at the wrong local minimum is

very high. We show in Figure 5.10 and in Table 5.3 the performance comparison between the

65

Figure 5.8: BER performance comparison between MMI thresholds and DDE thresholds for
MLC-SCL LSB channel with m = 6,R = 2.

global minimum the secondary local minimum.

In MLC-SCL MSB channel, we don’t have to worry about this problem, as shown

in Figure 5.9b. To intuitively explain why the MSB channel have only one local minimum

where LSB has two is because the MSB for MLC-SCL are in the sequence of [1,1,0,0]. The

placement of thresholds are obvious, i.e., around the center. In comparison, the LSB sequence

in MLC-SCL is [1,0,1,0]. When we have, for example, m = 5 reads, the placement of the

first 3 reads are obvious, i.e., at around −2,0 and 2. However the placement of the last two

reads are not so straight forward. One can place them wither at around 0 or around ±2. This

is our explanation towards the phenomenon of having two local minima for LSB and not MSB

66

Table 5.2: BER performance comparison with BP decoding between MMI and DE given
optimal threshold positions. Results are shown for m = 6,R = 2 using (3,4)-QCLDPC code
(Code A).

Optimization
Criteria

SNR(dB)
12 13 14 15

BER (BP)
MMI 6.6096×10−3 1.4631×10−3 2.428×10−4 3.195×10−5

DE 6.5611×10−3 1.4196×10−3 2.399×10−4 3.188×10−5

Table 5.3: Comparing the DE optimal thresholds for Code A, with m = 5 MLC-SCL LSB
channel, when gradient descent is initialized to different values. We see that there are two local
minima with a significant error probability difference.

of Reads m = 5
Initialization MMI Optimal γ Secondary Local Minimum

SNR γ4 γ5 BER(BP) γ4 γ5 BER(BP)
10 1.8640 2.4302 5.0447×10−2 0.2804 2.0612 6.4084×10−2

11 1.8596 2.3924 1.9865×10−2 0.2612 2.0453 2.7807×10−2

12 1.8740 2.3614 5.5126×10−3 0.2563 2.0187 8.9167×10−3

13 1.8481 2.2848 1.1762×10−3 0.2799 2.0107 2.3613×10−3

14 1.8572 2.2408 2.3101×10−4 0.2438 2.0144 5.6512×10−4

15 1.8777 2.1901 5.1858×10−5 0.2371 2.0051 1.1230×10−4

channel in MLC-SCL. Note that the 3D plot of MSB is symmetric about γ4 = γ5 because

reversing the order of γ4 and γ5 does not change the regions the thresholds divide into, e.g.,

[−2,−1,0,1,2] and [−1,−2,0,2,1] are equivalent since they both split the voltage regions into

the set Ri ∈ {[−∞,−2], [−2,−1], [−1,0], [0,1], [1,2], [2,∞]}.

5.3.4 Higher Number of Iterations in BP Decoding

Using a higher number of BP decoding iterations may also yield a different relative

performance using the DDE-optimized and MMI-optimized thresholds. To study this, we use the

set of read threshold positions given in Table C.1 for R = 2 and R = 20 rounds of BP decoding

iterations under the MLC-SCL LSB channel. As shown in Figure 5.11, there is not much

difference in the sense that the DE curve is still close to the MMI curve. Specific simulation

numbers at SNR = 13dB are given in Table 5.4.

67

(a) LSB channel.

(b) MSB channel.

Figure 5.9: A 2D DE exhaustive search for m = 5 reads, SNR = 13dB MLC-SCL, and γ =
[γ1,γ2,γ3,γ4,γ5] where γ1 =−γ5, γ2 =−γ4 and γ3 = 0.

5.3.5 Simulation Results for Code B

Finally, we implemented DDE-based read threshold optimization for Code B and evaluated

the resulting performance under BP decoding. We find that the optimal threshold positions differ

68

Figure 5.10: BER performance comparison between read thresholds at local minimum and
global minimum given by density evolution.

from those found for Code A, as well as those found by MMI-based optimization. We give an

example in Table 5.5, which shows the DDE thresholds for Code A and Code B corresponding to

SNR = 14dB, m = 5, R = 2, the MMI thresholds, and the BP decoding performance of Code B

using the different sets of thresholds. We conclude that, in contrast to the MMI approach, the DDE

approach is indeed code-dependent. It provides read threshold positions that take into account

the structure of the Tanner graph of the LDPC code and performs better than MMI optimization

approach, which is independent of any code properties.

5.4 Summary

In this thesis, we compared two approaches towards optimizing the read thresholds for

NAND flash memories, the MMI approach (Chapter 3) and the DE approach (Chapter 5). For the

69

(a) R = 2. (b) R = 20.

Figure 5.11: BER performance comparison between different number of iterations in BP
decoding for m = 5 reads.

Table 5.4: BER performance comparison given by BP decoding between MMI and DE with
different BP decoding iterations. Results are shown for SNR = 13dB, m = 5,R = 2,20 using
(3,4)-QCLDPC code (Code A).

Curve
R

2 20
MMI BER 1.203×10−3 4.344×10−4

DE BER 1.182×10−3 4.286×10−4

Table 5.5: BER performance comparison of Code B under BP decoding for MLC-SCL LSB
channel with read thresholds optimized for SNR = 14dB, m = 5, R = 2 and various criteria .

Optimization Criteria
DE Code A

Degree Distribution
DE Code B

Degree Distribution MMI

γ

-2.2408
-1.8572

0
1.8572
2.2408

-2.2366
-1.8684

0
1.8684
2.2366

-2.2284
-1.8679

0
1.8679
2.2284

BER
(Code B BP Decoding) 1.860308×10−3 1.858656×10−3 1.860759×10−3

70

former approach, proposed in [18], we extended the application to a higher number of reads and

provided results for an alternative, symmetric binary labeling of the MLC cell levels. Detailed

results are presented in Appendix A and Appendix B.

For the latter approach, originally proposed in [19], we provide a more thorough explo-

ration of several aspects relevant to accurate and efficient implementation of DE-based opti-

mization, including LLR quantization, finite pmf convolution, and channel symmetry. We also

investigate code-related issues such as dependence on degree distributions, Tanner graph selection,

and existence of secondary local minima. Detailed results are presented in Appendix C. We

conclude that the DE approach yields better performance than the MMI approach. However, for

the symmetric MLC LSB channel, better results are obtained by using a two-step optimization

procedure: first, use the MMI approach for coarse optimization of the read threshold positions

and, then, use the DE approach for fine optimization. This helps to avoid the problem of falling

into a secondary local minimum that can arise when using DE alone.

Chapter 5, in part, contains materials from [12]

- Y. Yeh, A. Fazeli, and P.H. Siegel, "Optimization of Read Thresholds in MLC NAND

Memory for LDPC Codes," in Proc. 11th Annu. Non-Volatile Memories Workshop (NVMW),

La Jolla, CA, USA, Mar. 2020. [Online]. Available: http://nvmw.ucsd.edu/program/

The thesis author was the primary investigator and author of this paper.

71

Appendix A

MMI Optimal Read Thresholds

In this section, we provide the result of our simulations when optimizing for maximum

mutual information using gradient descent algorithm (as described in Chapter 3). We include

the optimal read voltage positions for m = {2,3, · · · ,8,10} with SNR = [10,15](dB) from Table

A.1 to A.8. Also, we show the optimal read voltage positions for SNR = {10,13,15}(dB) with

m = [2,30] in Tables A.9, A.10 and A.11.

72

Table A.1: Read threshold positions γ̄ that attain the maximum mutual information for m = 2 at
the given SNR value.

SNR(dB) m γ̄ MMI
10 2 -1.7306 1.7306 1.1289
10.2 2 -1.7545 1.7545 1.1432
10.4 2 -1.7763 1.7763 1.1577
10.6 2 -1.7962 1.7962 1.1724
10.8 2 -1.8144 1.8144 1.1872
11 2 -1.8309 1.8309 1.2022
11.2 2 -1.8459 1.8459 1.2172
11.4 2 -1.8595 1.8595 1.2323
11.6 2 -1.8719 1.8719 1.2473
11.8 2 -1.8831 1.8831 1.2621
12 2 -1.8934 1.8934 1.2769
12.2 2 -1.9027 1.9027 1.2914
12.4 2 -1.9111 1.9111 1.3056
12.6 2 -1.9189 1.9189 1.3196
12.8 2 -1.9259 1.9259 1.3332
13 2 -1.9323 1.9323 1.3463
13.2 2 -1.9381 1.9381 1.359
13.4 2 -1.9434 1.9434 1.3712
13.6 2 -1.9483 1.9483 1.3829
13.8 2 -1.9527 1.9527 1.3941
14 2 -1.9567 1.9567 1.4046
14.2 2 -1.9604 1.9604 1.4145
14.4 2 -1.9638 1.9638 1.4239
14.6 2 -1.9669 1.9669 1.4325
14.8 2 -1.9697 1.9697 1.4406
15 2 -1.9722 1.9722 1.448

73

Table A.2: Read threshold positions γ̄ that attain the maximum mutual information for m = 3 at
the given SNR value.

SNR(dB) m γ̄ MMI
10 3 -1.9847 0 1.9847 1.4087
10.2 3 -1.9869 0 1.9869 1.4336
10.4 3 -1.9888 0 1.9888 1.4586
10.6 3 -1.9904 0 1.9904 1.4837
10.8 3 -1.9919 0 1.9919 1.5087
11 3 -1.9931 0 1.9931 1.5337
11.2 3 -1.9942 0 1.9942 1.5585
11.4 3 -1.9951 0 1.9951 1.5831
11.6 3 -1.9959 0 1.9959 1.6074
11.8 3 -1.9966 0 1.9966 1.6314
12 3 -1.9972 0 1.9972 1.655
12.2 3 -1.9977 0 1.9977 1.6781
12.4 3 -1.9981 0 1.9981 1.7006
12.6 3 -1.9985 0 1.9985 1.7226
12.8 3 -1.9988 0 1.9988 1.7439
13 3 -1.999 0 1.999 1.7644
13.2 3 -1.9993 0 1.9993 1.7842
13.4 3 -1.9994 0 1.9994 1.8032
13.6 3 -1.9996 0 1.9996 1.8213
13.8 3 -1.9997 0 1.9997 1.8384
14 3 -1.9997 0 1.9997 1.8547
14.2 3 -1.9999 0 1.9999 1.87
14.4 3 -1.9999 0 1.9999 1.8843
14.6 3 -1.9999 0 1.9999 1.8976
14.8 3 -1.9999 0 1.9999 1.9099
15 3 -2 0 2 1.9212

74

Table A.3: Read threshold positions γ̄ that attain the maximum mutual information for m = 4 at
the given SNR value.

SNR(dB) m γ̄ MMI
10 4 -2.0272 -0.40788 0.40788 2.0272 1.4503
10.2 4 -2.0234 -0.39141 0.39141 2.0234 1.4741
10.4 4 -2.0201 -0.37582 0.37582 2.0201 1.4979
10.6 4 -2.0172 -0.36098 0.36098 2.0172 1.5217
10.8 4 -2.0148 -0.34694 0.34694 2.0148 1.5455
11 4 -2.0126 -0.3336 0.3336 2.0126 1.5692
11.2 4 -2.0108 -0.32103 0.32103 2.0108 1.5927
11.4 4 -2.0092 -0.30908 0.30908 2.0092 1.616
11.6 4 -2.0078 -0.29777 0.29777 2.0078 1.639
11.8 4 -2.0066 -0.28709 0.28709 2.0066 1.6617
12 4 -2.0056 -0.27686 0.27686 2.0056 1.6839
12.2 4 -2.0047 -0.26718 0.26718 2.0047 1.7056
12.4 4 -2.004 -0.25797 0.25797 2.004 1.7268
12.6 4 -2.0033 -0.24914 0.24914 2.0033 1.7474
12.8 4 -2.0028 -0.24071 0.24071 2.0028 1.7673
13 4 -2.0023 -0.2327 0.2327 2.0023 1.7865
13.2 4 -2.0019 -0.22498 0.22498 2.0019 1.8049
13.4 4 -2.0016 -0.21754 0.21754 2.0016 1.8224
13.6 4 -2.0013 -0.21045 0.21045 2.0013 1.8392
13.8 4 -2.0011 -0.20365 0.20365 2.0011 1.855
14 4 -2.0009 -0.19706 0.19706 2.0009 1.8699
14.2 4 -2.0007 -0.19072 0.19072 2.0007 1.8839
14.4 4 -2.0006 -0.18463 0.18463 2.0006 1.8969
14.6 4 -2.0005 -0.17876 0.17876 2.0005 1.909
14.8 4 -2.0004 -0.17307 0.17307 2.0004 1.9202
15 4 -2.0003 -0.16758 0.16758 2.0003 1.9304

75

Table A.4: Read threshold positions γ̄ that attain the maximum mutual information for m = 5 at
the given SNR value.

SNR(dB) m γ̄ MMI
10 5 -2.2908 -1.5111 0 1.5111 2.2908 1.4851
10.2 5 -2.2889 -1.5393 0 1.5393 2.2889 1.5084
10.4 5 -2.2865 -1.5654 0 1.5654 2.2865 1.5317
10.6 5 -2.2835 -1.5892 0 1.5892 2.2835 1.5549
10.8 5 -2.2799 -1.611 0 1.611 2.2799 1.578
11 5 -2.2758 -1.6309 0 1.6309 2.2758 1.601
11.2 5 -2.2713 -1.6491 0 1.6491 2.2713 1.6237
11.4 5 -2.2664 -1.6657 0 1.6657 2.2664 1.6461
11.6 5 -2.2612 -1.681 0 1.681 2.2612 1.6682
11.8 5 -2.2557 -1.6951 0 1.6951 2.2557 1.6899
12 5 -2.2501 -1.7081 0 1.7081 2.2501 1.7111
12.2 5 -2.2443 -1.7201 0 1.7201 2.2443 1.7317
12.4 5 -2.2385 -1.7314 0 1.7314 2.2385 1.7518
12.6 5 -2.2326 -1.7419 0 1.7419 2.2326 1.7712
12.8 5 -2.2267 -1.7517 0 1.7517 2.2267 1.7899
13 5 -2.2207 -1.761 0 1.761 2.2207 1.8078
13.2 5 -2.2149 -1.7697 0 1.7697 2.2149 1.8249
13.4 5 -2.209 -1.7779 0 1.7779 2.209 1.8413
13.6 5 -2.2032 -1.7858 0 1.7858 2.2032 1.8567
13.8 5 -2.1975 -1.7932 0 1.7932 2.1975 1.8713
14 5 -2.1918 -1.8003 0 1.8003 2.1918 1.8849
14.2 5 -2.1863 -1.807 0 1.807 2.1863 1.8977
14.4 5 -2.1808 -1.8135 0 1.8135 2.1808 1.9095
14.6 5 -2.1755 -1.8196 0 1.8196 2.1755 1.9204
14.8 5 -2.1702 -1.8255 0 1.8255 2.1702 1.9305
15 5 -2.1651 -1.8312 0 1.8312 2.1651 1.9396

76

Table A.5: Read threshold positions γ̄ that attain the maximum mutual information for m = 6 at
the given SNR value.

SNR(dB) m γ̄ MMI
10 6 -2.3575 -1.6501 -0.35284 0.35284 1.6501 2.3575 1.5147
10.2 6 -2.3469 -1.6593 -0.34315 0.34315 1.6593 2.3469 1.5382
10.4 6 -2.3366 -1.6684 -0.33358 0.33358 1.6684 2.3366 1.5615
10.6 6 -2.3267 -1.6775 -0.32417 0.32417 1.6775 2.3267 1.5847
10.8 6 -2.3171 -1.6865 -0.31494 0.31494 1.6865 2.3171 1.6076
11 6 -2.3077 -1.6953 -0.3059 0.3059 1.6953 2.3077 1.6302
11.2 6 -2.2987 -1.704 -0.29707 0.29707 1.704 2.2987 1.6525
11.4 6 -2.2899 -1.7125 -0.28844 0.28844 1.7125 2.2899 1.6744
11.6 6 -2.2813 -1.7208 -0.28 0.28 1.7208 2.2813 1.6959
11.8 6 -2.2729 -1.7289 -0.27181 0.27181 1.7289 2.2729 1.7168
12 6 -2.2648 -1.7368 -0.26383 0.26383 1.7368 2.2648 1.7372
12.2 6 -2.2569 -1.7445 -0.25603 0.25603 1.7445 2.2569 1.7569
12.4 6 -2.2492 -1.752 -0.24844 0.24844 1.752 2.2492 1.776
12.6 6 -2.2418 -1.7594 -0.24105 0.24105 1.7594 2.2418 1.7943
12.8 6 -2.2345 -1.7665 -0.23387 0.23387 1.7665 2.2345 1.8119
13 6 -2.2274 -1.7734 -0.22688 0.22688 1.7734 2.2274 1.8287
13.2 6 -2.2205 -1.7802 -0.22009 0.22009 1.7802 2.2205 1.8447
13.4 6 -2.2139 -1.7867 -0.21348 0.21348 1.7867 2.2139 1.8598
13.6 6 -2.2074 -1.7932 -0.20703 0.20703 1.7932 2.2074 1.874
13.8 6 -2.201 -1.7994 -0.20075 0.20075 1.7994 2.201 1.8874
14 6 -2.1949 -1.8055 -0.19466 0.19466 1.8055 2.1949 1.8998
14.2 6 -2.1889 -1.8114 -0.18874 0.18874 1.8114 2.1889 1.9113
14.4 6 -2.1831 -1.8171 -0.18298 0.18298 1.8171 2.1831 1.922
14.6 6 -2.1775 -1.8227 -0.1774 0.1774 1.8227 2.1775 1.9318
14.8 6 -2.1721 -1.8281 -0.17195 0.17195 1.8281 2.1721 1.9407
15 6 -2.1668 -1.8334 -0.16667 0.16667 1.8334 2.1668 1.9488

77

Table A.6: Read threshold positions γ̄ that attain the maximum mutual information for m = 7 at
the given SNR value.

SNR(dB) m γ̄ MMI
10 7 -2.3948 -1.7213 -0.63829 0 0.63829 1.7213 2.3948 1.5272
10.2 7 -2.3788 -1.7205 -0.61408 0 0.61408 1.7205 2.3788 1.5503
10.4 7 -2.3638 -1.7208 -0.59069 0 0.59069 1.7208 2.3638 1.5733
10.6 7 -2.3498 -1.7223 -0.56829 0 0.56829 1.7223 2.3498 1.5961
10.8 7 -2.3366 -1.7246 -0.54693 0 0.54693 1.7246 2.3366 1.6187
11 7 -2.3242 -1.7277 -0.52664 0 0.52664 1.7277 2.3242 1.6409
11.2 7 -2.3126 -1.7315 -0.50747 0 0.50747 1.7315 2.3126 1.6628
11.4 7 -2.3016 -1.7358 -0.48932 0 0.48932 1.7358 2.3016 1.6843
11.6 7 -2.2912 -1.7405 -0.47209 0 0.47209 1.7405 2.2912 1.7054
11.8 7 -2.2813 -1.7456 -0.45581 0 0.45581 1.7456 2.2813 1.7259
12 7 -2.2718 -1.7509 -0.44037 0 0.44037 1.7509 2.2718 1.7458
12.2 7 -2.2628 -1.7564 -0.42568 0 0.42568 1.7564 2.2628 1.7651
12.4 7 -2.2542 -1.7621 -0.4117 0 0.4117 1.7621 2.2542 1.7838
12.6 7 -2.2459 -1.7678 -0.39836 0 0.39836 1.7678 2.2459 1.8017
12.8 7 -2.2379 -1.7736 -0.3856 0 0.3856 1.7736 2.2379 1.8188
13 7 -2.2303 -1.7794 -0.3734 0 0.3734 1.7794 2.2303 1.8352
13.2 7 -2.2229 -1.7852 -0.36169 0 0.36169 1.7852 2.2229 1.8507
13.4 7 -2.2158 -1.791 -0.35046 0 0.35046 1.791 2.2158 1.8654
13.6 7 -2.209 -1.7967 -0.33963 0 0.33963 1.7967 2.209 1.8792
13.8 7 -2.2023 -1.8023 -0.32922 0 0.32922 1.8023 2.2023 1.8921
14 7 -2.1959 -1.8079 -0.31918 0 0.31918 1.8079 2.1959 1.9042
14.2 7 -2.1898 -1.8134 -0.30945 0 0.30945 1.8134 2.1898 1.9153
14.4 7 -2.1838 -1.8188 -0.30011 0 0.30011 1.8188 2.1838 1.9256
14.6 7 -2.178 -1.8241 -0.29109 0 0.29109 1.8241 2.178 1.935
14.8 7 -2.1724 -1.8293 -0.28238 0 0.28238 1.8293 2.1724 1.9436
15 7 -2.167 -1.8344 -0.27393 0 0.27393 1.8344 2.167 1.9513

78

Table A.7: Read threshold positions γ̄ that attain the maximum mutual information for m = 8 at
the given SNR value.

SNR(dB) m γ̄ MMI
10 8 -2.5294 -1.9464 -1.3245 -0.31301 0.31301 1.3245 1.9464 2.5294 1.5382
10.2 8 -2.5169 -1.9517 -1.3506 -0.30892 0.30892 1.3506 1.9517 2.5169 1.5612
10.4 8 -2.505 -1.9572 -1.3772 -0.30444 0.30444 1.3772 1.9572 2.505 1.5841
10.6 8 -2.4934 -1.9627 -1.4034 -0.2995 0.2995 1.4034 1.9627 2.4934 1.6067
10.8 8 -2.482 -1.9677 -1.4285 -0.29413 0.29413 1.4285 1.9677 2.482 1.629
11 8 -2.4707 -1.9723 -1.4524 -0.28839 0.28839 1.4524 1.9723 2.4707 1.651
11.2 8 -2.4594 -1.9764 -1.4748 -0.28234 0.28234 1.4748 1.9764 2.4594 1.6726
11.4 8 -2.4482 -1.9799 -1.4957 -0.27606 0.27606 1.4957 1.9799 2.4482 1.6938
11.6 8 -2.437 -1.9829 -1.5153 -0.26961 0.26961 1.5153 1.9829 2.437 1.7144
11.8 8 -2.4258 -1.9855 -1.5336 -0.26306 0.26306 1.5336 1.9855 2.4258 1.7346
12 8 -2.4147 -1.9877 -1.5507 -0.25645 0.25645 1.5507 1.9877 2.4147 1.7542
12.2 8 -2.4038 -1.9895 -1.5668 -0.24984 0.24984 1.5668 1.9895 2.4038 1.7731
12.4 8 -2.393 -1.9911 -1.582 -0.24324 0.24324 1.582 1.9911 2.393 1.7913
12.6 8 -2.3823 -1.9924 -1.5963 -0.23669 0.23669 1.5963 1.9924 2.3823 1.8089
12.8 8 -2.3718 -1.9935 -1.6098 -0.2302 0.2302 1.6098 1.9935 2.3718 1.8256
13 8 -2.3614 -1.9944 -1.6227 -0.2238 0.2238 1.6227 1.9944 2.3614 1.8415
13.2 8 -2.3513 -1.9951 -1.6349 -0.21749 0.21749 1.6349 1.9951 2.3513 1.8567
13.4 8 -2.3414 -1.9958 -1.6467 -0.21129 0.21129 1.6467 1.9958 2.3414 1.8709
13.6 8 -2.3317 -1.9963 -1.6579 -0.2052 0.2052 1.6579 1.9963 2.3317 1.8843
13.8 8 -2.3222 -1.9967 -1.6686 -0.19923 0.19923 1.6686 1.9967 2.3222 1.8968
14 8 -2.3129 -1.9971 -1.6789 -0.19338 0.19338 1.6789 1.9971 2.3129 1.9085
14.2 8 -2.3038 -1.9974 -1.6888 -0.18766 0.18766 1.6888 1.9974 2.3038 1.9193
14.4 8 -2.2949 -1.9976 -1.6983 -0.18206 0.18206 1.6983 1.9976 2.2949 1.9292
14.6 8 -2.2863 -1.9978 -1.7075 -0.1766 0.1766 1.7075 1.9978 2.2863 1.9382
14.8 8 -2.2778 -1.9979 -1.7163 -0.17127 0.17127 1.7163 1.9979 2.2778 1.9465
15 8 -2.2696 -1.998 -1.7248 -0.16607 0.16607 1.7248 1.998 2.2696 1.9539

79

Table A.8: Read threshold positions γ̄ that attain the maximum mutual information for m = 10
at the given SNR value.

SNR(dB) m γ̄ MMI
10 10 -2.6185 -2.0767 -1.5785 -0.79421 -0.22671 0.22671 0.79421

1.5785 2.0767 2.6185
1.5524

10.2 10 -2.5949 -2.0656 -1.5748 -0.76739 -0.21867 0.21867 0.76739
1.5748 2.0656 2.5949

1.5754

10.4 10 -2.5725 -2.0556 -1.5725 -0.74003 -0.21067 0.21067 0.74003
1.5725 2.0556 2.5725

1.5981

10.6 10 -2.5514 -2.0468 -1.5717 -0.71287 -0.20284 0.20284 0.71287
1.5717 2.0468 2.5514

1.6206

10.8 10 -2.5315 -2.0393 -1.5725 -0.68651 -0.19528 0.19528 0.68651
1.5725 2.0393 2.5315

1.6427

11 10 -2.5127 -2.0328 -1.5749 -0.66126 -0.18804 0.18804 0.66126
1.5749 2.0328 2.5127

1.6644

11.2 10 -2.4951 -2.0274 -1.5787 -0.63732 -0.18116 0.18116 0.63732
1.5787 2.0274 2.4951

1.6857

11.4 10 -2.4784 -2.0229 -1.5837 -0.61465 -0.17462 0.17462 0.61465
1.5837 2.0229 2.4784

1.7066

11.6 10 -2.4625 -2.0191 -1.5896 -0.59321 -0.16839 0.16839 0.59321
1.5896 2.0191 2.4625

1.7269

11.8 10 -2.4475 -2.016 -1.5964 -0.57298 -0.16248 0.16248 0.57298
1.5964 2.016 2.4475

1.7466

12 10 -2.4331 -2.0133 -1.6038 -0.55384 -0.15686 0.15686 0.55384
1.6038 2.0133 2.4331

1.7657

12.2 10 -2.4194 -2.0112 -1.6117 -0.53572 -0.1515 0.1515 0.53572
1.6117 2.0112 2.4194

1.7841

12.4 10 -2.4063 -2.0093 -1.6199 -0.51843 -0.14636 0.14636 0.51843
1.6199 2.0093 2.4063

1.8019

12.6 10 -2.3936 -2.0078 -1.6283 -0.50198 -0.14144 0.14144 0.50198
1.6283 2.0078 2.3936

1.8188

12.8 10 -2.3815 -2.0065 -1.637 -0.48632 -0.13674 0.13674 0.48632
1.637 2.0065 2.3815

1.835

13 10 -2.3698 -2.0054 -1.6457 -0.47128 -0.13221 0.13221 0.47128
1.6457 2.0054 2.3698

1.8504

13.2 10 -2.3585 -2.0045 -1.6545 -0.45687 -0.12785 0.12785 0.45687
1.6545 2.0045 2.3585

1.865

13.4 10 -2.3476 -2.0038 -1.6632 -0.443 -0.12365 0.12365 0.443 1.6632
2.0038 2.3476

1.8787

...
...

...
...

15 10 -2.2723 -2.0007 -1.73 -0.3484 -0.094817 0.094817 0.3484 1.73
2.0007 2.2723

1.9575

80

Table A.9: Read threshold positions γ̄ that attain the maximum mutual information for given
number of reads m and SNR = 10(dB).

SNR(dB) m γ̄ MMI
10 2 -1.7306 1.7306 1.1289
10 3 -1.9847 0 1.9847 1.4087
10 4 -2.0272 -0.40788 0.40788 2.0272 1.4503
10 5 -2.2908 -1.5111 0 1.5111 2.2908 1.4851
10 6 -2.3575 -1.6501 -0.35284 0.35284 1.6501 2.3575 1.5147
10 7 -2.3948 -1.7213 -0.63829 0 0.63829 1.7213 2.3948 1.5272
10 8 -2.5294 -1.9464 -1.3245 -0.31301 0.31301 1.3245 1.9464

2.5294
1.5382

10 9 -2.5778 -2.0193 -1.4751 -0.54305 0 0.54305 1.4751 2.0193
2.5778

1.5471

10 10 -2.6185 -2.0767 -1.5785 -0.79421 -0.22671 0.22671 0.79421
1.5785 2.0767 2.6185

1.5524

10 11 -2.696 -2.1853 -1.7577 -1.2242 -0.47464 0 0.47464 1.2242
1.7577 2.1853 2.696

1.5571

10 12 -2.735 -2.2378 -1.8363 -1.3759 -0.66151 -0.19688 0.19688
0.66151 1.3759 1.8363 2.2378 2.735

1.5609

10 13 -2.7696 -2.2839 -1.9023 -1.4911 -0.8824 -0.37733 0 0.37733
0.8824 1.4911 1.9023 2.2839 2.7696

1.5636

10 14 -2.8233 -2.3525 -1.9948 -1.6368 -1.1721 -0.5764 -0.17586
0.17586 0.5764 1.1721 1.6368 1.9948 2.3525 2.8233

1.566

10 15 -2.8554 -2.3936 -2.0489 -1.7167 -1.3149 -0.74044 -0.32936 0
0.32936 0.74044 1.3149 1.7167 2.0489 2.3936 2.8554

1.5679

...
...

...
...

10 19 -2.9787 -2.5471 -2.24 -1.9721 -1.7012 -1.3842 -0.95802 -
0.55971 -0.26062 0 0.26062 0.55971 0.95802 1.3842 1.7012
1.9721 2.24 2.5471 2.9787

1.5729

10 20 -3.0069 -2.5815 -2.2814 -2.0238 -1.7703 -1.4865 -1.1222 -
0.69961 -0.38319 -0.12254 0.12254 0.38319 0.69961 1.1222
1.4865 1.7703 2.0238 2.2814 2.5815 3.0069

1.5737

10 21 -3.0297 -2.6096 -2.315 -2.065 -1.824 -1.5626 -1.2414 -0.83143
-0.49829 -0.23521 0 0.23521 0.49829 0.83143 1.2414 1.5626
1.824 2.065 2.315 2.6096 3.0297

1.5745

...
...

...
...

10 30 -3.1722 -2.7868 -2.5262 -2.3174 -2.1338 -1.9607 -1.7873 -
1.6032 -1.3955 -1.1482 -0.86881 -0.62381 -0.42099 -0.2438
-0.079891 0.079891 0.2438 0.42099 0.62381 0.86881 1.1482
1.3955 1.6032 1.7873 1.9607 2.1338 2.3174 2.5262 2.7868
3.1722

1.5781

81

Table A.10: Read threshold positions γ̄ that attain the maximum mutual information for given
number of reads m and SNR = 13(dB).

SNR(dB) m γ̄ MMI
13 2 -1.9323 1.9323 1.3463
13 3 -1.999 0 1.999 1.7644
13 4 -2.0023 -0.2327 0.2327 2.0023 1.7865
13 5 -2.2207 -1.761 0 1.761 2.2207 1.8078
13 6 -2.2274 -1.7734 -0.22688 0.22688 1.7734 2.2274 1.8287
13 7 -2.2303 -1.7794 -0.3734 0 0.3734 1.7794 2.2303 1.8352
13 8 -2.3614 -1.9944 -1.6227 -0.2238 0.2238 1.6227 1.9944 2.3614 1.8415
13 9 -2.3674 -2.0015 -1.6369 -0.36429 0 0.36429 1.6369 2.0015

2.3674
1.8477

13 10 -2.3698 -2.0054 -1.6457 -0.47128 -0.13221 0.13221 0.47128
1.6457 2.0054 2.3698

1.8504

13 11 -2.4591 -2.1261 -1.8637 -1.526 -0.35816 0 0.35816 1.526
1.8637 2.1261 2.4591

1.8531

13 12 -2.4662 -2.133 -1.8724 -1.5424 -0.45952 -0.12979 0.12979
0.45952 1.5424 1.8724 2.133 2.4662

1.8557

13 13 -2.4682 -2.1365 -1.8781 -1.5546 -0.54638 -0.22693 0 0.22693
0.54638 1.5546 1.8781 2.1365 2.4682

1.8571

13 14 -2.5334 -2.2197 -1.9951 -1.7694 -1.4515 -0.45024 -0.12781
0.12781 0.45024 1.4515 1.7694 1.9951 2.2197 2.5334

1.8585

13 15 -2.5425 -2.2278 -2.0035 -1.7803 -1.4711 -0.53153 -0.22248 0
0.22248 0.53153 1.4711 1.7803 2.0035 2.2278 2.5425

1.8599

...
...

...
...

13 19 -2.6061 -2.3063 -2.1017 -1.9209 -1.7211 -1.4375 -0.66401 -
0.36496 -0.16616 0 0.16616 0.36496 0.66401 1.4375 1.7211
1.9209 2.1017 2.3063 2.6061

1.8628

13 20 -2.6374 -2.3458 -2.1504 -1.9854 -1.8186 -1.6172 -1.3114 -
0.56541 -0.28568 -0.088536 0.088536 0.28568 0.56541 1.3114
1.6172 1.8186 1.9854 2.1504 2.3458 2.6374

1.8633

13 21 -2.6582 -2.3649 -2.1689 -2.0051 -1.8423 -1.6498 -1.3675 -
0.63596 -0.3538 -0.16183 0 0.16183 0.3538 0.63596 1.3675
1.6498 1.8423 2.0051 2.1689 2.3649 2.6582

1.8638

...
...

...
...

13 30 -2.8012 -2.516 -2.3315 -2.1882 -2.0641 -1.9461 -1.8235 -
1.6838 -1.5079 -1.2489 -0.75241 -0.49399 -0.31873 -0.17984
-0.058206 0.058206 0.17984 0.31873 0.49399 0.75241 1.2489
1.5079 1.6838 1.8235 1.9461 2.0641 2.1882 2.3315 2.516
2.8012

1.8661

82

Table A.11: Read threshold positions γ̄ that attain the maximum mutual information for given
number of reads m and SNR = 15(dB).

SNR(dB) m γ̄ MMI
15 2 -1.9722 1.9722 1.448
15 3 -2 0 2 1.9212
15 4 -2.0003 -0.16758 0.16758 2.0003 1.9304
15 5 -2.1651 -1.8312 0 1.8312 2.1651 1.9396
15 6 -2.1668 -1.8334 -0.16667 0.16667 1.8334 2.1668 1.9488
15 7 -2.167 -1.8344 -0.27393 0 0.27393 1.8344 2.167 1.9513
15 8 -2.2696 -1.998 -1.7248 -0.16607 0.16607 1.7248 1.998 2.2696 1.9539
15 9 -2.2726 -2.0002 -1.728 -0.27214 0 0.27214 1.728 2.0002

2.2726
1.9564

15 10 -2.2723 -2.0007 -1.73 -0.3484 -0.094817 0.094817 0.3484 1.73
2.0007 2.2723

1.9575

15 11 -2.3413 -2.091 -1.9026 -1.65 -0.27061 0 0.27061 1.65 1.9026
2.091 2.3413

1.9585

15 12 -2.3467 -2.0947 -1.9061 -1.6546 -0.34568 -0.094266 0.094266
0.34568 1.6546 1.9061 2.0947 2.3467

1.9595

15 13 -2.3456 -2.0949 -1.9072 -1.658 -0.40654 -0.16392 0 0.16392
0.40654 1.658 1.9072 2.0949 2.3456

1.9601

15 14 -2.3831 -2.1441 -1.9799 -1.8097 -1.5496 -0.3418 -0.093454
0.093454 0.3418 1.5496 1.8097 1.9799 2.1441 2.3831

1.9605

15 15 -2.4042 -2.1635 -2.0005 -1.8378 -1.598 -0.40245 -0.16266 0
0.16266 0.40245 1.598 1.8378 2.0005 2.1635 2.4042

1.9611

...
...

...
...

15 19 -2.4952 -2.247 -2.0894 -1.9564 -1.8094 -1.5902 -0.80544 -
0.34451 -0.14567 0 0.14567 0.34451 0.80544 1.5902 1.8094
1.9564 2.0894 2.247 2.4952

1.962

15 20 -2.5433 -2.2737 -2.1099 -1.9766 -1.8356 -1.6382 -1.165 -
0.42575 -0.20885 -0.063818 0.063818 0.20885 0.42575 1.165
1.6382 1.8356 1.9766 2.1099 2.2737 2.5433

1.9621

15 21 -2.5965 -2.3012 -2.1322 -2.0004 -1.8688 -1.7004 -1.4085 -
0.59167 -0.29981 -0.13152 0 0.13152 0.29981 0.59167 1.4085
1.7004 1.8688 2.0004 2.1322 2.3012 2.5965

1.9624

...
...

...
...

15 30 -2.8808 -2.5054 -2.2996 -2.1612 -2.051 -1.949 -1.8388 -1.7005
-1.4949 -1.1214 -0.87864 -0.50513 -0.29948 -0.1612 -0.051001
0.051001 0.1612 0.29948 0.50513 0.87864 1.1214 1.4949
1.7005 1.8388 1.949 2.051 2.1612 2.2996 2.5054 2.8808

1.9631

83

Appendix B

MMI Optimal Thresholds of MLC-SCL

LSB Channel

84

Table B.1: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for m = 3 at the given SNR value.

SNR(dB) m γ̄ MMI
10 3 -2.1088 0 2.1088 0.49234
10.2 3 -2.1007 0 2.1007 0.51208
10.4 3 -2.0931 0 2.0931 0.53207
10.6 3 -2.0861 0 2.0861 0.55225
10.8 3 -2.0796 0 2.0796 0.57256
11 3 -2.0735 0 2.0735 0.59296
11.2 3 -2.0678 0 2.0678 0.61339
11.4 3 -2.0625 0 2.0625 0.63378
11.6 3 -2.0577 0 2.0577 0.65408
11.8 3 -2.0532 0 2.0532 0.67422
12 3 -2.049 0 2.049 0.69414
12.2 3 -2.0451 0 2.0451 0.71377
12.4 3 -2.0415 0 2.0415 0.73304
12.6 3 -2.0382 0 2.0382 0.75191
12.8 3 -2.0351 0 2.0351 0.77029
13 3 -2.0323 0 2.0323 0.78815
13.2 3 -2.0297 0 2.0297 0.80541
13.4 3 -2.0273 0 2.0273 0.82203
13.6 3 -2.0251 0 2.0251 0.83795
13.8 3 -2.023 0 2.023 0.85315
14 3 -2.0211 0 2.0211 0.86757
14.2 3 -2.0194 0 2.0194 0.88119
14.4 3 -2.0178 0 2.0178 0.89398
14.6 3 -2.0163 0 2.0163 0.90593
14.8 3 -2.015 0 2.015 0.91702
15 3 -2.0137 0 2.0137 0.92726

85

Table B.2: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for m = 4 at the given SNR value.

SNR(dB) m γ̄ MMI
10 4 -2.0848 -0.20608 0.20608 2.0848 0.50106
10.2 4 -2.077 -0.2054 0.2054 2.077 0.52133
10.4 4 -2.0698 -0.20452 0.20452 2.0698 0.54182
10.6 4 -2.0632 -0.2033 0.2033 2.0632 0.56247
10.8 4 -2.0572 -0.2019 0.2019 2.0572 0.58321
11 4 -2.0517 -0.20024 0.20024 2.0517 0.60399
11.2 4 -2.0466 -0.19838 0.19838 2.0466 0.62474
11.4 4 -2.0421 -0.19632 0.19632 2.0421 0.6454
11.6 4 -2.0379 -0.19409 0.19409 2.0379 0.66591
11.8 4 -2.0341 -0.19166 0.19166 2.0341 0.68618
12 4 -2.0307 -0.18909 0.18909 2.0307 0.70617
12.2 4 -2.0276 -0.18639 0.18639 2.0276 0.7258
12.4 4 -2.0248 -0.18357 0.18357 2.0248 0.745
12.6 4 -2.0223 -0.18066 0.18066 2.0223 0.76373
12.8 4 -2.02 -0.17762 0.17762 2.02 0.78191
13 4 -2.018 -0.17451 0.17451 2.018 0.79949
13.2 4 -2.0161 -0.17139 0.17139 2.0161 0.81642
13.4 4 -2.0145 -0.16817 0.16817 2.0145 0.83264
13.6 4 -2.013 -0.16487 0.16487 2.013 0.84813
13.8 4 -2.0116 -0.16159 0.16159 2.0116 0.86284
14 4 -2.0104 -0.15825 0.15825 2.0104 0.87674
14.2 4 -2.0094 -0.15495 0.15495 2.0094 0.8898
14.4 4 -2.0084 -0.15156 0.15156 2.0084 0.90202
14.6 4 -2.0075 -0.14823 0.14823 2.0075 0.91338
14.8 4 -2.0067 -0.14492 0.14492 2.0067 0.92387
15 4 -2.0061 -0.14159 0.14159 2.0061 0.93351

86

Table B.3: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for m = 5 at the given SNR value.

SNR(dB) m γ̄ MMI
10 5 -2.4829 -1.8737 0 1.8737 2.4829 0.53611
10.2 5 -2.4649 -1.8703 0 1.8703 2.4649 0.5561
10.4 5 -2.4475 -1.8673 0 1.8673 2.4475 0.5762
10.6 5 -2.4308 -1.8648 0 1.8648 2.4308 0.59636
10.8 5 -2.4147 -1.8627 0 1.8627 2.4147 0.61653
11 5 -2.3994 -1.861 0 1.861 2.3994 0.63663
11.2 5 -2.3845 -1.8596 0 1.8596 2.3845 0.65662
11.4 5 -2.3703 -1.8587 0 1.8587 2.3703 0.67644
11.6 5 -2.3566 -1.858 0 1.858 2.3566 0.69601
11.8 5 -2.3435 -1.8576 0 1.8576 2.3435 0.71528
12 5 -2.3309 -1.8576 0 1.8576 2.3309 0.7342
12.2 5 -2.3187 -1.8578 0 1.8578 2.3187 0.7527
12.4 5 -2.3071 -1.8582 0 1.8582 2.3071 0.77072
12.6 5 -2.2958 -1.8588 0 1.8588 2.2958 0.78821
12.8 5 -2.285 -1.8597 0 1.8597 2.285 0.80512
13 5 -2.2747 -1.8607 0 1.8607 2.2747 0.82141
13.2 5 -2.2647 -1.8619 0 1.8619 2.2647 0.83702
13.4 5 -2.2551 -1.8632 0 1.8632 2.2551 0.85192
13.6 5 -2.2458 -1.8647 0 1.8647 2.2458 0.86608
13.8 5 -2.2369 -1.8663 0 1.8663 2.2369 0.87946
14 5 -2.2284 -1.8679 0 1.8679 2.2284 0.89206
14.2 5 -2.2201 -1.8697 0 1.8697 2.2201 0.90384
14.4 5 -2.2122 -1.8716 0 1.8716 2.2122 0.91481
14.6 5 -2.2046 -1.8736 0 1.8736 2.2046 0.92497
14.8 5 -2.1972 -1.8756 0 1.8756 2.1972 0.93431
15 5 -2.1901 -1.8777 0 1.8777 2.1901 0.94285

87

Table B.4: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for m = 6 at the given SNR value.

SNR(dB) m γ̄ MMI
10 6 -2.4504 -1.8198 -0.24672 0.24672 1.8198 2.4504 0.5499
10.2 6 -2.4327 -1.8168 -0.24496 0.24496 1.8168 2.4327 0.57055
10.4 6 -2.4157 -1.8143 -0.24291 0.24291 1.8143 2.4157 0.59126
10.6 6 -2.3996 -1.8125 -0.24057 0.24057 1.8125 2.3996 0.61197
10.8 6 -2.3842 -1.8112 -0.23796 0.23796 1.8112 2.3842 0.6326
11 6 -2.3695 -1.8104 -0.23509 0.23509 1.8104 2.3695 0.6531
11.2 6 -2.3554 -1.8102 -0.232 0.232 1.8102 2.3554 0.67339
11.4 6 -2.342 -1.8104 -0.22869 0.22869 1.8104 2.342 0.69341
11.6 6 -2.3291 -1.8109 -0.22519 0.22519 1.8109 2.3291 0.7131
11.8 6 -2.3169 -1.812 -0.22151 0.22151 1.812 2.3169 0.73239
12 6 -2.3051 -1.8133 -0.21769 0.21769 1.8133 2.3051 0.75123
12.2 6 -2.2939 -1.8149 -0.21374 0.21374 1.8149 2.2939 0.76955
12.4 6 -2.2832 -1.8168 -0.20969 0.20969 1.8168 2.2832 0.78731
12.6 6 -2.273 -1.819 -0.20553 0.20553 1.819 2.273 0.80445
12.8 6 -2.2631 -1.8214 -0.20132 0.20132 1.8214 2.2631 0.82092
13 6 -2.2537 -1.8239 -0.19704 0.19704 1.8239 2.2537 0.83668
13.2 6 -2.2446 -1.8267 -0.19273 0.19273 1.8267 2.2446 0.8517
13.4 6 -2.236 -1.8296 -0.18838 0.18838 1.8296 2.236 0.86595
13.6 6 -2.2276 -1.8326 -0.18403 0.18403 1.8326 2.2276 0.87941
13.8 6 -2.2196 -1.8357 -0.17968 0.17968 1.8357 2.2196 0.89204
14 6 -2.212 -1.8388 -0.17534 0.17534 1.8388 2.212 0.90385
14.2 6 -2.2046 -1.8421 -0.17102 0.17102 1.8421 2.2046 0.91483
14.4 6 -2.1975 -1.8454 -0.16672 0.16672 1.8454 2.1975 0.92498
14.6 6 -2.1906 -1.8487 -0.16246 0.16246 1.8487 2.1906 0.93431
14.8 6 -2.184 -1.852 -0.15825 0.15825 1.852 2.184 0.94283
15 6 -2.1776 -1.8554 -0.15409 0.15409 1.8554 2.1776 0.95056

88

Table B.5: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for m = 7 at the given SNR value.

SNR(dB) m γ̄ MMI
10 7 -2.4405 -1.8026 -0.35483 0 0.35483 1.8026 2.4405 0.5534
10.2 7 -2.4228 -1.7995 -0.35316 0 0.35316 1.7995 2.4228 0.57423
10.4 7 -2.406 -1.7971 -0.35105 0 0.35105 1.7971 2.406 0.5951
10.6 7 -2.3899 -1.7953 -0.34859 0 0.34859 1.7953 2.3899 0.61596
10.8 7 -2.3746 -1.7941 -0.34577 0 0.34577 1.7941 2.3746 0.63671
11 7 -2.36 -1.7935 -0.34255 0 0.34255 1.7935 2.36 0.65731
11.2 7 -2.3461 -1.7934 -0.33901 0 0.33901 1.7934 2.3461 0.67769
11.4 7 -2.3328 -1.7939 -0.33514 0 0.33514 1.7939 2.3328 0.69777
11.6 7 -2.3202 -1.7947 -0.33099 0 0.33099 1.7947 2.3202 0.71749
11.8 7 -2.3082 -1.7961 -0.32656 0 0.32656 1.7961 2.3082 0.73679
12 7 -2.2967 -1.7978 -0.32188 0 0.32188 1.7978 2.2967 0.7556
12.2 7 -2.2857 -1.7998 -0.317 0 0.317 1.7998 2.2857 0.77388
12.4 7 -2.2753 -1.8022 -0.31191 0 0.31191 1.8022 2.2753 0.79156
12.6 7 -2.2653 -1.8048 -0.30665 0 0.30665 1.8048 2.2653 0.8086
12.8 7 -2.2557 -1.8076 -0.30129 0 0.30129 1.8076 2.2557 0.82495
13 7 -2.2466 -1.8107 -0.29576 0 0.29576 1.8107 2.2466 0.84058
13.2 7 -2.2379 -1.814 -0.29017 0 0.29017 1.814 2.2379 0.85544
13.4 7 -2.2295 -1.8174 -0.28452 0 0.28452 1.8174 2.2295 0.86952
13.6 7 -2.2215 -1.8209 -0.27879 0 0.27879 1.8209 2.2215 0.88278
13.8 7 -2.2138 -1.8245 -0.27304 0 0.27304 1.8245 2.2138 0.89522
14 7 -2.2064 -1.8282 -0.2673 0 0.2673 1.8282 2.2064 0.90683
14.2 7 -2.1994 -1.832 -0.26151 0 0.26151 1.832 2.1994 0.9176
14.4 7 -2.1925 -1.8358 -0.25579 0 0.25579 1.8358 2.1925 0.92753
14.6 7 -2.186 -1.8396 -0.25005 0 0.25005 1.8396 2.186 0.93664
14.8 7 -2.1797 -1.8434 -0.24439 0 0.24439 1.8434 2.1797 0.94495
15 7 -2.1736 -1.8473 -0.23874 0 0.23874 1.8473 2.1736 0.95248

89

Table B.6: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for m = 8 at the given SNR value.

SNR(dB) m γ̄ MMI
10 8 -2.6664 -2.1458 -1.696 -0.26165 0.26165 1.696 2.1458 2.6664 0.56446
10.2 8 -2.6431 -2.135 -1.6946 -0.25949 0.25949 1.6946 2.135 2.6431 0.58516
10.4 8 -2.6206 -2.1248 -1.6938 -0.25701 0.25701 1.6938 2.1248 2.6206 0.60588
10.6 8 -2.599 -2.1154 -1.6936 -0.25425 0.25425 1.6936 2.1154 2.599 0.62654
10.8 8 -2.5783 -2.1067 -1.6939 -0.25121 0.25121 1.6939 2.1067 2.5783 0.64707
11 8 -2.5584 -2.0985 -1.6948 -0.24791 0.24791 1.6948 2.0985 2.5584 0.66742
11.2 8 -2.5392 -2.0909 -1.6961 -0.24437 0.24437 1.6961 2.0909 2.5392 0.68751
11.4 8 -2.5208 -2.0839 -1.6978 -0.24062 0.24062 1.6978 2.0839 2.5208 0.70729
11.6 8 -2.5031 -2.0774 -1.7001 -0.23667 0.23667 1.7001 2.0774 2.5031 0.72668
11.8 8 -2.486 -2.0713 -1.7026 -0.23255 0.23255 1.7026 2.0713 2.486 0.74563
12 8 -2.4696 -2.0657 -1.7056 -0.22828 0.22828 1.7056 2.0657 2.4696 0.76407
12.2 8 -2.4539 -2.0606 -1.7088 -0.22388 0.22388 1.7088 2.0606 2.4539 0.78196
12.4 8 -2.4387 -2.0558 -1.7124 -0.21938 0.21938 1.7124 2.0558 2.4387 0.79925
12.6 8 -2.4241 -2.0514 -1.7161 -0.21479 0.21479 1.7161 2.0514 2.4241 0.81588
12.8 8 -2.4101 -2.0474 -1.7202 -0.21014 0.21014 1.7202 2.0474 2.4101 0.83182
13 8 -2.3965 -2.0436 -1.7244 -0.20544 0.20544 1.7244 2.0436 2.3965 0.84702
13.2 8 -2.3834 -2.0401 -1.7287 -0.20071 0.20071 1.7287 2.0401 2.3834 0.86146
13.4 8 -2.3708 -2.0369 -1.7332 -0.19597 0.19597 1.7332 2.0369 2.3708 0.87512
13.6 8 -2.3587 -2.0339 -1.7378 -0.19122 0.19122 1.7378 2.0339 2.3587 0.88797
13.8 8 -2.347 -2.0312 -1.7426 -0.18648 0.18648 1.7426 2.0312 2.347 0.9
14 8 -2.3356 -2.0286 -1.7473 -0.18177 0.18177 1.7473 2.0286 2.3356 0.9112
14.2 8 -2.3247 -2.0263 -1.7522 -0.17709 0.17709 1.7522 2.0263 2.3247 0.92158
14.4 8 -2.3142 -2.0241 -1.757 -0.17245 0.17245 1.757 2.0241 2.3142 0.93114
14.6 8 -2.3039 -2.022 -1.7619 -0.16787 0.16787 1.7619 2.022 2.3039 0.93989
14.8 8 -2.294 -2.0201 -1.7668 -0.16334 0.16334 1.7668 2.0201 2.294 0.94786
15 8 -2.2845 -2.0184 -1.7716 -0.15887 0.15887 1.7716 2.0184 2.2845 0.95506

90

Table B.7: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for m = 10 at the given SNR value.

SNR(dB) m γ̄ MMI
10 10 -2.6496 -2.1219 -1.6566 -0.45039 -0.14179 0.14179 0.45039

1.6566 2.1219 2.6496
0.57037

10.2 10 -2.6263 -2.1111 -1.6548 -0.44861 -0.14076 0.14076 0.44861
1.6548 2.1111 2.6263

0.59136

10.4 10 -2.604 -2.1012 -1.6537 -0.44634 -0.13956 0.13956 0.44634
1.6537 2.1012 2.604

0.61233

10.6 10 -2.5826 -2.0919 -1.6533 -0.44366 -0.13821 0.13821 0.44366
1.6533 2.0919 2.5826

0.63321

10.8 10 -2.562 -2.0834 -1.6535 -0.44052 -0.1367 0.1367 0.44052
1.6535 2.0834 2.562

0.65394

11 10 -2.5423 -2.0755 -1.6543 -0.43693 -0.13504 0.13504 0.43693
1.6543 2.0755 2.5423

0.67444

11.2 10 -2.5234 -2.0682 -1.6558 -0.43294 -0.13326 0.13326 0.43294
1.6558 2.0682 2.5234

0.69465

11.4 10 -2.5053 -2.0616 -1.6578 -0.42847 -0.13132 0.13132 0.42847
1.6578 2.0616 2.5053

0.7145

11.6 10 -2.4879 -2.0556 -1.6603 -0.42367 -0.12929 0.12929 0.42367
1.6603 2.0556 2.4879

0.73392

11.8 10 -2.4712 -2.05 -1.6633 -0.41844 -0.12713 0.12713 0.41844
1.6633 2.05 2.4712

0.75285

12 10 -2.4552 -2.045 -1.6668 -0.41289 -0.12488 0.12488 0.41289
1.6668 2.045 2.4552

0.77124

12.2 10 -2.4398 -2.0404 -1.6707 -0.40704 -0.12256 0.12256 0.40704
1.6707 2.0404 2.4398

0.78903

12.4 10 -2.4251 -2.0363 -1.675 -0.40086 -0.12015 0.12015 0.40086
1.675 2.0363 2.4251

0.80618

12.6 10 -2.4109 -2.0326 -1.6796 -0.39446 -0.11769 0.11769 0.39446
1.6796 2.0326 2.4109

0.82263

12.8 10 -2.3974 -2.0292 -1.6845 -0.38784 -0.11519 0.11519 0.38784
1.6845 2.0292 2.3974

0.83835

13 10 -2.3843 -2.0262 -1.6897 -0.38104 -0.11264 0.11264 0.38104
1.6897 2.0262 2.3843

0.8533

13.2 10 -2.3718 -2.0234 -1.6951 -0.37406 -0.11007 0.11007 0.37406
1.6951 2.0234 2.3718

0.86747

13.4 10 -2.3597 -2.021 -1.7007 -0.36696 -0.10748 0.10748 0.36696
1.7007 2.021 2.3597

0.88082

...
...

...
...

15 10 -2.2779 -2.0085 -1.7486 -0.3088 -0.087074 0.087074 0.3088
1.7486 2.0085 2.2779

0.95803

91

Table B.8: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for given number of reads m and SNR = 10(dB).

SNR(dB) m γ̄ MMI
10 3 -2.1088 0 2.1088 0.49234
10 4 -2.0848 -0.20608 0.20608 2.0848 0.50106
10 5 -2.4829 -1.8737 0 1.8737 2.4829 0.53611
10 6 -2.4504 -1.8198 -0.24672 0.24672 1.8198 2.4504 0.5499
10 7 -2.4405 -1.8026 -0.35483 0 0.35483 1.8026 2.4405 0.5534
10 8 -2.6664 -2.1458 -1.696 -0.26165 0.26165 1.696 2.1458 2.6664 0.56446
10 9 -2.6544 -2.1291 -1.6689 -0.38175 0 0.38175 1.6689 2.1291

2.6544
0.56869

10 10 -2.6496 -2.1219 -1.6566 -0.45039 -0.14179 0.14179 0.45039
1.6566 2.1219 2.6496

0.57037

10 11 -2.8041 -2.3292 -1.9646 -1.59 -0.39536 0 0.39536 1.59 1.9646
2.3292 2.8041

0.57526

10 12 -2.7981 -2.3215 -1.954 -1.5734 -0.46853 -0.14662 0.14662
0.46853 1.5734 1.954 2.3215 2.7981

0.57712

10 13 -2.7955 -2.3176 -1.9484 -1.5641 -0.51674 -0.24246 0 0.24246
0.51674 1.5641 1.9484 2.3176 2.7955

0.57803

10 14 -2.911 -2.4652 -2.1408 -1.8446 -1.5178 -0.47956 -0.14963
0.14963 0.47956 1.5178 1.8446 2.1408 2.4652 2.911

0.58062

10 15 -2.9076 -2.4608 -2.1353 -1.8372 -1.5064 -0.52965 -0.24734 0
0.24734 0.52965 1.5064 1.8372 2.1353 2.4608 2.9076

0.5816

...
...

...
...

10 19 -2.994 -2.5676 -2.2662 -2.0061 -1.7476 -1.4505 -0.60392 -
0.37698 -0.18217 0 0.18217 0.37698 0.60392 1.4505 1.7476
2.0061 2.2662 2.5676 2.994

0.58463

10 20 -3.0616 -2.6526 -2.3694 -2.1337 -1.9136 -1.6858 -1.4216 -
0.58314 -0.32574 -0.10524 0.10524 0.32574 0.58314 1.4216
1.6858 1.9136 2.1337 2.3694 2.6526 3.0616

0.58562

10 21 -3.0663 -2.6564 -2.3722 -2.1355 -1.914 -1.6844 -1.4169 -
0.61122 -0.38021 -0.18342 0 0.18342 0.38021 0.61122 1.4169
1.6844 1.914 2.1355 2.3722 2.6564 3.0663

0.58599

...
...

...
...

10 30 -3.1778 -2.7967 -2.541 -2.3383 -2.1626 -2.0003 -1.8423 -
1.6813 -1.5089 -1.3103 -0.69926 -0.5138 -0.35428 -0.20798
-0.068597 0.068597 0.20798 0.35428 0.5138 0.69926 1.3103
1.5089 1.6813 1.8423 2.0003 2.1626 2.3383 2.541 2.7967
3.1778

0.58855

92

Table B.9: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for given number of reads m and SNR = 13(dB).

SNR(dB) m γ̄ MMI
13 3 -2.0323 0 2.0323 0.78815
13 4 -2.018 -0.17451 0.17451 2.018 0.79949
13 5 -2.2747 -1.8607 0 1.8607 2.2747 0.82141
13 6 -2.2537 -1.8239 -0.19704 0.19704 1.8239 2.2537 0.83668
13 7 -2.2466 -1.8107 -0.29576 0 0.29576 1.8107 2.2466 0.84058
13 8 -2.3965 -2.0436 -1.7244 -0.20544 0.20544 1.7244 2.0436

2.3965
0.84702

13 9 -2.3878 -2.0315 -1.7008 -0.31434 0 0.31434 1.7008 2.0315
2.3878

0.85153

13 10 -2.3843 -2.0262 -1.6897 -0.38104 -0.11264 0.11264 0.38104
1.6897 2.0262 2.3843

0.8533

13 11 -2.4863 -2.1614 -1.9161 -1.6336 -0.32365 0 0.32365 1.6336
1.9161 2.1614 2.4863

0.85604

13 12 -2.4822 -2.1556 -1.9074 -1.6166 -0.39536 -0.11587 0.11587
0.39536 1.6166 1.9074 2.1556 2.4822

0.85797

13 13 -2.481 -2.1533 -1.9035 -1.6077 -0.44505 -0.19514 0 0.19514
0.44505 1.6077 1.9035 2.1533 2.481

0.85893

13 14 -2.5558 -2.2482 -2.0325 -1.8271 -1.5669 -0.40368 -0.11773
0.11773 0.40368 1.5669 1.8271 2.0325 2.2482 2.5558

0.86034

13 15 -2.5551 -2.2458 -2.0284 -1.8203 -1.5536 -0.45628 -0.19869 0
0.19869 0.45628 1.5536 1.8203 2.0284 2.2458 2.5551

0.86135

...
...

...
...

13 19 -2.6162 -2.3185 -2.1165 -1.9407 -1.7521 -1.4992 -0.53693
-0.3133 -0.14604 0 0.14604 0.3133 0.53693 1.4992 1.7521
1.9407 2.1165 2.3185 2.6162

0.86371

13 20 -2.6586 -2.3726 -2.1826 -2.0258 -1.8739 -1.7024 -1.4722 -
0.50987 -0.26488 -0.082891 0.082891 0.26488 0.50987 1.4722
1.7024 1.8739 2.0258 2.1826 2.3726 2.6586

0.86424

13 21 -2.6645 -2.3758 -2.184 -2.0257 -1.8721 -1.698 -1.463 -0.54396
-0.31562 -0.14681 0 0.14681 0.31562 0.54396 1.463 1.698
1.8721 2.0257 2.184 2.3758 2.6645

0.86462

...
...

...
...

13 30 -2.802 -2.5177 -2.3341 -2.1919 -2.0692 -1.9536 -1.8349 -
1.7027 -1.5432 -1.3323 -0.66936 -0.46037 -0.3025 -0.17215
-0.055915 0.055915 0.17215 0.3025 0.46037 0.66936 1.3323
1.5432 1.7027 1.8349 1.9536 2.0692 2.1919 2.3341 2.5177
2.802

0.86651

93

Table B.10: Read threshold positions γ̄ of MLC-SCL LSB that attain the maximum mutual
information for given number of reads m and SNR = 15(dB).

SNR(dB) m γ̄ MMI
15 3 -2.0137 0 2.0137 0.92726
15 4 -2.0061 -0.14159 0.14159 2.0061 0.93351
15 5 -2.1901 -1.8777 0 1.8777 2.1901 0.94285
15 6 -2.1776 -1.8554 -0.15409 0.15409 1.8554 2.1776 0.95056
15 7 -2.1736 -1.8473 -0.23874 0 0.23874 1.8473 2.1736 0.95248
15 8 -2.2845 -2.0184 -1.7716 -0.15887 0.15887 1.7716 2.0184

2.2845
0.95506

15 9 -2.2803 -2.0116 -1.7557 -0.25066 0 0.25066 1.7557 2.0116
2.2803

0.95721

15 10 -2.2779 -2.0085 -1.7486 -0.3088 -0.087074 0.087074 0.3088
1.7486 2.0085 2.2779

0.95803

15 11 -2.3519 -2.1047 -1.9236 -1.6981 -0.25615 0 0.25615 1.6981
1.9236 2.1047 2.3519

0.95907

15 12 -2.3528 -2.1031 -1.9194 -1.6865 -0.31844 -0.088987 0.088987
0.31844 1.6865 1.9194 2.1031 2.3528

0.95995

15 13 -2.35 -2.1008 -1.9166 -1.6805 -0.36289 -0.15152 0 0.15152
0.36289 1.6805 1.9166 2.1008 2.35

0.96038

15 14 -2.3953 -2.16 -2.0016 -1.8461 -1.6309 -0.32503 -0.090253
0.090253 0.32503 1.6309 1.8461 2.0016 2.16 2.3953

0.9609

15 15 -2.4091 -2.1701 -2.0095 -1.853 -1.6333 -0.37071 -0.15369 0
0.15369 0.37071 1.6333 1.853 2.0095 2.1701 2.4091

0.96135

...
...

...
...

15 19 -2.4953 -2.247 -2.0894 -1.9564 -1.8092 -1.5897 -0.78274 -
0.34127 -0.14473 0 0.14473 0.34127 0.78274 1.5897 1.8092
1.9564 2.0894 2.247 2.4953

0.96198

15 20 -2.5435 -2.274 -2.1103 -1.9772 -1.8366 -1.6405 -1.1808 -
0.42603 -0.20893 -0.063837 0.063837 0.20893 0.42603 1.1808
1.6405 1.8366 1.9772 2.1103 2.274 2.5435

0.96216

15 21 -2.5969 -2.3018 -2.133 -2.0017 -1.8709 -1.7052 -1.4267 -
0.57389 -0.2956 -0.1302 0 0.1302 0.2956 0.57389 1.4267
1.7052 1.8709 2.0017 2.133 2.3018 2.5969

0.96244

...
...

...
...

15 30 -2.8808 -2.5054 -2.2996 -2.1612 -2.051 -1.949 -1.8388 -
1.7006 -1.4951 -1.1225 -0.87746 -0.50491 -0.29941 -0.16117
-0.050993 0.050993 0.16117 0.29941 0.50491 0.87746 1.1225
1.4951 1.7006 1.8388 1.949 2.051 2.1612 2.2996 2.5054 2.8808

0.9631

94

Appendix C

DE Optimal Thresholds of MLC-SCL LSB

Channel

95

Table C.1: DE-optimized read threshold positions γ̄ of MLC-SCL LSB for Code A m = 5 at
the given SNR value. Thresholds are found using gradient descent initialized to MMI optimal
positions.

SNR(dB) m γ̄ BER(BP)
10 5 -2.4302 -1.8640 0 1.8640 2.4302 5.0447×10−2

11 5 -2.3924 -1.8596 0 1.8596 2.3924 1.9865×10−2

12 5 -2.3614 -1.8740 0 1.8740 2.3614 5.5126×10−3

13 5 -2.2848 -1.8481 0 1.8481 2.2848 1.1762×10−3

14 5 -2.2408 -1.8572 0 1.8572 2.2408 2.3101×10−4

15 5 -2.1901 -1.8777 0 1.8777 2.1901 5.1858×10−5

Table C.2: DE-optimized read threshold positions γ̄ of MLC-SCL LSB for Code A m = 6 at the
given SNR value.

SNR(dB) m γ̄

10 6 -2.4300 -1.8352 -0.2379 0.2379 1.8352 2.4300
11 6 -2.3607 -1.8087 -0.2341 0.2341 1.8087 2.3607
12 6 -2.3143 -1.8044 -0.2261 0.2261 1.8044 2.3143
13 6 -2.2687 -1.8109 -0.2086 0.2086 1.8109 2.2687
14 6 -2.2122 -1.8386 -0.1755 0.1755 1.8386 2.2122
15 6 -2.1776 -1.8554 -0.15409 0.15409 1.8554 2.1776

Table C.3: DE-optimized read threshold positions γ of MLC-SCL LSB for Code B, m = 5 at
the given SNR value.

SNR(dB) m γ

10 5 -2.0059 -2.0052 0 2.0052 2.0059
11 5 -2.1065 -1.9134 0 1.9134 2.1065
12 5 -2.2172 -1.8640 0 1.8640 2.2172
13 5 -2.2379 -1.8534 0 1.8534 2.2379
14 5 -2.2366 -1.8684 0 1.8684 2.2366
15 5 -2.2239 -1.8769 0 1.8769 2.2239

96

Appendix D

Double Diagonal LDPC Code Base Matrix

in 802.11n

97

Table D.1: The base matrices of LDPC codes used in the Wi-Fi standards 802.11n of code
length n = 1944 bits, sub-block length Z = 81 of various rates [11].

98

Bibliography

[1] Erich F. Haratsch. NAND flash media management algorithms, 2017.

[2] Zachary Painter. NAND flash memory technology: The basics of a flash memory cell, June
2018.

[3] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu. Error characterization, mitiga-
tion, and recovery in flash-memory-based solid-state drives. Proceedings of the IEEE,
105(9):1666–1704, 2017.

[4] C. A. Aslam, Y. L. Guan, and K. Cai. Read and write voltage signal optimization for
multi-level-cell (MLC) NAND flash memory. IEEE Transactions on Communications,
64(4):1613–1623, 2016.

[5] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai. Threshold voltage distribution in MLC NAND
flash memory: Characterization, analysis, and modeling. In 2013 Design, Automation Test
in Europe Conference Exhibition (DATE), pages 1285–1290, 2013.

[6] Kai Zhao, Wenzhe Zhao, Hongbin Sun, Tong Zhang, Xiaodong Zhang, and Nanning Zheng.
LDPC-in-SSD: making advanced error correction codes work effectively in solid state drives.
In FAST, 2013.

[7] Jeremy Thorpe. Low-density parity-check (LDPC) codes constructed from protographs. In
Proc. IPN Progr. Rep., pages 1–7, Aug 2003.

[8] Eshed Ram and Yuval Cassuto. LDPC codes with local and global decoding. CoRR,
abs/1801.03951, 2018.

[9] T. J. Richardson and R. L. Urbanke. Efficient encoding of low-density parity-check codes.
IEEE Transactions on Information Theory, 47(2):638–656, 2001.

[10] Tom Richardson and Ruediger Urbanke. Modern coding theory. Cambridge university
press, 2008.

[11] IEEE standard for information technology—telecommunications and information exchange
between systems local and metropolitan area networks—specific requirements - part 11:
Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE
Std 802.11-2016 (Revision of IEEE Std 802.11-2012), pages 1–3534, 2016.

[12] Yishen Yeh, Arman Fazeli, and Paul H. Siegel. Optimization of read thresholds in
MLC NAND memory for LDPC codes. In Proc. 11th Annu. Non-Volatile Memo-

99

ries Workshop (NVMW), La Jolla, California, USA, March 2020. [Online]. Available:
http://nvmw.ucsd.edu/program/.

[13] X. Zhang, J. Zhu, and Y. Wu. Efficient one-pass Chase soft-decision BCH decoder for
multi-level cell NAND flash memory. In 2011 IEEE 54th International Midwest Symposium
on Circuits and Systems (MWSCAS), pages 1–4, 2011.

[14] X. Zhang. An efficient interpolation-based Chase BCH decoder. IEEE Transactions on
Circuits and Systems II: Express Briefs, 60(4):212–216, 2013.

[15] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke. Design of capacity-approaching
irregular low-density parity-check codes. IEEE Transactions on Information Theory,
47(2):619–637, 2001.

[16] F. Zhang, H. D. Pfister, and A. Jiang. LDPC codes for rank modulation in flash memories.
In 2010 IEEE International Symposium on Information Theory, pages 859–863, 2010.

[17] Anxiao Jiang, M. Schwartz, and J. Bruck. Error-correcting codes for rank modulation. In
2008 IEEE International Symposium on Information Theory, pages 1736–1740, 2008.

[18] J. Wang, K. Vakilinia, T. Chen, T. Courtade, G. Dong, T. Zhang, H. Shankar, and R. Wesel.
Enhanced precision through multiple reads for LDPC decoding in flash memories. IEEE
Journal on Selected Areas in Communications, 32(5):880–891, 2014.

[19] C. Duangthong, W. Phakphisut, and P. Supnithi. Read voltage optimization in MLC
NAND flash memory via the density evolution. In 2019 26th International Conference on
Telecommunications (ICT), pages 361–365, 2019.

[20] Sae-Young Chung, G. D. Forney, T. J. Richardson, and R. Urbanke. On the design of low-
density parity-check codes within 0.0045 db of the Shannon limit. IEEE Communications
Letters, 5(2):58–60, 2001.

[21] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti. Introduction to flash memory.
Proceedings of the IEEE, 91(4):489–502, 2003.

[22] How data are read from a NAND type flash memory cell. SHG2A Series | TECH JOURNAL
| TDK Product Center.

[23] Xueqiang Wang, Guiqiang Dong, Liyang Pan, and Runde Zhou. Error Correction Codes
and Signal Processing in Flash Memory, Flash Memories. IntechOpen, Sep 2011.

[24] Quan Xu, Pu Gong, Thomas M. Chen, John Michael, and Shancang Li. Modelling and
characterization of NAND flash memory channels. Measurement, 70:225 – 231, 2015.

[25] Kang-Deog Suh, Byung-Hoon Suh, Young-Ho Lim, Jin-Ki Kim, Young-Joon Choi, Yong-
Nam Koh, Sung-Soo Lee, Suk-Chon Kwon, Byung-Soon Choi, Jin-Sun Yum, Jung-Hyuk
Choi, Jang-Rae Kim, and Hyung-Kyu Lim. A 3.3 V 32 Mb NAND flash memory with incre-
mental step pulse programming scheme. IEEE Journal of Solid-State Circuits, 30(11):1149–
1156, 1995.

[26] G. Dong, N. Xie, and T. Zhang. Enabling NAND flash memory use soft-decision error
correction codes at minimal read latency overhead. IEEE Transactions on Circuits and
Systems I: Regular Papers, 60(9):2412–2421, 2013.

100

[27] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, USA, 2006.

[28] P. Huang, P. H. Siegel, and E. Yaakobi. Performance of multilevel flash memories with
different binary labelings: A multi-user perspective. IEEE Journal on Selected Areas in
Communications, 34(9):2336–2353, 2016.

[29] R. Gallager. Low-density parity-check codes. IRE Transactions on Information Theory,
8(1):21–28, 1962.

[30] Ron Roth. Introduction to Coding Theory. Cambridge University Press, USA, 2006.

[31] J. Fan and Y. Xiao. A method of counting the number of cycles in LDPC codes. In 2006
8th international Conference on Signal Processing, volume 3, 2006.

[32] D. J. C. MacKay and R. M. Neal. Near Shannon limit performance of low density parity
check codes. Electronics Letters, 32(18):1645–, 1996.

[33] Li Ping and K. Y. Wu. Concatenated tree codes: a low-complexity, high-performance
approach. IEEE Transactions on Information Theory, 47(2):791–799, 2001.

[34] Dariush Divsalar, Hui Jin, and Robert J. McEliece. Coding theorems for "turbo-like" codes.
Proceedings of the 1998 Allerton Conference, page 210, 1998.

[35] Hui Jin, Aamod Khandekar, and Robert J. McEliece. Irregular repeat-accumulate codes.
2nd International Symposium on Turbo Codes and Related Topics, pages 1–8, 11 2000.

[36] MacKay, David J. C. and Neal, Radford M. Good codes based on very sparse matrices. In
Colin Boyd, editor, Cryptography and Coding, pages 100–111, Berlin, Heidelberg, 1995.
Springer Berlin Heidelberg.

[37] Ido Kanter and David Saad. Error-correcting codes that nearly saturate Shannon’s bound.
Phys. Rev. Lett., 83:2660–2663, Sep 1999.

[38] Tom Richardson and Rüdiger Urbanke. Multi-edge type LDPC codes. ISIT talk, 01 2002.

[39] Y. Fang, G. Bi, Y. L. Guan, and F. C. M. Lau. A survey on protograph LDPC codes and
their applications. IEEE Communications Surveys Tutorials, 17(4):1989–2016, 2015.

[40] D. Divsalar, S. Dolinar, C. R. Jones, and K. Andrews. Capacity-approaching protograph
codes. IEEE Journal on Selected Areas in Communications, 27(6):876–888, 2009.

[41] Xiao-Yu Hu, E. Eleftheriou, and D. M. Arnold. Regular and irregular progressive edge-
growth tanner graphs. IEEE Transactions on Information Theory, 51(1):386–398, 2005.

[42] M. P. C. Fossorier. Quasicyclic low-density parity-check codes from circulant permutation
matrices. IEEE Transactions on Information Theory, 50(8):1788–1793, 2004.

[43] C. Sun, H. Xu, D. Feng, and B. Bai. (3, l) quasi-cyclic LDPC codes: Simplified exhaustive
search and designs. In 2016 9th International Symposium on Turbo Codes and Iterative
Information Processing (ISTC), pages 271–275, 2016.

[44] A. Kalsi, A. Bajpai, L. Wuttisittikulkij, and P. Kovintaewat. A base matrix method to
construct column weight 3 quasi-cyclic LDPC codes with high girth. In 2016 International
Conference on Electronics, Information, and Communications (ICEIC), pages 1–4, 2016.

101

[45] Seho Myung and Kyeongcheol Yang. Extension of quasi-cyclic LDPC codes by lifting.
In Proceedings. International Symposium on Information Theory, 2005. ISIT 2005., pages
2305–2309, 2005.

[46] D. Divsalar, S. Dolinar, J. Thorpe, and C. Jones. Constructing LDPC codes from simple
loop-free encoding modules. In IEEE International Conference on Communications, 2005.
ICC 2005. 2005, volume 1, pages 658–662 Vol. 1, 2005.

[47] George I. Davida and Sudhakar M. Reddy. Forward-error correction with decision feedback.
Information and Control, 21(2):117 – 133, 1972.

[48] M. El-Khamy, J. Hou, and N. Bhushan. Design of rate-compatible structured LDPC
codes for hybrid ARQ applications. IEEE Journal on Selected Areas in Communications,
27(6):965–973, 2009.

[49] P. Huang, Y. Liu, X. Zhang, P. H. Siegel, and E. F. Haratsch. Syndrome-coupled rate-
compatible error-correcting codes: Theory and application. IEEE Transactions on Informa-
tion Theory, 66(4):2311–2330, 2020.

[50] P. Chen, K. Cai, and S. Zheng. Rate-adaptive protograph LDPC codes for multi-level-cell
NAND flash memory. IEEE Communications Letters, 22(6):1112–1115, 2018.

[51] C. Yoon, E. Choi, M. Cheong, and S. Lee. Arbitrary bit generation and correction technique
for encoding QC-LDPC codes with dual-diagonal parity structure. In 2007 IEEE Wireless
Communications and Networking Conference, pages 662–666, 2007.

[52] C. Yoon, J. Oh, M. Cheong, and S. Lee. A hardware efficient LDPC encoding scheme
for exploiting decoder structure and resources. In 2007 IEEE 65th Vehicular Technology
Conference - VTC2007-Spring, pages 2445–2449, 2007.

[53] Chia-Yu Lin, Chih-Chun Wei, and Mong-Kai Ku. Efficient encoding for dual-diagonal
structured LDPC codes based on parity bit prediction and correction. In APCCAS 2008 -
2008 IEEE Asia Pacific Conference on Circuits and Systems, pages 1648–1651, 2008.

[54] S. K. Planjery, D. Declercq, L. Danjean, and B. Vasic. Finite alphabet iterative decoders for
LDPC codes surpassing floating-point iterative decoders. Electronics Letters, 47(16):919–
921, 2011.

[55] Shiva Kumar Planjery, David Declercq, Ludovic Danjean, and Bane V. Vasic. Finite
alphabet iterative decoders, part I: decoding beyond belief propagation on BSC. CoRR,
abs/1207.4800, 2012.

[56] F. Cai, X. Zhang, D. Declercq, S. K. Planjery, and B. Vasić. Finite alphabet iterative
decoders for LDPC codes: Optimization, architecture and analysis. IEEE Transactions on
Circuits and Systems I: Regular Papers, 61(5):1366–1375, 2014.

[57] J. Hagenauer, E. Offer, and L. Papke. Iterative decoding of binary block and convolutional
codes. IEEE Trans. Inf. Theor., 42(2):429–445, September 2006.

[58] M. P. C. Fossorier, M. Mihaljevic, and H. Imai. Reduced complexity iterative decoding
of low-density parity check codes based on belief propagation. IEEE Transactions on
Communications, 47(5):673–680, 1999.

102

[59] Jinghu Chen and M. P. C. Fossorier. Near optimum universal belief propagation based
decoding of low-density parity check codes. IEEE Transactions on Communications,
50(3):406–414, 2002.

[60] Jinghu Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and Xiao-Yu Hu. Reduced-
complexity decoding of LDPC codes. IEEE Transactions on Communications, 53(8):1288–
1299, 2005.

[61] Juntan Zhang, M. Fossorier, Daqing Gu, and Jinyun Zhang. Improved min-sum decoding
of LDPC codes using 2-dimensional normalization. In GLOBECOM ’05. IEEE Global
Telecommunications Conference, 2005., volume 3, pages 6 pp.–, 2005.

[62] T. J. Richardson and R. L. Urbanke. The capacity of low-density parity-check codes under
message-passing decoding. IEEE Transactions on Information Theory, 47(2):599–618,
2001.

[63] Sae-Young Chung, T. J. Richardson, and R. L. Urbanke. Analysis of sum-product decoding
of low-density parity-check codes using a Gaussian approximation. IEEE Transactions on
Information Theory, 47(2):657–670, 2001.

103

